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Time-domain modelling of high-frequency wheel/rail interaction
Astrid Pieringer
Department of Civil and Environmental Engineering
Division of Applied Acoustics, Vibroacoustic Group
Chalmers University of Technology

Abstract
The interaction between wheel and rail is the predominant source of noise emission
from railway operations in a wide range of conventional speeds. On the one hand,
this wheel/rail noise concerns rolling noise and impact noise caused by the ver-
tical interaction excited by roughness and discrete irregularities of the wheel/rail
running surfaces, respectively. On the other hand, it concerns squeal noise gen-
erated by the tangential interaction due to frictional instability. The aim of this
thesis is to develop a model for the combined vertical and tangential wheel/rail in-
teraction induced by roughness, discrete irregularities or frictional instability. This
is the main step in the formulation of a combined prediction model for the three
different types of wheel/rail noise, which can be used as a design tool for noise
reduction. In order to include the non-linearities in the contact zone, the interac-
tion model presented in this thesis is formulated in the timedomain. Wheel and
track models are represented by Green’s functions, which leads to a computation-
ally efficient formulation and allows the inclusion of detailed contact models. A
two-dimensional (2D) vertical contact model consisting ofa bedding of indepen-
dent springs, and a three-dimensional (3D) vertical and tangential model based
on an influence-function method for the elastic half-space,are considered. Non-
Hertzian and transient effects are taken into account. In the thesis, the vertical
interaction model has been applied for excitation by wheel/rail roughness and by
wheel flats. In the former case, the model has been validated against existing estab-
lished models. In the latter case, encouraging agreement with field measurements
has been found. Results from simulations carried out with both the 2D and the
3D contact models for excitation by detailed measured roughness data indicate that
significant errors may occur in the calculated contact forces, when the 3D rough-
ness distribution is represented by the roughness on only one longitudinal line.
The errors increase with a decrease in roughness correlation across the width of
the contact. Frictional instabilities during curve negotiation have been investigated
with the combined vertical/tangential interaction model.For both a constant fric-
tion law and a friction curve falling with the sliding velocity, stick/slip oscillations
were observed. While the model is not yet considered completely reliable in the
case of a falling friction curve due to the possibility of multiple solutions, the results
in the case of constant friction are in good qualitative agreement with previously
published findings on curve squeal.

Keywords: wheel/rail interaction, time domain, roughness, discrete irregularities,
frictional instability, non-Hertzian contact, transientcontact, railway noise.
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Chapter 1

Introduction

1.1 Background

Railways are generally considered to be a more environmentally friendly means
of transportation than aircraft and road traffic. Noise is one of their few environ-
mental drawbacks. Although exposure to noise from railwaysis experienced by
many as less disturbing than noise from aircraft and road traffic at the same sound
level [21, 58], it is still a source of considerable annoyance for residents in the
vicinity of railway lines.

Railway noise is generated by diverse sources, whose relative relevance depends
on the operating conditions. The importance of noise from the power unit and aux-
iliaries is confined to standstill, acceleration and low speeds below about60 km/h
[19]. For high-speed operation above approximately300 km/h, aerodynamic noise
becomes dominant. This type of noise is generated by unsteady airflow over struc-
tural elements such as the bogies and the pantograph and by the turbulent boundary
layer [24].

In the wide range of conventional speeds in between, the interaction between wheel
and rail is the predominant source of noise emission. This wheel/rail noise is
divided into the three categories of rolling noise, impact noise and squeal noise.
While the former two are caused by the vertical wheel/rail interaction, the latter is
induced by a lateral excitation mechanism [98]. Rolling noise is generated by the
roughness of the wheel and rail running surfaces, which excites vibrations of track
and wheel in the form of vertical relative motion. In consequence, the wheelset, the
rail and the sleepers radiate noise [98]. The vehicle superstructure comprising cars
and bogies does not contribute significantly to the radiation of rolling noise [24].
Impact noise is caused by discrete irregularities of the wheel and rail running sur-
faces such as wheel flats and rail joints. The underlying mechanism can be inter-
preted as an extreme form of roughness excitation [98]. Squeal noise occurring
in sharp curves is generated by lateral forces due to frictional instability. While
rolling noise and also impact noise are broad-band phenomena involving a large
range of frequencies in the audible range, squeal noise is generally a tonal sound
that dominates all other types of noise when it occurs. Summing up, it can be said
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2 1. Introduction

that all three types of wheel/rail noise have their origin inthe contact zone between
wheel and rail. The dynamic processes occurring in this area, which is generally
not bigger than a one-cent coin for a steel wheel on a steel rail, are of great impor-
tance for the generation of wheel/rail noise.

Traffic operators, infrastructure administrators, train manufacturers and society in
general all have an interest in the reduction of wheel/rail noise. Computer models
that increase the physical understanding of the noise generation process and al-
low assessing possible noise reduction measures can assistin fulfilling this aim. A
good example is the frequency-domain model TWINS developedfor the predic-
tion of rolling noise [97]. This model is widely used today inindustry and has
been applied extensively in the identification and assessment of measures to re-
duce rolling noise [96]. Corresponding models for the prediction of impact noise
and squeal noise that would be as successful as TWINS are not yet available. One
of the difficulties is that models aiming to predict these types of noise have to be
formulated in the time domain and are generally computationally demanding.

1.2 Aim of the thesis

The aim of this thesis is to develop a model for the combined vertical and tangen-
tial wheel/rail interaction induced by roughness, discrete irregularities or frictional
instability.

The formulation of such a wheel/rail interaction model is the main step in the devel-
opment of a combined prediction model for rolling noise, impact noise and squeal
noise – including the complete chain from source to receiver. The remaining step of
formulating a radiation and sound propagation model is not included in the scope
of this thesis.

1.3 Outline

The general structure of the thesis is as follows.

Chapter 2provides a literature review on wheel/rail interaction models. This re-
view serves to define the various requirements on the combined vertical and tangen-
tial wheel/rail interaction model developed in this thesisand to justify the choices
made in the modelling process.

The resulting wheel/rail interaction model with all its components is elaborated in
Chapter 3. Besides the general modelling concept, the different wheel, track and
contact models used in the interaction model are introduced.

Chapter 4covers the validation and verification of the interaction model. Partial
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validation results from comparisons to existing established models and measure-
ment data are presented.

Chapter 5presents simulation results of the interaction model. Three specific ar-
eas of application are treated. The first two concern solely the vertical wheel/rail
interaction. These are the evaluation of the contact-filtereffect consisting in the
suppression of short wavelength excitation by the finite size of the contact area,
and the calculation of impact forces caused by wheel flats. The third application,
involving both vertical and tangential wheel/rail interaction, concerns the investi-
gation of stick/slip oscillations due to frictional instability. Simulations are carried
out with a constant friction law. Additionally, the extension to a slip-velocity de-
pendent friction law is discussed briefly.

In the appended papers,Paper I to Paper V, the wheel/rail interaction model is
used with different wheel, track and contact models. The papers contain additional
simulation results in the mentioned areas of application, which are not included
in the summary part of the thesis.Appendix Aprovides a quick overview of the
content ofPaper I to Paper V.
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Chapter 2
Review of the modelling of wheel/rail
interaction

2.1 Modelling concepts

Wheel/rail interaction models intended for noise prediction should cover the fre-
quency range from approximately100 Hz to 5 kHz. At frequencies below100 Hz
the human perception of sound is substantially reduced. Dueto the contact filter
effect (described inSection 2.2) the rolling noise spectrum decreases rapidly above
5 kHz [100]. As squeal is linked to the wheel being excited in one ofits reso-
nances [88], squeal may also occur at higher frequencies (see e.g. [39]). The main
squeal tones are nevertheless covered by a frequency range up to5 kHz [88].

Such wheel/rail interaction models are denoted high-frequency models to distin-
guish them from models of the classical rail-vehicle dynamics considering, for in-
stance, running stability, curving behaviour and passenger comfort, which typically
include frequencies up to20 Hz [50].

The purpose of a wheel/rail interaction model is to calculate the response of the
vehicle/track system to an excitation acting in the contactzone. Typical input
variables are the combined roughness of wheel and rail, the shape of a discrete
irregularity or, in the case of squeal, the frictional properties of the contact and pa-
rameters describing the curving behaviour of the vehicle. Typical output variables
are the vibrations of vehicle and track and the contact forces acting at the interface.

In general, wheel/rail interaction models consist of threesubsystems: a vehicle
model, a track model and a contact model; see Figure 2.1. The vehicle and track
models describe the global dynamics of the vehicle and the track. They are cou-
pled via the contact model, which comprises the local dynamics in and close to the
contact zone of wheel and rail.

The interaction of wheel and rail in the context of rolling noise and impact noise
can be summarised as follows. When the wheel rolls over the rail, the roughness
or the discrete irregularity (seen as a rigid indenter) causes a relative vertical dis-
placement between wheel and rail [89]. This relative displacement is partly taken
up by local deformation in the contact zone and is partly transformed into global

5



6 2. Review of the modelling of wheel/rail interaction

vehicle

contact

track

excitation

wheel vibration

rail vibration

contact forces

contact forces

local deformation

local deformation

Figure 2.1: Schematic sketch of a wheel/rail interaction model.

vibrations of vehicle and track. The proportion of local deformation and global
vibrations is determined by the dynamic properties of the vehicle, the track and the
contact zone. The local deformation in the contact zone involves a varying contact
pressure distribution, which is often represented as a point force – the vertical con-
tact force. Tangential interaction and friction are generally neglected with regard
to roughness excitation and excitation by discrete irregularities.

Curve squeal originates from friction-induced vibrations, which belong to the group
of self-excited vibrations [56, 88], and thus requires the inclusion of tangential in-
teraction in the interaction model. The phenomenon is closely linked to the curving
behaviour of the railway vehicle. In tight curves, especially the leading wheelset
in a bogie rolls with a high angle of attack against the rail. In consequence, a
relatively large lateral sliding motion occurs between wheel and rail, which gives
rise to a friction force [88]. This lateral motion can serve as energy source for
self-excited vibrations involving stick/slip oscillations in the wheel/rail contact and
global vibrations of the wheel in one of its resonances. Through the coupling in the
wheel/rail contact, the rail is also excited to vibrations.

Wheel/rail interaction models can be formulated either in the frequency or in the
time domain. By their nature, frequency-domain models are completely linear
models, while time-domain models are suitable to include all kinds of non-linearities.
With regard to curve squeal, frequency-domain models can only predict which
wheel modes are prone to squeal, but models aiming to predictsqueal amplitudes
have to be formulated in the time domain. A disadvantage of time-domain models
is that they are generally more computationally demanding than are frequency-
domain models.
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Frequency-domain models work with frequency response functions such as recep-
tances or impedances that represent the dynamic behaviour of the vehicle, the track
and the contact zone. In the context of roughness excitation, it is implicitly as-
sumed that a roughness component of wavelengthλ, which is passed by the wheel
at train speedv, excites the wheel/rail system at the frequency

f =
v

λ
(2.1)

and causes vibrations only at this frequencyf .

A considerable number of frequency-domain models for wheel/rail interaction in-
duced by roughness excitation is available in the literature, e.g. [26, 34, 67, 76–
79, 86, 89–93], and a good overview of these models is given inthe review article
of Knothe and Grassie [50]. Frequency-domain models for curve squeal allow-
ing for stability analysis have e.g. been developed by MariaHeckl [32] and de
Beer [16].

The most well-known frequency-domain model for the calculation of rolling noise
is a model going back to Remington [76–79], which has been generalised and
further improved by Thompson [89–93]. His formulation is implemented in the
software package TWINS [100] which is widely used in industry today. Two ba-
sic equations of Thompson’s model, which are repeated here for vertical coupling
between the wheel and the rail only, illustrate well the functioning of wheel/rail
interaction models in the frequency domain:

ΞW =
−GWR

GW +GR +GC

(2.2)

ΞR =
GRR

GW +GR +GC
. (2.3)

The vibration amplitude of the wheel,ΞW, and of the rail,ΞR, at a certain frequency
due to a roughness component with amplitudeR, is determined by the receptances
of the wheel,GW, the rail,GR , and the contact zone,GC.

The range of validity of the assumption of linearity that is necessary in frequency-
domain models has been investigated by Wu and Thompson [108]using a time-
domain model for roughness excitation. They found that non-linearities in the con-
tact model cannot be neglected in the cases of severe roughness and/or a low static
contact preload, which can cause loss of contact between wheel and rail. These re-
sults have been confirmed by Nordborg, who used both a frequency-domain model
and a time-domain model based on Green’s functions to study non-linear effects in
the vertical interaction [67]. If the response to discrete irregularities such as wheel
flats and rail joints is to be calculated, time-domain modelsare the only option.
Only they can capture the discrete nature of the phenomena and model the loss
of contact that is likely to occur [109, 110]. As curve squealis an intrinsically
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non-linear and transient phenomenon, time-domain models are also here the only
option, if the magnitude of squeal is to be predicted.

Time-domain models essentially solve the system of differential and algebraic equa-
tions describing vehicle, track and contact by a time-stepping procedure. Due to
the required computational effort of time-domain solutions, it is usually neces-
sary to simplify wheel, rail and contact dynamics. A common approach is to use
rigid wheel models in the context of vertical wheel/rail interaction [50]. In time-
domain models for curve squeal, the influence of the track is often completely
disregarded. Among the few time-domain squeal models including track dynamics
are the models by Fingberg [22], Périard [71] and Huang et al.[37]. In order to
include detailed submodels in time-domain models, reduction techniques have to
be applied. A common approach is to model the track or the wheel as a modal
component derived from a finite-element model [50]. An alternative, more compu-
tationally efficient approach has been demonstrated by Wu and Thompson [109].
They modelled the dynamics of the track using a single differential equation ob-
tained from a transfer functionH(s),

H(s) =
b1s

3 + b2s
2 + b3s+ b4

s4 + a1s3 + a2s2 + a3s+ a4

, (2.4)

whose constant coefficientsai andbi were adapted in such a way that the differ-
ences betweenH(iω) and the point receptance of the track were minimised. Their
technique is, however, not suitable to include track modelswith discrete supports.
A third, very promising, approach that is computationally efficient and allows in-
cluding discrete supports is the representation of the track by moving Green’s func-
tions that describe the dynamic behaviour of the track in a moving contact point.
This technique, going back to Manfred Heckl’s proposal for arailway simulation
program [31], has e.g. been used by Nordborg [67] and recently by Mazilu [57].
As a matter of course, the wheel can also be represented by Green’s functions.
This approach has been chosen by Maria Heckl et al. [33] who formulated a squeal
model for the wheel represented as an annular disc.

2.2 Excitation by roughness

It is now generally accepted that the roughness of wheel and rail running sur-
faces is the predominant cause of the occurrence of rolling noise [98]. Applying
Equation (2.1) for the frequency range of interest from100 Hz to 5 kHz and train
speeds ranging from50 to 300 km/h leads to a relevant roughness-wavelength
interval from830 to 3 mm. Thompson [94] estimates that the wavelength range
300− 10 mm is the most important. Typical roughness amplitudes are in the range
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0.1 − 30µm. For severely corrugated rail, even higher amplitudes occur [94].

Wheel and rail make contact not only in a point, but in a small area denoted a
contact patch. The roughness distribution throughout thiscontact patch is respon-
sible for the excitation of vibrations. Nevertheless, mostavailable wheel/rail in-
teraction models – including all models mentioned inSection 2.1except Heckl’s
proposal [31] – assume that the roughness distribution effectively acts in one point.
This implicitly includes the assumption that the contact-patch size and shape are
not influenced by the roughness.

The finite size of the contact patch is responsible for two important effects concern-
ing the excitation of the wheel/rail system by roughness [94]:

1. Roughness components of wavelengths that are in the orderof, or shorter
than, the length of the contact zone in the rolling directiondo not excite the
system as effectively as roughness components of longer wavelengths, an
effect known as the contact-filter effect.

2. The excitation of the wheel/rail system depends also on the variations in
roughness profile height across the width of the contact in lateral direction.
The excitation is greatest when the roughness is strongly correlated across
the contact patch, and progressively decreases as the roughness becomes un-
correlated.

Models which assume that the roughness distribution effectively acts in one point
have to account for these two effects by roughness pre-processing. In frequency-
domain models, this is done by adding a correction – the contact filter – to the
roughness spectrum (indB). Remington [78] proposed an analytical model of such
a contact filter for circular contact patches of radiusa

|H(k)|2 =
4

α

1

[ka]2

∫ tan−1α

0

[J1(ka secχ)]2 dχ , (2.5)

which gives the correction|H(k)| as a function of the roughness wavenumber
k = 2π/λ, λ being the wavelength. The functionJ1 is the Bessel function of order
1 and the parameterα is a measure of the degree of correlation between roughness
across the width of the contact, where a small value ofα implies a high degree of
correlation.

More recently, Remington and Webb [75] presented a contact model based on a
three-dimensional bedding of independent springs, which allows considering the
actual roughness distribution in the contact patch and thereby includes effects 1
and 2 above in a natural manner. They called their model a three-dimensional
‘distributed point reacting spring’ (3D-DPRS) model. Thompson [95] applied this
model to calculate numerical frequency-domain contact filters from roughness data



10 2. Review of the modelling of wheel/rail interaction

measured in several parallel lines. He concluded that the analytical contact fil-
ter of Equation (2.5) gives an attenuation that is too large at short wavelengths,
but gives reasonable results for wavelengths down to somewhat smaller than the
contact-patch length if the right value ofα is chosen. The discrepancies at short
wavelengths are attributed to the fact that the 3D-DPRS model, in contrast to the an-
alytical model, takes account of the variation of the normalload across the contact
patch. As in many practical cases, only one line of roughnessis measured, Ford and
Thompson [23] developed a two-dimensional version of the DPRS model which
they found to perform surprisingly well in comparison to the3D-DPRS model. The
2D-DPRS model, however, cannot consider correlation effects across the contact
width, which explains differences of a few dB between both models at wavelengths
as short as the contact patch length or shorter.

To include the contact-filter effect in time-domain models,one possibility is to
calculate an equivalent roughness as a pre-processing step, which represents the
roughness distribution experienced by the system for each wheel position on the
rail. The 2D-DPRS model [23] (or even the 3D-DPRS model if therequired rough-
ness data are available) can be applied for this task. A simpler but less accurate
means to obtain an equivalent roughness is to calculate an average of the rough-
ness over the nominal contact patch length (which is the length in the absence of
roughness) [23]. Another possibility making unnecessary the mentioned roughness
pre-processing is to directly consider the finite size of thecontact patch at each time
step in a wheel/rail interaction model, by using an appropriate contact model. Ford
and Thompson implemented the 2D-DPRS model as a contact model in a time-
domain model and presented some preliminary results [23].

2.3 Excitation by discrete irregularities

The most common discrete irregularities that are responsible for the occurrence of
impact noise are wheel flats and rail joints. A wheel flat is a defect of the running
surface of a railway wheel that occurs when the wheel locks and slides along the
rail because of malfunction in the brakes or lack of wheel/rail adhesion. The sliding
causes severe wear, leading to the wheel being flattened on one side [38]. At a rail
joint, the rail running surface shows a severe discontinuity characterised by a gap
and a height difference between the two sides of the gap. Moreover, the rail often
dips close to a joint [110].

In wheel/rail interaction models, discrete irregularities are generally introduced as
a form of extreme roughness described by simple analytic functions. Newton and
Clark [60] used for instance the following shape,f(x), to represent a rounded
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wheel flat:

f(x) =
d

2

[

1 − cos 2π
x

l

]

; d =
l2

16r
, (2.6)

wherex is the distance along the flat,d the maximum depth of the wheel flat,l its
length, andr the wheel radius. Similar descriptions of wheel flats have been used,
amongst others, by Nielsen and Igeland [64], Mazilu [57] andBaeza et al. [5]. Wu
and Thompson [110] proposed quadratic functions to describe the dipped rail at a
joint.

In a similar manner as for roughness excitation, models withone effective con-
tact point have to take into account how the wheel/rail system effectively "sees"
the discrete irregularity. Due to its finite curvature, the wheel does not follow the
irregularity shape as described, for example, by Equation (2.6). Wu and Thomp-
son included this effect by calculating equivalent irregularity shapes for wheel
flats [109] and rail joints [110]. Baeza et al. used the same equivalent irregularity
shape for wheel flats [5]. Additionally, they included the changes in stiffness due
to the wheel flat geometry by pre-calculating stiffness functions for each angular
position of the wheel flat with a three-dimensional contact model. An alternative
way to account for the changes in the contact zone and the finite curvature of the
wheel would again be to incorporate an appropriate contact model that is evaluated
at each step in a time-domain model, though this seems not to have been done yet.

2.4 Friction-induced vibrations

The ‘pure’ rolling motion between wheel and rail is accompanied by small relative
motions between the bodies. The relative velocities normalised with the rolling
velocity are denoted ‘creepages’ [88]. These creepages consist of a low-frequency
part determined by the vehicle dynamics and a high-frequency part caused by the
global dynamics of wheel and track. Since wheel and rail are assumed to be rigid
in classical vehicle dynamics, the low-frequency part of the creepage corresponds
to the rigid body velocities in the nominal contact point. The high-frequency part
considers in addition the global vibrations of the wheel andtrack modelled in the
wheel and track models, but does not include the local deformation in the contact
zone.

The creepages in three degrees of freedom in the contact plane are to be considered:
the longitudinal creepage, the lateral creepage and the spin creepage. The longitu-
dinal creepageξ is defined as the relative velocity∆v1 between wheel and rail in
the rolling direction normalised with the rolling velocityv. The lateral creepageη
is defined similarly as the normalised relative velocity∆v2 in the transverse lateral
direction. Lastly, the spin creepageφ is the normalised relative angular velocity
∆ω3 about an axis normal to the contact plane [20]. The corresponding formulas
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are given as:

ξ =
∆v1

v
(2.7)

η =
∆v2

v
(2.8)

φ =
∆ω3

v
. (2.9)

Originally, three different relative motions between wheel and rail occurring in
tight curves have been discussed as relevant causes for curve squeal [81, 85, 88]:
(1) longitudinal creepage due to differential slip, (2) flange rubbing between the
wheel flange and the gauge face of the rail, and (3) lateral creepage of the wheel
tyre on the top of the rail. All three phenomena are closely linked to the curving be-
haviour of the vehicle; see e.g. [88]. Longitudinal creepage occurs since the outer
wheel on a wheelset has a longer running distance through thecurve than the inner
wheel and the conicity of the wheels can only partly compensate for this difference
in running distance in tight curves. Furthermore, in tight curves, the outer wheel of
the leading wheelset in a bogie (and possibly the inner trailing wheel) will run into
flange contact. Finally, especially the leading wheelset ina bogie rolls with a high
angle of attack against the rail in tight curves, which givesrise to a large lateral
creepage. In 1976, Rudd [81] discarded longitudinal creepage and flange rubbing
as relevant causes for curve squeal, mainly based on the observations that the elim-
ination of longitudinal creepage (by independently drivenwheels) and the absence
of flange rubbing (the situation at the inner leading wheel) do not prevent squeal.
He thus concluded – in accordance with an earlier paper by Stappenbeck [85] – that
curve squeal arises from stick/slip behaviour due to lateral creepage of the wheel
tyre on the top of the rail. This view is nowadays widely accepted.

Flange rubbing is nevertheless considered to be the origin of another type of noise
denoted ‘flanging noise’, which generally occurs at much higher frequencies and
may have a much more broad-band character than the tonal squeal noise [88]. This
type of noise is not further considered here.

The actual mechanism of the instability leading to curve squeal is still a controver-
sial topic. Rudd [81] introduced the negative slope of the friction characteristic (i.e.
decreasing friction for increasing sliding velocity) as the source of the instability,
and most subsequent models have adopted this approach [8, 12, 16, 22, 32, 33, 71,
111]. As friction is difficult to measure, it is inevitable tomake assumptions about
the exact shape of the friction characteristic. Correspondingly, many different fric-
tion curves have been used in the literature.

From a mathematical point of view, the instability can also be explained by the
coupling between normal and tangential dynamics, leading to the non-symmetry
of the system’s stiffness matrix [68]. This mechanism is exemplified by Hoffmann
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et al. [36] with a model having two degrees of freedom. Glocker et al. [25] re-
cently presented a curve squeal model that shows stick/sliposcillations in the case
of a constant friction coefficient. They identified one axialmode with zero nodal
circles and two radial modes of the wheel, which occur at similar frequencies, as
essential for the squeal mechanism. Simulation results showing stick/slip in the
case of constant friction have also been reported by Ben Othman [6] and Brunel
et al. [8]. Some experimental evidence that squeal occurs inthe case of constant
friction has been presented by Koch et al. [51].

2.5 Vehicle and track models

Vehicle models in vertical high-frequency wheel/rail interaction models are gener-
ally simple. As the vehicle’s primary and secondary suspensions isolate the bogie
and car body from the wheelset at frequencies of more than a few Hertz, the ve-
hicle’s dynamic behaviour in the interaction model is sufficiently described by the
dynamics of the wheelset [50]. Knothe and Grassie [50] statethat the vehicle’s un-
sprung mass (including wheelset, bearings and axle-mounted components) is even
satisfactorily represented as a rigid body for vertical interaction. If, however, lat-
eral wheel/rail interaction is to be considered, more advanced wheel models are
required, which include the wheel’s flexibility [50].

In contrast to the situation for the wheel, sophisticated models are necessary to rep-
resent the track’s dynamic behaviour in the frequency rangeof interest up to5 kHz,
also in vertical wheel/rail interaction. Available track models are distinguished by
their representation of the rail and the supports.

Historically, the rail has often been modelled as an Euler-Bernoulli beam, neglect-
ing shear deformation and rotational inertia. Such simple beam models can only
represent the track’s vertical dynamics up to about500 Hz [50]. Using a Timo-
shenko beam model for the rail, which includes rotational inertia and shear defor-
mation, the frequency range of validity of the track model can be extended, the up-
per limit frequency being a subject of discussion. Knothe and Grassie [50] estimate
that the rail can be modelled as a single Timoshenko beam up to2.5 kHz if only
vertical vibrations are of interest. Wu and Thompson [108] state that such models
are adequate up to about5 kHz since the occurring cross-sectional deformations of
the rail (not modelled by Timoshenko-beam models) are not important in terms of
the vertical wheel/rail interaction in this frequency range (see also [100, 103]). A
Timoshenko beam model of the rail is for instance implemented in the wheel/rail
interaction model DIFF developed by Nielsen and Igeland [64]. In order to include
the cross-sectional deformations that become significant above about1.5 kHz [91],
different types of rail models are required. One example is the multi-layer model
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by Scholl [82], who represented rail head, web and foot by three infinitely long, ho-
mogeneous layers with different densities and Young’s moduli. Vibrational shapes
with cross-sectional deformation can at least in principlebe modelled by this ap-
proach. A second example is the model by Thompson [91] who used a detailed
finite-element mesh for a short length of the rail, which he extended to infinity
using periodic structure theory. Gry [30] presented a thirdalternative model based
on a description of waves travelling through the rail.

Concerning the supports, models with a continuous support of the rail and models
with discrete supports are distinguished. Nordborg found that the inclusion of dis-
crete supports is important for lower frequencies around the sleeper-passing fre-
quency and for higher frequencies around the pinned-pinnedresonance frequency
of the rail [67]. The sleeper-passing frequency,fS = v/LS, is the frequency at
which the wheelset passes the sleepers,v being the train speed andLS the sleeper
spacing. At the pinned-pinned frequency,fp, which typically lies around1 kHz,
the bending wavelength of the rail corresponds to the lengthof two sleeper spans,
λp = 2LS, with nodes located at the sleeper positions. Knothe and Grassie [50]
give an overview of different ways to model supports comprising railpads, sleep-
ers, ballast and substrate.

2.6 Hertzian model for normal contact

The normal1 contact model applied in most of the available interaction models is
the Hertzian contact model; see e.g. the models [12, 57, 64, 67, 71, 78, 97, 108].
This standard model goes back to Heinrich Hertz who published his theory "On
the contact of elastic solids" already in 1882 [35]. A comprehensive description
of the Hertzian contact theory can e.g. be found in [41] or [55]. In this section,
only a short outline of the theory is given and the connectionto the railway case
is established, which provides a basis for the discussion ofnon-Hertzian models in
Section 2.7.

The Hertzian theory of normal contact between two bodies relies on the following
assumptions [41]

1. Linear elasticity
The bodies are perfectly linear elastic solids.

2. Half-space assumption
The surfaces of the bodies are non-conforming surfaces, i.e. they first make
contact at a point (or along a line). Even under load, the dimensions of the

1The denotation ‘normal’ is here used in the sense ‘in the direction normal to the surfaces of rail
and wheel’. As the difference between the normal and the vertical direction is negligible in the case
of tread contact, ‘normal’ and ‘vertical’ are used as synonyms throughout this thesis.
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body 1

body 2

z

x

z1(x, y)

z2(x, y)

O

h(x, y)

Figure 2.2: Two non-conforming surfaces touching at the pointO.

contact area are small in comparison to the dimensions of thebodies and
the radii of curvature of the surfaces. This implies that thebodies can be
considered as a semi-infinite elastic solid with a plane surface (an elastic
half-space) for the purpose of stress and deformation calculations.

3. Smoothness
The surfaces are perfectly smooth.

4. Hertzian surfaces
The surfaces can be described by quadratic functions in the vicinity of the
contact area (see below).

5. Absence of friction
No friction occurs in the contact area. Only normal pressureis transmitted.

Under these assumptions, the contact area is an ellipse and the normal pressure
distribution is ellipsoidal. The case of contact over a longstrip as it occurs for
two cylindrical bodies with their axes lying parallel is a limit case of elliptical
contact. This case has to be treated separately and is not further considered here.
The following presentation of the relevant formulas for contact dimensions, loads
and deformations in elliptical contact mainly follows the presentation by Lundberg
and Sjövall [55].

Assume that two non-conforming surfaces as seen in Figure 2.2 are brought into
contact without loading. They only touch in one point that istaken as originO of a
Cartesian coordinate systemxyz. Thexy-plane is the tangent plane to the surfaces
at the origin, and thez-axis is the common normal to the two surfaces pointing into
body 1. Under assumption 4, the surfaces of bodies 1 and 2 in the vicinity of the
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contact point are then described by

z1(x1, y1) =
x2

1

2rx1

+
y2

1

2ry1

(2.10)

z2(x2, y2) = −

(

x2
2

2rx2

+
y2

2

2ry2

)

, (2.11)

whererx1
andry1

are the principal radii of curvature of surface 1 at the origin, i.e.
the minimum and maximum values of the radius of curvature of all possible cross-
sections of the profile, which are found in perpendicular planes denoted thex1z-
and they1z-planes). The variablesrx2

andry2
are the principal radii of curvature of

surface 2 at the origin, found in thex2z- andy2z-planes. Each radius of curvature
is positive if the curvature centre is located inside the body (convex surface) and
negative if the curvature centre is located outside (concave surface). Thex1z- and
x2z-planes enclose an angleψ.

In the railway case, the wheel rolling radius,rx2
, and the rail transverse radius of

rail

wheel

z2

z1

y1

y2

ry1 |ry2
|

O1

O2

Figure 2.3: Transverse radius of curvature of the rail,ry1
, and the wheel,ry2

, for
contact occurring atO1-O2.

curvature,ry1
, are generally positive, while the wheel transverse radiusof curva-

ture, ry2
, can be positive or negative [4]. The rail radius in the rolling direction,

rx1
, is assumed infinite. The wheel and rail radii of curvature are determined at the

geometric point of contact, which is the pointO = O1 = O2 in Figure 2.3. The ge-
ometric point of contact depends on the wheel and rail profiles and the translatory
and angular position of the wheel on the rail and is calculated for wheel and rail
considered as rigid.



2. Review of the modelling of wheel/rail interaction 17

Considering Equations (2.10) and (2.11), the distance of the undeformed surfaces
can be expressed by

h(x, y) =
x2

2rx
+

y2

2ry
, (2.12)

with suitable orientation of thex- andy-axes. The variablesrx andry denote the
principal relative radii of curvature of the surfaces, which can be calculated from
the principal radii of curvature of both surfaces,rx1

, ry1
, rx2

, ry2
, and the angleψ

[55].

When the two bodies are pressed together with a loadP , they deform locally and
the contact point develops into a contact ellipse with semi-axesa andb, where by
definitiona > b. Distant points in the two bodies approach by a distanceδ. The
ratio of the semi-axes of the contact ellipse,A = a/b, depends only on the relative
principal radii of curvature,rx andry.

The final equations for the semi-axes,a andb, and the approach of distant points,
δ, read

a = â

[

P

E∗

]
1
3

(2.13)

b = b̂

[

P

E∗

]
1
3

=
a

A
(2.14)

δ = δ̂

[

P

E∗

]
2
3

, (2.15)

whereâ, b̂ and δ̂ are calculated from elliptical integrals and depend only onthe
relative principal radii of curvature,rx andry; see [55]. The variableE∗ denotes an
equivalent Young’s modulus calculated from the Young’s modulus,Ei, and Pois-
son’s ratio,νi, i = 1, 2, of both bodies

1

E∗
=

1

2

[

1 − ν2
1

E1

+
1 − ν2

2

E2

]

. (2.16)

The maximum contact pressure,

p0 =
3P

2πab
, (2.17)

occurs at the origin, and the pressure distribution in the contact area is ellipsoidal

p = p0

√

1 −
[x

a

]2

−
[y

b

]2

. (2.18)

To get an impression of the magnitudes of the variables involved, consider the case
of a steel wheel and a steel rail both modelled as cylinders with radiusry1

= 0.3 m
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rail

wheel

P (δ)

(a) Hertzian spring.

P

P0

δδ0

1

kh,lin

(b) Linearisation of the non-linear spring characteristic.

Figure 2.4: Implementation of the Hertzian contact model into a wheel/rail inter-
action model.

for the rail andrx2
= 0.46 m for the wheel. Under a preloadP = 65 kN, the

contact ellipse has the semi-axesa = 6.2 mm andb = 4.7 mm, distant points in
wheel and rail approach byδ = 78µm and the maximum contact pressure reaches
p0 = 1.1 GN/m2.

In many interaction models operating in the time domain, a single non-linear spring
is introduced as contact model between wheel and rail (see Figure 2.4(a)). The
characteristic,P (δ), of this spring is obtained from Equation (2.15)

P =
[

E∗δ̂
2
3

]

δ
3
2 = Ch δ

3
2 . (2.19)

The factorCh is a function only of the principal relative radii of curvature and the
material parameters.

Frequently, Equation (2.19) is further simplified. The characteristic is linearised
around the approach of distant points,δ0, corresponding to static preload,P0, as
demonstrated in Figure 2.4(b). The stiffness of the linear Hertzian spring,kh,lin, is
obtained from the tangential gradient in the point(δ0, P0)

kh,lin =
dP

dδ

∣

∣

∣

∣

δ0

=
3

2
Chδ

1
2

0 =
3

2

P0

δ0
. (2.20)

In frequency-domain models this linearisation has to be carried out.
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2.7 Non-Hertzian models for normal contact

Under the assumptions listed in the previous section, the Hertzian theory gives the
exact solution of the normal contact problem. But real wheeland rail surfaces never
meet these assumptions exactly and, in consequence, the Hertzian solution can only
be an approximate one. In many situations, the Hertzian contact theory might still
be sufficient, but it is important to be aware of its limitations. The intention of this
section is to discuss the adequacy of the Hertzian contact theory for the wheel/rail
contact on the basis of a literature review and to present available non-Hertzian
contact models. The focus is hereby on non-Hertzian geometry. The influence of
friction and plasticity is not investigated.

Several phenomena lead to deviations from the Hertzian geometry in wheel/rail
contact.

The Hertzian contact theory relies on constant radii of curvature of the (unde-
formed) bodies in the contact area. The radii of curvature ofwheel and rail profiles
may however change quickly or even jump in lateral direction. Jumps in radius
of curvature occur for example for the standard rail profile UIC60, which consists
of a sequence of circular arcs with the radii of300 mm, 80 mm and13 mm [112].
Quick changes in radius of curvature are especially pronounced for worn profiles.
As a result of vehicle dynamics, the lateral contact position of the wheel on the
rail varies during operation and the changes in radii of curvature in the contact area
lead to the formation of non-elliptical contact patches andpressure distributions
differing significantly from the Hertzian distribution [48, 107, 112]. Even greater
deviations from the Hertzian geometry occur for a wheel flat.In the flat area the
radii of curvature of the wheel change quickly and the wheel surface cannot be de-
scribed by quadratic functions. Baeza et al. [5] compared the impact forces caused
by a wheel flat calculated with the Hertzian model and a non-Hertzian model based
on influence functions for the elastic half-space and found that the Hertzian model
tends to overestimate the peak impact force.

Another important assumption in Hertzian contact theory isthat the contacting bod-
ies can be locally approximated by elastic half-spaces for the purpose of contact-
stress and deformation calculations. This assumption is valid when the bodies are
non-conformal implying that the dimensions of the contact area are small in com-
parison to the characteristic dimensions of the contactingbodies, e.g. the diameter
and the radii of curvature. The half-space assumption is reasonable for wheel/rail
tread contact (Figure 2.5(a)), but it is violated for flange contact and contact near
the gauge corner of the rail (Figure 2.5(b)) [49]. In the latter case, the flange
thickness and the radius of curvature at the gauge corner areof the same order
of magnitude as the contact length and the contact is conformal. But this does not
necessarily mean that the Hertzian model is a bad choice for all practical cases,
where the half-space assumption is obviously not fulfilled.Yan and Fischer [112]
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found surprisingly good agreement between the Hertzian pressure distribution and
the distribution obtained with a finite-element program forone case of rail gauge
corner contact between the rail UIC60 and the wheel UICORE. The work of Wu
and Wang [107] indicates, however, that the situation changes when in addition to
the violation of the half-space assumption, the radii of curvature of one of the two
bodies jump in the contact area. They report errors in maximum contact stress and
contact area of up to 72% when comparing the Hertzian solution with the solution
obtained with a program for conformal contact.

rail

wheel

(a) Tread contact.

rail

wheel

(b) Flange/gauge corner contact.

Figure 2.5: Wheel/rail contact situations.

Additionally, the standard Hertzian contact theory is limited to one single con-
tact patch, but the development of two- or multi-point contact is a common phe-
nomenon in wheel/rail interaction. A typical example is thetwo-point contact for
guiding wheels in curves with one contact patch on the wheel tread and one on the
wheel flange. Multiple contact patches also occur frequently at other locations on
the wheel profile [73].

A fourth phenomenon leading to deviations from the Hertziangeometry is the oc-
currence of surface roughness. Roughness is not only a source of excitation, but it
also changes the geometry of the contacting surfaces and thereby the stiffness of the
contact and the size and shape of the contact area. This effect is not included in the
Hertzian contact model, which assumes smooth wheel and railsurfaces. In reality,
contact does not occur continuously over the whole nominal area of contact, but at
many discrete locations, where asperities of the rough surfaces make contact. All
the discrete contact locations together form the real area of contact, which is only
a fraction of the nominal area of contact. Accordingly, the real contact pressure
also differs from the predictions by the Hertzian model. Locally, it is several times
higher than the maximum Hertzian pressure [49].

In order to solve the three-dimensional contact problem forarbitrary non-Hertzian
geometries, the continuum equations of elasticity have to be solved (see e.g. Ap-
pendix A in [43]). This is, in the most general case, only possible numerically, e.g.
by using finite-element methods.

If the contacting bodies are subject to certain regularity conditions, the constitutive
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relations can be brought into a surface mechanical form [43]:

u(x) =

∫

∂V

A(x,x∗)p(x∗) dS

ui(x) =

∫

∂V

3
∑

j=1

Aij(x,x
∗) pj(x

∗) dS , i = 1, 2, 3 . (2.21)

The displacementu at a pointx in the body is obtained by integrating over the
surface tractionsp on the surfaceS of the body. The functionsA(x,x∗), which
are called influence functions, indicate the displacementu at x due to a point
load at surface pointx∗. The elastic half-space is one of the few geometries in
three-dimensional elasticity for which the influence functions are explicitly known.
In the general case they can only be evaluated numerically. This is the reason
why the half-space assumption considerably simplifies the solution of the three-
dimensional contact problem. The influence functions for the elastic half-space
have been derived by Boussinesq [7] and Cerruti [11] and may also be found
in [43]. Equations (2.21) withA(x,x∗) specified for the elastic half-space are
called the Boussinesq-Cerruti integral equations. If the normal elastic displace-
ment,u3, is assumed not to be influenced by the tangential tractions,p1 andp2, the
Boussinesq-Cerruti integral equation for the normal displacement,u[k]

3 , of bodyk,
k = 1, 2, at the surface pointx = [x1, x2, 0]T simplifies to

u
[k]
3 (x1, x2) =

1 − [ν[k]]2

πE[k]

∫
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p3(x
∗

1, x
∗

2)
√

[x1 − x∗1]
2 + [x2 − x∗2]

2
dx∗1dx

∗

2 , k = 1, 2 ,

(2.22)
whereAc is the contact area and the normal surface traction,p3, vanishes out-
side the contact area. The former assumption implies that the contacting bodies
are quasi-identical, which is satisfied e.g. when the two bodies are made of the
same material or when both are incompressible. The completedefinition of quasi-
identity may be found in [43]. As railway wheel and rail are both made of steel,
quasi-identity is satisfied in wheel/rail contact.

Many of the contact models published in the 1970s and 1980s for non-Hertzian ge-
ometry are a special type of boundary-element approach based on the Boussinesq-
Cerruti expressions for the elastic half-space. Only some examples are cited here:

Kalker’s programme CONTACT [43, 44], which he developed in the years 1983-
1990, is the most successful of these models and is still widely used today. Kalker
uses a variational method based on the principle of maximum complementary en-
ergy and applies an effective active-set method to solve thecontact problem. He
discretises the potential contact area with rectangular elements in which the surface
traction is constant. Kalker himself calls his method ‘exact’ [43], which is meant in
the sense that the exact Boussinesq-Cerruti equations are implemented [53]. But of
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course the method is still subjected to numerical errors andthe errors introduced by
the half-space assumption. The main advantages and disadvantages of CONTACT
are described in the state-of-the-art article about rail (and road) contact mechanics
by Knothe et al. [49]. On the one hand, CONTACT is very versatile. It deals with
the normal and the tangential problem in rolling contact forarbitrary geometries -
as long as the half-space assumption is valid, it handles materials that are not quasi-
identical, and provides steady-state and transient solutions. On the other hand, the
calculation times are generally considered too high for theimplementation into on-
line simulations of vehicle system dynamics.

Another contact model was presented by Le-The [53] in 1987. He assumes quasi-
identity of the contacting surfaces and starts directly from equation (2.22) to solve
the normal contact problem. An additional assumption made by Le-The is that the
contacting bodies are bodies of revolution with almost parallel axes, which is ap-
proximately true in wheel/rail contact. In this case, the contact area and the normal
pressure distribution are almost symmetrical with respectto an axis,y, perpendic-
ular to the rolling direction,x. The contact area can then be discretised in strips
in thex-direction that are assigned an elliptical pressure distribution in the rolling
direction

pk(x, y) = p̂k

√

1 − x2/x2
rk , (2.23)

wherep̂k is the maximum pressure amplitude in stripk andxrk is half of the strip
length. The pressure iny-direction is assumed constant in each strip. This type
of contact elements, which is inspired from line contact andis suitable for slender
ellipses [43], had been used before by Reusner [80] and Nayakand Johnson [59],
who treated the contact problem for roller bearings. Le-Theapplied his contact
algorithm to the wheel/rail contact problem and showed thatthe wheel/rail profile
combination S1002/UIC60 leads to strongly non-ellipticalcontact patches, espe-
cially at positions where contact-point jumps are encountered for lateral shifting of
the rigid wheel profile on the rigid rail profile.

A third contact model was published by Paul and Hashemi in 1981 [70]. They
abandoned the half-space assumption and developed a boundary-element approach
for conformal contact. Using an approximate analytical expression for the influ-
ence function, they solved the conformal contact problem between the railhead and
the throat of the wheel flange.

In recent years, two opposing trends are observed in the development of contact al-
gorithms for non-Hertzian geometries. One trend goes to advanced finite-element
formulations and another trend goes to approximate and fastsolution methods.

The first trend to advanced numerical methods is described byKnothe et al. in
their state-of-the-art article from 2001 [49]. Finite-element methods, not being
limited to half-spaces, have the capability to include arbitrary contact geometries.
In addition, they can account for all kinds of non-linearities such as temperature ef-



2. Review of the modelling of wheel/rail interaction 23

fects and plastic deformation. Their drawback is the computational time required.
Knothe et al. stated in 2001 [49] that, despite many advancesin the field and the de-
velopment of powerful computers, a solution of the time-dependent problem with
a complete three-dimensional contact model was not yet available. Many contri-
butions to the finite-element modelling of the wheel/rail contact have been added
in the last few years (see e.g. [15, 84, 87]) but, to the knowledge of the author,
Knothe et al.’s statement is still true today at least with regard to tangential contact
modelling.

The second trend to simplified, approximate solutions is outlined in an article by
Piotrowski and Chollet [73]. Contact algorithms implemented in online simula-
tions of vehicle system dynamics and high-frequency wheel/rail interaction models
have to be fast. Generally, neither the earlier mentioned boundary-element methods
nor the finite-element methods meet this requirement. Therefore a lot of effort is
made to develop fast, approximate methods that are reliablein non-Hertzian con-
ditions. Piotrowski and Chollet [73] distinguish between two types of methods:
(1) multi-Hertzian methods and (2) virtual-penetration methods. The first type of
methods has been developed by Pascal and Sauvage [69]. They replace multi-
point contacts and non-elliptical contact patches by a set of Hertzian ellipses. They
also proposed a method to replace the set of ellipses by a single equivalent ellipse.
While the multi-Hertzian method agrees reasonably with Kalker’s CONTACT, the
equivalent-ellipse method has its limitations. Piotrowski and Chollet [73] estimate
that the latter method is still adequate for dynamic simulations, but the former
should be used for surface stress analysis and wear calculations. The second type
of methods estimates the contact area from the interpenetration area that is obtained
by virtually penetrating the undeformed surfaces. Such virtual-penetration meth-
ods have been proposed by Ayasse and Chollet [3], Linder [54]and Piotrowski and
Kik [74]. Owing to the assumption that the normal stress distribution is elliptical
in the direction of rolling in a similar manner as presented in Equation (2.23), these
methods are valid for quasi-Hertzian cases, where the contact conditions do not
deviate much from Hertzian conditions [73].

A third and widely used type of fast and approximate models for normal contact is
based on a bedding of independent springs, the Winkler bedding. These methods
are fast because the coupling between different points in the continuum is omit-
ted. Examples of the application of Winkler beddings in wheel/rail contact are the
DPRS models proposed by Remington and Webb [75] for the three-dimensional
case and by Ford and Thompson [23] for the two-dimensional case. The DPRS
models were adapted such that they agree with Hertzian contact for smooth sur-
faces and then applied to consider roughness with wavelengths down to the mil-
limetre range in the contact area.

To treat the contact problem for surfaces with roughness of even shorter wave-
lengths down to the micrometre range, two types of models have historically been
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used: statistical models and deterministic models. The statistical models rely on
a description of the surfaces with some statistical parameters, an assumed simple
asperity shape and an assumed asperity height distributionfunction. The best-
known of these models has been proposed by Greenwood and Williamson [28]
for nominally flat surfaces and extended by Greenwood and Tripp [27] to the con-
tact of rough spheres. In this model, the surface asperitiesare approximated by
hemispheres that all have the same radius, and a Gaussian distribution of asperity
heights is adopted. Alonso and Giménez applied this model with several sets of
wheel roughness data and found that the apparent pressure distribution for a typical
wheel/rail load condition is almost identical to the Hertzian distribution [2]. The
apparent pressure distribution is calculated by dividing the force calculated in a
small surface element by the area of the element. Deterministic models solve the
contact problem for the actual measured surface topography. Such a model has re-
cently been applied by Bucher et al. to the wheel/rail contact [9]. They pointed out
that the results are dependent on the wavelength content of the measured rough-
ness, which is influenced by the measurement resolution and the data processing.
The shorter the wavelengths considered, the more the real area of contact decreases
and the more the real pressure distribution becomes cleft. The results of Bucher et
al. are partly contradictory to results obtained with the simpler Greenwood/Tripp
model. It still seems to be an open question whether and in which way micro-
roughness influences the wheel/rail interaction.

Independently of this question, it is unrealistic to include contact models with a
resolution in the micrometre range into wheel/rail interaction models, due to the
high computational effort and the lack of input data. As already mentioned, how-
ever, it is possible to include the roughness distribution with a lower resolution and
thereby consider the effect of roughness wavelengths in theorder of the contact
dimensions.

The literature review showed that significant errors may occur if Hertzian contact
theory is used in cases where the radii of curvature are not constant in the contact
area. It is as yet difficult to draw a general final conclusion about the applicability
of Hertzian contact in wheel/rail contact. The problem is that in all investigations
only some specific examples and/or simplified geometries have been considered.
An extensive investigation of contact between different real wheel and rail sur-
faces would be needed in order to decide whether the errors occurring when using
Hertzian contact theory for non-Hertzian geometry are still acceptable in praxis.
The answer to this question certainly depends also on the purpose of investigation.
In cases where only the total normal force is of interest, Hertzian contact theory
has a wider range of applicability than in e.g. wear calculations where the pressure
distribution and size and shape of the contact area are of interest.
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2.8 Tangential contact models

In this section, tangential contact models for rolling contact are reviewed in the
context of wheel/rail interaction. Particular attention is given to the requirements
on tangential contact models with regard to squeal prediction.

Before the relevant contact models are outlined, the phenomena occurring in the
contact zone during rolling are discussed briefly. An important quantity in the con-
text of tangential contact is the creepage as defined inSection 2.4. It characterises
“the overall relative motion” [88] between wheel and rail. The corresponding rel-
ative velocities would be observed in the contactpoint if wheel and rail did not
deform locally. In reality, wheel and rail deform locally and make contact over an
area. In part of this area, the creepage is completely compensated for by the local
tangential deformation of the bodies, and the bodies ‘stick’ to each other. In the
remaining part of the contact area, the creepage is partly relieved by local ‘slip’.
This situation is illustrated by the following equations for the local slip, which are
valid for linear elastic materials [43]:

sτ = wτ − v
∂uτ

∂x
+
∂uτ

∂t
, τ = 1, 2 , (2.24)

wherev is the rolling velocity,sτ the local slip (i.e. the local relative velocity),
uτ the displacement difference between wheel and rail, andwτ the ‘rigid’ (overall)
slip obtained from the longitudinal, lateral and spin creepages,ξ, η andφ, by

w1 = [ξ − φy]v (2.25)

w2 = [η + φx]v . (2.26)

These equations are formulated for wheel and rail particlesflowing through the
contact zone and a coordinate system moving with the contactzone along the rail.
The rolling direction is thex-direction or 1-direction, and the lateral direction is
denotedy-direction or 2-direction. In the stick area, the local slipvanishes, i.e.
s1 = s2 = 0.

Equations (2.24) describe the general case of transient (ornon-steady-state) rolling.
In steady-state rolling, the term showing explicit time dependence vanishes and the
equations for the local slip read

sτ = wτ − v
∂uτ

∂x
, τ = 1, 2 . (2.27)

The rolling process can be treated as steady-state if relevant contact variables (e.g.
contact pressure, imposed creepages, form and size of the contact area etc.) do
not change significantly during the time needed for wheel andrail particles to pass
through the contact zone [47]. Or formulated differently, atransient analysis be-
comes necessary if the characteristic wavelength of the motion (rolling speed/charac-
teristic frequency) is in the order of, or smaller than, the contact patch length [47].
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Tangential contact models for rolling contact have been discussed in review articles
by Elkins [20], Kalker [44] and Knothe et al. [49]. Valuable sources are also the
books by Johnson [41] and Kalker [43]. The outline of wheel/rail rolling contact
models given below follows mainly the review article by Kalker [44]. All the pre-
sented models rely on the half-space assumption (unless stated otherwise) and the
assumption of a constant friction coefficientµ.

Carter [10], who was concerned with driving or braked locomotive wheels, inves-
tigated the tractive rolling of a cylinder representing thewheel on an elastic half-
space representing the rail. Tractive rolling means that a resultant tangential force
(creep force) is transmitted in the contact. Carter carriedout a two-dimensional
(2D) analysis including only longitudinal forces for the case of steady-state rolling,
and presented an exact solution of the problem. Figure 2.6(a) shows a sketch of the
distribution of the tangential traction obtained over the width of the contact strip;
see e.g. [41] for the equations. A stick zone is located at theleading edge of the

rolling direction

slip stick

µp3

|p1|

|ξ|

|F1|

0 1/k 2/k
0

µF3

(a) (b)

Figure 2.6: 2D steady-state rolling contact according to Carter: (a) Tangential trac-
tion |p1| (———) and traction boundµp3 (− − −), (b) Creep force/creepage law
from Equation (2.28) (———) in comparison to linear theory (−−−).

contact, while slip occurs in the remainder of the contact adjacent to the trailing
edge. In the stick zone, the tangential (longitudinal) traction |p1| is below the trac-
tion boundµp3 determined by friction coefficientµ and contact pressurep3. In the
slip zone, in contrast, the tangential traction equals the traction bound. The extent
of the slip zone increases with increasing longitudinal creepage|ξ| until gross slid-
ing is reached. The resulting creep force/creepage law is given by [44]

F1

µF3

=

{

−kξ + 1
4
k2ξ|ξ| if k|ξ| ≤ 2

−sign(ξ) if k|ξ| > 2
, (2.28)

wherek = 4RW/[µa] is Carter’s creepage coefficient, andRW anda denote re-
spectively the wheel radius and the half-width of the contact strip. The forceF1
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is the longitudinal creep force andF3 denotes the total normal contact force. Fig-
ure 2.6(b) illustrates that the non-linear creep force/creepage law can be approxi-
mated by a linear theory for small creepages. The creep forceF1 is bounded by the
limiting forceµF3 corresponding to gross sliding.

Several models have been proposed for three-dimensional (3D) rolling contact un-
der steady-state conditions. Four of these models are outlined here:

Kalker developed a linear theory, which is the exact solution in the limiting case
of ‘no slip’ and results in a good approximation for small creepages [44]; cf. Fig-
ure 2.6(b) in the 2D case. Under the assumption that the contact area is elliptical
according to Hertz theory with semi-axesa andb, the longitudinal and lateral creep
forces,F1 andF2, are obtained as [44]

F1 = −c2GC11ξ (2.29)

F2 = −c2GC22η − c3GC23φ , (2.30)

wherec = [ab]1/2 andG is the shear modulus. Kalker’s creepage coefficientsC11,
C22 andC23, which are tabulated e.g. in [44], are solely functions of the ratioa/b
of the semi-axes of the elliptical contact area and Poisson’s ratioν.

Vermeulen and Johnson [102] presented an approximate non-linear rolling contact
theory for longitudinal and lateral creepage in the case of an elliptical contact area.
The effect of spin is disregarded. The theory is based on the approximation that also
the stick zone is elliptical. The model by Vermeulen and Johnson gives reasonably
good results for the creep force/creepage relation in comparison to laboratory ex-
periments [102] and Kalker’s ‘exact’ theory (seeSection 2.7and below) [44].

Shen, Hedrick and Elkins [83] improved the theory by Vermeulen and Johnson
with regard to longitudinal and lateral creepage, and introduced the influence of
spin. Kalker [44] estimates that their theory is, however, valid only for cases with
small spin.

Kalker also developed a simplified theory [42, 44], in which he replaced the elastic
half-space by a bedding of uncoupled springs. In this model,the displacement dif-
ference between wheel and rail in one point is assumed proportional to the surface
traction in the same point and independent of the surface traction in all other points.
Kalker determined the proportionality constant on the basis of his linear theory.
Nevertheless, he also found good quantitative agreement with his ‘exact’ theory
for large creepages in the case of an elliptical contact area. The simplified theory
implemented in the computer program FASTSIM is, according to Kalker, about
400 times faster than the implementation CONTACT of his ‘exact’ theory [44].

Only a few theories deal with transient rolling contact. Knothe and Groß-Thebing [46]
and Groß-Thebing [29] presented a linear, transient theory. They calculated frequency-
dependent complex creep coefficients for the case of small harmonic variations of
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the creepages around a reference state. While the referencestate in [46] is the state
with vanishing creepages, the theory has been extended to anarbitrary reference
state in [29]. Recently, Alonso and Giménez [1] proposed a modified version of
FASTSIM, which allows the consideration of larger harmonicvariations of one
type of creepage. They found reasonably good agreement withKalker’s ‘exact’
theory in the case of an elliptical contact area and a constant normal force.

The only available rolling contact theory that is fully non-linear and transient is
Kalker’s ‘exact’ theory implemented in the computer program CONTACT [43].
This theory, which has already been outlined inSection 2.7, solves the kinematic
equations for transient rolling contact (2.24) and accounts for arbitrary varying
creepages, normal forces and contact geometries as long as the half-space assump-
tion is fulfilled. Its main drawback is a relatively long computation time.

In the context of squeal prediction, a non-linear tangential contact model is needed
since large creepages and large variations of creepages occur. Furthermore, a tran-
sient model should be used, since typical wavelengths are inthe order of or smaller
than the contact patch length. For example, for a train speedof 36 km/h and a
squeal frequency of1 kHz, the wavelength obtained is1 cm, which is in the range
of the typical contact patch length. The assumption that thecontact variables do
not change significantly during the time that is needed for wheel and rail particles
to pass through the contact zone, thus does not hold for squealing. Finally, the
tangential contact model should allow for both a constant friction coefficient and
a velocity-dependent friction coefficient, in order to be able to consider the two
different squeal mechanisms according toSection 2.4.

As discussed above, the only non-linear and transient rolling contact model is
CONTACT. The model has been developed by Kalker under the assumption of
a constant friction coefficient. An extension to slip-velocity dependent friction has
recently been proposed by Croft [13]. However, due to the computational effort
required, CONTACT has so far not been used online in a squeal model.

In the absence of a suitable transient theory, authors of squeal models have in-
stead implemented simpler steady-state formulations. Périard [71] introduced a
slip-velocity dependent friction coefficient in Kalker’s numerical steady-state al-
gorithm FASTSIM. More commonly, analytical formulas are used to represent the
creep force/creepage relation (which is sometimes given interms of a friction char-
acteristic) [12, 16, 22, 33]. Chiello et al. [12], for example, adopted an exponential
creep force/creepage relation, which they combined with a linearly falling friction
coefficient. In the simplest case, point contact is assumed together with a constant
friction coefficient [25]. As no simulation results are available so far from a squeal
model that includes a transient rolling contact model, it isdifficult to assess the
errors introduced by simplified contact models.



Chapter 3

Implementation of a wheel/rail
interaction model in the time domain

Based on the literature review presented in the previous chapter, the requirements
on the combined vertical and tangential wheel/rail interaction model developed in
this thesis can now be specified and modelling choices can be justified.

In order to include the non-linearities occurring in the contact zone, the interaction
model has to be formulated in the time domain. Non-linearities cannot be neglected
in the case of discrete irregularities, and are also important in the case of severe
roughness and/or low static preload. The occurrence of squeal is an intrinsically
non-linear phenomenon and only time-domain models are ableto predict squeal
amplitudes. As calculation times for time-domain models are generally high, spe-
cial attention has to be given to computational efficiency. An efficient technique
that has been pointed out in the literature review is the representation of track and
wheel by Green’s functions, which can be pre-calculated before starting the dy-
namic simulations. This technique will be used here. On the one hand, the usage of
Green’s functions implies a simplification since only linear wheel and track models
can be represented by Green’s functions. On the other hand, this approach is very
versatile because any wheel or track model represented by Green’s functions can
be used without changing the mathematical formulation of the interaction model.

The wheel and track model should represent with sufficient precision the dynamic
behaviour of wheel and track in the frequency range of interest, which has been
identified as the range from100 Hz to at least5 kHz. In vertical wheel/rail inter-
action, it is generally considered sufficient to include thewheel as a rigid mass.
Accordingly, the wheel model is kept simple when only vertical interaction is cal-
culated. As the extension to tangential interaction requires the inclusion of the
wheel’s flexibility, a second wheel model, which is a modal wheel model derived
from a detailed FE model, is introduced for this purpose. Theinclusion of the
wheel’s modal behaviour is essential for the prediction of squeal noise. Following
similar reasoning as for the wheel, two different track models are used. The first
track model, which is suitable for vertical wheel/rail interaction only, comprises

29
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a Rayleigh-Timoshenko beam model of the rail and discrete supports. The cross-
sectional deformations occurring at high frequencies are thus not included and ac-
cording to the discussion inSection 2.5the validity of this track model above about
2.5 kHz has to be questioned. In order to be able to model tangential interaction,
a second track model is introduced, which is based on a waveguide finite element
model of the rail. This model includes the cross-sectional deformations of the rail
and is consequently also valid in the very-high-frequency range. A minor draw-
back of this model is that the rail support is modelled as continuous, which implies
that parametric excitation due to discrete supports is not included. Wheel and track
models and their respective representation as Green’s functions are presented in
detail inSections 3.2and3.3.

The question whether the Hertzian contact model is sufficient for vertical wheel/rail
interaction could not be answered completely in the literature review. For this rea-
son, two non-Hertzian contact models are introduced in thisthesis, which allow
contributing to the clarification of this question. A two-dimensional model is pre-
sented inSection 3.4.1and a three-dimensional one inSection 3.4.2. These two
models include the contact-filter effect dynamically and donot require the calcula-
tion of an equivalent roughness as pre-processing step.

Kalker’s theory for transient rolling contact [43] is the most complete tangential
contact model available in the literature and it is therefore selected as tangential
contact model. Due to its high computational cost, this model has not been used
previously in a wheel/rail interaction model in the contextof noise prediction. The
efficiency of the selected time-domain approach based on pre-calculated Green’s
functions makes it possible to include Kalker’s model. It is, however, not known
whether such a detailed modelling of the tangential contactis actually required for
the prediction of noise.

3.1 Reference frame

In the dynamic simulations, the wheel is moved along the railwith constant vel-
ocity v. Its absolute position in the rolling direction on the rail at timet is indicated
by the coordinatex = v t. In order to describe the variables in the contact zone,
a moving reference frame(x ′, y ′, z ′) is introduced (see Figure 3.1), which moves
with the nominal contact point along the rail. The nominal contact point is the point
where the rigid profiles of wheel and rail touch first, when contact is initiated. Its
lateral position, which is kept constant in the simulation,is either pre-calculated
or assumed. Thex′-axis (1-axis) points in the rolling direction along the rail. The
lateral direction is they′-direction (2-direction) pointing towards the field side of
the wheel. The vertical (or normal)z′-coordinate (3-coordinate) points into the
rail. It is assumed that the distributions of tangential stresses and contact pressure
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in the contact zone can be represented by the point forcesF1, F2 andF3, when the
excitation of wheel and track to vibrations is calculated. These point forces act in
the nominal contact point.

F3

F3

F2

F2

F1

F1

x ′

y ′

z ′

Figure 3.1: Moving reference frame of the interaction model.

3.2 Wheel models

Before the different wheel models are introduced, the general procedure of includ-
ing the wheel dynamics in the interaction model is described. This procedure is
the same for all types of linear wheel models that can be represented by Green’s
functions.

The vehicle model includes one wheel (or half a wheelset) andthe primary sus-
pension. The wheel rotation is neglected. All the vehicle components above the
primary suspension of the wheel are simplified to a static preload,P .

The displacements of the wheel at the contact point due to thewheel’s global dy-
namics are denotedξW

j (t), j = 1, 2, 3. In the frequency domain, the wheel is
represented by its receptances

G̃W
ij (f) =

ξW
j (f)

Fi(f)
, i, j = 1, 2, 3 , (3.1)

which indicate the displacement response,ξW
j (f), to a harmonically exciting con-

tact force,Fi(f), at frequencyf . In the time domain, the wheel is represented by
its impulse response functions (Green’s functions),g̃W

ij (t), which are obtained from
the receptances by an inverse Fourier transform:

g̃W
ij (t) = F

−1
(

G̃W
ij (f)

)

, i, j = 1, 2, 3 . (3.2)
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In the interaction model, the displacements of the wheel,ξW
j (t), are obtained by

convoluting the contact forces with the Green’s functions of the wheel:

ξW
j (t) = −

∫ t

0

3
∑

i=1

Fi(τ)g̃
W
ij (t− τ) dτ , j = 1, 2, 3 . (3.3)

Introducing the time increment∆t and the discrete time vector with the elements

t(α) = [α− 1]∆t, α = 1, 2, . . .Nt , (3.4)

the discretised version of Equation (3.3) at time stepα reads

ξW
j (α) = −

min(NW,α)
∑

n=1

3
∑

i=1

gW
ij (n)Fi(α− n+ 1) , (3.5)

where thegW
ij (n) are the discrete time-integrated versions of the Green’s functions

g̃W
ij (n) of the wheel, which have theNW elements

gW
ij (n) =

{

0.5∆t g̃W
ij ([n− 1]∆t) for n = 1, NW

∆t g̃W
ij ([n− 1]∆t) for n = 2, 3 . . .NW − 1

. (3.6)

At NW ∆t, the Green’s functions are assumed to have decayed to zero.

At time stepα, the forces at previous time steps are known and the only unknown
forces areFi(α). The sum in Equation (3.5) can therefore be split up into an un-
known term containingFi(α) and a known term denotedξW, old

j (α)

ξW
j (α) = −

3
∑

i=1

gW
ij (1)Fi(α) −

min(NW,α)
∑

n=2

3
∑

i=1

gW
ij (n)Fi(α− n + 1)

= −
3

∑

i=1

gW
ij (1)Fi(α) − ξW, old

j (α) . (3.7)

If the first value in the Green’s functions,gW
ij (1), is set to zero, the wheel displace-

ment at the current time step is only influenced by the forces in previous time steps.
It is thus known:

ξW
j (α) = −ξW, old

j (α) . (3.8)

In a detailed wheel model, the first value of the Green’s function describes mainly
the local instantaneous deformation of the wheel at the contact point occurring in
the same instant as the applied force is acting. The wheel models used are, how-
ever, not detailed enough to give realistic values of the local deformation (which is
instead modelled in the contact model) and the first value of the Green’s functions
obtained is relatively small. The same applies also for the track models used. It is
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thus a reasonable assumption to set the first value of the Green’s function to zero.
In addition, this assumption considerably simplifies the equation system that has to
be solved at each time step in the interaction model. In caseswhere only vertical
interaction was considered in the interaction model (Papers I to III), the first value
of the Green’s functions has not been set to zero, while the assumption has been
used in the combined vertical/tangential interaction model (Papers IV and V).

3.2.1 Rigid wheel models

Two rigid wheel models are introduced, which are suitable for use in vertical
wheel/rail interaction only. The first model of this type is asingle-degree-of-
freedom (1-dof) system comprising half the wheelset mass,MW, and the primary
suspension consisting of a spring with constantkS in parallel with a damper with
constantcS (see Figure 3.2). The second rigid wheel model is a two-degree-of-

x ′ x ′

z ′z ′

F3

F3

ξW
3

ξW
3

kSkS cScS

mW

MWMW

kW
cW

Figure 3.2: Wheel modelled as single-degree-of-freedom system (left) and two-
degree-of-freedom system (right).

freedom (2-dof) system that includes in comparison to the 1-dof model an ad-
ditional small mass,mW, and an additional spring with constantkW in parallel
with a damper with constantcW (see Figure 3.2). These additional components do
not have a direct physical meaning, but can be used to tune thereceptance in the
higher frequency range to resemble the receptance obtainedwith a finite-element
model (seeSection 3.2.2). Provided that modal behaviour of the wheel is not of
interest, this type of wheel model has shown good performance [62, 109].

Figure 3.3 shows a comparison of the receptancesG33 of the two wheel models
for the numerical values of the parametersMW = 341.5 kg, mW=3 kg, kS =
1.12 MN/m, cS = 13.2 kNs/m, kW = 6.0 GN/m and cW = 155 kNs/m. For
this configuration, the receptances differ from each other from above about100 Hz.
The Green’s functionsg33 of both wheel models appear almost identical, as can
be seen in Figure 3.4. It should however be noted that the scale in Figure 3.4 is
linear and therefore does not allow identifying differences in the dynamics at lower
levels.



34 3. Implementation of a wheel/rail interaction model in the time domain

100 101 102 103

−120

−160

−200

−240

Frequency [Hz]

R
ec

ep
ta

n
ce

[d
B

re
1

m
/N

]

Figure 3.3: Magnitude of the wheel receptanceG33: 1-dof model (− − −), 2-dof
model (———).
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Figure 3.4: Impulse responseg33 of the wheel: 1-dof model (− − −), 2-dof model
(———). The curves appear almost identical.
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3.2.2 Flexible wheel model

The flexible wheel model is a finite element (FE) model based onaxi-symmetric
elements, similar to the model presented in [90], and could be used by courtesy of
David Thompson (ISVR). The help of Briony Croft (previouslyISVR) with the im-
plementation of the model is greatly acknowledged. A commercial finite element
software has been used. The model comprises a single wheel without the wheel
axle. A rigid constraint is applied at the inner edge of the hub, where the wheel
would be connected to the axle. Figure 3.5(a) shows the meshed cross-section of
the selected wheel, which is a 780-mm C20 metro wheel. The steel wheel has a
Young’s modulus ofEW = 207 GPa, a Poisson ratioνW = 0.3 and a density
ρW = 7860 kg/m3.

The eigenfrequencies (Figure 3.6) and corresponding eigenmodes (Figures 3.7-3.9)
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Figure 3.5: FE mesh of the C20 wheel cross-section: (a) complete mesh and (b)
zoom on the tread with selected node numbers.

of this FE model have been calculated in the range up to7 kHz. Similar to the
eigenmodes of a flat disc, the eigenmodes of the wheel are classified according
to their predominant motion into axial, radial and circumferential modes, which
haven nodal diameters andm nodal circles [88]. The axial modes will be denoted
(n,m,a). Asm > 0 does not occur for radial and circumferential modes in the
frequency range of interest, they will be referred to as (n,r) and (n,c), respectively.
The mode shapes have a harmonic variationA sinnϕ (orA cosnϕ) around the cir-
cumference, whereϕ is the angular coordinate in the circumferential direction[88].
The amplitudeA varies with the axial (lateral) and radial position on the wheel. The
radial and axial components of this amplitudeA are depicted in the section plots of
the different types of mode shapes in Figures 3.7-3.9 . (The third circumferential
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component is not seen.) As the cross-section of the wheel is not symmetric, the
axial modes (Figure 3.7) also have a component of motion in radial direction and
the radial modes (Figure 3.8) in axial direction. For illustration purposes, three of
the mode shapes are also shown as three-dimensional plots inFigure 3.10.

The omission of the axle is known to lead to errors in eigenfrequency and mode
shape for modes withn ≤ 1, but has a negligible effect on higher-order modes [88].
As especially higher-order axial modes (withn ≥ 2) have been found to be impor-
tant for curve squeal [12], this is not seen as critical for the investigation of squeal
noise.

The eigenmodes are assigned a modal dampingζ using the approximate values
proposed by Thompson [88]:

ζ =







10−3 for n = 0
10−2 for n = 1
10−4 for n ≥ 2

. (3.9)

The mode (1,r) is assigned a damping of 1, since this mode appears too strongly in
the frequency response function, when the influence of the axle is disregarded [88].
These damping values are used as a first approximation. Considering the impor-
tance of wheel damping for the occurrence of squeal, measured modal damping
values should be used for the investigation of a specific squeal problem in a spe-
cific curve.

Starting from the modal basis, the receptances of the wheel in the pre-determined
contact point on the wheel tread are calculated by modal superposition. The re-
ceptanceG̃W

jk(ω), which represents the response in degree of freedomk due to a
harmonic force of unit amplitude and angular frequencyω applied in degree of
freedomj is obtained as [88]

G̃W
jk(ω) =

∑

r

ΦjrΦkr

mr (ω2
r − ω2 + i2γrωrω)

(3.10)

whereΦjr is the amplitude of mode shaper in the degree of freedomj and the
variablesωr andmr are the angular frequency and the modal mass of moder,
respectively. In addition to the eigenmodes calculated with the FE-model of the
wheel, the rigid body modes of the complete wheelset, notably translation in verti-
cal and lateral direction and rotation in the vertical/lateral plane, have to be taken
into account in the modal summation [88].

Figure 3.11 shows as examples the vertical and lateral pointreceptances and the
vertical/lateral cross-receptance calculated in the node114 (see Figure 3.5(b)) sit-
uated towards the field side of the wheel tread at a distance of32 mm from the
centre. A strong coupling between the vertical and lateral directions can be seen
at this location. The first0.4 s of impulse response functions corresponding to the
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Figure 3.6: Eigenfrequencies of the C20 wheel up to7 kHz calculated with the FE
model: axial modes (2), radial modes (×) and circumferential modes (◦) with zero
nodal circles (———), one nodal circle (−−−) and two nodal circles (− · −).

receptances from Figure 3.11 are presented in Figure 3.12. The total length of the
impulse response signals taken into account is20 s.

In order to demonstrate the applicability of the 2-dof wheelmodel fromSection 3.2.1,
a comparison of the vertical receptances of the 2-dof model and the flexible wheel
model is presented in Figure 3.13. The receptance of the 2-dof model has been
tuned to resemble the receptance of the flexible wheel model by adapting the pa-
rameterskW andcW. The receptance of the flexible wheel model used is the vertical
point receptance calculated in the node 120 at the centre of the wheel tread, includ-
ing only the rigid body mode in vertical translation (and allflexible wheel modes).
At the centre of the wheel tread, only a small coupling between vertical and lateral
directions arises due to the asymmetry of the wheel cross-section. The best fit of
the receptance of the 2-dof model (corresponding to the parameter values already
used in Figure 3.3 and listed inSection 3.2.1) is shown in Figure 3.13. The 2-dof
model captures well the anti-resonance in the wheel receptance at about650 Hz and
gives a mean value of the receptance at higher frequencies. The comparison of the
2-dof model to the flexible model is less favourable if the receptance calculated at
node 114 is taken, where the coupling between vertical and lateral directions has a
bigger influence (Figure 3.14).
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Figure 3.7: Axial modes (n,m,a).

(0,r)
3625

(1,r)
1586

(2,r)
2243

(3,r)
2834

(4,r)
3536

(5,r)
4350

(6,r)
5268

(7,r)
6269

Figure 3.8: Radial modes (n,r).



3. Implementation of a wheel/rail interaction model in the time domain 39

(0,c)
722

(1,c)
3886

(2,c)
5228

Figure 3.9: Circumferential modes (n,c).
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Figure 3.10: Examples of wheel modes: (a) Axial mode (3,0,a), (b) Axial mode
(5,0,a), (c) Radial mode (1,r).
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Figure 3.11: Magnitudes of the wheel receptance at the treadat yW = −32 mm :
(a) vertical point receptance, (b) lateral point receptance, (c) vertical/lateral cross-
receptance.
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Figure 3.12: Impulse response functions of the wheel calculated atyW = −32 mm
at the tread : (a) vertical, (b) lateral, (c) vertical/lateral.
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Figure 3.13: Best fit of the receptance of the 2-dof wheel model (———) to the
vertical point receptance of the flexible wheel model calculated in node 120 at the
centre of the wheel tread (− · −).
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Figure 3.14: Comparison between the receptance of the 2-dofwheel model from
Figure 3.13 (———) and the vertical point receptance of the flexible wheel model
calculated in the off-centre node 114 (− · −).
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3.3 Track models

The inclusion of the track dynamics in the wheel/rail interaction model is very
similar to the inclusion of the wheel dynamics. However, while the rotation of the
wheel was neglected inSection 3.2, the motion of the nominal contact point on
the rail cannot be neglected. Consequently, a special type of Green’s functions is
needed, which take the motion of the contact point into account. These moving
Green’s functions [67],̃gR,x0

ij,v (t), describe, for excitation of the rail (indexR) in
i-direction at the positionx0 at timet0 = 0, the displacement response of the rail
in j-direction at a point moving at train speedv away from the excitation, thus at
the nominal contact point on the rail.

In the interaction model, the displacement of the rail in thenominal contact point,
ξR
j (t), j = 1, 2, 3, is calculated by convoluting the contact forces with the moving

Green’s functions of the rail

ξR
j (t) =

∫ t

0

3
∑

i=1

Fi(τ)g̃
R, vτ
ij,v (t− τ) dτ , j = 1, 2, 3 . (3.11)

The discrete version of̃gR,x0

ij,v (t), denotedgR,x0

ij,v (n), is constructed from a series

of track transfer receptances,G̃R, x0, x0+χ
ij (f). The superscripts specify the excita-

tion point,x0, and the response point,x0 + χ. The (ordinary) Green’s functions,
g̃R, x0, x0+χ

ij (t), corresponding to these track receptances, are obtained byinverse
Fourier transform

g̃R, x0, x0+χ
ij (t) = F

−1
(

G̃R, x0, x0+χ
ij (f)

)

. (3.12)

Exploiting the coupling
∆x = v∆t (3.13)

between the time increment,∆t, and the space increment,∆x, the discrete moving
Green’s functions are constructed as

gR,x0

ij,v (n) =

{

0.5∆t g̃
R, x0, x0+[n−1]∆x
ij ([n− 1]∆t) for n = 1, NR

∆t g̃
R, x0, x0+[n−1]∆x
ij ([n− 1]∆t) for n = 2, 3 . . .NR − 1

,

(3.14)
whereNR is the number of samples. AtNR∆t, the Green’s functions of the rail are
assumed to have decayed to zero.

The discrete version of Equation (3.11) formulated at time stepα reads

ξR
j (α) =

min(NR,α)
∑

n=1

3
∑

i=1

g
R,v[α−n]∆t
ij,v (n)Fi(α− n+ 1) , j = 1, 2, 3 . (3.15)
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Analogous to Equation (3.7), this equation can be split up into a part containing the
only unknown forces,Fi(α), and the known part,ξR, old

j (α),

ξR
j (α) =

3
∑

i=1

g
R,v[α−1]∆t
ij,v (1)Fi(α) +

min(NW,α)
∑

n=2

3
∑

i=1

g
R,v[α−n]∆t
ij,v (n)Fi(α− n+ 1)

=
3

∑

i=1

g
R,v[α−1]∆t
ij,v (1)Fi(α) + ξR, old

j (α) . (3.16)

If the first value in the Green’s functions,gR,v[α−1]∆t
ij,v (1), is again set to zero, the rail

displacement at the current time step is only influenced by the forces in previous
time steps and given by

ξR
j (α) = ξR, old

j (α) . (3.17)

3.3.1 Finite element model of the track based on Rayleigh-Timo-
shenko beam elements

The first track model, which is suitable for vertical wheel/rail interaction only,
is a linear finite element (FE) model based on a rail description by Rayleigh-
Timoshenko beam elements. This model is implemented in the wheel/rail inter-
action model DIFF [64] and could be used by courtesy of Jens Nielsen.

The track model takes into account discrete supports and hasa length of 70 sleeper
bays with sleeper spacingLS. Both rail ends are clamped. The rail, which is a
UIC60 rail with bending stiffnessEI, shear stiffnesskGA and mass per unit beam
lengthm′, is modelled by eight Rayleigh-Timoshenko beam elements per sleeper
bay. The discrete supports are composed of railpads and sleepers on ballast; see
Figure 3.15. The railpads are represented by a spring with stiffnesskP in paral-
lel with a viscous damper with constantcP. The sleepers are modelled as rigid
massesmSL and the ballast is represented by a spring with stiffnesskB in parallel
with a viscous damper with constantcB. A detailed description of the track model
is given in references [64] and [61].

Figure 3.16 shows the magnitude of the vertical track point receptance,̃GR, x0, x0

33 ,
and three examples of transfer receptances,G̃R, x0, x0+χ

33 , for two different excitation
positionsx0. The numerical values of the parameters used areEI = 6.4 MNm2,
kGA = 250 MN,m′ = 60 kg/m,LS = 0.65 m, kP = 120 MN/m, cP = 16 kNs/m,
mSL = 125 kg, kB = 140 MN/m andcB = 165 kNs/m. For excitation at midspan
between two sleeper positions,x0 = 0.5LS, a sharp peak is observed at943 Hz,
which is the pinned-pinned resonance frequency. Correspondingly, the receptances
for excitation over a sleeper,x0 = 0, show an anti-resonance in this frequency
range, which has slightly shifted to higher frequencies. Additionally, the recep-
tances for both excitation positions have an anti-resonance at about2640 Hz.
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Figure 3.15: Rail model with discrete supports.

Examples of moving Green’s functions for two different excitation positions and
three different velocities are presented in Figure 3.17. The additional high-frequency
oscillations for excitation atx0 = 0.5LS (Figure 3.17(b)) in comparison to excita-
tion atx0 = 0 (Figure 3.17(a)) are explained by the pinned-pinned resonance. Due
to the periodicity of the track,LS/∆x different moving Green’s functions suffice
to represent the track at each velocityv. With the parametersLS = 0.65 m and
∆x = 1 mm, this leads to 650 moving Green’s functions.
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Figure 3.16: Magnitude of the track point and transfer receptances for excitation (a)
above a sleeper position,x0 = 0, and (b) at midspan between two sleeper positions,
x0 = 0.5LS: the plotted curves are from upper to lower|G̃R, x0, x0
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Figure 3.17: Moving Green’s functions of the track for excitation (a) above a
sleeper position,x0 = 0, and (b) at midspan between two sleeper positions,
x0 = 0.5LS: ——— v = 50 km/h,−−−v = 100 km/h, −·− v = 150 km/h.



3. Implementation of a wheel/rail interaction model in the time domain 49

3.3.2 Waveguide finite element model of the track

The extension of the interaction model from vertical to tangential interaction re-
quires the inclusion of cross-sectional deformations of the rail. For this reason,
a waveguide finite element (WFE) model was built with the software package
WANDS [66], which could be used by courtesy of the Dynamics Group at the
Institute of Sound and Vibration, University of Southampton. This model takes ad-
vantage of the two-dimensional geometry of the rail having aconstant cross-section
in thex-direction, but nonetheless considers the three-dimensional nature of the vi-
bration by assuming a wave-type solution along the rail.

The track model comprises one continuously supported rail of type BV50, which
is a common Swedish rail type. The WFE mesh consisting of eight-noded isopara-
metric quadrilateral elements is presented in Figure 3.18(a). The material data of
rail and support, which are chosen similar to the data given in [66], are listed in
Table 3.1. The vertical stiffness of the continuous supportcorresponds to soft rail
supports.

Table 3.1: Material properties of the continuously supported rail

Rail Pad
Young’s modulus 207 GPa 4.8 MPa
Poisson’s ratio 0.3 0.45
Density 7860kg/m3 10kg/m3

Damping loss factor 0.01 0.25

The equations of the WFE model are derived by Nilsson et al. in[66]. Only the
most important equations are repeated here.

The basic principle of the WFE method is that the displacement u = [ux, uy, uz]
T –

in xR-, yR- andzR-directions – in one waveguide finite element is formulated as

u = N(yR, zR)û(xR) , (3.18)

whereû is the vector of nodal displacements andN(yR, zR) are two-dimensional
(2D) FE shape functions; i.e. a 2D mesh is sufficient to describe the three-dimensional
structure.

In the same manner as for standard FE models, the complete WFEmodel is assem-
bled from the formulation on element level. Assuming a time dependence ofeiωt

and a wave of the typee−ikxR, the assembled model reads
[

K(k) − ω2M
]

Ũ = F̃ , (3.19)

whereK(k) is the stiffness matrix of the cross-section, which dependson the
wavenumberk in xR-direction, andM is the mass matrix of the cross-section. The
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Figure 3.18: WFE mesh of the BV50 rail: (a) complete mesh and (b) zoom on rail
head with selected node numbers. The dark grey area corresponds to the rail pad.

vectorŨ is the global displacement vector, containing the displacements for all
degrees of freedom in the cross-section, and the vectorF̃ is the vector of external
forces. For free harmonic motion, the equation of the assembled WFE model,

[

K(k) − ω2M
]

Ũ = 0 , (3.20)

represents a (quadratic) eigenvalue problem in wavenumberk at a given frequency
ω. The eigenvectors̃Un correspond to cross-sectional wave shapes. The eigenval-
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ueskn obtained as complex-valued wavenumbers describe propagation and decay
of the waves along the rail. The amplitude of a free harmonic wave propagating in
the positivexR-direction is thus described by

Ûn(xR) = Ũne−iknxR . (3.21)

The eigenvalues are represented in Figure 3.19 in the form ofthe dispersion re-
lation. The wave shapes belonging to the different wave types in Figure 3.19 are
shown in Figure 3.20 for the casekn = 1 rad/m.
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Figure 3.19: Dispersion relation for the continuously supported rail. Wave types:
(A) Lateral bending wave, (B)Vertical bending wave, (C) Torsional wave, (D) Lon-
gitudinal wave, (E) Web bending wave 1, (F) Web bending wave 2.

The response to forced excitation is obtained by superposing the contributions from
the different waves. The global displacement vectorÛ0 obtained due to a harmonic
point force atxR = 0 reads, for propagation in the positivexR-direction [66],

Û0(xR) =
∑

n

An(F̃0)Ũne−iknxR , (3.22)

where the force vector̃F0 is formulated in the wavenumber domain. The expres-
sion for the amplitudesAn(F̃0) is given in [66].

For a pre-determined lateral contact position on the rail head, receptances are calcu-
lated from the result of Equation (3.22). Figure 3.21 shows as examples the magni-
tude and phase of the vertical and lateral point receptancesand the vertical/lateral
cross-receptances in the node 112 (see Figure 3.18(b)). Theoffset of 12 mm of
this node from the symmetry axis of the rail introduces the coupling between the
vertical and lateral directions. The peaks in the magnitudeof the receptances cor-
respond to the cut-on of the different wave types (see Figure3.19).
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(a) (b) (c)

(d) (e) (f)

Figure 3.20: Wave shapes atk = 1 rad/m: (a) Lateral bending wave, (b) Vertical
bending wave, (c) Torsional wave, (d) Longitudinal wave, (e) Web bending wave 1,
(f) Web bending wave 2.

The corresponding moving Green’s functions for a train speed of 50 km/h are pre-
sented in Figure 3.22. As the rail is continuously supported, the Green’s functions
g̃R,x0

ij,v (t) do not differ from each other for different excitation positionsx0.

Figure 3.23 shows the influence of the lateral position of theexcitation point on the
vertical point receptance of the track. The larger the distance from the symmetry
line of the track, the larger the influence of wave types with predominately lateral
motion on the vertical receptance. The peaks emerging for anoff-centre position
of the excitation point are notably the peaks associated with the cut-on of lateral
bending waves at about50 Hz and web bending waves at1362 Hz and4030 Hz.
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Figure 3.21: Magnitude and phase of the track receptance at the rail head at node
112:−−− (grey) vertical point receptance,− · − lateral point receptance, ———
vertical/lateral cross-receptance.
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Figure 3.22: Moving Green’s functions of the track calculated for a lateral contact
position on the rail head at node 112 and a train speedv = 50 km/h: −−− (grey)
vertical,− · − lateral, ——— vertical/lateral.



54 3. Implementation of a wheel/rail interaction model in the time domain

−200

−180

−160

Frequency [Hz]

M
ag

n
itu

d
e

[d
B

re
1

m
/N

]

101 102 103

Frequency [Hz]

101 102 103

P
h

as
e

[r
ad

]

−π

−π
2

0

Figure 3.23: Comparisons of the magnitude and phase of the vertical point recep-
tance calculated at different lateral positions on the railhead: Node 109 (− · −),
node 112 (−−−, grey) and node 115 (———).



3. Implementation of a wheel/rail interaction model in the time domain 55

3.4 Non-Hertzian models for vertical contact

In this section, two non-linear and non-Hertzian models forthe vertical contact
between wheel and rail are presented, which are solved at each time step in the
interaction model. Solving the vertical contact problem means (1) to determine the
size and shape of the contact zone, and (2) to calculate the distribution of the con-
tact pressure and the local vertical displacements in the contact zone. It is assumed
that the vertical contact problem can be solved independently of the tangential con-
tact problem.

3.4.1 Winkler bedding

The first of the two vertical contact models is a two-dimensional model. It is based
on a Winkler bedding consisting of independent springs introduced between wheel
and rail (see Figure 3.24). The model considers the roughness profile in one longi-
tudinal line throughout the contact patch. For simplicity,only the rail is displayed

P zW(x, x ′)

x

x ′

0−a ′ a ′

k(x, x ′)

r(x, x ′)

Figure 3.24: Bedding model for the wheel/rail contact.

as rough in Figure 3.24, but both wheel and rail are considered as rough. The com-
bined roughness is contained in the variabler(x) = rW(x)−rR(x). Both the wheel
roughness,rW, and the rail roughness,rR, are taken positive in the direction of the
z′-axis (see Figure 3.1).

For the wheel positioned atx, the deflection,∆ζ(x, x ′), of all involved contact
springs depends on the vertical wheel displacement,ξW

3 (x), the vertical rail dis-
placement,ξR

3 (x), the combined roughness,r(x, x ′), and the wheel profile,zW(x, x ′),
as

∆ζ(x, x ′) = ξW
3 (x) − ξR

3 (x) + r(x, x ′) + zW(x, x ′) . (3.23)

The total vertical contact force is obtained by an integration over the bedding:

F3(x) =

∫ a ′

−a ′

k̃(x, x ′) ∆ζ(x, x ′) dx , (3.24)
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which has a stiffness per unit length

k̃(x, x ′) =

{ 1
2

E
[1−ν2]

for ∆ζ(x, x ′) ≥ 0

0 for ∆ζ(x, x ′) < 0
, (3.25)

whereE is the Young’s modulus andν the Poisson’s ratio of rail and wheel (as-
sumed to be of the same material). The integration domain,[−a ′, a ′], has to be
chosen long enough to include all potential points of contact. Loss of contact can
occur for each of the springs in the bedding. This takes placeif ∆ζ(x, x ′) < 0. In
this case, the stiffness,k̃(x, x ′), is set to zero.

The choice of̃k(x, x ′) in Equation (3.25) makes it possible for the bedding to cor-
rectly model the contact length, total contact load and deflection as predicted by
the Hertzian theory for smooth surfaces if, in addition, thewheel radius is adjusted
according to [23]

Rm
W =

1

2
R . (3.26)

The radiusR is the original radius of curvature of the conical wheel in the rolling di-
rection, which is assumed to equal the transverse radius of curvature of the straight
rail.

Introducing2NC + 1 contact springs at the discrete positions

x′(β) = β∆x, β = −NC,−NC + 1,−NC + 2, . . . , NC , (3.27)

the discrete versions of Equations (3.23)-(3.25) formulated at time stepα corres-
ponding to time(α− 1)∆t and wheel centre position on the rail(α− 1)∆x read

∆ζ(α, β) = ξW
3 (α) − ξR

3 (α) + r(α, β) + zW(α, β) (3.28)

F3(α) =

NC
∑

β=−NC

k(α, β) ∆ζ(α, β) (3.29)

k(α, β) =

{ 1
2

E
[1−ν2]

∆x for ∆ζ(α, β) ≥ 0

0 for ∆ζ(α, β) < 0
. (3.30)

If ξW
3 (α) andξR

3 (α) are known from Equations (3.8) and (3.17), respectively, (i.e.
the first value of the Green’s functions is set to zero), Equations (3.28)-(3.30) can
be solved directly.

If the first value of the Green’s functions is instead not set to zero (but the cross-
coupling between vertical and tangential directions is neglected), Equations (3.7)
and (3.16) read

ξW
3 (α) = −gW

33 (1)F3(α) − ξW, old
3 (α) (3.31)

ξR
3 (α) = g

R,v[α−1]∆t
33,v (1)F3(α) + ξR, old

3 (α) . (3.32)

Equations (3.28)-(3.30) together with Equations (3.31) and (3.32) then form a non-
linear equation system that is solved forF3(α) by applying the Newton-Raphson
method [45].
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3.4.2 Elastic half-space model

The contact model based on the Winkler bedding presented in the previous section
is computationally efficient and allows considering the contact filter effect in a nat-
ural way. Yet the model is only a two-dimensional one, and only the roughness
in one line in the longitudinalx ′-direction is taken into account. Additionally, the
springs in the bedding deform independently of each other, while the points in a
real continuum are coupled to each other. This requires reducing the wheel radius
in order to simulate Hertz contact for smooth surfaces.

An alternative contact model that overcomes these shortcomings is based on the
influence functions for the elastic half-space. It is assumed that wheel and rail can
be locally approximated by elastic half-spaces. A potential contact area between
wheel and rail is introduced and divided intoNp rectangular elements with side
lengths∆x and∆y in thex′- andy′-directions, respectively. Kalker [43] investi-
gated the case where the traction is piecewise constant overthe mesh of rectangles
and evaluated the corresponding influence coefficientsAIiJj. The coefficientAIiJj

gives the displacement ini-direction at the centre of elementI due to a unit trac-
tion in j-direction in elementJ . These influence coefficients are also given in
Appendix Bin the form needed here, where it is assumed that wheel and rail are
made of the same material. This assumption implies that the influence coefficients
for coupling between the normal and tangential directions,i.e.AI1J3,AI3J1, AI2J3

andAI3J2, are zero and the normal contact problem can be solved independently
of the tangential contact problem.

In the following, the indicesI andJ denote an element in the set of elements form-
ing the potential contact areaP , i.e. I ∈ P andJ ∈ P , if not stated differently.
The potential contact area consists of the contact areaC and the exterior areaE.

The local vertical displacement,uI3, at the centre of one elementI, which is de-
fined as the displacement difference between rail and wheel

uI3 = uR
I3 − uW

I3 , (3.33)

is influenced by the contact pressure throughout the contactarea. It is obtained by
superposing the contributions from each loaded element

uI3 =

Np
∑

J=1

AI3J3 pJ3 . (3.34)

The total vertical contact force at the current time step,F3(α), is obtained by sum-
ming the forces acting in the different elements

F3(α) =

Np
∑

I=1

pI3∆x∆y . (3.35)
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In addition to Equations (3.34) and (3.35) a kinematic constraint equation such as
Equation (3.23) has to be introduced to describe the normal contact problem. As
the points of the elastic half-space are coupled, in contrast to the springs in the
Winkler bedding, the kinematic constraint Equation (3.23)has to be extended. The
spring deflection,∆ζ , is replaced by the local vertical displacement,u3, and the
distance,d, between the deformed bodies is introduced:

dI = ξR
3 (α) − ξW

3 (α) + uI3 + zR
I − zW

I + rR
I − rW

I . (3.36)

The distance,dI , depends on the global vertical displacements of the rail,ξR
3 (α)

and the wheel,ξW
3 (α), at the current time step, on the profiles of rail,zR

I , and
wheel,zW

I , and on the roughness of rail,rR
I , and wheel,rW

I .

The contact conditions are formulated as

dI ≥ 0 (3.37)

pI3 ≥ 0 . (3.38)

dIpI3 = 0 (3.39)

If contact occurs in a surface element, the distance is zero and the contact pressure
is positive. If contact does not occur, the distance is positive and the pressure is
zero. A negative value of the distance would mean that the twobodies penetrate
into each other, which is physically impossible. A negativecontact pressure would
correspond to adhesion. Both penetration and adhesion are excluded by (3.37)-
(3.39).

If the first value of the Green’s functions is set to zero,ξR
3 (α) andξW

3 (α) are known
from Equations (3.8) and (3.17), respectively, and Equations (3.34) to (3.39) form
a non-linear equation system that completely describes thenormal contact problem
at each time stepα. An explicit equation foruI3 is only available for the elements
that are in contact, wheredI = 0,

uI3 = −ξR
3 (α) + ξW

3 (α) − zR
I + zW

I − rR
I + rW

I , (3.40)

and it isa priori unknown which elements are in contact.

An efficient iterative method to solve the normal contact problem is the algorithm
proposed by Kalker [43]. He used a variational method and formulated the normal
contact problem as a minimisation problem of an appropriateenergy functional. To
solve this problem, Kalker developed his active set algorithm NORM. The reason
why this algorithm is called an active set algorithm is as follows. The solution,
in the form of the contact pressure distribution, is subjected to the inequality con-
straintpI3 ≥ 0. The elements in the potential contact area are divided intotwo sets.
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The set of elements where the inequality constraint is active, i.e.pI3 = 0, is called
the active setA. The remaining elements form the setN . In the normal contact
problem, the active set thus comprises the elements which are not in contact, i.e.
A = E andN = C. Initially, an assumption is made about which elements belong
to the active set. The active set is then updated step-by-step in the algorithm until
the final solution is found. In detail, the active set algorithm used works as follows:

1. Initially, all elements are placed in the active setA = E (which meanspI3 =
0 in all elements).

2. The distance is calculated for all elements from Equation(3.36), which re-
duces to

dI = ξR
3 (α) − ξW

3 (α) + zR
I − zW

I + rR
I − rW

I , (3.41)

sinceuI3 = 0 (due topI3 = 0 in all elements).

3. All points with a negative distance,dI < 0, are removed from the setE and
added to the set of contact elementsC.

4. For the elements in the contact setC, the distance is zero and the surface
displacementuI3 is calculated from Equation (3.40).

5. The contact pressure of all elements in contact is evaluated by setting up
Equation (3.34) for allNc elements inC:

uI3 =
Nc
∑

J=1

AI3J3 pJ3 , I ∈ C (3.42)

and solving the resulting linear equation system for the unknownpJ3.

6. All elements with negative pressure,pI3 < 0, are removed fromC and added
toE.

7. Steps 4-6 are repeated until no negative pressure is present anymore.

8. It has to be verified whether the solution found fulfils Equation (3.37). There-
fore the displacementuI3 is calculated for all elements inE with Equa-
tion (3.34) and the distance is evaluated according to Equation (3.36).

9. If there are any points with negative distance,dI < 0, these points are re-
moved from the exterior areaE and added to the contact areaC.

10. Steps 4-9 are repeated until no negative distance is present anymore.
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At the end of this iterative procedure, the size and shape of the contact zone and
the contact pressure distribution are known.

If the first value of the Green’s functions is not set to zero, i.e. Equations (3.8)
and (3.17) are replaced by (3.31) and (3.32), respectively,the solution of the normal
contact problem requires an additional iteration loop. In this case, the Newton-
Raphson method [45] is used to solve the complete non-linearequation system for
the contact forceF3(α). At each iteration step of the Newton-Raphson method, the
active-set algorithm is applied to determine which points are in contact.

3.5 Inclusion of discrete irregularities

Discrete irregularities such as wheel flats and rail joints can easily be included in
the interaction model. For this purpose, the surface profilecorresponding to the
irregularity, i.e. the wheel or rail profile, is updated in each time step in Equa-
tion (3.28) for the Winkler bedding model, or in Equation (3.36) for the elastic
half-space model. InPaper II this is demonstrated for the case of a wheel flat.

3.6 Tangential contact model

The tangential contact model used in this work is based on Kalker’s transient rolling
contact model [43], which is implemented in his code CONTACT. The model is
used with a constant friction coefficient as in the original implementation (Sec-
tion 3.6.1), but has also been extended for use with a slip-velocity dependent fric-
tion coefficient (Section 3.6.2).

In frictional rolling contact, the contact area is divided into a stick areaH and
a slip areaS. The tangential contact problem, which is solved after the normal
contact problem at each time step, consists in determining which elements of the
contact area are in stick and which are in slip, and calculating the local tangential
displacements,uIτ , and tangential stresses,pIτ , at the surface.

3.6.1 Constant friction

In the following, all variables are evaluated at the currenttime stepα, if not stated
differently. The indexτ takes the values1 and2, for the longitudinal and the lateral
direction, respectively. The indicesI andJ denote an element in the set of elements
forming the contact areaC, i.e. I ∈ C andJ ∈ C, if not stated differently. The
contact area consists ofNc elements.

The relation between the local tangential displacements inelementI, uIτ , defined
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as the displacement difference between rail and wheel

uIτ = uR
Iτ − uW

Iτ , (3.43)

and the tangential stresses,pIτ , is given by

uIτ =

2
∑

α=1

Nc
∑

J=1

AIτJα pJα , (3.44)

where theAIτJα are the influence coefficients for the elastic half-space given inAp-
pendix B. The tangential forces,Fτ , are obtained by summing up the contributions
from the different elements

Fτ =
Nc
∑

I=1

pIτ∆x∆y . (3.45)

A contact element belongs to the stick area, if the local shift, SIτ , vanishes:

SIτ = 0 , I ∈ H . (3.46)

Otherwise the contact element belongs to the slip area. The local shift, defined as
the relative displacement of two opposing particles of the wheel and the rail with
respect to each other in one time step, is obtained as

SIτ = uIτ(α) +W ∗

τ − uIτ(α− 1) , I ∈ C . (3.47)

The variableuIτ (α−1) represents the local displacement at the previous time step,
which is known, anduIτ(α)−uIτ(α−1) is called the deformation shift. In Kalker’s
formulation,WIτ is the rigid shift calculated as

WI1 = [ξ − y ′φ] ∆x (3.48)

WI2 = [η + x ′φ] ∆x , (3.49)

whereξ, η andφ are the longitudinal, lateral and spin creepages. In the model
proposed here, the contribution of the structural dynamicsof wheel and track is
added to the rigid shift:

W ∗

I1 = WI1 +
[

ξR
1 (α) − ξW

1 (α)
]

−
[

ξR
1 (α− 1) − ξW

1 (α− 1)
]

(3.50)

W ∗

I2 = WI2 +
[

ξR
2 (α) − ξW

2 (α)
]

−
[

ξR
2 (α− 1) − ξW

2 (α− 1)
]

, (3.51)

where theξR
τ (α − 1) andξW

τ (α − 1) are the tangential displacements of rail and
wheel at the previous time step.
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In the slip area, the following relations hold

pIτ
√

p2
I1 + p2

I2

= −
SIτ

√

S2
I1 + S2

I2

, I ∈ S (3.52)

p2
I1 + p2

I2 = [µspI3]
2 , I ∈ S , (3.53)

whereµs is the constant friction coefficient. Equation (3.52) ensures that the slip
occurs in the direction opposite to the tangential stress. Equation (3.53) states that
the tangential stress in the slip zone is equal to the traction boundµspI3. In the stick
area, the tangential stress is below the traction bound:

p2
I1 + p2

I2 < [µspI3]
2 . (3.54)

Given that theξR
τ (α) andξW

τ (α) are known from Equations (3.8) and (3.17), Equa-
tions (3.44) to (3.54) form a set of non-linear equations that completely describes
the tangential contact problem at each time step. The set of equations has to be
solved iteratively, since the division of the contact zone into stick and slip zones is
initially unknown. Even if the division into stick and slip were known, the equation
system would still be a non-linear one.

An efficient algorithm to solve the non-linear set of equations is Kalker’s active set
algorithm TANG [43], also summarised in [106]. This algorithm, which has been
used here, is very similar to the algorithm NORM described inSection 3.4.2and
works as follows.

The set of contact elements is divided into two sets, the active setA and the set of
remaining elementsN . The active set comprises the elements where the constraint
p2

I1 + p2
I2 ≤ [µspI3]

2 is active. This is the case for the elements in the slip zone,
wherep2

I1 + p2
I2 = [µspI3]

2; i.e. A = S. Consequently, the setN consists of the
elements in the stick zone; i.e.N = H. The steps in the algorithm – as used here
– are

1. Initially all elements are placed in the stick zoneH (i.e. the initial estimation
of the active set isA = ∅).

2. For the current division of the contact zone into stick zone and slip zones, the
non-linear system of equations consisting of Equations (3.46), (3.53) and

pI1SI2 − pI2SI1 = 0 , I ∈ S (3.55)

is solved for the unknown tractions, making use of the definition of SIτ ,
Equation (3.47). Equation (3.55), which is taken from [106], replaces Equa-
tion (3.52) and allows in contrast to Equation (3.52) also that the slip occurs
in the direction of the tangential traction (not only in the opposite direction).
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3. All elements inH with tangential tractions exceeding the traction bound, i.e.
p2

I1 + p2
I2 > [µspI3]

2, are removed fromH and added toS.

4. Steps 2 and 3 are repeated until there are no stick elementsanymore that
exceed the traction bound.

5. Now, it has to be verified whether the slip in all slip elements is opposite to
the tangential tractions. All elements violating this condition are removed
from S and added toH.

6. Steps 2 to 4 are repeated until the slip is opposite to the tangential tractions
in all slip elements.

The Newton-Raphson method [45] is applied to solve the non-linear equation sys-
tem in step 2. At the end of the iterative procedure, the division of the contact zone
in stick and slip zones and the tangential stresses are known.

In the same manner as described for the normal contact problem, the solution of
the tangential contact problem would require an additionalexterior iteration loop,
if the first value of the Green’s functions were not set to zero. This has however not
been implemented.

3.6.2 Slip-velocity dependent friction

The active set algorithm TANG presented in the previous section relies on the trac-
tion boundµIpI3 as input variable. In the case of a constant friction coefficient, the
traction bound is known (after the normal contact problem has been solved). If a
slip-velocity dependent friction coefficient is introduced, the friction coefficient in
each elementI depends on the slip velocity, which is an output variable of TANG.
Consequently, the traction bound is unknown.

The methodology adopted to circumvent this problem followsessentially the proce-
dure proposed by Croft [13]; see Figure 3.25. At each time step, an initial estimate
of the traction bound is obtained by using the distribution of friction coefficients
from the previous time step. The tangential contact algorithm TANG is then solved
with this estimated distribution of traction bounds. Subsequently, the slip velocity
distribution obtained as output is used in the friction characteristic in order to up-
date the distribution of friction coefficients. Thereafter, TANG is solved again with
the updated distribution of traction bounds, etc. The procedure continues until con-
vergence is obtained for the contact variables. The experience with this method is
that it is very reliable, but the convergence can be slow.

As an alternative to this ‘direct’ method of consecutive evaluations of TANG and
the friction characteristic, Broyden’s method [45] has been implemented to update
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the distribution of the friction coefficients. In this method, belonging to the quasi-
Newton methods, an approximate Jacobian is used, which is updated during the
iteration process. The method looks for the root of the function

g(µ) = µ − f(s) , (3.56)

whereµ ands are the vectors containing respectively the friction coefficients and
absolute values of the slip velocity in all contact elements. The functionf(s) is the
friction characteristic. The experience with Broyden’s method is that it converges
generally faster than the ‘direct’ method for this tangential contact problem, but
fails more often.

In this work, both methods have been used complementarily – Broyden’s method
as first choice and, in the event of failure, the ‘direct’ method as backup.

The friction characteristic used in this thesis is taken from [13] and goes originally

Solve NORM

Solve TANG

Estimate traction

bound based on

previous time step

Recalculate

traction bound

Figure 3.25: Iteration loop at each time step for the solution of the tangential con-
tact problem in the case of a slip-velocity dependent friction coefficient (modified
from [13]).

back to Kraft [52]. It reads

µI(sI) = µs

[

50

100 + s2
I

+
0.1

0.2 + |sI |

]

, (3.57)

whereµs is the static friction coefficient andsI =
√

s2
I1 + s2

I2 is the absolute value
of the slip velocity in the elementI in m/s. The components of the slip velocity
are obtained from the local shift by [43]:

sIτ ≈ SIτ/∆t , τ = 1, 2 . (3.58)
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The friction characteristic is depicted in Figure 3.26 for the choiceµs = 0.3.

The extension of the contact algorithm to slip-velocity dependent friction is still a
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Figure 3.26: Friction characteristic according to Equation (3.57) forµs = 0.3.

subject of on-going research. While the tangential contactproblem has a unique
solution in the case of a constant friction coefficient [43],multiple solutions may
exist in the case of a slip-velocity dependent friction coefficient [14]. This is further
discussed inSection 5.3.2.
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Chapter 4
Validation and verification of the
wheel/rail interaction model

The wheel/rail interaction model proposed in this thesis has been validated partially
against existing established models and existing measurement data. This chapter
provides an overview of the different validations and verifications carried out.

The vertical interaction model has been validated for roughness excitation (Sec-
tion 4.1) and excitation by wheel flats (Section 4.2). The implementation of the
three-dimensional rolling contact model has been verified against the original im-
plementation CONTACT (Section 4.3). The results of the interaction model in the
case of frictional instabilities have, however, been verified qualitatively only by
comparing with findings about curve squeal in the literature(Section 4.4).

A complete validation of the combined vertical and tangential wheel/rail interaction
model against full-scale measurements, which would have been the ideal solution,
was beyond the scope of this thesis. Full-scale validation tests for wheel/rail in-
teraction models are not only an expensive undertaking, butalso pose a challenge
in terms of accessibility and measurability of certain important parameters. Two
examples are the lateral wheel/rail contact position and the actual prevailing fric-
tion conditions. Good knowledge of these parameters is in practice difficult to
achieve. This is especially problematic in the case of curvesqueal, where rather
small changes in parameters may lead to large variations in results. One possibility
to overcome these difficulties would be to adopt a statistical approach for the vali-
dation of squeal models.

4.1 Comparison of the vertical interaction model to
two existing interaction models

The vertical wheel/rail interaction model described inChapter 3has been com-
pared to two established time-domain models for wheel/railinteraction, notably
the model by Croft [13] and DIFF [64]. The model DIFF itself has been validated
against field measurements [63]. In contrast to the approachbased on Green’s func-
tions used in the present model, the model by Croft and DIFF are both based on a

67
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state-space approach. All three models were used with the same submodels. The
wheel was represented by an unsprung mass (1-dof model) and the track model was
the FE model with discrete supports originally implementedin DIFF, described in
Section 3.3.1. To allow for the comparison, the contact model has been simplified
to a Hertzian contact spring. The calculations have been carried out with a freight
wheel of massMW = 488.5 kg passing atv = 106 km/h along a track having
soft rail pads and a sleeper spacingLS = 0.6 m. Three different roughness cases
have been considered: smooth wheel and rail surfaces, a sinusoidal roughness and
a broadband roughness. The data presented here have also been included in the
thesis of Briony Croft [13] and are reused with permission. The author would like
to acknowledge the contribution of Briony Croft, who took the initiative to make
this comparison and provided the results from her model.

The results for smooth wheel and rail, where the excitation is solely due to paramet-
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Figure 4.1: Comparison of the vertical contact force obtained for smooth wheel
and rail: (a) time series in one sleeper bay, (b) one third-octave band spectra; –——
model by Pieringer,−−− DIFF,− · − model by Croft.

ric excitation on the discretely supported rail, are presented in Figure 4.1. Shown
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are the time series of the vertical contact force in one sleeper bay and the one-third
octave band spectra of the contact force (calculated from the signal belonging to 31
sleeper bays). The three models give similar results at lower frequencies, especially
at the peaks corresponding to the sleeper passing frequencyat49 Hz and twice the
sleeper passing frequency. This is also reflected in the timeseries, which look rather
similar. At higher frequencies, however, the spectra reveal bigger differences. It
should be noted that minor differences between the models are emphasised in this
case of parametric excitation, where the dynamic excitation is generally low.

In the second case, the models have been compared for a sinusoidal roughness with
wavelength40 mm and amplitude10µm (Figure 4.2). The time series show only
small differences and, in the spectra, the agreement is verygood at the main peak
corresponding to the sinusoidal excitation and the two peaks corresponding to the
sleeper-passing frequency. Nevertheless, as in the previous case of smooth wheel
and rail surfaces, significant differences are observed at higher frequencies.

In the last case, a measured broadband roughness has been used, which has been
pre-processed to account for the contact filter effect. Figure 4.3 shows excellent
agreement between the models in both the time series and the force spectra for this
case with a realistic roughness excitation.

A comparison of the vertical wheel/rail interaction model to DIFF, for different
parameter values but otherwise similar to the one that has been presented here, is
included inPaper I. Also in this comparison, good agreement has been found.

It is thus concluded that the vertical interaction model proposed in this thesis is
valid for roughness excitation.
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Figure 4.2: Comparison of the vertical contact force obtained for sinusoidal rough-
ness: (a) time series in one sleeper bay, (b) one third-octave band spectra; –——
model by Pieringer,−−− DIFF,− · − model by Croft.
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Figure 4.3: Comparison of the vertical contact force obtained for broadband rough-
ness: (a) time series in one sleeper bay, (b) one third-octave band spectra; –——
model by Pieringer,−−− DIFF,− · − model by Croft.
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4.2 Impact forces due to wheel flats in comparison to
measurement data

In Paper II, the vertical interaction model together with the 2D Winkler contact
model has been applied to calculate impact forces caused by wheel flats. Simula-
tion results have been compared with field measurements fromreference [24] in
terms of the maximum impact load during pass-by of the wheel flat. Considering
the uncertainty in the track parameters characterising thetest site, the level of agree-
ment found between simulations and measurements is encouraging. Please refer to
Paper II for a detailed discussion orSection 5.2for a summary of the results.

4.3 Quantitative verification of the contact models

The 3D model for vertical and tangential contact presented inSections 3.4.2and3.6.1
is based on Kalker’s variational theory of transient rolling contact [43]. In order to
verify the implementation, the model has been compared to Kalker’s own imple-
mentation CONTACT [105].

As both models are implementations of the same theoretical formulation, very sim-
ilar results are expected. Differences can arise from the different solvers used for
the non-linear problem occurring in the tangential contactproblem. CONTACT
uses a specially designed Gauss-Seidel type solver [104], while a Newton-Raphson
method is used in the present implementation. Furthermore,different tolerances
and round-off practices can lead to slightly different results.

The two contact models have been compared for cylindrical wheel and rail profiles
with wheel radiusRW = 0.39 m and rail head radiusRR = 0.30 m, a friction coef-
ficientµ = 0.3 and a lateral creepageη = 0.1 %. Longitudinal creepage and spin
creepage have been set to zero.

Figure 4.4 shows the divisions of the contact area into stickand slip zones obtained
with both models, which are seen to be identical. The rollingdirection is the pos-
itive x-direction. The corresponding distribution of the contactpressure and the
total tangential stress depicted in Figure 4.5 are also verysimilar in both cases. As
an example, Figure 4.6 presents the comparison on the lateral line y ′ = 3 mm. The
relative difference between the distributions does not exceed0.15 %, which is also
true for the complete contact area.

In Paper V, the contact models are compared for a case where real measured wheel
and rail profiles have been used. Also in this case, very good agreement has been
found. It is therefore concluded that the implementation ofthe 3D contact model
presented in this thesis is correct.

The implementation of the 2D vertical contact model presented inSection 3.4.1has
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Figure 4.4: Division of the contact zone. Stick zone:2 CONTACT,2 implementa-
tion by Pieringer; Slip zone:◦ CONTACT,• implementation by Pieringer.

been verified in [72]. In the case of smooth surfaces, the contact force-deflection
characteristic agrees with Hertzian contact. The 2D contact models has also been
compared to the 3D contact model as part of the vertical wheel/rail interaction
model. When only parametric excitation caused by the space-dependent stiffness
of the track is considered, the 2D and 3D contact models give very similar results
in terms of the contact forces. In the case of roughness excitation, the 2D and 3D
contact models give generally different results, since the2D contact model does not
consider roughness variations in lateral direction acrossthe width of the contact,
which are included in the 3D model.
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4.4 Qualitative verification of the simulation results
including friction

The combined vertical and tangential wheel/rail interaction model used for the in-
vestigation of frictional instabilities has not yet been validated quantitatively.

The simulation results for a constant friction coefficient presented inPaper Vand
summarised inSection 5.3.1are, however, in good qualitative agreement with gen-
eral observations about squeal noise and results reported in the literature. In all
cases where stick/slip oscillations developed, the main frequency component was
close to wheel resonances corresponding to axial modes of the wheel, which is
typical for squeal [88]. The imposed lateral creepage, the friction coefficient and
the lateral contact position were found to be key parametersin the occurrence of
squeal. In particular, the conditions prevailing at the leading inner wheel of the
bogie during curving (i.e. underradial position and contact towards the field side
of the tread) were found to promote squeal. According to [88], squeal is usually
excited most at the leading inner wheel. These findings demonstrate that the model
gives reasonable results in the case of a constant friction coefficient.

The tangential contact model in the case of slip-velocity dependent friction is not
yet considered fully reliable, though. A particular difficulty is the possible exis-
tence of multiple solutions of the contact problem; seeSection 5.3.2.



Chapter 5

Applications of the wheel/rail
interaction model

This chapter presents a selection of results and application areas of the wheel/rail
interaction model that has been developed inChapter 3. Sections 5.1and5.2 dis-
cuss the application of the vertical interaction model for the evaluation of the con-
tact filter effect and for the calculation of impact forces caused by wheel flats,
respectively. InSection 5.3, which focuses on stick/slip oscillations induced by
frictional instability, the combined vertical/tangential interaction model is applied.
The results from a study of stick/slip in the case of constantfriction are presented
in Section 5.3.1. In Section 5.3.2, the case of a slip-velocity dependent friction law
and the difficulties occurring with the contact model fromSection 3.6.2are dis-
cussed.

5.1 Evaluation of the contact filter effect

Two studies about the contact filter effect are included in the appended papers.Pa-
per I treats briefly the contact filter effect for passing over a rail with sinusoidal
corrugation, whilePaper III is solely devoted to the contact filter effect in the case
of measured detailed roughness data.

In Paper I, simulations with the 2D contact model and inPaper III, simulations
with both the 2D and the 3D contact models are compared with simulations using
a non-linear Hertzian spring as contact model. The 2D and the3D contact models
consider the contact filter effect dynamically, since they incorporate the roughness
in several discrete points in the rolling direction and account for a time-variant con-
tact patch length. The models are therefore said to perform adynamic roughness
filtering. The 3D contact model considers, in addition, variations in roughness pro-
file height in the lateral direction across the width of the contact. Using the single
Hertzian spring, the contact filter effect has to be accounted for explicitly by calcu-
lating an equivalent roughness as a pre-processing step, which is called quasi-static
roughness filtering. Three such calculation methods are considered:

75
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• An equivalent roughness is calculated by means of the Winkler bedding de-
picted in Figure 3.24. Details about the procedure can be found in refer-
ence [23].

• An equivalent roughness is obtained by averaging over the nominal contact
patch length (corresponding to the static preload and smooth surfaces).

• No equivalent roughness is calculated, and the simulationsare carried out
with the original roughness excitation (i.e. the contact filter effect is not taken
into account).

In both studies of the contact filter effect, the discretely supported FE model of the
track fromSection 3.3.1is used. The wheel models inPaper I andPaper III are
respectively the 1-dof model and the 2-dof model fromSection 3.2.1. Typical cal-
culation times for the simulations on a standard PC are a few minutes in the case of
the 2D contact model or the Hertzian spring and a few tens of minutes in the case
of the 3D contact model.

In Paper I, the idealised corrugation is assumed to consist of only onesine curve
with corrugation wavelengthλ and amplitudeA. Simulations have been carried
out for a wide range of wavelengths and two different amplitudes. The results
have been analysed in terms of the maximum vertical contact force during pass-by
as function of the corrugation wavelength. The contact filter effect in the simula-
tion results is clearly noticeable for corrugation wavelengths that are up to three
to four times the nominal contact patch length (the latter being 10.7 mm). This
means that considerable errors are made if the contact filtereffect is not consid-
ered. However, not much difference is observed between the different methods of
roughness filtering in the investigated wavelength range down to somewhat smaller
than the nominal contact patch length. The simple averagingfiltering performs sur-
prisingly well. The maximum difference between averaging filtering and dynamic
filtering reaches slightly over3 dB at short wavelengths. No significant difference
is observed between quasi-static filtering with the Winklerbedding and dynamic
filtering. The results could look substantially different at corrugation wavelengths
shorter than the ones considered.

In Paper III, the contact filter effect is evaluated for excitation by detailed rough-
ness data measured in several parallel longitudinal lines in the running band. The
roughness data comprise one set of rail roughness measured at a site showing se-
vere corrugation [101] and three sets of wheel roughness data originating from one
wheel with cast-iron block brakes and two wheels with sinterblock brakes [99].
The calculations are carried out using one data set at a time,i.e. the wheel or the
rail is considered to be smooth. The 3D contact model considers the complete
roughness profile, while the 2D model and the Hertzian springonly operate on one
longitudinal roughness line. It is not evident which roughness line should be cho-
sen.
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As examples of the results of the dynamic calculations inPaper III, the results for
excitation by the roughness from one of the wheels with sinter block brakes are
presented in Figure 5.1. For the other roughness sets pleaserefer toPaper III. Fig-
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Figure 5.1: Dynamic wheel/rail interaction excited by roughness measured on a
wheel with sinter block brakes (wheel 2 in Paper III): (a) average one third-octave
band spectra of the vertical contact force and (b) average contact filter effect calcu-
lated from runs with seven different longitudinal roughness lines; contact model:
——— (thick grey line) 3D contact model, ———× 2D contact model, ———• Hertzian
spring with roughness pre-filtering by the Winkler bedding,———◦ Hertzian spring
with roughness pre-filtering by averaging,−−−Hertzian spring with no roughness
pre-filtering.
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ure 5.1(a) shows the third-octave band spectrum of the vertical contact force. In
the case of the 2D contact model and the Hertzian contact model, the spectrum
shown is an average of the seven spectra obtained from separate runs with seven
different roughness lines. Figure 5.1(b) presents the contact filter effect obtained
for the different contact models. This is calculated by taking the level difference in
dB values between each of the spectra and the spectrum obtained in the case of the
Hertzian spring with no roughness pre-filtering. In the samemanner as before, the
calculations have been carried out for seven different roughness lines separately.
The filter curves shown are the average of the filter curves obtained for each run.

In the excitation case shown in Figure 5.1 and the other threecases treated inPa-
per III, the models performing filtering on one roughness line – either dynami-
cally or by pre-filtering – are found to give very similar results up to about2 kHz
(i.e. wavelengths of over14 mm at the chosen train speed of100 km/h). These re-
sults are in good agreement with the findings inPaper I. At higher frequencies, dy-
namic filtering and quasi-static filtering with the Winkler bedding are still very sim-
ilar in three out of the four excitation cases inPaper III. The Hertzian model with
pre-filtering by averaging gives, however, significantly different results at higher
frequencies, the biggest differences occurring for the corrugated rail (up to9 dB
mean difference).

The main findings inPaper III concern the differences obtained between the 2D and
3D contact models. The 3D contact model gives, as a general tendency, a contact
force level several dB lower than the 2D model. The analysis in Paper III shows
that the differences obtained depend on the degree of correlation of the roughness
across the width of the contact patch. At frequencies where the correlation is high,
both models give similar results. With decreasing correlation, the differences in-
crease. A parameter based on the coherence of several parallel roughness lines is
proposed inPaper III to assess the correlation across the width of the contact patch.
In the case shown in Figure 5.1, the roughness correlation islow in the whole fre-
quency range and the 3D contact model is seen to result in lower contact forces than
the 2D model in a wide range. At higher frequencies (above2 kHz for the chosen
model parameters), the differences in contact force level obtained with the 3D and
2D models are increased or diminished by distinct dips in the2D filter. These are
an inherent property of the 2D filter operating on an (approximately constant) con-
tact length. The simulation results inPaper III show, too, that the differences in
contact force level obtained with the 3D and 2D models vary significantly with the
roughness line chosen in the 2D model. Using an average of roughness lines as
input in the 2D model results in sufficient accuracy in the 2D model in only one
out of the four cases. The 3D model still gives satisfactory results, when a lateral
roughness resolution of4 mm (instead of originally2 mm) is used. The former
corresponds to measuring the roughness on five parallel lines.

The primary conclusion fromPaper III is thus that the common practice to measure
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only one longitudinal roughness line that is taken as typical of the running band is
generally not sufficient, since significant errors may occurwhen the 3D roughness
distribution is represented by only one roughness line. Detailed roughness mea-
surements are also necessary in order to be able to estimate the error occurring
when using the 2D model instead of the 3D model.

5.2 Calculation of impact forces caused by wheel flats

In Paper II, the vertical interaction model together with the 2D contact model is
applied to calculate impact forces caused by wheel flats. Thetrack is represented
by the FE model with discrete supports, and the wheel model used is the 1-dof
model. The flat is introduced on a rotating wheel whose profilein the contact zone
is updated in every time step. Two kinds of wheel-flat geometries are considered:
the newly formed wheel flat with sharp edges as occurring right after formation,
and the rounded wheel flat which rapidly develops from the newly formed flat as a
result of wheel tread wear and plastic deformation.

To demonstrate the functioning of the modelling approach, simulation results are
compared with field measurements from reference [40] in terms of the maximum
impact load; see Figure 5.2. In the field test, the impact loadcaused by a rounded
wheel flat with depthd = 0.9 mm and lengthl = 0.1 m on a freight train with axle
load 24 t (P = 117.7 kN) was measured for train speeds between30 km/h and
100 km/h. As the receptance of the loaded track in the frequency rangeof interest
could not be measured during the field tests, Nielsen et al. determined rail pad and
ballast parameters through model calibration [65]. These model parameters (listed
in Paper II) are also used in the present simulations. As the calculatedimpact force
varies depending on where the wheel flat hits the rail in relation to the sleeper loca-
tion, simulations with 40 different initial angular wheel positions are run in order
to cover the whole range of maximum impact force magnitudes.Considering the
uncertainty in the track parameters, the level of agreementbetween simulations and
measurements seen in Figure 5.2 is encouraging.

In addition to the maximum forces used for comparison to the field measurements,
Figure 5.2 also shows the minimum contact force, allowing identification of loss of
contact between wheel and rail. Beside the0.9 mm deep rounded wheel flat, also a
0.9 mm deep new wheel flat is considered. A more detailed description and analy-
sis of Figure 5.2, as well as additional simulation results,can be found inPaper II.
Beside train speed and wheel-flat type, the wheel-flat depth is also identified as
an important parameter for the magnitude of impact forces caused by wheel flats.
Especially at higher train speeds, the impact position of the wheel on the rail in
relation to the sleeper location has a significant influence,too.

A minor disadvantage of the 2D contact model, in the context of wheel flats (or
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other wheel irregularities), is that this contact model requires a reduced wheel ra-
dius in order to model Hertzian contact for smooth surfaces.Consequently, the
wheel flat has to be mapped onto the reduced wheel, implying that it is not possible
to represent correctly both wheel-flat depth and length. Though this has not been
done yet, it seems promising to apply the 3D contact model to simulate impact
forces caused by wheel flats. It would be possible not only to keep the original
wheel radius, but also to include the complete 3D geometry ofthe wheel flat. This
requires, however, that measurement data of the 3D wheel-flat geometry with suf-
ficient resolution are available.
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Figure 5.2: Measured maximum impact forces (⋄, black) due to a0.9 mm deep
rounded wheel flat in comparison to calculated maximum and minimum impact
forces (◦, dark grey). Shown are also a third-degree polynomial fittedto the mea-
sured data (———) and calculated results for a0.9 mm deep new wheel flat (2, light
grey).

5.3 Frictional instability in wheel/rail contact

In this section, the combined vertical and tangential wheel/rail interaction model
is applied to calculate stick/slip oscillations induced byfrictional instability. The
submodels used are the FE model of the wheel fromSection 3.2.2, the WFE model
of the track fromSection 3.3.2and the 3D contact models for normal and tangen-
tial contact presented inSections 3.4.2 and 3.6. Although the detailed FE models
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used for wheel and track include the longitudinal, lateral and vertical dynamics,
the simulations presented in this section are limited to vertical and lateral dynam-
ics of wheel and track. The wheel/rail contact, however, is treated as fully three-
dimensional. Typical calculation times for the simulations are a few days on a
standard PC.

5.3.1 Investigation of stick/slip oscillations in the caseof con-
stant friction

Most researchers working with the modelling of curve squealintroduce the nega-
tive slope of the friction characteristic as source of the instability, while others have
found that squeal can also occur in the case of constant friction due to the coupling
between normal and tangential dynamics; seeSection 2.4. As a contribution to
this discussion on the squeal mechanism, an investigation has been carried out in
Paper V into stick/slip oscillations in the case of constant friction, which is sum-
marised in the following.

Real measured wheel and rail profiles have been used in the investigation. The
wheel profile is a S1002 profile worn over169 000 km. The rail profile is a BV50
profile with inclination 1:40 measured at a curve in the network of Stockholm
metro, where severe corrugation and squeal occur [101]. Forthese profiles, the
contact points on wheel and rail have been determined as a function of the rela-
tive lateral displacement∆yWR of the wheelset on the rail with a pre-processor of
the commercial vehicle-track interaction software GENSYS[18]. The author ac-
knowledges the assistance of Peter Torstensson (CHARMEC, Chalmers University
of Technology), who provided the measured profiles and carried out the GENSYS
calculations.

A parameter study has been carried out, where the influence ofthe friction coeffi-
cientµs, the imposed lateral creepageη and the relative lateral displacement of the
wheelset on the rail∆yWR on the dynamic wheel/rail interaction has been investi-
gated. A total of 108 different parameter combinations has been tested.

The most important result from the parameter study is that stick/slip during curv-
ing (and consequently curve squeal) is indeed possible not only in the case of a
falling friction coefficient, but also in the case of constant friction. In 14 of the
investigated cases, pronounced stick/slip oscillations developed in the first3.5 s of
the simulation. The occurrence of these stick/slip oscillations is attributed to the
coupling between vertical and tangential dynamics.

An example of the stick/slip oscillations fromPaper V is shown in Figure 5.3 in
terms of the lateral contact force. In this simulation, denoted simulation I inPa-
per V, the parameter valuesµs = 0.3, η = −1% and∆yWR = −15 mm have
been used. A negative value of the lateral creepage corresponds to an underradial
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position of the wheelset in the curve, where the wheelset hasan angle of attack
against the track. For the chosen relative lateral displacement∆yWR, the contact
on the wheel tread occurs at the field side of the tread; seePaper V. Details of the
stick/slip cycle are depicted in Figure 5.4. During most of the cycle the contact
area is in full slip and the lateral contact forceF2 coincides with the traction limit
µF3. Only during a short phase in each cycle, partial stick occurs and the lateral
force takes a value below the traction bound.

The results of the complete parameter study fromPaper V are depicted in Fig-
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Figure 5.3: Stick/slip in the case of constant friction: time series of the lateral
contact forceF2 (corresponding to Simulation I inPaper V).
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Figure 5.4: Stick/slip in the case of constant friction: zoom on time series of the
contact forces (corresponding to Simulation I inPaper V); ——— lateral forceF2,
−−− (grey) traction boundµF3.

ure 5.5(a) for the variation of the friction coefficient and the lateral creepage, and
in Figure 5.5(b) for the variation of the relative lateral displacement of the wheelset
on the rail. The relative stability of the simulations is characterised by the measure
LF2

which is based on the rms-value of the lateral contact force signal and gives low
values in cases where stick/slip does not occur; seePaper V. All three investigated
parameters are seen to have a strong influence on the occurrence of stick/slip:
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Figure 5.5: Results of the dynamic simulations as function of (a) the imposed lat-
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Significant stick/slip developed only for negative values of the lateral creepage (i.e.
underradial positions of the wheelset) and not below a threshold of (the absolute
value of) the lateral creepage of0.6%. Furthermore, pronounced stick/slip oscil-
lations did not occur for low friction coefficients (below 0.3) and occurred only
for contact positions on the wheel tread towards the field side of the wheel. An-
other observation from the parameter study is that small changes in the parameters
can lead to a sudden appearance (or disappearance) of stick/slip oscillations. In all
cases where stick/slip developed, the main frequency component of the oscillation
was close to wheel resonances corresponding to axial modes of the wheel with zero
nodal circles.

As already discussed inSection 4.4, the results of the parameter study are in good
qualitative agreement with published findings about curve squeal.

5.3.2 Grid-size dependent high-frequency oscillations and non-
uniqueness of solution in the case of slip-velocity depen-
dent friction

Combining the tangential contact algorithm with a slip-velocity dependent friction
coefficient as described inSection 3.6.2entails two different problems. First, grid-
size dependent high-frequency oscillations are observed in the quasi-static case,
which are not yet fully explained. Second, the uniqueness ofthe solution given in
the case of a constant friction law [43], is not guaranteed anymore for a slip-velocity
dependent friction coefficient. Both phenomena are exemplified in the following.

Under quasi-static conditions, i.e. when wheel and track dynamics are not included,
the interaction model converges to a steady-state solutionfor an imposed constant
creepage and a constant normal force if the friction coefficient is constant. In the
case of a falling friction curve, high-frequency stick/slip oscillations may occur un-
der otherwise identical circumstances. Figure 5.6, which shows the time series of
the lateral contact force, demonstrates that the occurrence and amplitude of these
oscillations depend on the element length in the rolling direction∆x (hence on the
time step∆t = ∆x/v with v being the train speed). The simulations have been
carried out for the falling friction curve (3.57) together with a static friction coef-
ficient µS = 0.3, a lateral creepageη = 0.5%, a train speedv = 50 km/h and a
static preloadP = 65 kN. Longitudinal and spin creepage have been set to zero
and cylindrical wheel/rail profiles have been used. The oscillations in Figure 5.6
are increasingly unstable for decreasing∆x. The fundamental frequency compo-
nent of the oscillations occurs at a divisor of the sampling frequency. Different
divisors are found for different∆x.

Figure 5.7 shows the time series of the tangential stress andthe local slip on the
centre line of the contact in rolling direction for the case∆x = 0.25 mm from
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Figure 5.6. The steps shown correspond to the time steps marked in Figure 5.6. A
small slip zone occurs at the trailing edge of the contact in step 1. Subsequently,
this slip zone is seen to grow gradually. At the same time, tangential stress builds
up until a “collapse” occurs between time steps 6 and 7. The system jumps to slip
in the complete contact zone and the tangential stress is relieved. Due to the de-
creased stress, the system goes back to mainly stick in the next step and the cycle
recommences.

The problem of multiple solutions can also be exemplified by means of Figure 5.7.
To calculate the solution in each time step of Figure 5.7, thedistribution of slip
velocities of the previous time step has been taken as initial estimate in the iterative
method. The solution obtained by this means in step 6 showinga decreased slip
zone does not seem to fit into the stick/slip cycle. When a fullslip solution is taken
as initial estimate instead, another solution with a largerslip zone is found; see
Figure 5.8.

The same phenomena have also been reported by Croft et al. [14]. They compared
two independent implementations of the same tangential contact model also used
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Figure 5.6: High-frequency oscillations under quasi-static conditions for different
element lengths∆x: −−−◦ 1 mm; ———× 0.5 mm; ———• 0.25 mm. Selected time
steps are denoted by Arabic numerals.

in this work: the time-stepping model by Croft [13] and a modified version of
CONTACT [105] by Vollebregt. In their investigation carried out for a constant
longitudinal creepage, they observed the same type of stick/slip oscillations at the
trailing edge of the contact. The oscillations were found tobe increasingly unstable
with increasing creep, increasing slope of the falling friction curve, and decreasing
element length in rolling direction. The dependence of the amplitude of the oscil-
lations on the element length is explained by the fact that the “collapse” occurs in
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Figure 5.7: Time history corresponding to the time steps numbered in Figure 5.6
for the case∆x = 0.25 mm: −−− (in grey) normalised tangential stress|pt|/pref ,
——— normalised local slip|s|/sref on liney′ = 0.
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Figure 5.8: Low and high slip solution in time step 6 of Figure5.7:−−− (in grey)
normalised tangential stress|pt|/pref , ——— normalised local slip|s|/sref on line
y′ = 0.

one time step. When the time step is reduced, the change of thesystem occurs in
a shorter time period, which entails a higher slip velocity [14]. Croft et al. [14]
reported also about the existence of multiple solutions. One principal difference
between the results presented in [14] and the results in Figure 5.7 (deliberately
presented in the same types of plots as in [14]) concerns the tangential stress distri-
bution in the stick zone. While Croft et al. found distinct (so far unexplained) peaks
in the stick zone, this phenomenon is not seen in Figure 5.7. It should however be
noted that Croft et al. carried out the simulations with different parameters (e.g.
longitudinal creepage instead of lateral creepage) and that their analyses is two-
dimensional in contrast to the three-dimensional version of the model used here.

The occurrence of the grid-size dependent stick/slip oscillations in two additional
independent implementations of the contact model suggeststhat this phenomenon
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is a consequence of the modelling approach, and rules out programming errors
as reason for their occurrence. E.H.A. Vollebregt relates the phenomenon to the
quasi-static assumption made in CONTACT [43] in combination with the falling
friction law employed (personal communication, February 2, 2011). A possible
solution could thus be to include the contact dynamics in themodel. This is how-
ever beyond the scope of this thesis. A correct handling of the problem of multiple
solutions would require us to identify all solutions and to find a way to select the
“physical” one.

More research is needed on the handling of the described phenomena in the dy-
namic algorithm and their implications. Nevertheless, results from the combined
vertical/tangential interaction model including the wheel and track dynamics are
also presented in the following, in order to demonstrate thebehaviour of the model
in the case of a slip velocity-dependent friction coefficient.

In particular, the quasi-static simulation from Figure 5.6with ∆x = 0.5 mm has
been repeated with the wheel and track dynamics included. The main frequency
component of the lateral contact force occurs then at5235 Hz, see Figure 5.9,
which corresponds to the (7,0,a) axial wheel mode at5216 Hz. When this mode
is removed from the wheel receptance, the stick/slip oscillation occurs at another
frequency; see Figure 5.10. By contrast, the removal of the second wheel mode
close to the main frequency component, the circumferential(2,c) mode at5228 Hz,
did not have a significant influence on the spectrum. Figure 5.9 shows also the
spectrum of the lateral contact force in the quasi-static case. In this case, peaks
occur atFs/10 and higher harmonics of this frequency, whereFs = 27.8 kHz is the
sampling frequency. These peaks are not present anymore in the dynamic case.

Similar results are also presented inPaper IV for the train speedv = 100 km/h.
Additionally, the effect of roughness excitation on the stick/slip oscillations has
been investigated inPaper IV. The inclusion of roughness led to generally higher
contact force levels in comparison to the case with smooth surfaces, but left un-
changed the main peaks in the spectrum corresponding to the (8,0,a) axial mode of
the wheel and higher harmonics.

It is to be assumed that the results from the dynamic simulations shown in this
section and inPaper IV are equally grid-size dependent as the results from the
quasi-static simulations. Furthermore, it cannot be excluded that the existence of
multiple solutions (not specially accounted for in the algorithm) has an influence
on the outcome of the dynamic simulations.



88 5. Applications of the wheel/rail interaction model

2k 4k 6k 8k 10k 12k

20

40

60

Frequency [Hz]

La
te

ra
lf

o
rc

e
[d

B
re

f1
N

]

Figure 5.9: Power spectrum of the lateral contact force in the case of falling friction,
η = 0.5%, v = 50 km/h: dynamic wheel/rail interaction (———) in comparison to
the corresponding quasi-static case (———,in grey).
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Figure 5.10: Power spectrum of the lateral contact force in the case of falling fric-
tion, η = 0.5%, v = 50 km/h: dynamic wheel/rail interaction for the complete
wheel receptance (———) in comparison to the case where the (7,0,a) mode has
been removed from the wheel receptance (———,in grey).



Chapter 6

Conclusions and future work

6.1 Conclusions

In this thesis, a time-domain model for the combined vertical and tangential wheel/rail
interaction has been presented, which accounts for the non-linear processes in the
contact zone.

An important feature of the model is the representation of wheel and track by
Green’s functions, which allows inclusion of any linear wheel and track model.
A discretely supported rail, for instance, can easily be considered. As the Green’s
functions are pre-calculated before starting the dynamic simulations, the modelling
approach leads to high computational efficiency. Consequently, detailed contact
models can be included. Two such contact models have been introduced in this
thesis. The first contact model is a 2D model for vertical contact only, which con-
sists of a bedding of independent springs. The second contact model is a 3D model
consisting of a vertical and a tangential part. This model isan implementation of
Kalker’s ‘exact’ theory [43], which is based on an influence-function method for
the elastic half-space. Both vertical contact models take account of non-Hertzian
effects. The 2D model uses a simplified wheel and rail geometry and includes one
line of wheel/rail roughness in the rolling direction. The 3D model considers the
real three-dimensional wheel and rail geometry and takes into account the rough-
ness in several parallel lines. Both vertical contact models include the contact filter
effect dynamically and do not require the calculation of an equivalent roughness as
pre-processing step. Moreover, discrete irregularities such as wheel flats and rail
joints can readily be included by updating the wheel or rail profile in the contact
zone in each time step. The tangential contact model – like the vertical contact
model – is fully non-linear and transient. To the knowledge of the author, it is the
first time that such a model is used online in a model for wheel/rail interaction,
at least in the context of noise prediction. The reason why such a model has not
been used previously in this context is that the calculationeffort was considered
too high.

As mentioned above, the wheel/rail interaction model presented in this thesis is
computationally efficient due to the chosen approach based on Green’s functions.

89
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When only vertical contact is considered in the wheel/rail interaction model, typi-
cal calculation times (e.g. for the simulations inPaper III) on a standard PC are a
few minutes in the case of the 2D contact model and a few tens ofminutes in the
case of the 3D contact model. When the tangential contact is included, the calcu-
lation times increase considerably, but are still manageable. A typical simulation
from Section 5.3takes a few days on a standard PC.

In the thesis and the appended papers, the wheel/rail interaction model has been
applied for different excitation cases. Cases considered are excitation by idealised
sinusoidal roughness and by measured roughness of the wheeland rail running sur-
faces, by different types of wheel flats, and by frictional instability during curve
negotiation for both a constant and a velocity-dependent friction coefficient.

In the case of roughness excitation, the vertical interaction model has been vali-
dated against existing established interaction models. A Hertzian spring has been
used as contact model in this validation. The 3D contact model has been veri-
fied separately against Kalker’s program CONTACT, and the vertical 2D contact
model has previously been verified in [72]. InPaper I andPaper III, the verti-
cal interaction model has been applied to investigate the contact filter effect for
passing over a rail with idealised sinusoidal corrugation and excitation by detailed
measured roughness data, respectively. Simulations with the 2D and 3D vertical
contact models have been compared with simulations using a non-linear Hertzian
spring as contact model applied in combination with an equivalent roughness cal-
culated in a pre-processing step. The contact filter effect was clearly visible for
roughness wavelengths that were up to three to four times thenominal contact
patch length. As a general tendency, the different models performing roughness
filtering on one line – either dynamically (2D model) or quasi-statically (Hertzian
spring with pre-calculated equivalent roughness) – gave similar results. An ex-
ception is the Hertzian spring with roughness pre-filteringby averaging over the
nominal contact patch length, which gave significantly different results at higher
frequencies (above 2 kHz for the chosen model parameters) inthe case of real mea-
sured roughness. The main findings from the investigation ofthe contact filter
effect concern the differences between the 2D and 3D contactmodels obtained for
real measured roughness. The 3D contact model gives, as a general tendency, a
contact force level several dB lower than the 2D model. The differences between
the 2D and 3D models increase with a decrease in roughness correlation across
the width of the contact. A parameter based on the coherence of several parallel
roughness lines has been proposed inPaper III to assess the correlation across the
width of the contact patch. The differences in contact forcelevel obtained with the
2D and 3D models vary also significantly with the roughness line chosen in the 2D
model. Using an average of several roughness lines as input in the 2D model in-
stead of only one line cannot generally be expected to resultin sufficient accuracy.
The simulations indicated, too, that a lateral roughness resolution of at least4 mm
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should be used in the 3D model, which corresponds to measuring the roughness on
at least five parallel lines. The primary conclusion from thestudy of the contact
filter effect is thus that the common practice, of measuring only one longitudinal
roughness line that is taken as typical of the running band, is generally not suf-
ficient, since significant errors may occur when the 3D roughness distribution is
represented by only one roughness line.

In Paper II, the interaction model together with the 2D contact model has been
applied to calculate impact forces caused by wheel flats. Simulation results have
been compared to field measurements in terms of the maximum impact forces
during wheel-flat passage. The agreement found between simulations and mea-
surements was fairly good throughout the investigated range of train speeds from
30 km/h to 100 km/h. The short parameter study presented inPaper II showed
that train speed, wheel-flat depth and wheel-flat type are important parameters for
the magnitude of the impact force. Especially for higher train speeds, the impact
position of the wheel on the rail in relation to the sleeper location has a signifi-
cant influence, too. A minor disadvantage of the 2D contact model in the context
of wheel flats (or other wheel irregularities) is that this contact model requires a
reduced wheel radius in order to model Hertzian contact for smooth surfaces. Con-
sequently, the wheel flat has to be mapped onto the reduced wheel, implying that
it is not possible to represent correctly both wheel-flat depth and length. Using the
3D contact model would make it possible to keep the original wheel radius and to
include the complete three-dimensional geometry of the wheel flat.

In Paper IV andSection 5.3.2, the combined vertical/tangential interaction model
has been applied for excitation by frictional instability in the case of a falling fric-
tion curve. In the dynamic simulations, stick/slip oscillations developed, which had
a main frequency component corresponding to an axial mode ofthe wheel with zero
nodal circles. The 3D contact model in combination with a slip-velocity dependent
friction coefficient, however, is not yet considered completely reliable. In the quasi-
static case, when wheel and rail dynamics are not included, grid-size dependent
high-frequency oscillations were observed. It is to be assumed that the results from
the dynamic simulations are equally grid-size dependent. Furthermore, it cannot
be excluded that the possible existence of multiple solutions in the contact model
has an influence on the outcome of the dynamic simulations. Further research is
needed on the handling of the described phenomena in the dynamic algorithm and
their implications. The interaction model in combination with a velocity-dependent
friction coefficient should however be fully applicable, ifa simpler tangential con-
tact model is used.

Excitation by frictional instability in the case of a constant friction coefficient has
been investigated inPaper V. Simulations have been carried out with the combined
vertical/tangential interaction model for a range of inputparameters. An important
result from the parameter study is that a falling friction curve is not a precondition
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for stick/slip oscillations to occur during curve negotiation. Stick/slip is also pos-
sible in the case of constant friction – as suggested by previous publications. The
imposed lateral creepage, the friction coefficient and the lateral contact position
were found to be key parameters for the occurrence of stick/slip – and consequently
squeal. In particular, the conditions prevailing at the leading inner wheel of the bo-
gie during curving (i.e. underradial position and contact towards the field side of
the tread) were found to promote squeal. In all cases where stick/slip oscillations
developed, the main frequency component was close to wheel resonances corres-
ponding to axial modes of the wheel, with zero nodal circles.These results are in
good qualitative agreement with previously published findings about curve squeal.

Summing up, the functioning of the developed wheel/rail interaction model has
been demonstrated for a variety of excitation cases. The model allows considera-
tion of the three-dimensional roughness distribution throughout the contact patch,
the real non-Hertzian wheel/rail geometry, arbitrarily large creepages, frictional ex-
citation, and comprehensive wheel and track models. The simulation results give
detailed information about the dynamic processes in the contact zone. The ap-
plicability of the interaction model for practical cases depends, however, on the
availability and accuracy of input data. Critical are, for instance, the parameters
of the track model characterising railpads and ballast and the wheel/rail roughness
distribution. Especially difficult to measure are also the actual friction conditions
prevailing in wheel/rail contact.

6.2 Future work

The wheel/rail interaction model presented in this thesis has been developed with
the long-term goal of providing a model for the prediction ofrolling noise, impact
noise and squeal noise. To make the model complete, a radiation model will be im-
plemented. The detailed wheel and rail models used in this thesis allow calculating
the normal surface velocities of wheel and rail occurring due to the time-history of
the dynamic contact forces. These data can be used as input toradiation models,
which are readily available in the literature. One possibility is to apply simplified
approaches based on the radiation efficiency to calculate the radiated sound power,
as e.g. implemented in the model TWINS [97]. An alternative approach is to use
more detailed boundary element models; see e.g. [66].

An important aspect of future work is to seek additional validation of the proposed
interaction model against field measurements. InPaper II, it has been shown that
the simulation results from the model agree well with one setof measured impact
forces caused by wheel flats. The results for frictional instability from Paper V
agree qualitatively very well with published results aboutcurve squeal, obtained
from simulations and measurements. To gain further confidence that the developed
model is quantitatively reliable, a more extensive comparison to field measure-
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ments should be carried out. The author is grateful for having access to the results
of a field measurement campaign on impact noise caused by wheel flats and rail
joints, which was carried out in the context of Virginie Delavaud’s thesis work [17]
at SNCF / ENSTA ParisTech. On the basis of these data, the vertical wheel/rail
interaction model will be further evaluated for excitationby discrete irregularities.
Also in the context of curve squeal, experimental validation is needed. In the field,
however, it is difficult to gain control over important modelparameters such as the
wheel/rail contact position and the prevailing friction conditions. The latter are in-
fluenced by e.g. humidity, temperature and the track condition. Consequently, it
would be preferable to use a test rig, where good control of essential parameters
can be achieved.

The problems occurring when combining the tangential contact model with a slip-
velocity dependent friction coefficient should be investigated further. It should
be considered to extend the quasi-static tangential contact model and include the
contact dynamics. This might solve the problem with the grid-size dependent high-
frequency oscillations. Additionally, a way must be found to correctly handle the
problem of multiple solutions before the algorithm can be used with confidence.
An alternative approach is to introduce a simpler tangential contact model, which
can easily be combined with a falling friction curve.

Moreover, the wheel/rail interaction model presented in this thesis opens up a lot of
possibilities for further investigations. Three examplesare given in the following:

• In the literature review about tangential contact models inSection 2.8, it has
been pointed out that so far only models for steady-state rolling contact had
been used in squeal models. The interaction model presentedin this thesis
with its transient rolling contact model could be used to assess the errors in-
troduced by using simpler contact models, at least in the context of a constant
friction coefficient. The results of such an investigation could also be used
to derive a computationally efficient engineering model forcurve squeal. Al-
though the modelling approach proposed in this thesis is considered numer-
ically efficient, the resulting calculation times of typically a few days when
including tangential contact are considered too long in engineering applica-
tions. As comparisons can be made with the detailed transient contact model,
a simpler tangential contact model could be introduced having control over
the simplifications made and keeping the dependence on essential model pa-
rameters.

• In the context of curve squeal, the model could be used to carry out a more
detailed parameter study in order to enhance the understanding of squeal
generation. Beside the lateral creepage, the friction coefficient and the lat-
eral contact position, parameters of interest are for example the train speed,
the normal load, and the roughness of the wheel and rail running surfaces. It
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would also be worthwhile to investigate the influence of longitudinal creep-
age on the occurrence of squeal. By this means, Rudd’s assumption [81]
that longitudinal creepage is not a significant source of curve squeal could be
tested.

• The vertical interaction model could be used for a more detailed study on the
impact forces caused by wheel flats or other discrete irregularities. In this
context, it seems promising to apply the 3D contact model, which makes it
possible to include the complete 3D geometry of the discreteirregularity.

The three examples mentioned are just a selection of possible applications of the
model, which covers the complete area of high-frequency wheel/rail interaction.
Although the model has been developed in the context of noiseprediction, it is
not limited to this area. It can for example also be applied inconnection with the
modelling of corrugation growth or other types of wheel and track deterioration, or
provide input for models predicting ground vibrations.



Appendix A

Overview of the appended papers

In the appended papers, the wheel/rail interaction model isused with different
submodels for wheel, track and contact, which are specified in Table A.1. A
detailed description of these submodels is given inChapter 3. The different ex-
citation mechanisms and applications treated inPaper I to Paper V are listed in
Table A.2. Additionally, it is indicated which models have been validated against
existing models and field measurements.

Table A.1: Implemented submodels in the wheel/rail interaction models presented
in Papers I-V.

Wheel model Track model Contact model Directions

Paper I 1-dof DIFF [64] 2D Winkler vertical interaction

Paper II 2-dof DIFF [64] 2D Winkler vertical interaction

Paper III 2-dof DIFF [64] (1) 3D half-space vertical interaction
(2) 2D Winkler
(3) Hertz contact

Paper IV FE WFE [66] 3D half-space vertical/tangential
interaction

Paper V FE WFE [66] 3D half-space vertical/tangential
interaction
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Table A.2: Application areas and validation of the wheel/rail interaction models
presented inPapers I-V.

Excitation mechanism Application Validation against

Paper I (1) roughness excitation contact filter effect existing interaction
(2) parametric excitation model

Paper II excitation by discrete impact forces field measurements
irregularities due to wheel flats

Paper III roughness excitation contact filter effect —

Paper IV frictional instability in stick/slip —
the case of falling
friction

Paper V frictional instability in stick/slip existing contact
the case of constant model
friction



Appendix B
Influence coefficients for the elastic
half-space

The normal contact model described inSection 3.4.2and the tangential contact
model described inSection 3.6are based on influence coefficients for the elastic
half-space. These coefficients are given in Kalker’s book [43] and are listed here
for convenience in the form needed in this work.

The coefficients are valid for the case where the potential contact area between
wheel and rail is divided intoNp rectangular elements with side lengths∆x and
∆y, see Fig. B.1, and the traction is taken as piecewise constant over the mesh
of rectangles. Kalker gave the coefficients for the case where the two contacting
bodies are made of different materials. Here it is additionally assumed that the two
bodies, i.e. wheel and rail, are made of the same material, which has a modulus of
rigidity G and a Poisson’s ratioν.

The influence coefficientAIiJj gives the displacement ini-direction at the centre
of elementI due to a unit traction inj-direction in elementJ . The coefficients are
obtained as

AI1J1 =
1

πG
[J3 − νJ2] (B.1)

AI2J2 =
1

πG
[J3 − νJ1] (B.2)

AI3J3 =
1 − ν

πG
J3 (B.3)

AI1J2 = AI2J1 =
ν

πG
J4 . (B.4)

The remaining coefficientsAI1J3,AI3J1,AI2J3 andAI3J2, which would be respon-
sible for the coupling between the normal and tangential directions, are zero for
identical materials of the two bodies.

The functionsJ1 to J4 depend on the variablesa, b, c andd giving the distances in
x′- andy′-directions between the centre of elementI and the corners of elementJ

a = ∆xIJ − ∆x
2
, b = ∆xIJ + ∆x

2
,

c = ∆yIJ − ∆y
2
, d = ∆yIJ + ∆y

2
,

(B.5)
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Figure B.1: Potential contact area divided intoNp = nxny rectangular elements
with side lengths∆x and∆y.

where

∆xIJ = x′J − x′I
∆yIJ = y′J − y′I , (B.6)

and(x′I , y
′

I) and(x′J , y
′

J) are the locations of the centres of elementsI andJ , re-
spectively.

The functionsJ1 to J4 are given by

J1(a, b, c, d) = g(d, b) − g(d, a)− g(c, b) + g(c, a) (B.7)

J2(a, b, c, d) = g(b, d) − g(a, d)− g(b, c) + g(a, c) (B.8)

J3(a, b, c, d) = J1(a, b, c, d) + J2(a, b, c, d) (B.9)

J4(a, b, c, d) = −h(b, d) + h(a, d) + h(b, c) − h(a, c) , (B.10)

where the functionsg andh are defined as

g(x, y) = x ln (y + h(x, y)) (B.11)

h(x, y) =
√

x2 + y2 , (B.12)

andln denotes the natural logarithm.
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