
Thesis for The Degree of Licentiate of Engineering

A Principled Approach

to Securing IoT Apps

Iulia Bastys

Division of Information Security
Department of Computer Science & Engineering

Chalmers University of Technology
Gothenburg, Sweden, 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chalmers Research

https://core.ac.uk/display/198049181?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Principled Approach to Securing IoT Apps

Iulia Bastys

Copyright ©2018 Iulia Bastys
except where otherwise stated.
All rights reserved.

Technical Report No 185L
ISSN 1652-876X
Department of Computer Science & Engineering
Division of Information Security
Chalmers University of Technology
Gothenburg, Sweden

This thesis has been prepared using LATEX.
Printed by Chalmers Reproservice,
Gothenburg, Sweden 2018.

ii

Abstract

IoT apps are becoming increasingly popular as they allow users to man-
age their digital lives by connecting otherwise unconnected devices and ser-
vices: cyberphysical “things” such as smart homes, cars, or �tness armbands,
to online services such as Google or Dropbox, to social networks such as
Facebook or Twitter. IoT apps rely on end-user programming, such that any-
one with an active account on the platform can create and publish apps, with
the majority of apps being created by third parties.

We demonstrate that the most popular IoT app platforms are susceptible
to attacks by malicious app makers and suggest short and longterm counter-
measures for securing the apps. For short-term protection we rely on access
control and suggest the apps to be classi�ed either as exclusively private or
exclusively public, disallowing in this way information from private sources
to �ow to public sinks.

For longterm protection we rely on a principled approach for designing
information �ow controls. Following these principles we de�ne projected
security, a variant of noninterference that captures the attacker’s view of an
app, and design two mechanisms for enforcing it. A static enforcement based
on a �ow-sensitive type system may be used by the platform to statically an-
alyze the apps before being published on the app store. This enforcement
covers leaks stemming from both explicit and implicit �ows, but is not ex-
pressive enough to address timing attacks. Hence we design a second en-
forcement based on a dynamic monitor that covers the timing channels as
well.

Keywords: information �ow control, Internet of Things, IoT apps, design
principles

iii

Acknowledgments

First, I would like to thank my supervisor Andrei for giving me this in-
credible opportunity to be part of his group, for his guidance and support,
and for constantly pushing me out of my comfort zone. Spasibo!

I am grateful to Dave, Gerardo, and Wolfgang for their help in the past
year and for interesting discussions about books, movies, or teaching.

Several people have made my transition to this new environment smoother
and my stay here more enjoyable. Thank you all! Elena, for being the best
buddy student one can have; Georgia, for reminding me that there are other
great things out there; Thomas, for adding a bit of re�nement to my world;
Daniel and Evgenii, for bringing reason to my sometimes emotion-grounded
arguments; Alexander and Je�, for making the work space a fun space; Max,
for teaching me not to care so much sometimes.

To others, new and old, past and present: Alejandro, Benjamin, Carlo,
Danielito, Elisabet, Hamid, Marco, Mauricio, Musard, Sandro, Simon, Sólrún,
Steven and others, thank you for making (and having made) Chalmers such
a welcoming and friendly environment.

My deepest gratitude is directed towards my family, for giving me strength
and for making me who I am today.

Last, but not least, a special token of appreciation goes to Tomas, for
always believing in me. Ya lyublyu tebya!

v

Contents

Introduction 1

Bibliography 9

1 Prudent Design Principles for Information Flow Control 13
1.1 Introduction . 15
1.2 Design principles . 16
1.3 Related work . 24
1.4 Conclusion . 25
Bibliography . 27

2 If This Then What? Controlling Flows in IoT Apps 37
2.1 Introduction . 39
2.2 IFTTT platform and attacker model 43
2.3 Attacks . 45

2.3.1 Privacy . 45
2.3.2 Integrity . 47
2.3.3 Availability . 48
2.3.4 Other IoT platforms 49
2.3.5 Brute forcing short URLs 49

2.4 Measurements . 50
2.4.1 Dataset and methodology 50
2.4.2 Classifying triggers and actions 51
2.4.3 Analyzing IFTTT applets 54

2.5 Countermeasures: breaking the �ow 56
2.5.1 Per-applet access control 56
2.5.2 Authenticated communication 57
2.5.3 Unavoidable public URLs 58

2.6 Countermeasures: Tracking the �ow 58
2.6.1 Types of �ow . 59

vii

Contents

2.6.2 Formal model . 60
2.6.3 Soundness . 66

2.7 FlowIT . 67
2.7.1 Implementation . 67
2.7.2 Evaluation . 69

2.8 Related work . 69
2.9 Conclusion . 71
Bibliography . 73
Appendix . 79
2.A Semantic rules . 81
2.B Soundness . 82

3 Tracking Information Flow via Delayed Output:
Addressing Privacy in IoT and Emailing Apps 89
3.1 Introduction . 91
3.2 Privacy leaks . 94

3.2.1 IFTTT . 94
3.2.2 MailChimp . 95
3.2.3 Impact . 96

3.3 Tracking information �ow via delayed output 97
3.4 Security model . 98

3.4.1 Semantic model . 98
3.4.2 Preliminaries . 100
3.4.3 Projected noninterference 102
3.4.4 Projected weak secrecy 102

3.5 Security enforcement . 103
3.5.1 Information �ow control 104
3.5.2 Discussion . 107
3.5.3 Taint tracking . 107

3.6 Related work . 108
3.7 Conclusion . 110
Bibliography . 111
Appendix . 115
3.A Information �ow control . 115
3.B Taint-tracking . 118

viii

Introduction

Motivation

By their nature, IoT apps have access to a diverse set of user sensitive in-
formation: location, �tness data, private feed from social networks, private
documents, or private images. Other IoT apps are given sensitive controls
over burglary alarms, thermostats, or baby monitors. In addition, the apps
rely on end-user programming, such that anyone can create and publish IoT
apps, with the majority of apps being created by third parties. With the in-
crease in popularity of IoT apps, concerns have been raised about keeping
user information private or assuring the integrity and availability of data ma-
nipulated by the apps. These concerns are not unfounded, as we demonstrate
the most popular IoT app platforms to be vulnerable to attacks by malicious
app makers.

Background

Starting in 1982 with a single Internet-connected appliance—a drinks vend-
ing machine that was only able to report its inventory [39]—the number of
IoT devices increased to 8.4 billion in 2017 [16], with, e.g., smart locks, virtual
assistants, home appliances, emergency noti�cation systems, or surveillance
systems that perform more complex tasks and from longer distances. The
number of IoT devices is estimated to grow to 30 billion by 2020 [31].

IoT stands for Internet of Things and, as the name suggests, it de�nes a
network of diverse physical devices embedded amongst others with electron-
ics, software, and sensors that allow for interconnections and data exchange.

1

Introduction

Figure 1: IoT app platform (simpli�ed)

IoT system architecture IoT systems are used for performing a wide range
of tasks, from simple ones that control light switches based on motion, to
more complex ones that assist in transportation systems. However sophisti-
cated the task to be performed is, the structure of an IoT system is roughly the
same. It mainly comprises devices, connectivity protocols, and programming
platforms.

Devices are equipped with sensors, which collect data and send events
to other devices, the hub or the cloud, and actuators, which process these
events and allow the devices to perform an action. For example, when a pres-
ence sensor detects movement, it communicates with a switch, in this case
the actuator, which will turn on the light. Gateways connect devices with
the cloud, while cloud gateways ensure secure communication between the
two. Cloud gateways are also responsible for the communication protocols
between heterogeneous devices. IoT programming platforms provide users
with applications that allow them to monitor and control their devices.

IoT app platforms Provider-speci�c programming platforms abound on
the market: Android Things [4] and Google Fit [19] (from Google), Home-
Kit [5] (from Apple), SmartThings [34] (from Samsung), or AWS IoT [3] (from
Amazon) are just few examples. Other platforms allow building automations
that connect devices and services originating from di�erent providers, with
IFTTT [25], Zapier [42], and Microsoft Flow [28] being the most popular IoT
platforms of this kind.

All platforms o�er web-based environments and tools (with some pro-
viding smartphone clients as well) that enable creating custom automations,
referred to as applications or apps. Most platforms allow not only the ser-

2

A Principled Approach to Securing IoT Apps

vice providers, but also both experienced developers and uninitiated users to
create such apps, with the majority of IoT apps being created by third par-
ties. Each platform provides (potentially) a di�erent language for specifying
these apps (e.g., JavaScript for IFTTT [26] and Zapier [43], Python for Za-
pier [44], or Groovy for SmartThings [36]) and uses (potentially) a di�erent
environment for executing them (e.g., the cloud for IFTTT [26] or a local
hub for SmartThings [35]). Additionally, for performance and security rea-
sons, some IoT platforms execute the apps in a sandbox (e.g., IFTTT [26],
Zapier [43, 44], or SmartThings [37]).

IoT apps rely on a trigger-action paradigm: when an event takes place
(the trigger), such as “Carbon monoxide emergency”, another event is pro-
duced (the action), such as “Turn on the lights”. Platforms allow for speci-
fying JavaScript, Python, or Groovy code, depending on the case, for action
re�nement, such as “to red color”. This re�nement is optional, e.g., on IFTTT
and Zapier platforms.

Figure 2: App view on
IFTTT platform

IoT platforms provide automations beyond
physical environments, with online services
such as Google and Dropbox, or social net-
works such as Facebook and Twitter, added to
the equation (Fig. 1). Any combination between
“things”, online services, and social networks is
possible. Figure 2 displays an (IFTTT) app that
uploads any new iOS photo taken by the user
to their Google Drive.

Before installing an app, users can see what
triggers and actions the given app may use, e.g.,
trigger “Any new photo” and action “Upload �le
from URL” for app in Fig. 2. To be able to run the
app, users need to provide their credentials to
the services associated with its triggers and ac-
tions, e.g., iOS Photos and Google Drive for app
in Fig. 2. The user can also see the app maker
and the number of installs, e.g., third party user
alexander and 99k installs for app in Fig. 2.

IoT platforms incorporate a basic form of
access control. The users explicitly allow the
app to access their trigger data (e.g., their iOS
photos), but only to be used by the action service (e.g., by their Google Drive).
In order to achieve this, app code is heavily sandboxed by design, with no
blocking or I/O capabilities and access only to APIs pertaining to the services

3

Introduction

used by the app.

IoT security and privacy While IoT advertises better safety, improved en-
ergy and manufacturing e�ciency, enhanced health care and crop manage-
ment, or automation of mundane tasks, concerns about user security and
privacy in the IoT ecosystem have been voiced.

In order to provide the user with the expected functionality, IoT apps
have access not only to physical functions, which when exploited may lead
to safety and security issues, but also to user sensitive data, which when
leaked may cause privacy issues. Abusing the smart lock to unlock the door
when the user is not at home, or the thermostat to increase the heat to cause
the windows to open are a couple of examples of security risks the user may
be exposed to. Also, access to data provided by heart rate monitors or smart
meters may reveal to unauthorized parties information about the consumer’s
health, or behavioral patterns and what type of home appliances the con-
sumer is using and when [32].

A�ack vectors Unfortunately, these concerns are not entirely unfounded.
Recent studies have revealed several vulnerabilities [11, 14, 15, 22, 38, 41]
and demonstrated attacks [8, 27] and privacy abuses in IoT devices and on
IoT platforms [17].

An infamous example of vendor access privilege abuse is represented by
the Xiaomi Mi Robot vacuum cleaner. A recent study [17] revealed the vac-
uum cleaner was uploading to the cloud not only the names and passwords
of the WiFi networks to which the vacuum cleaner connected to, but also
the maps of the rooms it cleaned in. Judging by the size of the rooms, infor-
mation about the user’s wealth and social status could be inferred. Pairing
with location information (possibly) collected from the user’s smartphone via
the recommended app, the precise geolocation of the user could be learned.
Moreover, since the stored data is never deleted from the cloud, not even af-
ter a factory reset, somebody buying a used Xiaomi vacuum cleaner could
also get access to the information about previous usages and owners.

Other threat models in IoT focus on ‘external’ attackers, i.e. di�erent from
the vendor. For example, at the hardware level, an attacker can manipulate
the IoT device during the fabrication time to maintain the privilege bit of the
processor to a target value [41]. At the software level, the range of vulnerabil-
ities and attacks is larger and of more interest. With respect to access control
vulnerabilities we have evidence of inappropriate design of granularity in ac-
cess control on the SmartThings platform [14], over-privileged OAuth tokens
on IoT platforms [15], (potentially) illegal intra-�ows between di�erent IoT
apps [38], limitations of access control and authentication models for Home

4

A Principled Approach to Securing IoT Apps

IoT [22], or untrusted code accessing sensitive sources [22]. Privacy viola-
tions in IoT apps [11], CSRF attacks in IFTTT [27], or programming errors
in rule-based smart homes [30] augment the list.

Contributions

In the abundance of threat models in IoT one aspect has been largely over-
looked by previous research: the actual inter-�ows emitted by the apps and
the capabilities of a malicious app maker to ex�ltrate user private data.

In this work, we demonstrate that apps may leak user data via URL-based
attacks by malicious app makers. To prevent such attacks, we propose short
and longterm countermeasures. For short-term protection we rely on access
control and suggest the apps to be classi�ed either as exclusively private or
exclusively public, disallowing in this way information from private sources
to �ow to public sinks. This approach is backward-compatible with the cur-
rent model of IoT platforms. For longterm protection and for securing more
complex apps that allow for queries or multiple sources and sinks, we suggest
tracking the information �ows in IoT apps.

Design principles for IFC Information �ow control (IFC) tracks the data
�ows in a system and prevents those �ows from sensitive sources to public
sinks. The policy enforcing this restriction is usually referred to as noninter-
ference [18] and the literature abounds with di�erent variants for it [2, 6, 7,
21, 33, 40] and with as many di�erent enforcement mechanisms [12, 13, 20,
24, 29, 40].

The myriad of existing models and security conditions do not fully cover
the privacy concerns raised by the �ows in IoT apps and the URL-based at-
tacks. Thus, we require a principled approach for choosing the right security
characterization and for selecting the right enforcement mechanism for it.

In this regard, inspired by the seminal work of Abadi and Needham on
prudent engineering practice for cryptographic protocols [1], we outline six
principles [9] to assist the security designer in tailoring information �ow con-
trols for a new application domain, such as intra-�ows in IoT apps. Two core
principles—attacker-driven security and trust-aware enforcement—refer to
properly de�ning the attacker model and the trusting computing base. Other
four principles are secondary and tightly connected to the core principles:
separation of policy annotations and code, language-independent security
condition and enforcement, justi�ed abstraction when de�ning the attacker,
and permissiveness of enforcement mechanism.

Projected security and enforcement mechanisms Applying these prin-
ciples when securing IoT apps against the URL-based attacks, we de�ne pro-

5

Introduction

jected security, a variant of noninterference that takes into account the at-
tacker’s view of an app, and we design enforcement mechanisms that prov-
ably enforce this condition [8, 10].

Envisioning a platform where the IoT apps are statically analyzed for se-
curity before being published, we design a �ow-sensitive type system that
enforces projected noninterference [10]. The type system can track both ex-
plicit and implicit �ows and it can be trivially extended to cover presence
channels, but it cannot handle information leaks via the timing channel. To
capture these �ows, we design a dynamic monitor [8] and implement it as
an extension of JSFlow [23], an information �ow tracker for JavaScript.

Thesis structure

Paper 1: Prudent Design Principles for Information Flow Control [9]

This short paper aims to systematize and structure the plethora of security
characterizations and enforcement mechanisms in the literature to assist a
security designer when designing information �ow controls for new appli-
cation domains. In this regard, we introduce six design principles. Two
main principles roughly refer to de�ning the attacker model and the trust-
ing computing base: attacker-driven security and trust-aware enforcement.
The other four principles are in close connection to the main ones, and refer
to separation of policy annotations and code, language-independent security
condition and enforcement, justi�ed abstraction when de�ning the attacker,
and permissiveness of enforcement mechanism.

Statement of contributions This paper was in collaboration with Frank
Piessens and Andrei Sabelfeld. Iulia was responsible with �ashing out the
principles and illustrating them with concrete examples in JSFlow.

Appeared in: Proceedings of the 13th Workshop on Programming Languages
and Analysis for Security (PLAS 2018), Toronto, Canada, October 2018.

Paper 2: If This Then What? Controlling Flows in IoT Apps [8]

This paper demonstrates a new class of vulnerabilities on popular IoT app
platforms (IFTTT, Zapier, and Microsoft Flow), this time with the attacker
assumed to be a malicious app maker. In order to estimate the impact of the
possible attacks, we conduct an empirical study on a set of roughly 300 000
IFTTT apps. We �nd that 30% of the existing apps may not only violate
privacy, but also do it invisibly to its users.

6

A Principled Approach to Securing IoT Apps

One protection mechanism we suggest is based on access control and it
disallows �ows from private sources to public sinks by classifying the apps
either as exclusively public or exclusively private. A second protection mech-
anism based on information �ow control (IFC) covers in addition apps with
more complex functionality that deal with �ows from several sources and to
several sinks.

We implement the latter mechanism as a dynamic monitor that extends
JSFlow, a taint tracker for JavaScript, and prove its soundness. We then eval-
uate the monitor on a set of 60 apps, 30 secure and 30 insecure. We obtain no
false negatives and a single false positive on ‘arti�cially’-constructed code,
proving that IFC is a suitable enforcement mechanism for securing IoT apps.

Statement of contributions This paper was in collaboration with Musard
Balliu and Andrei Sabelfeld. Iulia was responsible for designing the seman-
tics of the dynamic monitor, proving its soundness, implementing it as an
extension of JSFlow, and evaluating it.

Appeared in: Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security (CCS 2018), Toronto, Canada, October 2018.

Paper 3: Tracking Information Flow via Delayed Output: Addressing

Privacy in IoT and Emailing Apps [10]

This paper focuses on tracking information �ow in the presence of delayed
output in two scenarios with di�erent levels of trust in the computing base:
IoT apps and email campaigns. Delayed output is structured output in a
markup language generated by a service and subsequently processed by a
di�erent service. For example, in the case of HTML, the output is generated
by a webserver and later processed by browsers or email readers.

Both IoT apps and email campaigns are vulnerable to ex�ltrations via de-
layed output, with the distinction that IoT apps can be written by endusers
and are potentially malicious, while email campaigns are written by the ser-
vice providers and are non-malicious, but potentially buggy. We develop
a formal framework to reason about secure information �ow with delayed
output in both settings and design static enforcement mechanisms based on
type systems. The enforcement for malicious code entails a type system that
tracks both explicit and implicit �ows, while the type system for the non-
malicious code only tracks (explicit) data �ows. Both type systems are for-
mally proven to be sound.

Statement of contributions This paper was in collaboration with Frank
Piessens and Andrei Sabelfeld. Iulia was responsible with designing the type

7

Introduction

systems and proving their soundness, and for verifying the ex�ltrations via
delayed output on other platforms.

To appear in: The 23rd Nordic Conference on Secure IT Systems (NordSec 2018),
Oslo, Norway, November 2018.

8

Bibliography

[1] M. Abadi and R. M. Needham. Prudent Engineering Practice for Crypto-
graphic Protocols. IEEE Trans. Software Eng., 22(1):6–15, 1996.

[2] J. Agat. Transforming out timing leaks. In Proceedings of the 27th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2000, Boston, MA, USA, January 19-21, 2000, pages 40–53. ACM,
2000.

[3] Amazon Web Services (AWS) IoT. https://aws.amazon.com/iot/,
2018.

[4] Android Things. https://developer.android.com/things/, 2018.

[5] Apple HomeKit. https://www.apple.com/ios/home/, 2018.

[6] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination-insensitive
noninterference leaks more than just a bit. In Computer Security - ES-
ORICS 2008 - 13th European Symposium on Research in Computer Secu-
rity, Málaga, Spain, October 6-8, 2008. Proceedings, volume 5283 of Lecture
Notes in Computer Science, pages 333–348. Springer, 2008.

[7] A. Askarov and A. Sabelfeld. Gradual release: Unifying declassi�cation,
encryption and key release policies. In 28th IEEE Symposium on Security
and Privacy, S&P 2007, Oakland, CA, USA, May 20-23, 2007, pages 207–
221. IEEE Computer Society, 2007.

[8] I. Bastys, M. Balliu, and A. Sabelfeld. If This Then What? Controlling
Flows in IoT Apps. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2018, Toronto, ON, Canada,
October 15-19, 2018, pages 1102–1119, 2018.

[9] I. Bastys, F. Piessens, and A. Sabelfeld. Prudent Design Principles for
Information Flow Control. In Proceedings of the 13th Workshop on Pro-
gramming Languages and Analysis for Security, pages 17–23. ACM, 2018.

9

https://aws.amazon.com/iot/
https://developer.android.com/things/
https://www.apple.com/ios/home/

Bibliography

[10] I. Bastys, F. Piessens, and A. Sabelfeld. Tracking Information Flow
via Delayed Output: Addressing Privacy in IoT and Emailing Apps. In
23rd Nordic Conference on Secure IT Systems (NordSec 2018), Oslo, Norway,
November 28-30, 2018, To appear.

[11] Z. B. Celik, L. Babun, A. K. Sikder, H. Aksu, G. Tan, P. D. McDaniel, and
A. S. Uluagac. Sensitive Information Tracking in Commodity IoT. In 27th
USENIX Security Symposium, USENIX Security 2018, Baltimore, MD, USA,
August 15-17, 2018., pages 1687–1704, 2018.

[12] D. E. Denning and P. J. Denning. Certi�cation of programs for secure
information �ow. Commun. ACM, 1977.

[13] D. Devriese and F. Piessens. Noninterference through secure multi-
execution. In 31st IEEE Symposium on Security and Privacy, S&P 2010,
Oakland, CA, USA, May 16-19, 2010, pages 109–124. IEEE Computer So-
ciety, 2010.

[14] E. Fernandes, J. Jung, and A. Prakash. Security Analysis of Emerging
Smart Home Applications. In IEEE Symposium on Security and Privacy,
SP 2016, San Jose, CA, USA, May 22-26, 2016, pages 636–654, 2016.

[15] E. Fernandes, A. Rahmati, J. Jung, and A. Prakash. Decentralized Action
Integrity for Trigger-Action IoT Platforms. In 25th Annual Network and
Distributed System Security Symposium, NDSS 2018, San Diego, California,
USA, February 18-21, 2018, 2018.

[16] Gartner Says 8.4 Billion Connected “Things” Will Be in Use in
2017, Up 31 Percent From 2016. https://www.gartner.com/

en/newsroom/press-releases/2017-02-07-gartner-says-8-

billion-connected-things-will-be-in-use-in-2017-up-31-

percent-from-2016. Accessed on November 3rd, 2018.

[17] D. Giese and D. Wegemer. https://github.com/dgiese/dustcloud,
2018.

[18] J. A. Goguen and J. Meseguer. Security policies and security models.
In 1982 IEEE Symposium on Security and Privacy, S&P 1982, Oakland, CA,
USA, April 26-28, 1982, pages 11–20. IEEE Computer Society, 1982.

[19] Google Fit: Coaching you to a healthier and more active life. https:

//www.google.com/fit/, 2018.

10

https://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-31-percent-from-2016
https://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-31-percent-from-2016
https://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-31-percent-from-2016
https://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-31-percent-from-2016
https://github.com/dgiese/dustcloud
https://www.google.com/fit/
https://www.google.com/fit/

Bibliography

[20] G. L. Guernic. Automaton-based con�dentiality monitoring of concur-
rent programs. In Proceedings of the 20th IEEE Computer Security Foun-
dations Symposium, CSF 2007, Venice, Italy, 6-8 July, 2007, pages 218–232.
IEEE Computer Society, 2007.

[21] J. Y. Halpern and K. R. O’Neill. Secrecy in multiagent systems. ACM
Trans. Inf. Syst. Secur., 12(1):5:1–5:47, 2008.

[22] W. He, M. Golla, R. Padhi, J. Ofek, M. Dürmuth, E. Fernandes, and B. Ur.
Rethinking access control and authentication for the home internet of
things (iot). In 27th USENIX Security Symposium (USENIX Security 18),
Baltimore, MD, 2018. USENIX Association.

[23] D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld. JSFlow: Tracking
Information Flow in JavaScript and its APIs. In SAC, 2014.

[24] S. Hunt and D. Sands. On �ow-sensitive security types. In Proceedings of
the 33rd ACMSIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2006, Charleston, SC, USA, January 11-13, 2006, pages
79–90. ACM, 2006.

[25] IFTTT (IF This Then That). https://ifttt.com, 2018.

[26] IFTTT: Maker guide. https://platform.ifttt.com/maker/guide,
2018.

[27] E. Kang, A. Milicevic, and D. Jackson. Multi-representational Security
Analysis. In Proceedings of the 2016 24th ACMSIGSOFT International Sym-
posium on Foundations of Software Engineering, FSE 2016, pages 181–192,
2016.

[28] Microsoft Flow. https://flow.microsoft.com/, 2018.

[29] S. Moore and S. Chong. Static analysis for e�cient hybrid information-
�ow control. In Proceedings of the 24th IEEE Computer Security Foun-
dations Symposium, CSF 2011, Cernay-la-Ville, France, 27-29 June, 2011,
pages 146–160. IEEE Computer Society, 2011.

[30] C. Nandi and M. D. Ernst. Automatic trigger generation for rule-based
smart homes. In Proceedings of the 2016 ACMWorkshop on Programming
Languages and Analysis for Security, PLAS ’16, pages 97–102, 2016.

[31] Popular Internet of Things Forecast of 50 Billion Devices
by 2020 Is Outdated. https://spectrum.ieee.org/tech-

11

https://ifttt.com
https://platform.ifttt.com/maker/guide
https://flow.microsoft.com/
https://spectrum.ieee.org/tech-talk/telecom/internet/popular-internet-of-things-forecast-of-50-billion-devices-by-2020-is-outdated
https://spectrum.ieee.org/tech-talk/telecom/internet/popular-internet-of-things-forecast-of-50-billion-devices-by-2020-is-outdated

Bibliography

talk/telecom/internet/popular-internet-of-things-

forecast-of-50-billion-devices-by-2020-is-outdated. Ac-
cessed on November 3rd, 2018.

[32] E. L. Quinn. Privacy and the new energy infrastructure. 2009.

[33] A. Sabelfeld and A. C. Myers. Language-based information-�ow secu-
rity. IEEE Journal on Selected Areas in Communications, 21(1):5–19, 2003.

[34] Samsung SmartThings: Add a little smartness to your things. https:

//www.smartthings.com/, 2018.

[35] SmartThings Classic Documentation: Architecture. https://docs.

smartthings.com/en/latest/architecture/, 2018.

[36] SmartThings Classic Documentation: Groovy basics. https:

//docs.smartthings.com/en/latest/getting-started/groovy-

basics.html, 2018.

[37] SmartThings Classic Documentation: Groovy with Smart-
Things. https://docs.smartthings.com/en/latest/getting-

started/groovy-for-smartthings.html, 2018.

[38] M. Surbatovich, J. Aljuraidan, L. Bauer, A. Das, and L. Jia. Some recipes
can do more than spoil your appetite: Analyzing the security and privacy
risks of IFTTT recipes. In WWW, 2017.

[39] The “Only” Coke Machine on the Internet. https://www.cs.cmu.

edu/~coke/history_long.txt. Accessed on November 3rd, 2018.

[40] D. M. Volpano, C. E. Irvine, and G. Smith. A sound type system for
secure �ow analysis. Journal of Computer Security, 4(2/3):167–188, 1996.

[41] K. Yang, M. Hicks, Q. Dong, T. M. Austin, and D. Sylvester. A2: Analog
Malicious Hardware. In IEEE Symposium on Security and Privacy, SP 2016,
San Jose, CA, USA, May 22-26, 2016, pages 18–37, 2016.

[42] Zapier. https://zapier.com/, 2018.

[43] Zapier: How to Get Started with Code (JavaScript) on Zapier. https:
//zapier.com/help/code/, 2018.

[44] Zapier: How to Get Started with Code (Python) on Zapier. https:

//zapier.com/help/code-python/, 2018.

12

https://spectrum.ieee.org/tech-talk/telecom/internet/popular-internet-of-things-forecast-of-50-billion-devices-by-2020-is-outdated
https://spectrum.ieee.org/tech-talk/telecom/internet/popular-internet-of-things-forecast-of-50-billion-devices-by-2020-is-outdated
https://spectrum.ieee.org/tech-talk/telecom/internet/popular-internet-of-things-forecast-of-50-billion-devices-by-2020-is-outdated
https://spectrum.ieee.org/tech-talk/telecom/internet/popular-internet-of-things-forecast-of-50-billion-devices-by-2020-is-outdated
https://www.smartthings.com/
https://www.smartthings.com/
https://docs.smartthings.com/en/latest/architecture/
https://docs.smartthings.com/en/latest/architecture/
https://docs.smartthings.com/en/latest/getting-started/groovy-basics.html
https://docs.smartthings.com/en/latest/getting-started/groovy-basics.html
https://docs.smartthings.com/en/latest/getting-started/groovy-basics.html
https://docs.smartthings.com/en/latest/getting-started/groovy-for-smartthings.html
https://docs.smartthings.com/en/latest/getting-started/groovy-for-smartthings.html
https://www.cs.cmu.edu/~coke/history_long.txt
https://www.cs.cmu.edu/~coke/history_long.txt
https://zapier.com/
https://zapier.com/help/code/
https://zapier.com/help/code/
https://zapier.com/help/code-python/
https://zapier.com/help/code-python/

