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ABSTRACT The gear shifting mechanism is a crucial part of the gearbox which transmits the torque 

from engine to wheels with different transmission ratio. For smooth and comfortable gear changing 

the gear shifting mechanism is still a challenge for the engineers to adapt the different driving 

situations. In case of heavy vehicles particularly under certain circumstances optimized 

performance by avoiding failure modes of the gear shifting mechanism is also a challenge. In this 

paper failure modes and optimized values of the system parameters are identified to contribute for 

this challenge. A model of the gear shifting mechanism is developed in GT-Suite software. Failure 

modes are identified via sensitivity analysis. Four system response characteristics are plotted 

against the time and used to identify the failure modes. Optimization routine of the GT-Suite is 

applied on the model by taking seven parameters into account as independent variables and 

synchronization time as an objective function. Percentage changes of the variables from their 

initial values are calculated and analyzed. Finding of optimal values of parameters of the gear 

shifting mechanism is valuable contribution to design reliable and efficient transmission system for 

automotive industry especially for heavy vehicles.  

1 Introduction 

Automotive industry has been working to improve the gear shifting technology especially for heavy 

vehicles. The traditional bulk ring synchronizer is still an important design, Figure 1, and is subjected to several 

studies. Key components of the bulk ring design are the friction cones, blocking chamfer and engaging teeth, 

and detailed studies of these have been carried out. For instance, Häggström et al. presented thermomechanical 

model of the friction lining using the finite element tool Abaqus/Standard [1]. In [2] Häggström et al. predicted 

failure of the molybdenum coated gearbox synchronizers through the thermomechanical load in terms of kinetic 

energy, synchronization power, focal and average surface temperature. Szöky et al. solved the problem of 

scratching on dog teeth during the gear shifting by decreasing sleeve chamfer, gear piece angle and tip radius. 

Further, cold chamfer tests and the sleeve chamfer durability tests were conducted with satisfying results [3]. 

Bóka et al. built the mechanical model to describe the uncertainty of clashing and probability of successful 

engagement [4]. Lovas incorporated mathematical models of the gear shifting process in a numerical simulation 

software to describe the gear shifting process with the concern of manufacturing as well. In addition to this he 

explained operational problems, for example double bump, stick slip phenomenon, etc with the suggestions of 

improvements [5].  

To simulate the complete synchronization process consisting of several sub-phases mathematical model of 

the generic gear shifting mechanism was developed in [6, 7] based on constrained Lagrangian formalism. The 

mathematical model was made possible to allow for simple change of a friction model, gearbox type, actuator 

model, etc. The model was used for sensitivity analysis [8]. The gear shifting process is optimized by 

implementing Matlab optimization routine with the genetic algorithm [9]. In order to better describe and identify 

different types of failure modes, and to optimize the performance, which is the subject of the present study, a 

gear shifting mechanism model is developed in GT-Suite software. 
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2 Modelling of the gear shifting mechanism   

GT-Suite software is used to develop a model of the gear shifting mechanism with five degrees of freedom. 

The generic synchronizer as shown in Figure 1 consists of three rigid bodies: engaging sleeve, synchronizer ring 

and gearwheel. The engaging sleeve and the gearwheel have different rotational speeds and need to engage with 

each other by engaging teeth to shift the gear at transmission. The synchronizer ring plays a role to decrease the 

speed difference by blocking the sleeve for a while and afterwards allows both rigid bodies to engage with each 

other. Values of parameters of the generic synchronizer which are common in [7, 8]  and this study are given in 

Table 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The generic synchronizer [6]. 

 

Variable Name Variable Name �� = 1.5	kg Sleeve mass �
 = 0.5	kg Ring mass � = 0.2	kgm�       Gear moment of inertia  �� = 0.01	kgm�    Sleeve moment of inertia  �
 = 0.004	kgm�   Ring moment of inertia   �� = 0.07	m          Chamfers mean radius �� = 0.1	m Cones mean radius              �� = 2	mm            Cones Initial clearance � = 5	mm               Cones contact length          ��� = 5� Angle clearance               � = 60�                  Chamfer angle                    �� = 0.17               Cones friction coefficient  � = 7�                Cone angle �� = 0.09  Blocker friction coefficient  !
� = 0.002 Ring sliding friction !�� = 0.02             Sleeve sliding friction "�# = 1000	rpm    Sleeve rotational speed     "# = 700	rpm     Initial gear rotational speed  &�'( = 1000 N 

Table 1: Values of the generic synchronizers parameters used in [7]. 
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The vector of generalized coordinates of the synchronizer system is given below 

 																																																																									) = *+�, -�, +
 , -
 , -./ 																																																																														(1) 
 

where -�, -
 and - are angular coordinates of sleeve, ring and gearwheel, respectively; +� and +
 are 

translational coordinates of the sleeve and ring, respectively.  

 

Multibody systems can be modelled on GT-Suite software with their particular features which can be active 

during their practical functioning. GT-Suite model of the gear shifting mechanism consists of three rigid bodies: 

sleeve, ring and gear as shown in Figure 2. A rigid body has six degrees of freedom in space but to develop the 

synchronizer some of degrees of freedom of the rigid bodies are freezed. The synchronizer has five degrees of 

freedom. The sleeve and the ring can translate axially and rotate about axial direction. The gear can only rotate 

about axial direction. In this study of model developed in the GT-Suite software the gear shifting process is 

divided into three phases; presynchronization, main synchronization and engagement. The phase from start to 

the moment when cones come in contact is called presynchronization. The phase during which the cones slide 

over each other with pressure to decrease the speed difference is called main synchronization. The third phase 

starts when speed difference becomes zero and ends when the engagement of teeth is done to finish the gear 

shifting process. At neutral position the sleeve and the gear have different rotational speeds and to shift the gear 

the sleeve and the gear must engage with each other. So it is necessary to decrease the speed difference for 

successful engagement of the teeth. Therefore the three rigid bodies are connected with each other in such a way 

to shift the gear without clashing. The sleeve and the ring are connected with spring and blocking teeth. The ring 

and the gear are connected with cones. The gear and the sleeve are connected with engaging teeth. Further four 

options ring-strut-contact, passing-of-speed, constant speed and force are selected from graphical user interface 

of the GT-Suite software to model a simple but complete gear shifting process. The gear shifting process starts 

when the shift force is applied. At start of the process the sleeve moves axially. The option of ring-strut-contact 

creates an initial angular gap between the sleeve and the ring which will appear in blocking teeth. When the 

sleeve starts to translate axially, the spring slows down the sleeve translational movement to bring the blocking 

teeth at indexing position. When the blocking teeth come in contact, the ring also starts to translate axially with 

the sleeve until the cones come in contact. Meanwhile the ring rotates with the sleeve rotational speed because 

of attribute of the passing-of-speed of the GT-Suite software. After the cones come in contact, the sleeve stops 

its translational movement. The speed difference decreases between the sleeve and the gear because of the cones 

sliding under pressure. Only rotational speed of the gear varies while rotational speed of the sleeve remains 

constant even throughout the gear shifting process because of attribute of constant-speed of the software. When 

the speed difference decreases to zero, the blocking teeth releases the sleeves blockage and the sleeve moves 

forward to get engagement with the gear. At end of the process teeth of the sleeve and the gear come in full 

contact implemented by the engaging-teeth attribute as shown in Figure 2. 
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Figure 2: GT-Suite model of simplified gear shifting mechanism. 

 

A model of the gear shifting mechanism has developed in GT-Suite software. Seven parameters of the 

generic synchronizer are taken as input to the gear shifting mechanism and categorized as the control design 

parameter and the structural design parameters which are given below 

 Control	design	parameter = <Shift	force	A = &�'( 

 

                    Structural	design	parameters =
CDD
DD
E Blocker	angleIndexing	angleCone	angle	Cone	coefIicient	of	frictionCone	radiusSpring	force JKK

KK
L
=
CDD
DD
E �δ�����&�N
JK

KKK
L
                                (2) 

 

 

The gear shifting process is monitored by the control design parameter &�'(, gear shifting time O and the 

following vector 

 

                                                     P Sleeve	rotational	speedGear	rotational	speedSleeve	axial	displacement	S = P"�"	�� S                                                     (3) 

 

 

The gear shifting process modelled on GT-Suite software is sum up in three main phases; pre- 

synchronization (phase 1), main synchronization (phase 2) and engagement (phase 3). So, the constraints will be 

imposed upon motion of the synchronizer modelled in GT-Suite software. These constraints are presented in 

Table 2. 
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Table 2: Internal constraints during phases of the synchronization. 

During phase 1 the ring moves axially from its initial position and covers a displacement of ±+
U#V while the 

sleeve moves axially and covers a displacement of +�W + +�U#V  as shown in eq. (4). The variable +�U#V has a 

maximum value of 5 mm and minimum value of 0 mm. The variable +
U#V varies between 0 mm and 1.5 mm. 

During phase 2 the ring and the sleeve stay at their positions of +
� and +�� respectively. In phase 3 the sleeve 
moves axially from +�� to +�Y while the ring return to its initial positon at +
W from +
�. But where the phase 1 

ends at value of Z+�W + +�U#V[ the ring will not proceed further axially during phase 2 and ±+
U#V will be called +
�. The variable Z+�W + +�U#V[ will be called +�� during phase 2. Values of +
U#V and +�U#V depend upon stiffness 

of the system. 

 

                                         \+
W ≤ +
 ≤ ±+
U#V 	+
 = +
�		+
� ≥ +
 ≥ +
W	 				0 ≤ +� ≤ +�W + +�U#V				+� = +��	+�� ≤ +� ≤ +�Y 				_ℎabc	1	_ℎabc	2		_ℎabc	3	                                       (4) 

The followings are assumed 0 ≤ +
U#V ≤ 1.5,  0 ≤ +�U#V ≤ 5,	 +
W = 15	��,	 +�W = 9	��,	 +�Y = 20	��,	 +
Y = +
� +�� = +�W ± +�U#V 	and +
� = +
W ± +
U#V at end of phase 1,  +�W� = Z+�W ± +�U#V[ − Z±+
U#V[ 
 
In phase 1 the ring must get its indexing position by covering a rotational displacement of δ before blocking 
teeth of the sleeve come in contact with blocking teeth of the ring and the blocking teeth come in contact when 
the sleeve covers +�W axial displacement. After the blocking teeth contact the ring and the sleeve rotate together 
till end of the synchronization process as shown in eq. (5).  

 

                                            

fgh
gi 0 ≤ -
 ≤ δ		-
 = -� − δ-
 = -� − δ-
 = -� − δ	- = -� − -�

				
	0 ≤ +� ≤ +�W+�W ≤ +� ≤ +�W + +�U#V			+� = +��+�� ≤ +� ≤ +�Y+�� ≤ +� ≤ +�Y

						
_ℎabc	1_ℎabc	1_ℎabc	2	_ℎabc	3_ℎabc	3	

                                    (5) 

 -
� = -� − -
 at end of phase 1, -� = -� − - at end of phase 2  

 
Let’s the mechanism modelled on GT-Suite software has given initial state of the general coordinates (1) 

and nominal values of the structural design parameters *��, δ�, ��, ��# , ��# , &�N
#./ and the vector *"�# , "# , ��#./  as follows 

 

 

Phase Constraints Phase Constraint 

1 j+� − +
 − +�W-� − -
 − δ k=0 3 P+� − +
 − +�W�-� − -
 − -
�-� − - − -� S=0 

2 j+� − +
 − +�W�-� − -
 − -
� k=0 
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CD
DD
DE ��δ�����#��#&�N
#JK

KK
KL �

CDD
DDE

60�4�7�0.17100	��100	l JKK
KKL,  ) �

CDD
DE-�#-#+�#+
-
 JK

KKL � CDD
DE 0�0�0.2	��15	��0� JKK

KL
,  )m �

CD
DD
DE-m�#-m#+m�#+m
#-m
# JK

KK
KL �

CDD
DDE
"�#"#+m�#+m
#-m
# JKK

KKL �
CDD
DE1000	�n�700		rpm			000 JKK

KL
                     (6) 

 

The mechanism has a constraint "� � opqbOaqO which holds till end of the gear shifting process.  
 

The shift force &�'( � 1000	l is applied on the mechanism and resulted performance of the mechanism 
described by the synchronizer performance diagram is shown in Figure 3 with axial movement of the sleeve, 

rotational speed of the gear and the sleeve, the shift force and the synchronization time, O�r�s'.   
 

Here the shift force and time history of the sleeve and the gear are plotted. The shift force of 1000 N is 

applied from point k to point l. The sleeve moves axially from point a to point b and comes in contact with 

spring, blocking teeth and the ring. At start of the process cones come in contact but without having a pressure. 

At point b the cones get pressure because of the applied shift force and hold the sleeve until the speed difference 

decreases to zero as shown from point b to point c. From point c the sleeve moves axially again and comes in 

contact with engaging teeth of the gear at point d. From point d to point e the gear and the sleeve engage 

completely with each other through the engaging teeth. The gear does not gain a sufficient increment in 

rotational speed from point f to point g because the cones are sliding over each other without having a pressure 

but afterwards when the cones get pressure by the shift force the gear gains rotational speed sharply and at point 

h the gear reaches at the rotational speed of the sleeve. As shown from point m to point n the sleeve rotates with 

constant speed. The synchronization time, O�r�s' of the gear shifting process is 0.118 sec. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Synchronizer performance diagram by GT-Suite model. 
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3 Prediction of failure modes via sensitivity analysis    

For performance improvement of the synchronizer it is important to know the reasons for failure. The 

mechanism failures by clashing of the engaging teeth, complete blockage of the sleeve and undesirable longer 

synchronization time are studied. The GT-Suite model is simulated by varying values of one of the parameters 

in a reasonable bounds [7] while rest of the parameters have constant values. A constant force is applied for a 

single simulation on GT-Suite software. In this way those values of the parameters one by one are identified at 

which the synchronizer causes failures. 

 

3.1 The sensitivity analysis of the gear shifting mechanism  

Failure of the gear shifting mechanism can be identified by different kind of techniques for example by 

parameters sensitivity analysis, sensors, condition monitoring, etc. In this study sensitivity analysis is chosen 

where values of the synchronizers parameters are varied to observe the effect upon performance of the 

synchronizer.  

 

The gear shifting process is monitored based on system response characteristics by varying variables of the 

synchronizer including structural design parameters and control design parameters. Sleeve axial displacement, 

ring axial displacement, speed difference between the sleeve and the gear and relative rotation of the blocking 

teeth are taken as system response characteristics. Shift force as a control design parameter and spring force, 

blocking teeth angle, indexing angle, cone angle, cone radius and cone coefficient of friction are taken as 

structural design parameters. Reasonable bounds of values of the control design and structural design parameters 

are chosen as considered in [7]. Particular value of each parameter is identified at which the synchronizer fails to 

perform. In GT-Suite model the control design and structural design parameters are considered as independent 

parameters and synchronization time as dependent parameter. The synchronization time decreases or increases 

with variations of values of the parameters. It is understood that practically it is not possible to achieve the ideal 

case. So, in one case beyond the possible highest or lowest synchronization time the mechanism fails to perform. 

In second case if the synchronizer perform optimally at one end of the values bound, at other end of the values 

bound the synchronizer perform poorly or probably fails to perform. That particular value for each independent 

parameter is found through sensitivity analysis as shown in Figure 4-9.  

 

 

3.2 Identification of failure modes 

The control design parameter and the structural design parameters are varied from lowest to highest values 

of elements of column vectors one by one as shown in (7) 

 

&�'( � t 600100020002100u,  � =
CDD
DDD
E40�60�65�70�75�80�85�JK

KKK
KL
,  δ = t 2�4�8�12�u, � =

CDD
DDD
E05�07�09�11�17�19�21�JK

KKK
KL
,  �� =

CDD
DDD
E0.120.17...	0.72	0.77JK

KKK
KL
, �� =

CD
DDD
DDD
E 60	708090100	110120130140JK

KKK
KKK
L
, &�N
 =

CDD
DDE
400	600	800	1000	1200014000JK

KKK
L
            (7) 
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Vector of the parameters *"�, ", ��./ and the synchronization time O�r�s' are obtained for each varying 

value of each parameter.  

System response characteristics as shown below are selected to be used for synchronization failure modes 

prediction  

 

 

          System	response	characteristics = t Sleeve	axial	displacement	Ring	axial	displacementSpeed	differenceRelative	rotation	of	blocking	teethu = t +�+
			∆"�{∆-�{
 u                 (8) 

 

Failure modes as defined in section 3 are described mathematically here 

 

                                    &a|}~�c	�p�cb = Pmode	1mode	2mode	3	S = � o}abℎ|q��}po�|q�				}pq�c�	O�r�s'�                                                   (9) 

 

 

                         CDD
E o}abℎ|q�o}abℎ|q��}po�|q�				}pq�c�	O�r�s'JKK

L = fh
i O ≤ Os���'-� ≥ -s���'O�r�s' = |q�		O�r�s' > O�ss�N�	 				

						+� = �
,										_ℎabc	2��
 ≤ +� ≥ ��,			_ℎabc	3					+� = �
	,									_ℎabc	2��
 ≤ +� ≥ ��,			_ℎabc	3                                  (10) 

 

Values of -s���', O�ss�N� and Os���' depend upon the practical application and type of the gear shifting 

mechanism but reasonable values as shown in (11) are chosen for study. 
 

                                         -s���' = 100	�n�, O�ss�N� = 0.2	bco, Os���' = 0.05		bco																																				(11) 
 

By monitoring the system response characteristics Z+�� , +
 , ∆"�{, ∆-�{
		[ and checking with the failure 

modes conditions, values of the parameters are identified at which the mechanism fails to perform. 

 

System response characteristics are plotted against the time at different values of the control design and 

structural design parameters as shown in Figure 4-9. It is studied that variation of the control design and 

structural design parameters either decrease or increase the synchronization time, O�r�s'. It is also observed that 

how the system response characteristics vary with the time during synchronization process which helps to 

identify the failure modes.  

 

Synchronization time, O�r�s' for gear shifting process decreases with increasing shift force as shown by the 

sleeve axial displacement in Figure 4 (a). Ultimately because the sleeve covers the displacement quickly, the 

synchronizer fails to perform. The system response characteristics against the time are plotted at 600 N, 1000 N, 

2000 N, 2500 N, 3000 N and 4000 N shift forces as shown in Figure 4. The sleeve axial displacements before 

3000 N shift force shows feasible gear shifting process. But at 3000 N and 4000 N shift forces the process fails 

because the sleeve does not stay for a sufficient time during the cones sliding and approaches the engagement 

teeth which produce clashing. Shorter stay of the sleeve is shown in Figure 4 (a). Equal and higher than 3000 N 

shift force produces failure of the gear shifting process or unfeasible synchronization. Similarly unsmooth 

behaviors in case of ring axial displacement, speed difference and relative rotation of blocking teeth are 

observed as shown in Figure 4 (b-d). 
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Synchronization time increases with increasing blocker angle as shown in Figure 5 (a). Blockage of the 

sleeve for longer time causes the longer synchronization time. At 80o blocker angle the sleeve does not move 

further from blocking positon as shown in the Figure 5 (a) which indicates failure of the process. From the ring 

axial displacement and the speed difference it is hard to predict the failure mode with varying blocker angle. 

 
Synchronization time does not change significantly by increasing indexing angle but increment in indexing 

angle can cause the failure mode. In Figure 6 (a) shows that the sleeve stops at 7o indexing angle which causes 

failure in gear shifting process. This failure is categorize as blockage. Similarly the mechanism behaves 

unexpectedly at 7o indexing angle as shown in Figure 6 (b), (d).  
 

From the implemented GT-Suite model in this study it is hard to predict the failure mode with increasing the 

cone angle although Figure 7 shows that the synchronization time increases with increasing the cone angle. The 

wedging condition of the sliding cones is not applied in this model. But in practical application the wedging 

condition must be satisfied otherwise the cones can be welded over each other during sliding. If the failure mode 

is defined in terms of undesirable longer synchronization time, failure mode can be predictable with knowledge 

of value of the undesirable synchronization time. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: Synchronization failure modes prediction by varying shift force. 
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Figure 5: Performance monitoring by varying blocker angle. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Performance monitoring by varying indexing angle. 
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Figure 7: Performance monitoring by varying cone angle. 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Performance monitoring by varying cone coefficient of friction. 
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The synchronization time decreases with increasing cone coefficient of friction by monitoring axial 

displacements of the sleeve and the ring, speed difference and relative rotation of the blocking teeth as shown in 

Figure 8. For example at 0.17 friction coefficient the ring comes back at its neutral position again at end of the 

process in shorter time than at 0.12 friction coefficient. With the criterion of failure as a longer synchronization 

time it can be said the mechanism fails to perform at lower friction coefficient.       

 

Performances of the synchronizer show variation of cone radius can predict the failure mode in terms of the 

undesirable longer synchronization time. With decreasing cone radius the synchronization time increases. At 80 

mm cone radius the ring reaches at its neutral position again at end of the process in shorter time than at 60 mm 

cone radius as shown in Figure 9. Lowest cone radius can produce failure mode.  

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: Performance monitoring by varying cone radius. 
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Figure 10: Performance monitoring by varying spring force. 

 

The spring force should not be higher than the shift force otherwise the sleeve will not move axially and the 

synchronization process cannot start. Less difference between the spring force and the shift force increases the 

synchronization time as shown in Figure 10. At 700 N spring force the sleeve axial speed is almost similar to the 

sleeve axial speed at 600 N spring force. Similar phenomenon can be seen from the ring axial displacement and 

relative rotation of the dog teeth. In case of the spring force failure mode can be predicted in terms of duration of 

the synchronization time.  

  

Different control design and structural design parameters produce failure modes in different terms of failure. 

Higher values of the blocker angle and the indexing angle produce failure modes by blocking sleeve of the 

synchronizer as shown in Figure 5 and 6. Higher values of the shift force produce failure modes in terms of 

clashing of the engagement teeth as shown in Figure 4. Higher values of the spring force and the cone angle, 

lower values of the cone coefficient of friction and the cone radius produce failure modes by increasing the 

synchronization time as shown in Figure 7-9.    

 

Value of the control design parameter and the structural design parameters at which the mechanism produce 

failure are shown below with the type of failure mode. 

 

 <mode	1A = <o}abℎ|q�A = <&�'( ≥ 2000	lA 
 

To be on safe side 2000 N shift force is taken which produce failure mode. 
 <mode	2A = <�}po�|q�A = �� ≥ 80�δ ≥ 7� � 
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<mode	3A = *}pq�c�	O�r�s'. = t � > 11��� < 0.12�� ≤ 70	��&�N
 ≥ 700	lu 
 

To select values of  &�'( and &�N
 following condition must be satisfied 

 Z&�'( − &�N
[ ≥ 200 

 

 

Synchronization failure modes predictions at lower/higher bounds of the values are given in Table 3.  

 

Besides prediction of the failure modes, a secure prediction in terms of higher or lower limits of values of 

the control design and the structural design parameters can also be made by sensitivity analysis. Higher values 

of the cone coefficient of friction and the cone radius and lower values of the shift force, the cone angle and the 

indexing angle produce optimized performance of the gear shifting mechanism. But in case of the shift force 

there is transition state between the optimal performance and the failure mode. At which value of the shift force 

the synchronizer performs optimally, just above that value the synchronizer produces failure mode. Prediction of 

optimal performances at lower/higher bound are also given in Table 3. 

 

 

 

 

 

 

Objective 

function 

No. Independent 

variables 

Failure mode at 

lowest/highest 

bound  

Optimal performance 

at lowest/highest 

bound  

Synchronization 

time, ZO�r�s'[ 1 Shift force Highest Highest 

2 Blocker angle Highest Lowest 

3 Indexing angle Highest Lowest 

4 Cone angle Highest Lowest 

5 Cone coefficient 

of friction 

Lowest Highest 

6 Cone radius No failure/lowest Highest 

7 Spring force Near to shift force lowest 

Table 3: Prediction of lower/higher bound of control design and structural design parameters for failure modes and optimal performance. 
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4 Optimization of the control design and structural design parameters    

 

After identification of the failure modes it is a question of curiosity to find out the optimized control design 

and structural design parameters values. For optimization the synchronization time is selected as an objective 

function to be minimized. Advanced direct optimization routine of the GT-Suite model is applied by considering 

the control design and structural design parameters as independent variables and the synchronization time as a 

dependent variable. Genetic algorithm is selected as a search method, and the population size and number of 

generations are selected as a number of 200. In addition to the control design and structural design parameters of 

the study, rest of the parameters values to run the simulation are chosen as given in Table 1.  

 

Presentation of the results after optimization is not an easy task in case of several input parameters. As the 

optimization routine tries to find out optimal area from design space of the independent parameters to minimize 

the synchronization time therefore all of the parameters in design space are plotted. Because of these simple 

plots it is comparatively easier to find out optimal values of the control design and structural design parameters. 

Number of iterations, the synchronization time and the control design and structural design parameters are 

plotted in Figure 11 and 12. Values of the control design and structural design parameters around the more 

crowded areas in Figure 11 and 12 are selected as optimal values because the GT-Suite model routine finds these 

crowed areas again and again for the minimum synchronization time during searching of the optimal area from 

the design space. Approximate values of the control design and structural design parameters around the crowded 

areas, their percentage change from initial value and lower\upper bounds of the values are given in Table 4. 

 

 In Figure 11  the shift force, the indexing angle and the blocking teeth right and left angle are plotted. All 

four sub Figure 11 (a-d) have two kind of crowded areas; one is with respect to no. of iteration with red color 

and second is with respect to the synchronization time with black color. In Figure 11 (a) the crowded area is 

around 2400 N to 2500 N. For the shift force 2500 N is selected as optimized value because it is already found 

out during prediction of the failure mode that possible highest value of the shift force is desirable for optimal 

performance. Second cause of selection of 2500 N force is the crowded area of black points of the minimum 

synchronization time from 0.01 sec to 0.02 sec as shown in Figure 11 (a). In case of the indexing angle there are 

almost three crowded areas in Figure 11 (b) because lowest indexing angle is predicted as optimal angle during 

prediction of the failure mode therefore indexing angle at most left crowded area is selected as an optimal value. 

There are three black points’ crowded areas for synchronization time and three of them have no any sufficient 

difference. So, based upon the crowded area of the no. of iteration and lowest indexing angle from failure mode 

4 degree indexing angle is selected as an optimal value. Practically blocker teeth are dealt with two angles; one 

is right angle and second is left angle. Before in this study for simplicity both angles are considered as same and 

studied with single value. But for optimization because of unavailability of such kind of simplicity in GT-Suite 

model the blocking teeth are studied with its two angles. In Figure 11 (c) and (d) both kind of crowded areas 

with respect to no. of iterations and with respect to the synchronization time are at same position. Based on these 

positions 50 degree for right angle and 50 degree for left angle of the blocking teeth are selected as optimal 

values. With similar kind of observations from Figure 12 (a-d) optimal values of the cone angle, the cone 

coefficient of friction, the cone maximum radius, the cone minimum radius and the spring force are given in 

Table 4. Initial values, optimized average values, percentage changes and variables bounds for values of the 

independent variables and the objective function are given in Table 4. In this simplified model of GT-Suite 

software the spring force is not able to optimize therefore the spring force is not chosen for further study. 
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Figure 11: Correlation of optimized synchronization time and no. of iterations with control design and structural design parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Correlation of optimized synchronization time and no. of iterations with the structural design parameters. 
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Table 4: Percentage change of input parameters after optimization. 

 

5 Analysis of the synchronizer performance at optimized parameters values 

The performance diagram at optimized values of the control design parameter and the structural design 

parameters is shown in Figure 13. This is the ideal performance of the gear shifting mechanism where it can be 

seen that the sleeve moves axially without any interruption. But rotational speed of the gear does not increase till 

near to end of the process and suddenly the gear gains rotational speed drastically. Even the gear crosses 1000 

rpm which is speed of the sleeve and approaches more than 1200 rpm. But this ideal performance could be 

practically not possible. So performance diagram shown in Figure 14 is plotted at optimized values of the 

parameters except the shift force. Instead of the optimized value, 2500 N the shift force of 1250 N is applied. It 

can be seen from the Figure 14 that rotational speed of the gear seems to be practical.  But the synchronization 

time with 2500 N shift force is 0.01 sec and with 1250 N is 0.036 sec. Still the synchronization time at 1250 N 

shift force is less than the synchronization time at nominal values which is 0.1 sec.  

 

 

 
At iteration number 14019 values of the optimized parameters are   
 
 

CDD
DDD
DDE
&�'(	�
���(�δ�����,�����,���JK

KKK
KKK
L
= <2497.9					3.9					45					34					5					0.3					97					82A/ 

 
 
 
 
 

Objective function 
 No. Independent 

variables 

Initial 

values 

Variables  

bounds  

Optimized 

average values 

Percentage 

change 

Synchronization time ZO�r�s'[ (sec) 

1 Shift force (N) 1000 300-2500 2500 150 

2 Indexing angle 4.6 2-10 4 13.0 

Initial 

value 

Optimized 

value 
3 

Blocking teeth right 
angle 57.7 15-85 45 22 

0.118 0.009 4 Blocking teeth left 
angle 

50 15-85 35 30 

Percentage change 5 Cone angle (deg) 7 5-15 5 28.6 

 

92 
6 Cone coefficient of  

friction 
0.17 0.07-0.3 0.27 58.8 

7 Cone max. radius 100.75 90-110 110 09 

 8 Cone min. radius 99.25 80-100 83 16.4 
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Figure 13: Performance of the gear shifting mechanism at optimized values of the parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Performance of the gear shifting mechanism at optimized values of the parameters except shift force. 
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6 Optimization of the structural design parameters by GT-Suite model    

 As it is observed in optimization results that the control design parameter can be excluded from the 
optimization process and still optimized performance of the gear shifting mechanism can be obtained by 
optimizing only structural design parameters. So, in this section the structural design parameters are optimized 
by using the GT-Suite software at 1000 N, 1250 N, 1500 N, 1750 N and 2000 N shift forces. Values of the 
optimized parameters obtained after optimization are shown in Table 5. The synchronizer performance diagram 
at 1000 N and 1250 N shift force with corresponding to optimized values of the structural design parameters are 
shown in Figure 15 and Figure 16. Although the optimized values of the structural design parameters are 

different at different shift forces but performances of the mechanism are almost similar. O�r�s' at 1000 N, 1250 

N, 1500N and 2000 N is almost same which is 0.03 sec and performance diagrams at 1000N and 1250 N are 
almost similar. Even optimized values of the structural design parameters at different values of the shift forces 
vary within a short range. For example indexing angle varies between 3o and 5o, cone coefficient of friction 
varies between 0.27 and 0.3, cone maximum radius varies between 105 mm and 110 mm, cone minimum radius 
varies between 82 mm and 91 mm, cone angle varies between 8o and 12o, blocker teeth right angle varies 
between 45o and 50o and blocking teeth left angle varies between 43o and 54o. Under this scenario it is 
concluded that with minimum shift force and optimized structural design parameters optimized performance of 
the gear shifting mechanism can be obtained. 

 

Table 5: Results of optimization of the structural design parameters. 

 

 

 

 

 

 

 

 

 

Independent 

variables 

Optimized 

results at  &�'(#= 1000	l 

Optimized 

results at &�'(= 1250	l 

Optimized 

results at &�'(= 1500	l 

Optimized 

results at &�'(= 1750	l 

Optimized 

results at &�'(= 2000	l 

Optimized 

results at  	&�'(= 2500	l 

Indexing angle (deg) 4 3 4 5 4 3.5 

Blocking teeth right 

angle (deg) 
45 50 50 48 50 45 

Blocking teeth left 
angle (deg) 

43 40 50 46 40 54 

Cone angle (deg) 12 10 12 8 12 12 

Cone coefficient of  
friction 

0.27 0.27 0.27 0.24 0.27 0.3 

Cone max. radius 

(mm) 
110 105 105 105 107 105 

Cone min. radius 

(mm) 
83 88 88 85 82 91 

 Synchronization 

time O�r�s' (sec) 
0.03 0.03 0.03 0.03 0.02 0.009 
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Figure 15: Performance of the gear shifting mechanism at optimized values of the parameters for shift force = 1000N. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Performance of the gear shifting mechanism at optimized values of the parameters for shift force = 1250N. 
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7 Conclusions    

A contribution is made to improve performance of the gear shifting mechanism. Limits of values of the 

control design and structural design parameters are identified at which the synchronizer fails to perform by using 

the developed GT-Suite model of a gear shifting mechanism. Shift force as the control design parameter and 

blocking angle, indexing angle, cone angle, cone coefficient of friction, cone radius and spring force are selected 

as the structural design parameters. Sleeve and ring axial displacements, speed difference and relative rotation of 

the blocking teeth are chosen to monitor performance of the synchronizer for identification of the failure modes. 

It is concluded that variations of the shift force predict the failure modes in terms of clashing. Variations of the 

blocker angle and the indexing angle predict failure modes in terms of blockage of the sleeve. Variations of the 

cone angle, the cone coefficient of friction, the cone radius and the spring force predict failure modes in terms of 

the longer synchronization time. Generally the synchronizer fails to perform at lower values of the cone radius 

and the cone coefficient of friction and at higher values of the shift force, the cone angle, the blocker angle, the 

indexing angle and the spring force. 

 

Optimization routine of GT-Suite model is applied with the genetic algorithm to identify values limits of the 

control design and structural design parameters at which the synchronizer can perform optimally. Reasonable 

bounds of the parameters are implemented with initial values to run the optimization routine of the GT-Suite 

model. The control design and structural design parameters are considered as independent parameters and the 

synchronization time is considered as an objective function to be minimized. The control design and structural 

design parameters are plotted against no. of iterations and the synchronization time to draw valuable conclusions 

from Figure 11 and Figure 12. From crowded areas of points it is concluded generally that at lower values of the 

shift force, the cone angle, the cone radius and the cone coefficient of friction and at higher values of the blocker 

angle, the indexing angle and the spring force, the synchronizer perform optimally in sense of minimum value of 

synchronization time. Analyses of performance of the gear shifting mechanism at optimized values of the 

parameters depicted in Figure 13 shows that it could not be possible practically to achieve such a less 

synchronization time because the gear drastically gains rotational speed almost near to end of the process. Later 

on number of optimizations are performed at different particular values of the shift force (1000 N, 1250 N, 1500 

N, 1750 and 2000 N) to obtain the optimized structural design parameters. It is found that optimized 

performance of the gear shifting mechanism can be obtained at lower value of the shift force by using optimized 

values of the structural design parameters. In addition to this difference in O�r�s' between the higher shift force 

and lower shift force is not so big, at 2500 N O�r�s' is 0.009 sec and at 1000 N O�r�s' is 0.03 sec but at nominal 

values of the structural design parameters O�r�s' is 0.118 sec. So it is concluded that lower shift force, 1000 N 

and optimized structural design parameters in this study can be used to get minimum synchronization time. 

 

The gear shifting mechanism has more than studied the control design and structural design parameters 

which cannot be ignored to approach the practical optimal performance which may be studied in future. The 

GT-Suite model needs to be updated towards the real application for identification of the failure modes. 
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