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Abstract
The oleaginous yeast Yarrowia lipolytica is widely used for the production of both bulk and fine chemicals, including organic
acids, fatty acid-derived biofuels and chemicals, polyunsaturated fatty acids, single-cell proteins, terpenoids, and other valuable
products. Consequently, it is becoming increasingly popular for metabolic engineering applications. Multiple gene manipulation
tools including URA blast, Cre/LoxP, and transcription activator-like effector nucleases (TALENs) have been developed for
metabolic engineering in Y. lipolytica. However, the low efficiency and time-consuming procedures involved in these methods
hamper further research. The emergence of the CRISPR/Cas system offers a potential solution for these problems due to its high
efficiency, ease of operation, and time savings, which can significantly accelerate the genomic engineering of Y. lipolytica. In this
review, we summarize the research progress on the development of CRISPR/Cas systems for Y. lipolytica, including Cas9
proteins and sgRNA expression strategies, as well as gene knock-out/knock-in and repression/activation applications. Finally,
the most promising and tantalizing future prospects in this area are highlighted.
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Introduction

Yarrowia lipolytica is a well-known non-conventional yeast,
which is generally recognized as safe (Liu et al. 2015). Due to

its strong lipogenesis capability and high protein expression
levels, Y. lipolytica is widely researched for the production of
both bulk and fine chemicals, including organic acids, fatty
acid-derived biofuels and chemicals, polyunsaturated fatty
acids, single-cell proteins, terpenoids, and other valuable
products (Rymowicz et al. 2010; Cui et al. 2011; Yin et al.
2012; Xue et al. 2013; Kamzolova et al. 2014; Blazeck et al.
2015; Sun et al. 2016; Liu et al. 2017a, b; Gao et al. 2017).
Meanwhile, a large range of substrates can be effectively uti-
lized by Y. lipolytica, including not only glucose and glycerol
but also xylose, cellobiose, and other industrial wastes, which
has made it into a hot topic of recent biorefinery research
(Ledesma-Amaro and Nicaud 2016; Zeng et al. 2018).
Metabolic engineering is a rapidly developing field that pur-
posely uses genetic recombination technologies to modify
cellular metabolic pathways, change cell characteristics, and
combines with other technologies such as biochemical engi-
neering to construct new metabolic pathways for the synthesis
of specific products (Stephanopoulos 2012; Nielsen and
Keasling 2016; Chen et al. 2017). For instance, the overex-
pression of the endogenous acetyl-CoA carboxylase (ACC1)
and diacylglycerol acyltransferase (DGA1) genes in
Y. lipolytica increased the lipid content to 41.4%, a 4.7-fold
improvement over the parental strain (Tai and Stephanopoulos
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2013). Subsequently, the aldehyde dehydrogenase gene was
introduced to improve the strain’s resistance to oxidative
stress, after which the lipid content reached up to 90% (Xu
et al. 2017). Metabolic engineering was also employed to
produce other products in Y. lipolytica in recent years with
good results, which attracted increasing attention to the meta-
bolic engineering research of this yeast (Yin et al. 2012;
Beopoulos et al. 2014; Rutter et al. 2015; Blazeck et al.
2015; Kildegaard et al. 2017; Liu et al. 2017a, b). With the
increasing number of metabolic engineering studies in
Y. lipolytica, various genetic engineering tools have been de-
veloped to meet the demands (Hussain et al. 2016). These
tools include URA blast, TRP1 blast, Cre/LoxP systems for
recycling selection markers, and transcription activator-like
effector nucleases (TALENs) for gene knock-out and knock-
in (Cheon et al. 2003; Fickers et al. 2003; Rigouin et al. 2017;
Gao et al. 2017). While these tools have been established in
Y. lipolytica, they suffer from various limitations and remain
not fully conducive to efficient, high-throughput genetic
engineering.

The CRISPR/Cas system, which emerged at an opportune
time, to some extent solves the traditional problems. The
CRISPR/Cas system consists of mainly two components, a
Cas9 protein and the corresponding sgRNA (Shi et al.
2017). As shown in Fig. 1, CRISPR/Cas systems based on
different types of Cas proteins can be classified into three
groups—knock-out/in-oriented CRISPR/Cas9, CRISPR in-
terference (CRISPRi), and CRISPR activation (CRISPRa)
(Sharma et al. 2017). When the sgRNA recognizes the
targeted sequence, the Cas9 protein catalyzes a double-
strand break (DSB) in the targeted DNA, which induces either
random deletion and insertion or the introduction of heterolo-
gous genes through partially complementary donor DNA
(O’Connell et al. 2014; Ran et al. 2013). CRISPRi is used
for gene repression via a catalytically deactivated Cas9
(dCas9), which has no cleavage activity, but can nevertheless
bind the DNA and repress the expression of the gene targeted
by the gRNA (Larson et al. 2013). In order to enhance the
repression activity, transcriptional repressors, such as Krüppel
associated box (KRAB) domain, is usually expressed as a
fusion with the Cas9 protein (Zhang et al. 2018). Similarly,
CRISPRa was developed for targeted gene activation by fus-
ing dCas9 to transcriptional activators that bind promoters of
targeted genes and improve gene expression levels (Simeonov
et al. 2017). These technologies offer important solutions,
including multi-gene targeting and marker-free integration,
which promote the development of metabolic engineering in
Y. lipolytica.

In this review, we summarize the expression strategies and
recent applications of the CRISPR/Cas system in Y. lipolytica,
followed by a brief discussion of future prospects of this sys-
tem. We hope to provide a practical reference for genome
editing in Y. lipolytica.

Development of a CRISPR/Cas9 system
for Y. lipolytica

Cas9/dCas9 expression strategies

As the first CRISPR research in Y. lipolytica by Schwartz et al.
(2016a), both expression of the active Cas9 protein in the
CRISPR/Cas9 system and dCas9 in CRISPRi and CRISPRa
systems after that has been engineered using a strong consti-
tutive promoter as well as a SV40 nuclear localization signal
(Gao et al. 2016; Schwartz et al. 2017; Schwartz et al. 2018;
Schwartz and Wheeldon 2018; Holkenbrink et al. 2018;
Zhang et al. 2018). There are two general strategies for the
expression of Cas9/dCas9—one based on plasmids and the
other on chromosomal integration. In the plasmid-based setup,
Cas9/dCas9 can be cloned into an autonomously replicating
plasmid (ARP) for recycling of marker genes, or a non-ARP
for transient expression, both of which showed a high editing
efficiency in Y. lipolytica (Schwartz et al. 2016a). In addition,
Holkenbrink et al. (2018) established an EasyCloneYALI ge-
netic toolbox in which Cas9 is integrated into the genome for
easier transformation protocols. With this system, highly effi-
cient genome editing only requires an sgRNA expression cas-
sette, a strategy that is also of interest for CRISPRi and
CRISPRa systems.

sgRNA expression strategies

Promoter engineering to improve the genome editing
efficiency

Efficient genome editing mainly depends on the level of
sgRNA transcription. Therefore, many studies have focused
on promoter engineering in recent years. Gao et al. (2016) and
Wong et al. (2017) used a polymerase II promoter (Pol II) to
transcribe sgRNAs in Y. lipolytica. In this system, sgRNAs
were flanked by hammerhead (HH) and hepatitis delta virus
(HDV) ribozymes. Due to the strength of Pol II and self-
processed RNA cleavage, sgRNAs can be successfully re-
leased. Similar research was also previously carried out by
Schwartz et al. (2016a). However, the efficiency was quite
low, and in order to further improve the editing efficiency,
Schwartz et al. (2016a) adopted a synthetic RNA polymerase
III promoter (Pol III) strategy in which differently designed
Pol III promoters were individually and combinatorically used
to optimize the knockout efficiency. The SCR1-tRNAGly hy-
brid Pol III achieved an efficiency of nearly 100% after 4 days
of outgrowth, and was consequently frequently utilized to
express sgRNAs in later studies. In very recent research,
Morse et al. (2018) established a T7 polymerase-based
CRISPR/Cas system in different yeasts, including
Y. lipolytica. Here, the sgRNAs were expressed from a T7
promoter which was transcribed by a heterologous mutant
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T7 polymerase, and the genome editing efficiency reached
nearly 60%. The establishment of promoter engineering strat-
egies has laid the foundation for further development of the
CRISPR/Cas system in Y. lipolytica.

Multiplex sgRNA expression strategy

Multiplex sgRNA expression strategies have been widely ap-
plied to the CRISPR/Cas system in Y. lipolytica. Gao et al.
(2016) investigated the efficiency of simultaneous single, dou-
ble, and triple gene disruption in Y. lipolytica. The final result
showed that the frequency of single-disruption events
approached 100%, while for double disruption, it was nearly
36%, and reached 19% for triple disruption. Holkenbrink et al.
(2018) established a multi-sgRNA expression system, in
which multiplex sgRNAs that target different genes can be
constructed rapidly through the BioBricks assembly.
Additionally, a multiplex sgRNA expression strategy has been
used for CRISPRi and CRISPRa (Zhang et al. 2018; Schwartz
et al. 2017); however, in these cases, the multiplex sgRNAs
were usually designed to target a single desired gene rather
than multiplex different genes. The reasoning for this is that

when the targeting is biased towards a single gene, the effi-
ciency can be lower, and multi-gene targeting has a better
efficacy for gene interference and activation. These examples
demonstrate that multiplex sgRNA expression plays an impor-
tant role in the CRISPR/Cas system.

CRISPRS/Cas system for knock-out/knock-in
and repression or activation of genes

Gene knock-out or knock-in

In the field of metabolic engineering, a highly efficient homol-
ogous recombination (HR) system of microbes is essential for
gene knock-out/knock-in, which in turn is a prerequisite for
investigating the functions of the targeted genes. However, the
system is in direct competition with the stronger non-
homologous end-joining (NHEJ) mechanism in most organ-
isms including Y. lipolytica (Ueno et al. 2007; Decottignies
2007). Consequently, a high HR efficiency usually requires
homologous arms with a length of more than 1 kb. In order to
enhance the HR efficiency, chemical and biological

Fig. 1 The CRISPR/Cas genome editing platform for Yarrowia
lipolytica. a CRISPR/Cas9 method for gene knock-out/knock-in. When
the sgRNA recognizes the targeted sequence, which is located before a
protospacer adjacent motif (PAM) site, the Cas9 protein will catalyze the
formation of a double-strand break (DSB) in the targeted DNA. In order
to repair the genome, two kinds of repair mechanisms can be used. The
non-homologous end-joining (NHEJ) repair mechanism, which is
dominant in Y. lipolytica, can quickly repair the genome at the expense
of the deletion or insertion of a few nucleotides, which can lead to the
frameshift mutations in the targeted gene. Additionally, in the presence of
a homologous sequence, cells can use the donor DNA to introduce nested

heterologous genes or disrupt a targeted gene by homologous
recombination (HR), homology-mediated end-joining (HMEJ), and
microhomology-mediated end-joining (MMEJ) repair mechanisms. b
CRISPRi and CRISPRa methods for gene interference and activation,
respectively. A catalytically deactivated Cas9 (dCas9), which has no
cleavage activity, can be fused with different effector domains to
control gene expression. When the targeted region is recognized, the
dCas9 fusion protein with the transcriptional repressor domain binds the
DNA to repress gene expression. Similarly, the fusion protein of dCas9
and a transcriptional activator domain binds to targeted regions to
improve the gene expression level
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approaches for inactivation of the NHEJ repair pathway in
Y. lipolytica were adopted. Verbeke et al. (2013) identified
the ku70 and ku80 genes in Y. lipolytica, which play a role
in the NHEJ repair mechanism after the formation of DSB.
While the disruption of ku80 did not affect the HR efficiency,
it was significantly improved by ku70 disruption. In the cor-
responding knockout strain, the efficiency of HR mediated by
only 50-bp homologous arms can be increased to 43%.
Interestingly, Kretzschmar et al. (2013) proved that ku80 dis-
ruption can also increase the HR efficiency to 80% with long
homologous arms 1 kb in length. Moreover, they observed the
highest HR efficiency up to 85% with ku70 disruption. In
addition, based on the ku70 disruption, Jang et al. (2018)
added hydroxyurea into the medium to synchronize the cell
cycle to the S-phase, which has been proved to induce the HR
in Y. lipolytica (Tsakraklides et al. 2015). The experiment
demonstrated that 50-bp homologous arms can yield an HR
efficiency of 46% and 100-bp homologous arms can reach up
to 100%. Although these strategies have been developed to
improve HR efficiency, it is quite difficult to knock out mul-
tiple genes simultaneously even in an NHEJ-knockout strain.
Moreover, the use of multiple selection markers is not condu-
cive to further metabolic engineering and industrial utilization
of the resulting strains (Wagner and Alper 2016). Fortunately,
the emergence of the CRISPR/Cas system offers the possibil-
ity to solve these problems.

CRISPR/Cas9 system for Y. lipolytica was first established
by Schwartz et al. (2016a). In their research, more attention
was paid to finding the best Pol III promoter to improve the
genome editing efficiency. The final result indicated that a
combination of SCR1 and tRNA Pol III promoters was the
best choice. Based on these results, a standardized markerless
gene integration tool for pathway engineering was subse-
quently established by Schwartz et al. (2016b). By knocking
out 17 genes using an autonomously replicating CRISPR/
Cas9 plasmid as well as the repair fragment, five loci which
offer efficient gene integration were identified. These repair
fragments as well as the CRISPR/Cas9 plasmids together
comprise a standardized tool that allows efficient genome
editing in any of the five loci. In order to verify the practical
applicability of this tool, the multigene pathway for lycopene
biosynthesis was subsequently integrated into the Y. lipolytica
genome. Importantly, repair fragments were designed to easily
insert any targeted genes, and these plasmids can be removed
in a day, which has the potential to significantly accelerate the
construction of any metabolic pathway in Y. lipolytica.

Comparable to the above approach, Holkenbrink et al.
(2018) established a CRISPR/Cas9-based toolbox for engi-
neering Y. lipolytica. In the system, Cas9 and sgRNA were
separately expressed from two different plasmids, and the
Cas9 protein was subsequently integrated into the genome.
A total of 11 loci which did not affect cell growth were select-
ed to design the sgRNAs and repair fragment. Both marker-

mediated integration and CRISPR/Cas9-based marker-free
genome editing had a high efficiency. Additionally, the use
of this toolbox for multiplex gene knockouts was tested. For
single gene disruption, the efficiency was above 80%, and it
varied from 6 to 66% for double gene disruption. However,
for triple gene disruption, no successful transformants were
found. To simplify the plasmid construction process, 90-bp
double-stranded oligonucleotides were used as the template
to repair the DSB by HR, and the editing efficiency reached
100%, which further demonstrated the validity of this toolbox.

Interestingly, Gao et al. (2018) recently established a dual-
sgRNA-mediated gene knockout and integration strategy for
Y. lipolytica. By designing paired sgRNAs for single genes,
both non-coding and coding regions of the targeted gene could
be cleaved precisely. The result was further confirmed by
knocking out six genes. Moreover, based on a new
homology-mediated end-joining (HMEJ) strategy, which
was recently established in animal embryo and tissue cells
(Xuan et al. 2017; Yao et al. 2018), researchers also applied
this HMEJ strategy to Y. lipolytica. Strikingly, the efficiency
was twice as high as that of HR.

Taken together, fast developments of the CRISPR/Cas9
system provide a great deal of convenience for metabolic en-
gineering in Y. lipolytica. Both marker-free integration and
multi-gene editing are powerful tools to overcome traditional
shortcomings in HR systems, facilitating further metabolic
engineering of this yeast.

Sequence-specific repression or activation of genes

In the CRISPR/Cas9 system, the original purpose of the Cas9
protein was to bind the DNA and cleave the targeted gene
sequence. However, it was found that a dCas9 variant which
has no cleavage activity can also specifically bind the targeted
DNA (Ma et al. 2016). Importantly, dCas9 can be fused to
transcriptional repressors and activators to further repress or
activate gene expression. Subsequently, CRISPRi and
CRISPRa manipulations have been quickly applied to many
different organisms, including Y. lipolytica.

Schwartz et al. (2017) were the first to establish the
CRISPRi system in Y. lipolytica. The purpose was to repress
NHEJ to enhance HR efficiency. In the verification experi-
ments, eight of nine target genes were efficiently repressed.
In order to further improve the HR efficiency, a multiplex
sgRNA expression strategy as well as a dCas9 fusion protein
with the Mxi1 repressor was adopted to repress the ku70 and
ku80 genes. The subsequent rate of HR was nearly 90%.
Additionally, a microhomology-mediated end-joining
(MMEJ) mechanism, which is independent of the NHEJ
mechanism, was found in Y. lipolytica. Homology regions of
only 8 bp can be used to repair the genome with the MMEJ
after DSB formation. Subsequently, Zhang et al. (2018) used
the four different repression proteins dCpf1, dCas9, dCas9-
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KRAB, and dCpf1-KRAB, to rapidly develop the CRISPRi
system in Y. lipolytica. Notably, the researchers found that
there was no explicit relation between target sites and repres-
sion efficiency. Therefore, multiplex sgRNAs were simulta-
neously expressed to improve the system’s efficiency, and
rates of gene repression as high as 85% and 92% were
achieved using dCpf1 and dCas9, respectively. Furthermore,
the possibility of double and triple gene interference using the
CRISPRi system was explored in this research. The final
results showed that the combined repression events success-
fully occurred in Y. lipolytica, which demonstrated that
CRISPRi was indeed a powerful tool for metabolic engineer-
ing of Y. lipolytica.

In addition to the gene interference system, the dCas9 pro-
tein has also been fused to transcription activators to activate
the target genes, which is known as CRISPRa. Based on the
previously established CRISPRi technology, Schwartz and
Wheeldon (2018) rapidly developed CRISPRa manipulation
in Y. lipolytica. Considering that transcription activators have
an enormous influence on the activation efficiency, re-
searchers firstly compared four different activators and found
that the synthetic tripartite activator VPR yielded the highest
activation. After that, the dCas9-VPR fusion protein was used
to activate two β-glucosidase genes—BGL1 and BGL2—

which enabled Y. lipolytica to grow on cellobiose robustly.
By designing multiplex sgRNAs targeting the promoters of
the two β-glucosidase genes, researchers eventually found
that sgRNAs near to the core promoter region could greatly
increase the activation degree. The expression level of BGL1
increased 112-fold, while that of BGL2 increased 43-fold.
Moreover, the activation of both genes simultaneously also
yielded a high efficiency.

In summary, dCas9-mediated gene repression and activa-
tion is playing increasingly more important roles.
Consequently, more silent regions in the genome of
Y. lipolytica can be activated to explore their encoded func-
tions. Furthermore, the correlation between gene expression
and cellular phenotypes can be understood in significantly
more detail, which will further deepen metabolic engineering
research in Y. lipolytica.

Applications of the CRISPR/Cas system
in Y. lipolytica

As shown in Table 1, the CRISPR/Cas system has been quick-
ly applied in metabolic engineering of Y. lipolytica following
its introduction.

Table 1 Recent applications of the CRISPR/Cas system in Yarrowia lipolytica

sgRNA expression strategy Cas9/dCas9 expression
strategy

Application Editing
efficiency

References

SCR1-tRNAGly ; HH-HDV Plasmid-based Knockout studies of XDH and XKS – Rodriguez et al.
2016

SCR1-tRNAGly Plasmid-based CRISPR/Cas9 tool for targeted,
markerless gene integration

~ 50% Schwartz et al.
2016b

SCR1-tRNAGly Plasmid-based Disrupting TRP1 – Wagner et al. 2018

SCR1-tRNAGly ; dual sgRNA cleavage Plasmid-based A dual-cleavage strategy for gene
integration

14.3–32.6% Gao et al. 2018

tRNA promoter; Biobrick assembly;
multiplex sgRNA target

Genomic integration CRISPR/Cas9 tool for marker-free
gene integration

90% Holkenbrink et al.
2018

HH-HDV; multiplex sgRNA target Plasmid-based CRISPR/Cas9 tool for gene knockout 28–98% Gao et al. 2016

SCR1-tRNAGly Plasmid-based Disrupting TRP1 – Markham et al.
2018

SCR1-tRNAGly Plasmid-based CRISPR/Cas9 tool ~ 90% Schwartz et al.
2016a

SCR1-tRNAGly Plasmid-based Knocking out glycogen synthesis – Bhutada et al. 2017

T7 promoter Plasmid-based Knocking out the CAN1 gene 60% Morse et al. 2018

SCR1-tRNAGly ; multiplex sgRNA target Plasmid-based Enhancing HR 90% Schwartz et al.
2017

SCR1-tRNAGly ; Golden-Brick assembly;
multiplex sgRNA target

Plasmid-based dCas9 and
dCas9-KRAB

CRISPRi tool for gene repression 92% Zhang et al. 2018

SCR1-tRNAGly ; multiplex sgRNA target Plasmid-based dCas9-VPR
fusion protein

CRISPRa system for activation of
cryptic sugar metabolism

– Schwartz and
Wheeldon 2018

HH-HDV Plasmid-based YaliBricks-based CRISPR/Cas9 tool 12.5% Wong et al. 2017

–, not stated
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Rodriguez et al. (2016) used CRISPR/Cas9 to knock-out
the xylulose kinase and xylitol dehydrogenase genes in
Y. lipolytica in the xylose metabolic pathway. The knockout
strains demonstrated that both genes are essential for xylitol/
xylose metabolism. Based on these result as well as further
study in Escherichia coli, researchers engineered xylose utili-
zation in Y. lipolytica, which enabled it to grow on xylose
robustly. Bhutada et al. (2017) used the CRISPR/Cas9 system
to knock out the glycogen synthase gene in Y. lipolytica be-
cause they found it was too challenging to knock out this gene
using HR in a triacylglycerol (TAG) synthesis-deficient strain.
The final result showed that glycogen synthesis played a com-
peting role in the TAG accumulation process and the deletion
of this gene improved the lipid content by 60%. Markham
et al. (2018) engineered Y. lipolytica to produce triacetic acid
lactone. In this research, the TRP1 gene was disrupted by
CRISPR/Cas9 to introduce an available selection marker.
Similar to this research, Wagner et al. (2018) also knocked
out TRP1 with CRISPR/Cas9 in order to establish a
piggyBac transposon system in Y. lipolytica.

Compared to the gene knock-out/knock-in-oriented
CRISPR/Cas9 method, both CRISPRi and CRISPRa
methods are still in their infancy. Although Schwartz et al.
(2017) and Zhang et al. (2018) individually established the
CRISPRi system, and Schwartz and Wheeldon (2018) subse-
quently established the CRISPRa system, there are few appli-
cations of these two methods in Y. lipolytica. However, we
believe that the need to engineer Y. lipolytica for the tailored
production of specific chemicals will greatly expand the use of
CRISPRi and CRISPRa systems in metabolic engineering re-
search of this organism in the near future.

Conclusions and perspectives

Compared to the widely used yeast model organism
Saccharomyces cerevisiae, the non-conventional yeast
Y. lipolytica has a stronger lipogenesis ability. Therefore,
Y. lipolytica has been increasingly explored for the production
of lipid-related products via metabolic engineering. The adap-
tation of genetic tools from S. cerevisiae to Y. lipolyticawould
enable more rapid and convenient strain engineering and fa-
cilitate reaching the full potential of Y. lipolytica. The emer-
gence and application of the CRISPR/Cas system undoubted-
ly accelerates the rate of metabolic engineering for
Y. lipolytica strain improvement. Although the CRISPR/Cas
system has been firmly established in this yeast, there still is
much room for further improvement. For instance, problems
related to multi-gene editing efficiency, more precise site-
directed mutagenesis in the genome as well as high-
throughput screening technology after genome editing need
to be addressed. However, we believe that these problems
can be solved and that increasing numbers of applications of

CRIPSR/Cas in Y. lipolyticawill quickly come available in the
near future.
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