
Thesis for The Degree of Licentiate of Engineering

Software Concerns for Execution on Heterogeneous

Platforms

Hugo Sica de Andrade

Division of Software Engineering
Department of Computer Science & Engineering

Chalmers University of Technology and University of Gothenburg
Gothenburg, Sweden, 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chalmers Research

https://core.ac.uk/display/198049632?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Software Concerns for Execution on Heterogeneous Platforms

Hugo Sica de Andrade

Copyright ©2018 Hugo Sica de Andrade
except where otherwise stated.
All rights reserved.

Technical Report No 189L
ISSN 1652-876X
Department of Computer Science & Engineering
Division of Software Engineering
Chalmers University of Technology and University of Gothenburg
Gothenburg, Sweden

This thesis has been prepared using LATEX.
Printed by Chalmers Reproservice,
Gothenburg, Sweden 2018.

ii

To my father Hélio, my mother Gina, and my sister Débora.

iv

Abstract

Context : Heterogeneous computing, i.e., computing performed on di↵erent
types of execution units, such as CPUs, GPUs, FPGAs, has shown to be a
feasible path towards higher performance and less energy consumption. Hetero-
geneous platforms are specialized on specific types of computation, e.g., parallel
computing. However, this approach imposes a number of challenges on the
software side. One of such challenges is related to software deployment, in which
applications must be prepared to be executed in di↵erent target architectures.
Further, the approach demands a robust inter-process communication solution,
since these systems inherently distribute computation.
Objective: The objective of this thesis is twofold. First, to provide an overview
of the state-of-the-art of software deployment on heterogeneous platforms,
with emphasis to goals, concerns, challenges, and identification of topics of
importance for further research. Second, to investigate the communication
problem and propose a novel method that improves inter-process communication
in distributed systems.
Method : Six papers were written as results of four studies: (i) a literature
review in the form of a systematic mapping study on software deployment on
heterogeneous platforms; (ii) a systematic evaluation of deployment methods
in the context of a self-driving heavy vehicle; (iii) an investigation on data
marshalling approaches and how they perform in the context of a cyber-physical
system; and (iv) a novel message restructuring approach, also in the context of
cyber-physical systems.
Results and Conclusions: The mapping study discussed the (i) concerns on
the topic such as scheduling and software quality; the (ii) approaches available,
such as frameworks; and the (iii) architecture solutions used, such as styles
and principles. In the second study, we found that the performance decay is
negligible when using sandboxed environments for deployment. In the third
and fourth studies, we proposed and evaluated a data marshalling approach
that decreases bandwidth consumption.
Future work : We intend to identify challenges that are currently faced in an
industrial setting. In particular, a migration from a non-heterogenous platform
to a heterogeneous platform can be studied in the context of a modern software
development process, such as DevOps.

Keywords

Software Deployment, Software Architecture, Heterogeneous Platforms, Inter-
process Communication

Acknowledgment

Big thanks to my supervisor, Ivica Crnkovic, for all his words of wisdom
throughout the last years. He has been providing me not only with great
guidance and opportunities on my professional path, but also with new and
valuable perspectives on life. It is no wonder why everyone who has been in
contact with Ivica gets amazed by his outstanding character.
Thanks to my co-supervisor, Christian Berger, with whom I have learned a
lot about work processes, organizing and teaching. His very high dedication
approach to being a researcher/engineer/teacher has shown me what hard work
can get me in return.
Thanks to my fellow o�ce sharing colleagues Federico Giaimo, Yue Kang
and previously Hang Yin. My appreciation also goes out to all my Software
Engineering division co-workers. I feel extremely privileged and honoured being
able to work among such talented individuals.
I am very thankful to my parents and sister, who have managed to continue
by my side even when I chose to be in di↵erent continents (multiple times).
Thanks to my north American host family, who have made me part of their
family 14 years ago. This mental geographic triangulation has nothing against
my feelings towards my family. I always have all them in my thoughts. Always.
Thanks to my girlfriend Anna, who has shown incredible support throughout
my latest challenges. She has provided me with valuable encouragement and
managed to find ways to kept me on track. Tack s̊a mycket, gatinha!

vii

List of Publications

Appended publications

This thesis is based on the following publications:

[A] H. Andrade, J. Schröder, I. Crnkovic “Software Deployment on Hetero-
geneous Platforms: A Systematic Mapping Study”
Submitted to the IEEE Transactions on Software Engineering journal
(TSE).

[B] H. Andrade, I. Crnkovic “A Review on Software Architectures for Het-
erogeneous Platforms”
Proceedings of the 25th Asia-Pacific Software Engineering Conference
(APSEC). Nara, Japan, 4-7 December, 2018.

[C] P. Masek, M. Thulin, H. Andrade, C. Berger, O. Benderius “Systematic
Evaluation of Sandboxed Software Deployment for Real-time Software
on the Example of a Self-Driving Heavy Vehicle”
Proceedings of the 19th IEEE International Conference on Intelligent
Transportation Systems (ITSC). Rio de Janeiro, Brazil, 1-4 November,
2016.

[D] F. Giaimo, H. Andrade, C. Berger, I. Crnkovic “Improving Bandwidth
E�ciency with Self-Adaptation for Data Marshalling on the Example of
a Self-Driving Miniature Car”
Proceedings of the 9th European Conference on Software Architecture
Workshops (ECSAW). Dubrovnik/Cavtat, Croatia, 7-11 September, 2015.

[E] H. Andrade, F. Giaimo, C. Berger, I. Crnkovic “Systematic Evaluation of
Three Data Marshalling Approaches for Distributed Software Systems”
Proceedings of the Workshop on Domain-Specific Modeling (DSM @
SPLASH). Pittsburgh, USA, 27 October, 2015.

[F] H. Yin, F. Giaimo, H. Andrade, C. Berger, I. Crnkovic “Adaptive Message
Restructuring using Model-Driven Engineering”
In: PLatifi S. (eds) Information Technology: New Generations. Advances
in Intelligent Systems and Computing, vol 448. Springer, Cham, 2016.

ix

x

Other publications

The following publications are not appended to this thesis, due to contents
overlapping that of appended publications or contents not related to the thesis.

[a] H. Andrade “Investigating Software Deployment on Heterogeneous Plat-
forms”
Proceedings of the 13th Working IEEE/IFIP Conference on Software
Architecture (WICSA). Venice, Italy, 5-8 April, 2016.

[b] H. Andrade, E. Almeida, I. Crnkovic “Architectural Bad Smells in Soft-
ware Product Lines: An Exploratory Study”
Proceedings of the Working IEEE/IFIP Conference on Software Archi-
tecture Companion Volume (WICSA). Sydney, Australia, 7 April, 2014.

[c] D. Feitosa, A. Ampatzoglou, P. Avgeriou, F. J. A↵onso, H. Andrade,
K. R. Felizardo, E. Y. Nakagawa “Design Approaches for Critical Em-
bedded Systems: A Systematic Mapping Study”
In: Damiani E., Spanoudakis G., Maciaszek L. (eds) Evaluation of Novel
Approaches to Software Engineering. ENASE 2017. Communications in
Computer and Information Science, vol 866. Springer, Cham, 2018.

[d] G. N. Rodrigues, A. Knauss, F. Guimaraes, G. Rodrigues, H. Andrade,
J. Araujo, R. Ali “GoalD: A Goal-Driven Deployment Framework for
Dynamic and Heterogeneous Computing Environments”
In submission to the Information and Software Technology journal (IST).

Personal Contribution

I was the main driver in Papers A and B, from the composition of the review
protocol to writing the manuscripts. Throughout the study, I had multiple
iterations with my supervisor, and part of the review process was aided by a
colleague.
Paper C is derived from a master thesis that I closely co-supervised. I helped
in the definition of goals, research design, literature review, and writing of the
paper.
The studies leading to Papers D, E and F, were jointly conducted by the
authors, who equally contributed to all phases of the research. From drawing
sketches on the whiteboard to reviewing the text, we held several meetings and
worked as a team.

xii

Contents

Abstract v

Acknowledgement vii

List of Publications ix

Personal Contribution xi

1 Introduction 1
1.1 Background . 2

1.1.1 Heterogeneous platforms 2
1.1.2 Software deployment . 3
1.1.3 Automotive domain & Inter-process communication . . 4

1.2 Research Goal . 5
1.3 Research Methodology . 6

1.3.1 Systematic literature reviews 6
1.3.2 Controlled experiments 7
1.3.3 Design science . 7

1.4 Contributions . 8
1.4.1 Contribution 1: An overview of the main concerns and

approaches of software deployment on heterogeneous
platforms . 8

1.4.2 Contribution 2: A systematic evaluation of sandboxed
software deployment strategies 9

1.4.3 Contribution 3: A data marshalling approach for reduc-
ing bandwidth consumption 9

1.4.4 Contribution 4: A message restructuring approach for
improving resource usage 10

1.5 Publications . 10
1.6 Threats to Validity . 14

1.6.1 Construct validity . 14
1.6.2 Internal validity . 15
1.6.3 External validity . 15
1.6.4 Reliability . 15

1.7 Conclusion . 16
1.8 Future Work . 16

xiii

xiv CONTENTS

2 Paper A 17
2.1 Introduction . 18
2.2 Background . 19

2.2.1 Heterogeneous computing and platforms 19
2.2.2 Software deployment . 20

2.3 Research methodology . 20
2.3.1 Research questions . 21
2.3.2 Conduction of search . 22
2.3.3 Screening of papers . 23
2.3.4 Data Extraction . 24

2.4 Study results . 25
2.4.1 The meaning of the term “heterogeneous” 25
2.4.2 Main purpose of the studies and research type classification 25
2.4.3 Primary studies’ meta-data 27

2.5 RQ1 - The main Concerns . 29
2.5.1 Scheduling . 30

2.5.1.1 Load balancing 31
2.5.1.2 Scheduling executable units 31
2.5.1.3 Utilizing resources 32

2.5.2 Software quality . 32
2.5.2.1 Performance 33
2.5.2.2 Portability . 33
2.5.2.3 E�ciency . 33
2.5.2.4 Maintainability 33
2.5.2.5 Scalability . 34

2.5.3 Software architecture . 34
2.5.3.1 E�cient data and memory management 34
2.5.3.2 Real-time constraints 35

2.5.4 Development process . 35
2.5.4.1 E�ciency in the process 35
2.5.4.2 Parallel programming & complexity 35

2.5.5 Hardware-related concerns 36
2.5.5.1 Energy consumption 36
2.5.5.2 Hardware constraints 36
2.5.5.3 Design and maintenance 37
2.5.5.4 Components malfunctioning 37

2.5.6 System evaluation . 37
2.5.6.1 Performance analysis 37
2.5.6.2 Heterogeneous system visualization 38

2.5.7 Simulation . 38
2.5.7.1 Simulating heterogeneous systems 38

2.5.8 Summary - Concerns (RQ1) 38
2.6 RQ2 - The Approaches . 40

2.6.1 General practices . 40
2.6.1.1 Frameworks 40
2.6.1.2 Load balancing techniques 42
2.6.1.3 Scheduling algorithms 43

2.6.2 Design time practices 44
2.6.2.1 Modeling software and hardware 44

CONTENTS xv

2.6.2.2 Definition of configurations 45
2.6.2.3 Activities . 46

2.6.3 Runtime practices . 46
2.6.3.1 Own scheduler 46
2.6.3.2 Profiling . 47
2.6.3.3 Task queuing 47
2.6.3.4 Current job state table 47

2.6.4 Summary - Approaches (RQ2) 48
2.7 Discussion . 49
2.8 Threats to validity . 50
2.9 Related work . 52
2.10 Conclusion and Future Work 53

3 Paper B 55
3.1 Introduction . 56
3.2 Background . 57
3.3 Research Method . 58

3.3.1 Research question . 58
3.3.2 Conduction of search . 59
3.3.3 Screening of papers . 60
3.3.4 Keywording using abstracts 61
3.3.5 Data extraction and mapping process 61

3.4 Results . 62
3.4.1 Classification scheme . 62
3.4.2 Which architecture solutions enable/support deployment

strategies for heterogeneous platforms? 65
3.4.2.1 Architectural styles 65
3.4.2.2 Architectural principles 66

3.5 Discussion . 67
3.6 Threats to Validity . 68
3.7 Related Work . 68
3.8 Conclusion . 69

4 Paper C 71
4.1 Introduction . 72

4.1.1 Problem Domain & Motivation 72
4.1.2 Research Goal & Research Questions 73
4.1.3 Contributions of the Article 73
4.1.4 Structure of the Article 74

4.2 Methodology . 74
4.3 Literarature Review . 74

4.3.1 Outcomes of the Review 75
4.4 Experiments . 76
4.5 Results . 77
4.6 Analysis & Discussion . 80

4.6.1 Threats to Validity . 81
4.7 Conclusion & Future Work . 82

xvi CONTENTS

5 Paper D 83
5.1 Introduction . 84
5.2 Related Work . 84
5.3 Self-Adaptive Marshalling . 86
5.4 Evaluation . 88

5.4.1 Evaluation Environment: Vehicle Simulation 88
5.4.2 Evaluation Scenarios . 88
5.4.3 Data Collection . 89

5.5 Results . 90
5.5.1 Research Question 1 . 90
5.5.2 Research Question 2 . 91

5.6 Discussion . 92
5.6.1 Data Analysis & Interpretation 92
5.6.2 Threats to validity . 93

5.7 Conclusion and Future Work 93

6 Paper E 95
6.1 Introduction . 96

6.1.1 Problem Domain & Motivation 96
6.1.2 Research Goal & Research Questions 96
6.1.3 Contributions of the Article 96
6.1.4 Structure of the Article 97

6.2 Related Work . 97
6.3 Generic Message Description and Self-Adaptive Marshalling . . 98
6.4 Evaluation . 100

6.4.1 Experimentation Procedure 100
6.4.2 Results . 101
6.4.3 Discussion . 103
6.4.4 Threats to Validity . 104

6.5 Conclusion and Future Work 104

7 Paper F 107
7.1 Introduction . 108
7.2 Related work . 109
7.3 The model-based workflow . 110
7.4 DSL and model transformation 111
7.5 Modeling and formal verification of adaptive message restructuring112

7.5.1 Domain analysis . 112
7.5.2 Model overview . 113
7.5.3 Formal verification . 114

7.6 Discussion . 114
7.7 Conclusion & Future Work . 116

Bibliography 117

Appendix 125

A Appendix - Paper A 125

B Appendix - Paper B 135

Chapter 1

Introduction

The demands for computing performance continue to increase in science and
engineering. A clear rise in the amount of data that is processed by computer
systems is evident in multiple domains. The scenario is particularly challenging
in the case of embedded systems, which are often limited in resources, as well
as real-time and interfaces constraints [1].

In the past, the increasing requirements for hardware performance were fulfilled
by (i) boosting the frequency of processing units (PUs) and/or by (ii) adding
transistors onto processors. Since the frequency cannot be further increased
with todays technology [2], performance is primarily boosted by an increased
transistor count. However, as the number of transistors built on chips has
reached several billions (c.f. Intel (Altera) Stratix 10 featuring over 30 billion
transistors), it is increasingly di�cult to make use of this many of them. On the
software side, the added complexity in such platforms should be accounted for
as soon as in the design phase, when di↵erent software deployment strategies
may be modeled and analyzed.

One way to fulfill these high demands for performance is to consider a het-
erogeneous platform, i.e., a hardware platform consisting of di↵erent types of
computational units and technologies. Heterogeneous platforms may contain,
for instance, a combination of multi-core Central Processing Units (CPUs),
Graphics Processing Units (GPUs) and Field-Programmable Gate Arrays (FP-
GAs), creating the impression of dedicated units that can be adapted to a
wide range of application domains. These dedicated units can significantly
increase the overall system’s performance and energy management through, for
instance, optimizing the workload distribution according to the types of data
to be executed.

Accelerators such as GPUs and FPGAs are gaining popularity because they
o↵er performance improvements in many applications. However, despite the
fact that the di�culty in programming for such platforms is decreasing [3],
there are multiple concerns that must be addressed in order to handle the
inherent complexity of both hardware and software in such environments.

In this project, we focus on the software engineering side, based on the need to
provide support for software development on heterogeneous platforms.

1

2 CHAPTER 1. INTRODUCTION

The remainder of this introduction section of thesis is organized as follows.
In Section 1.1, we introduce the background. In Section 1.2, we describe the
research goal and research questions of this thesis. In Section 1.3, we describe
the research methodologies used in this research. In Section 1.4, we summarize
the contributions of this thesis. In Section 1.5, we present the publications
appended to this thesis. In Section 1.6, we describe the threats to validity
of this work. Then, in Section 1.7, we discuss the conclusions. Finally, in
Section 1.8, we present our intentions for future work.

1.1 Background

In this section, we provide the background for the main topics covered in
this thesis: heterogeneous platforms (heterogeneous computing), software
deployment, the automotive domain and inter-process communication.

1.1.1 Heterogeneous platforms

During our investigation, we discovered multiple studies that refer to the term
“Heterogeneous platform” in di↵erent ways. Besides meaning di↵erent processors,
we found that this term also refers to platforms containing processors of the
same type, but with di↵erent capacities. For instance, a system that includes 2
CPUs with a di↵erent number of cores and/or clock frequencies is often called
heterogeneous. Another situation in which the term is commonly found is
when the types and further characteristics of the processors are omitted, being
discussed only the di↵erence in capacity of the PUs. For example, strictly
combinatorial problems that consider a cost formula and a few performance
attributes of the processors in order to determine the best deployment strategy.
In this thesis, we adopted the definition used in [4]. The author defines
heterogeneous computing as complex systems composed of di↵erent kinds of
processing units which use di↵erent processing paradigms and are designed
for di↵erent types of tasks which work together in order to provide the best
processing performance for diverse computing needs. In this sense, we consider
“heterogeneous platform” a hardware set consisting of at least two di↵erent
types of processors that are specialized in di↵erent types of tasks.
An example of heterogeneous hardware architectures is shown in Figure 1.1 [2].
In Figure 1.1(a), the single-chip Cell Broadband Engine Architecture (CBEA)
is depicted consisting of a traditional CPU core and eight single-instruction
multiple data (SIMD) accelerator cores. Each core can run separate programs
and communicate through a fast on-chip bus. Its main design criteria is
to maximize performance while consuming minimum power. Figure 1.1(b)
illustrates a GPU with 30 highly multi-threaded SIMD accelerator cores in
combination with a standard multicore CPU. The GPU has superior bandwidth
and computational performance. It is designed for high-performance graphics,
where throughput of data is key. In Figure 1.1(c), a standard multi-core CPU
is paired with an FPGA consisting of an array of logic blocks. FPGAs can
also incorporate regular CPU cores on-chip, making it a heterogeneous chip by
itself. FPGAs o↵er fully deterministic performance and are designed for high
throughput, for example, in telecommunication applications.

1.1. BACKGROUND 3

Figure 1.1: Example of heterogeneous hardware architectures as shown in [2]:
(a) Cell Broadband Engine (heterogeneous chip), (b) a CPU in combination
with a GPU, and (c) a CPU in combination with an FPGA.

1.1.2 Software deployment

The concept of deployment also varies according to the context in which the
study is performed. For business research, it may refer to strategies for update
releases of a mobile app. For technology research, deployment may refer to the
tools that are used to facilitate and enable deployment, e.g., Docker [5]. For
fundamental research, it may refer to the mathematical strategies to optimize
load balance in a heterogeneous environment.
In the context of software engineering, software deployment comprises a set of
activities resulting in a system that is available for use [6]. These activities can
be very diverse and include a wide range of processes, such as users training,
integration of new features into the existing system, the actual installation of
software on the underlying hardware, etc. The scope of this project is limited
to the activities involved in the process of installing software on hardware,
including the decision about the units in which software components will be
executed (component allocation). The activities of partitioning the software
system into components and planning their execution on di↵erent processing
units are considered in this work. Further, we focus on deployment from the
software perspective rather than from the hardware perspective. We do not
discuss organizational/business issues around deployment, the stakeholders
involved in the process, or the training of prospective users.
As we conducted this work, we realized that the activities performed in the
typical deployment stage are heavily influenced by activities in previous stages
in the software process. For instance, we learned that one common way to
realize deployment onto heterogeneous platforms is by using a development
framework, which needs to be applied as soon as in the architecture phase.
For this reason, we extend the concept of deployment to include all activities
that are relevant throughout the software engineering process to successfully
execute software onto a heterogeneous platform.
One generic representation is shown in Figure 1.2, where a deployment scenario
is depicted. On the hardware side, there is a heterogeneous platform consisting
of an FPGA, N CPUs and M GPUs that are available for processing data,
and these units have interfaces with di↵erent types of sensors and actuators.
The software is decomposed into components that can be deployed according
to di↵erent configurations, while the following assumptions might be relevant:
(i) vehicle data instructions might execute in a shorter time on the FPGA
when compared to CPUs or GPUs, however programming for FPGAs might

4 CHAPTER 1. INTRODUCTION

Figure 1.2: Generic modelling scenario of cyber-physical systems, depicting
software deployment on a heterogeneous platform [7].

be complex and more time consuming; (ii) two dependent applications might
be executed faster in di↵erent executing units, however the communication
between them might be compromised by the available bandwidth; (iii) allocating
components and running image processing applications in parallel on a single
executing unit (e.g., GPU) might be less complex, but also compromise energy
e�ciency. Other aspects may also be considered, such as the impact of the
technology used to encapsulate processes for software deployment, or the
underlying environment in which the application is executed.

1.1.3 Automotive domain & Inter-process communica-
tion

In the automotive domain, a modern vehicle comprises of a set of Electronic
Control Units (ECUs) interconnected via a network to provide functionalities
such as stability control, measurement of essential fluids and infotainment
systems. In the context of a self-driving vehicles, these ECUs are also responsible
for handling data obtained by sensing the surrounding environment. These
types of systems are also called cyber-physical systems, given such interaction
between the software/electronic capabilities and the physical world, these types
of systems.
From the software perspective, self-driving vehicles require a middleware that
bridges high-level and low-level data and ideally enables seamless interaction
between the di↵erent hardware components that are part of the system. In the
context of this research, we use the OpenDaVINCI software environment [8],
which provides middleware functionalities to enable communication between all
the distributed software modules in the context of a self-driving vehicle. The
software comprises of interfaces to the supported hardware components and
devices, like cameras, sensors and laser scanners.
OpenDaVINCI is currently used in three di↵erent settings, as follows.

ReVeRe. In the facilities provided by Chalmers University of Technologys
vehicle laboratory “ReVeRe” (Resource for Vehicle Research), multiple projects
are conducted in collaborations between academia and industrial partners.

1.2. RESEARCH GOAL 5

The main goal of this research setting is to provide the infrastructure that
allows researchers to create breakthrough technology in the area of self-driving
vehicles and collision avoidance. The lab equipment comprises, among others,
an SUV (Volvo XC90), and a truck tractor (Volvo FH16).

Miniature vehicles. Within the academic context, miniature vehicles on
a 1:10 scale are used as (i) experimental platforms for our research, and (ii)
educational platforms in university courses. These vehicles contain hardware
components including ESC, sensors, and camera that are used to perform a
number of activities without human intervention. For instance, in the context of
the B.Sc. course, the students work on a software implementation that enables
the miniature vehicle to perform lane-following, parking, and overtaking.

Simulation environment. OpenDaVINCI includes a simulation environ-
ment in which it is possible to experiment self-driving capability algorithms
with the help of generated sensor data. It is possible to model virtual tracks
and add obstacles that emulate real-life scenarios in a driving context.

In addition to the hardware capabilities on handling data, we have observed
that one influencing aspect regarding the overall performance of embedded
systems is related to the communication between di↵erent components (i.e.
data marshaling). Because software deployed on heterogeneous platforms is
distributed in essence, the exchange of messages between di↵erent compo-
nents/processes play a key role in determining whether or not satisfactory
results in terms of performance will be achieved.
Especially in the context of embedded systems (or cyber-physical systems), it is
important to define an e↵ective communication strategy because resources are
typically limited and several applications are safety-critical (e.g., self-driving
vehicles).

1.2 Research Goal

The main goal of this thesis is to investigate software concerns for execution
on heterogeneous platforms. By concerns, we mean topics that practitioners
must be aware of and ultimately address when deploying software on hardware
containing more than one type of processor. Throughout the conduction of the
research, we discovered that the concept of deployment varies according to the
context in which the study is performed. In this work, we consider the software
engineering perspective, which covers methods, processes, and techniques that
enable and lead to the execution of software on heterogeneous platforms.
Based on the research goal, we formulated three research questions, as follows.

RQ1: What are the main concerns and approaches in software deployment on
heterogeneous platforms?

As the first step towards understanding the area of research, we aimed to
investigate the state-of-the-art of software deployment on heterogeneous plat-
forms, focusing on the main concerns and approaches that can be found in
the literature. The purpose of RQ1 is to obtain an overview of the body of

6 CHAPTER 1. INTRODUCTION

knowledge in the area by revealing concerns and approaches that are relevant
when deploying software on heterogeneous platforms.

RQ2: What is the impact of di↵erent deployment strategies on non-functional
properties when designing embedded systems?

With RQ2, we aimed to study the impact of di↵erent deployment strategies
on the systems performance. The idea is to measure the possible trade-o↵s in
utilizing common deployment strategies, such as sandboxed environments. In
some critical domains (e.g., self-driving vehicles), performance is crucial and
must be guaranteed throughout the execution processes, despite the limited
resources available on such embedded systems.

RQ3: How can the communication between di↵erent computational resources
be improved?

Further in the context of self-driving vehicles, we have observed that one of the
main issues that may hinder performance is the inter-process communication
between computational resources. With RQ3, we aimed to investigate the
problem and propose solutions to this issue, which commonly represents a
bottleneck to such systems due to the increased amounts of data that are
transmitted.
In summary, RQ1 and RQ2 focus on software deployment, while RQ3 focuses
on inter-process communication.

1.3 Research Methodology

We used three di↵erent research methodologies to address the formulated
research questions, as follows.

1.3.1 Systematic literature reviews

To address RQ1, we conducted a systematic literature review in the form of
a mapping study. Mapping Studies di↵er from classic Systematic Literature
Reviews in their broadness and depth [9,10]. Instead of rigorously searching,
analyzing and assessing studies, selected information is extracted from the
primary studies in order to obtain an overview of the current state-of-the-art
of research in a particular field.
We aimed at performing a systematic approach to increase reliability of the
study and enable reproducibility in the future. The search included popular
academic databases and followed a set of predefined inclusion and exclusion
criteria. After the selection of studies from the libraries, we performed the
snowballing procedure [11] to also cover related papers. The review selected 146
primary studies, and therefore collected a large amount of data to be analyzed
and discussed. We followed the standard rigorous procedure for mapping
studies, and complemented with a bottom-up approach to find similar common
characteristics of the studies. Finally, we provided di↵erent classifications in
order to achieve a better understanding of the area.
To address RQ2, we conducted a smaller literature review followed by two
controlled experiments. The review followed the same principles as in the

1.3. RESEARCH METHODOLOGY 7

guidelines for performing systematic mapping studies, although it only contained
on research question and searched in only one (major) digital library. We also
performed the snowballing procedure to cover related papers that were possibly
neglected when selecting studies from the digital library.

1.3.2 Controlled experiments

Controlled experiments help to investigate a testable hypothesis where one or
more independent variables are manipulated to measure their e↵ect on one or
more dependent variables [12].

The first controlled experiment on desk was conducted in the context of RQ2,
in which we measured the scheduling precision and I/O performance of sample
applications when deployed on di↵erent environments. Through a sequence
of controlled steps, the sample applications were executed in four di↵erent
execution environments, consisting of an alternation of (i) executing the sample
applications natively or sandboxed within a Docker container and (ii) executing
the sample applications on a target system with a vanilla or a real-time enabled
kernel.

Finally, the second experiment used a real-world application that was at the
time deployed on a self-driving truck. It was designed in a way that the findings
from the first experiment could be validated.

For RQ3, we conducted controlled experiments to assess our approach com-
pared with our existing solutions using evaluation scenarios. We studied the
existing approaches and assessed their performances under various, application-
independent conditions. We ran an experiment that collected data in a system-
atic way, using fixed parameters and di↵erent message attribute combinations.

1.3.3 Design science

The design science methodology focuses on the design and investigation of
artifacts in a given context [13]. In concrete terms, the methodology comprises
of an iterative process in which researchers engage in three main activities: (i)
problem identification and opportunities representation; (ii) development of
solutions; and (iii) evaluations of the proposed solutions in a given context in
order to determine whether the solutions e↵ectively address the problem.

In the context of RQ3, we followed the design science approach [14] to identify
the problem of bandwidth limitation in cyber-physical systems. From our ex-
perience, this aspect represented a bottleneck in our systems, thus representing
opportunities for improvement. Then, we proposed a solution referring to data
marshalling approaches, in which the bandwidth consumption is decreased
by optimizing the composition of messages to be transmitted. The approach
was implemented in the context of self-driving cars, including both simulation
environments and real-world scenarios. Finally, we evaluated our proposed
approach by conducting experiments to compare the performance of existing
approaches against ours. In the case of our message restructuring proposal, we
formally validated the model’s correctness using a widely known model-checking
technology.

8 CHAPTER 1. INTRODUCTION

1.4 Contributions

In this section, we present a summary of the four research contributions,
followed by their relation to the papers included in this thesis, and my personal
contribution to them. These contributions are the outcome of our investigations
on the topics that were previously described, aiming to answer the research
questions. We started by conducting a systematic literature review in the
form of a mapping study to obtain an overview of the area, and leading to
Contribution 1. This study revealed several approaches that can be used for
deploying software on heterogeneous platforms. Then, from observing our
current projects in the lab, we came across the possibility to adopt a widely
known deployment tool, which led to Contribution 2. Also from observations
on our cyber-physical systems domain, we explored the area of data marshalling
approaches, leading to Contributions 3 and 4.
The relation between research questions, contributions, papers, and their main
topics is shown in Table 1.1.

1. An overview of the main concerns and approaches of software deployment
on heterogeneous platforms;

2. A systematic evaluation of sandboxed software deployment strategies;

3. A data marshalling approach for reducing bandwidth consumption;

4. A message restructuring approach for improving resource usage.

Table 1.1: Relation between contributions, research questions, papers, and
main topics of the papers.

Contributions Questions Papers Main topic

Contribution 1 RQ1
Paper A

DeploymentPaper B
Contribution 2 RQ2 Paper C

Contribution 3
Paper D

Communication
Contribution 4

RQ3 Paper E
Paper F

1.4.1 Contribution 1: An overview of the main concerns
and approaches of software deployment on hetero-
geneous platforms

We systematically searched and analyzed the literature in order to obtain an
overview of the research area, discovering gaps and trends. We considered
papers indexed by trusted libraries in computer science and followed a pre-
defined process to formulate the research questions, conduct the research, screen
the papers, and extract data from them.

1.4. CONTRIBUTIONS 9

This study led to two papers, one focusing on the main concerns and approaches
(Paper A [15]), and another focusing on architectural aspects (Paper B [16]) of
software deployment on heterogeneous platforms.

Personal contribution: I was the main driver of all steps in this study. The
main idea was formulated by Ivica Crnkovic, and the study was conducted
mainly by me, with the help of Jan Schröder in the paper screening process.
Weekly meetings were held between Ivica and me to align the focus of the
review, resolve disagreements, and plan future steps.

1.4.2 Contribution 2: A systematic evaluation of sand-
boxed software deployment strategies

In this study, we aimed at systematically evaluating the influence of sandboxed
execution environments for applications in the automotive domain. We were
particularly interested in studying the impact on two quality attributes of the
system: scheduling precision and input/output performance. We elected Docker
as the deployment tool to be evaluated, due to: (i) its growing popularity, and
(ii) our interests in adopting Docker for our ReVeRe project for self-driving
vehicles.

This study led to Paper C [17].

Personal contribution: This study was based on the master thesis by Philip
Masek and Magnus Thulin at the Chalmers | University of Gothenburg [18],
whom I co-supervised with Christian Berger. The concept, scope, and setting of
the project were designed by Christian and I. The experiments were conducted
by Philip and Magnus under my close supervision, and facilitated in the lab by
Ola Benderius. The paper was jointly written by all co-authors.

1.4.3 Contribution 3: A data marshalling approach for
reducing bandwidth consumption

We proposed and evaluated our concept of self-adaptive data marshalling,
that aimed at reducing bandwidth usage. The main idea was to improve
inter-process communication by only sending the di↵erence (i.e., the delta)
between the current message and the previous. The communication protocol is
transparent and was designed in the publish/subscribe architectural pattern.
Our approach was then evaluated against well-established data marshalling
approaches: LCM [19] and Google Protobuf [20].

This study led to two papers: one focusing on the proposal of our approach
(Paper D [21], and another focusing on its evaluation against existing approaches
(Paper E [22]).

Personal contribution: This study was conducted jointly by Federico Gi-
aimo, Christian Berger and I. From the conceptual discussions to writing the
papers, we equally shared the workload and held frequent discussions to reach
agreements and define the next steps.

10 CHAPTER 1. INTRODUCTION

1.4.4 Contribution 4: A message restructuring approach
for improving resource usage

We continued to explore inter-process communication issues by proposing a
model-based approach for adaptive message restructuring. The approach aims
at reducing message latency by dynamically restructuring messages according
to both design- and runtime properties. Design-time parameters included, e.g.,
the composition of fields in a message; while runtime parameters included, e.g.,
message transmission latency, timeout and message arrival/drop rate.

This study led to Paper F [23].

Personal contribution: This study was conducted jointly by Hang Yin,
Federico Giaimo, Christian Berger and I. We equally shared all the workload
related to designing the concept, conducting the validation and writing the
paper.

1.5 Publications

In this section, we list the main publications related to this thesis. The
complete version of the papers can be found in Chapters 2 to 7. They have
been reformatted in order to comply with the layout of this thesis.

Paper A

Software Deployment on Heterogeneous Platforms: A Systematic
Mapping Study

H. Andrade, J. Schröder, I. Crnkovic
Submitted to the IEEE Transactions on Software Engineering journal (TSE).

The main goal in Paper A was to investigate the state-of-the-art of software
deployment on heterogeneous platforms. We systematically searched and
analyzed the literature in order to obtain an overview of the research area,
discovering gaps and trends. We considered papers indexed by trusted libraries
in computer science and followed a pre-defined process to formulate the research
questions, conduct the research, screen the papers, and extract data from them.

Abstract: Context: Multiple types of processing units (e.g., CPUs, GPUs
and FPGAs) can be used jointly to achieve better performance in computa-
tional systems. However, these units are built with fundamentally di↵erent
characteristics and demand attention especially towards software deployment.
Objective: The goal of this work is to summarize the state-of-the art of software
deployment on heterogeneous platforms. We provide an overview of the research
area by searching for and categorizing relevant studies, as well as discussing
gaps and trends of the field. We are interested in the main concerns (RQ1)
and the approaches used (RQ2) when deploying software on heterogeneous
platforms. Method: In order to achieve our goal, we performed a systematic
mapping study, which refers to a method for reviewing literature with basis on
predefined search strategies and a multi-step selection process. Results: We

1.5. PUBLICATIONS 11

selected and analyzed 146 primary studies from multiple sources, and found
that the area of research is dominated by solution proposals. The majority of
the studies discussed concerns about scheduling, the quality of the software,
and its architecture. A large number of studies focused on the problem of
scheduling tasks and processes. We found approaches that are applied at
di↵erent binding times (i.e., design time, runtime, orthogonal). Conclusion:
The evaluation of the proposed solutions in an industrial context are missing.
Also, the proposed methods have not been evaluated in development processes.
Most of the methods address a particular concern, or a few concerns, while
there is a lack of a holistic approach.

Paper B

A Review on Software Architectures for Heterogeneous Platforms
H. Andrade, I. Crnkovic

Proceedings of the 25th Asia-Pacific Software Engineering Conference (APSEC).
Nara, Japan, 4-7 December, 2018.

The systematic mapping study covered a large area of research, so we decided
to split the results into Papers A and Paper B. While Paper A focused on
concerns and approaches, Paper B focused on software architecture.

Abstract: The increasing demands for computing performance have been a
reality regardless of the requirements for smaller and more energy e�cient
devices. Throughout the years, the strategy adopted by industry was to
increase the robustness of a single processor by increasing its clock frequency
and mounting more transistors so more calculations could be executed. However,
it is known that the physical limits of such processors are being reached, and
one way to fulfill such increasing computing demands has been to adopt a
strategy based on heterogeneous computing, i.e., using a heterogeneous platform
containing more than one type of processor. This way, di↵erent types of tasks
can be executed by processors that are specialized in them. Heterogeneous
computing, however, poses a number of challenges to software engineering,
especially in the architecture and deployment phases. In this paper, we conduct
an empirical study that aims at discovering the state-of-the-art in software
architecture for heterogeneous computing, with focus on deployment. We
conduct a systematic mapping study that retrieved 28 studies, which were
critically assessed to obtain an overview of the research field. We identified
gaps and trends that can be used by both researchers and practitioners as
guides to further investigate the topic.

Paper C

Systematic Evaluation of Sandboxed Software Deployment for Real-
time Software on the Example of a Self-Driving Heavy Vehicle

P. Masek, M. Thulin, H. Andrade, C. Berger, O. Benderius

12 CHAPTER 1. INTRODUCTION

Proceedings of the 19th IEEE International Conference on Intelligent Trans-
portation Systems (ITSC). Rio de Janeiro, Brazil, 1-4 November, 2016.

In Paper C, we aimed at systematically evaluating the influence of sandboxed
execution environments for applications from the automotive domain. We were
particularly interested in studying the impact on two quality attributes of the
system: Scheduling precision and input/output performance.

Abstract: Companies developing and maintaining software-only products
like web shops aim for establishing persistent links to their software running
in the field. Monitoring data from real usage scenarios allows for a number
of improvements in the software life-cycle, such as quick identification and
solution of issues, and elicitation of requirements from previously unexpected
usage. While the processes of continuous integration, continuous deployment,
and continuous experimentation using sandboxing technologies are becoming
well established in said software-only products, adopting similar practices for
the automotive domain is more complex mainly due to real-time and safety
constraints. In this paper, we systematically evaluate sandboxed software
deployment in the context of a self-driving heavy vehicle that participated in the
2016 Grand Cooperative Driving Challenge (GCDC) in The Netherlands. We
measured the system’s scheduling precision after deploying applications in four
di↵erent execution environments. Our results indicate that there is no significant
di↵erence in performance and overhead when sandboxed environments are used
compared to natively deployed software. Thus, recent trends in software
architecting, packaging, and maintenance using microservices encapsulated
in sandboxes will help to realize similar software and system engineering for
cyber-physical systems.

Paper D

Improving Bandwidth E�ciency with Self-Adaptation for Data Mar-
shalling on the Example of a Self-Driving Miniature Car

F. Giaimo, H. Andrade, C. Berger, I. Crnkovic
Proceedings of the 9th European Conference on Software Architecture Workshops
(ECSAW). Dubrovnik/Cavtat, Croatia, 7-11 September, 2015.

In Paper D, we proposed and evaluated our concept of self-adaptive data
marshalling, that aimed at reducing bandwidth usage. The main idea was
to improve inter-process communication by only sending the di↵erence (i.e.,
the delta) between the current message and the previous. The communication
protocol is transparent and designed in the publish/subscribe architectural
pattern.

Abstract: Publish/subscribe communication is a common architectural de-
sign pattern in component-based software systems used in many of today’s
cyber-physical systems to exchange information between distributed software
components. These systems typically deal with an increased number of data
transfers, with a risk of lacking resources. Our recent domain analysis for
a lane-following algorithm of a self-driving miniature car unveiled that the

1.5. PUBLICATIONS 13

actual “information increment” between two subsequently sent packets is often
small. Such scenario enables possibilities for a more e�cient data exchange by
avoiding redundant and/or unnecessary information transfer. In this paper,
we propose and evaluate our concept for “self-adaptive data marshalling” that
transparently adapts data types in messages to be exchanged by analyzing the
actual information increment. The approach could reduce the bandwidth usage
by more than 50% in comparison to the current approach, and by approximately
33% compared to the use of the general-purpose compression library zlib.

Paper E

Systematic Evaluation of Three Data Marshalling Approaches for
Distributed Software Systems

H. Andrade, F. Giaimo, C. Berger, I. Crnkovic
Proceedings of the Workshop on Domain-Specific Modeling (DSM @ SPLASH).
Pittsburgh, USA, 27 October, 2015.

As a follow-up from Paper D, we studied data marshalling approaches further
by systematically evaluating three approaches: Google Protobuf, LCM, and
our self-adaptive delta approach. We selected these two popular approaches as
a way to further assess the e�ciency of our proposed approach.

Abstract: Cyber-physical systems like robots and self-driving vehicles comprise
complex software systems. Their software is typically realized as distributed
agents that are responsible for dedicated tasks like sensor data handling, sensor
data fusion, or action planning. The modular design allows a flexible deployment
as well as algorithm encapsulation to exchange software modules where needed.
The distributed software exchanges data using a data marshalling layer to
serialize and deserialize data structures between a sending and receiving entity.
In this article, we are systematically evaluating Google Protobuf, LCM, and
our self-adaptive delta marshalling approach by using a generic description
language, of which instances are composed at runtime. Our results show that
Google Protobuf performs well for small messages composed mainly by integral
field types; the self-adaptive data marshalling approach is e�cient if four or
more fields of type double are present, and LCM outperforms both when a mix
of many integral and double fields is used.

Paper F

Adaptive Message Restructuring using Model-Driven Engineering
H. Yin, F. Giaimo, H. Andrade, C. Berger, I. Crnkovic

In: PLatifi S. (eds) Information Technology: New Generations. Advances in
Intelligent Systems and Computing, vol 448. Springer, Cham, 2016.

In Paper F, we continued to explore inter-process communication issues by
proposing a model-based approach for adaptive message restructuring. The ap-
proach aims at reducing message latency by dynamically restructuring messages

14 CHAPTER 1. INTRODUCTION

according to both design- and runtime properties. Design-time parameters
included, e.g., the composition of fields in a message; while runtime parameters
included, e.g., message transmission latency, timeout and message arrival/drop
rate.

Abstract: Message exchange between distributed software components in
cyber-physical systems is a frequent and resource-demanding activity. Existing
data description languages simply map user-specified messages literally to the
system implementation creating the data stream that is exchanged between
the software components; however, our research shows that the exchanged
information is often redundant and would allow for runtime optimization. In this
paper, we propose a model-based approach for adaptive message restructuring.
Taking both design-time properties and runtime properties into account, we
propose to dynamically restructure user-specified messages to achieve better
resource usage (e.g., reduced latency). Our model-based workflow also includes
formal verification of adaptive message restructuring in the presence of complex
data flow. This is demonstrated by an automotive example.

1.6 Threats to Validity

In this section, we provide an overview of the threats to validity of this work.
They are structured according to the approach shown in [24], which classifies
the validity into Construct, Internal, External, and Reliability. Detailed threats
to validity to each included paper are discussed in their respective chapters.

1.6.1 Construct validity

The literature study leading to RQ1 covered a broad research area. The
data extraction process was extensive and manually conducted, thus subject
to interpretation. Further, the granularity of the selected categories, and
consequently answers to questions and conclusions drawing were based on
our judgment. As an attempt to reduce bias, two researchers performed the
inclusion/exclusion process individually and then discussed the results, and in
several iterations refined the categories. Disagreements were solved by a third
researcher. We used common principles to guide our research, such as keeping
the same or similar abstraction level of the categories, the orthogonality of the
categories, and the completeness of the categories.
For RQ2, the study was realized within an established middleware to ensure
a high degree of software correctness and completeness, meeting the design
requirements for real-time systems. The experiments were conducted in close
supervision of expert practitioners that validated both the research questions
and the research procedures.
For RQ3, the design of the evaluation followed the regulations of the actual
self-driving vehicles competition. The design of the studies used a generic
message representation that can be systematically defined, allowing for a
scenario-independent analysis of the performance of the evaluated approaches.
In Paper F, we designed the properties of our validation model based on our
experience from previous automotive projects.

1.6. THREATS TO VALIDITY 15

1.6.2 Internal validity

In order to minimize the internal validity threats in addressing RQ1, we
conducted standard systematic mapping study methods that included a pre-
defined set of inclusion/exclusion criteria, pilot searches, and the calibration of
the search string. Standard methods were also followed in RQ2, in which we
systematically compared our current implementation and our proposed method
with existing methods that could be used alternatively.
For RQ2, the execution of the sample applications was carried out by a script
to ensure precise reproducibility of the experiments; all peripherals such as
networking are detached; and data was collected via serial communication to
limit additional load to the system.
For RQ3, we based our work on the guidelines for design science [25] in the
development of the self-driving vehicle platform.

1.6.3 External validity

The results of the study leading to RQ2 can be applied to time-sensitive
applications in respect to the hardware and software used. The hardware
we used is industrial grade, making the experiment reproducible and the
results relatable to similar contexts. The evaluation of our self-adaptive data
marshalling approach against Google Protobuf and LCM can be considered
as relevant as both other approaches are widely used and have shown the
applicability in the domain of cyber-physical systems. Thus, the findings
presented in this study have an impact on the design of such systems.
Regarding RQ3, our results were obtained by using the simulation. While this
allows to conduct our study in a repeatable way, the expected savings might
di↵er in reality as the manufacturing quality of the di↵erent sensors as well
as environmental factors can influence the volatility of the data resulting in
significant di↵erences between consecutive packets.
In paper F, we considered the automotive domain as evaluation context, and
only runtime properties need to be further evaluated using case studies from
further domains.

1.6.4 Reliability

We rigorously followed well-established guidelines for conducting systematic
literature reviews in order to minimize the reliability threat in RQ1. The
concepts, goals, and directions were specified in a review protocol, and complied
by all researchers involved. Frequent meetings were held to solve disagreements
and answer questions that rose individually. Extensive information on the
process and all data collected are available online to enable verification and
possible reproducibility.
For RQ3, the range for the floats used in the evaluation was inspired by
applications in the self-driving vehicles domain. As the goal for the delta
approach was to address high frequency data exchanges, the motivation for the
increment values was due to the small numeric di↵erence between values in
consecutive packets.

16 CHAPTER 1. INTRODUCTION

1.7 Conclusion

This thesis presents the motivation, procedures, and findings of our research
conducted in the area of software deployment on heterogeneous platforms.
The overall goal of the Ph.D. project is to understand the role of software
deployment in achieving certain non-functional properties when a heterogeneous
platform is available. Particularly on this licentiate thesis, we focused on two
main topics: deployment and communication.
Under deployment, we conducted an extensive systematic literature study
to obtain an overview of the area by “mapping out” the field of research,
obtaining domain knowledge, and identifying gaps that indicated possibilities
for future investigation. We identified several concerns and approaches for
software deployment on heterogeneous platforms. Further on the deployment
topic, we systematically evaluated a widely known technology for deploying
sandboxed software in the context of cyber-physical systems.
Regarding the communication topic, we performed studies to understand how
communication is typically done between software components and proposed
a communication protocol that enables reduced bandwidth consumption. We
compared the results using our approach with well-known data marshalling
approaches, and pointed the cases in which each approach o↵ers better per-
formance. Finally, we proposed a novel model-based approach based on the
restructuring of the messages, enabling the content of the communication
packets to be reorganized. The approach saves bandwidth consumption by
optimizing the use of each fixed-sized packet, thus reducing the number of
packets that are transmitted.

1.8 Future Work

As future work, we intend to continue investigating software deployment on
heterogeneous platforms by considering the following possibilities:

Exploring industrial settings. Especially with the popularization of artifi-
cial intelligence techniques, heterogeneous platforms can help in improving the
performance of software systems in industry. It would be relevant to investigate
how heterogeneous platforms can be useful in the context of modern, typically
industrial software development processes, such as DevOps.

Studying the migration to heterogeneous platforms. In the context of
cyber-physical systems, it would be possible to study the feasibility of adopting
a heterogeneous computing strategy on our self-driving vehicles’ project. The
study would be able to identify the advantages and drawbacks of deploying
software onto heterogeneous platforms in the context of a cyber-physical system.

Performing evaluation studies. As discovered in the mapping study, there
are very few studies evaluating existing techniques, while the vast majority of
them proposes solutions to a given problem. One could, for instance, setup
an experiment to observe a variety of quality attributes when using di↵erent
frameworks for heterogeneous computing (e.g., OpenCL, CUDA, OpenMP).

	Abstract
	Acknowledgement
	List of Publications
	Personal Contribution
	Introduction
	Background
	Heterogeneous platforms
	Software deployment
	Automotive domain & Inter-process communication

	Research Goal
	Research Methodology
	Systematic literature reviews
	Controlled experiments
	Design science

	Contributions
	Contribution 1: An overview of the main concerns and approaches of software deployment on heterogeneous platforms
	Contribution 2: A systematic evaluation of sandboxed software deployment strategies
	Contribution 3: A data marshalling approach for reducing bandwidth consumption
	Contribution 4: A message restructuring approach for improving resource usage

	Publications
	Threats to Validity
	Construct validity
	Internal validity
	External validity
	Reliability

	Conclusion
	Future Work

	Paper A
	Introduction
	Background
	Heterogeneous computing and platforms
	Software deployment

	Research methodology
	Research questions
	Conduction of search
	Screening of papers
	Data Extraction

	Study results
	The meaning of the term ``heterogeneous''
	Main purpose of the studies and research type classification
	Primary studies' meta-data

	RQ1 - The main Concerns
	Scheduling
	Load balancing
	Scheduling executable units
	Utilizing resources

	Software quality
	Performance
	Portability
	Efficiency
	Maintainability
	Scalability

	Software architecture
	Efficient data and memory management
	Real-time constraints

	Development process
	Efficiency in the process
	Parallel programming & complexity

	Hardware-related concerns
	Energy consumption
	Hardware constraints
	Design and maintenance
	Components malfunctioning

	System evaluation
	Performance analysis
	Heterogeneous system visualization

	Simulation
	Simulating heterogeneous systems

	Summary - Concerns (RQ1)

	RQ2 - The Approaches
	General practices
	Frameworks
	Load balancing techniques
	Scheduling algorithms

	Design time practices
	Modeling software and hardware
	Definition of configurations
	Activities

	Runtime practices
	Own scheduler
	Profiling
	Task queuing
	Current job state table

	Summary - Approaches (RQ2)

	Discussion
	Threats to validity
	Related work
	Conclusion and Future Work

	Paper B
	Introduction
	Background
	Research Method
	Research question
	Conduction of search
	Screening of papers
	Keywording using abstracts
	Data extraction and mapping process

	Results
	Classification scheme
	Which architecture solutions enable/support deployment strategies for heterogeneous platforms?
	Architectural styles
	Architectural principles

	Discussion
	Threats to Validity
	Related Work
	Conclusion

	Paper C
	Introduction
	Problem Domain & Motivation
	Research Goal & Research Questions
	Contributions of the Article
	Structure of the Article

	Methodology
	Literarature Review
	Outcomes of the Review

	Experiments
	Results
	Analysis & Discussion
	Threats to Validity

	Conclusion & Future Work

	Paper D
	Introduction
	Related Work
	Self-Adaptive Marshalling
	Evaluation
	Evaluation Environment: Vehicle Simulation
	Evaluation Scenarios
	Data Collection

	Results
	Research Question 1
	Research Question 2

	Discussion
	Data Analysis & Interpretation
	Threats to validity

	Conclusion and Future Work

	Paper E
	Introduction
	Problem Domain & Motivation
	Research Goal & Research Questions
	Contributions of the Article
	Structure of the Article

	Related Work
	Generic Message Description and Self-Adaptive Marshalling
	Evaluation
	Experimentation Procedure
	Results
	Discussion
	Threats to Validity

	Conclusion and Future Work

	Paper F
	Introduction
	Related work
	The model-based workflow
	DSL and model transformation
	Modeling and formal verification of adaptive message restructuring
	Domain analysis
	Model overview
	Formal verification

	Discussion
	Conclusion & Future Work

	Bibliography
	Appendix
	Appendix - Paper A
	Appendix - Paper B

