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Abstract
In recent decades there has been an increase in research regarding green roofs and
similar technologies. This increased interest is driven by the requirements of urban
development and its effects both on humans and the environment. Additionally,
the predicted increase in weather severity in the future is raising concerns on the
capabilities of urban environments and their stormwater management systems to
cope with the increase.

Green roofs can be used as a space-conscious solution for improving stormwater
management in urban areas as well as contributing to, for example, building protection
and pollution and noise reduction. In order to fully utilize them effectively for
stormwater runoff reduction it is necessary to quantify their effect and optimize their
performance in a given climate. This optimization can take the form of placement
on structures or by design within the green roof construction itself.

This work focuses on optimization of design by applying computational fluid
dynamics and lattice Boltzmann theory to the soil growth substrate. Computational
fluid dynamics is used for modeling the flow through the green roof growth substrate
(soil layer) at the macrososcopic scale while a lattice Boltzmann model is applied to the
mesoscopic (soil particle) scale. Using these methods, the efficacy at water retention
and drainage of given soil particles and full-sized green roofs can be determined.
This work covers the framework covering both scales however the methodology is
applied only to the mesoscopic scale.

The focus within the mesoscopic scale is primarily on the hydrophilicity of the
particles in the soil and its impact on liquid imbibition. Also included is an exploration
on the liquid-air interfacial area and liquid penetration depth to aid in the analysis
of the results. The findings of the study suggest particle hydrophilicity plays an
important role in the imbibition process, particularly under light to medium rainfall
conditions. In addition a pore blocking phenomenon is identified which requires
further analysis. Finally, plans for future work and the closure of the two-framework
methodology proposed in this work is discussed.

Keywords: Green roofs, modeling, CFD, Lattice Boltzmann, porous media,
multiphase, saturation.
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Nomenclature

Ar1r2 – Lattice particle scattering matrix
Als – Liquid-solid interfacial area
B – Arbitrary solution matrix to boundary value problem
b – Arbitrary solution matrix to boundary value problem
C – Boltzmann collision operator
Cvm – Pore-scale flow inhomogeneity virtual mass empirical coefficient
~cr – Lattice node connection vectors
cs – Speed of sound coefficient
d – Particle diameter
deff – Particle effective diameter
e – Particle conversion coefficient
~F – External force term
f – Probability density function
f e – Equilibrium probability density function
f̂ – Post-collision probability density function
g – Gravity vector
g – Gravity scalar
~g – Relative velocity between particles
h – Rainfall depth characteristic length
hc – Liquid penetration depth along the main flow direction
I – Identity matrix
I – Particle collision differential cross-section
K – Scalar-valued permeability
K – Permeability tensor
krω – Relative permeability
L – LBM domain characteristic length
Lp – Pipe length
L0 – Macroscopic characteristic length
lcap – Porous medium capillary radius
l∆P – Liquid volume thickness
M – Particle mass
m – van Genuchten fitting coefficient
ṁωη – Interphasic mass transfer
n – Outward normal
nls – Liquid-solid interface outward normal
N – number of particles
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n – van Genuchten fitting coefficient
nr – Lattice occupancy number
ñr – Post-collision lattice occupancy number
~p – Phase space momenta
pa – Air phase pressure
pc – Capillary pressure
pg – Pressure scaling value
pl – Liquid phase pressure
p̃l – Liquid phase pressure spatial deviation
q – van Genuchten closure model fitting coefficient
Rc – Capillary radius
Rr – Spatial and temportal probability density function total fluctuations
r – Lattice node number
reff – Effective pore radius
rr – Spatial and temportal probability density function fluctuations
r0 – Averaging volume characteristic length
S – Boltzmann streaming operator
Se – Effective saturation
Sl – Saturation
Sα,ω – Phasic source term
t – Time
t∗ – Dimensionless time
ul – Liquid phase free-flow velocity
ul,int – Liquid phase interfacial velocity
ul,∞ – Liquid phase free-flow velocity
U – Velocity
U – Spatially averaged velocity
vl – Liquid phase Darcy velocity
ṽl – Liquid phase velocity spatial deviation
V – Total averaging volume
Vl – Liquid phase volume
~v – Phase space velocity
w – Cementation coefficient
~x – Phase space positional coordinates
α∗ – Dimensionless slip coefficient
αω – Phase volume fraction
β1 – Dimensionless jump condition coefficient
β2 – Dimensionless jump condition coefficient
Γω – Phasic diffusion coefficient
γ – Liquid-air surface tension
ε – Porosity
η – Phase indicatior variable, can be liquid and air
θ – Volumetric water content
θc – Liquid-air contact angle
θr – Residual volumetric water content
θs – Saturated volumetric water content
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κ – Hydraulic conductivity
κr – Equivalent relative hydraulic conductivity
κs – Saturated hydraulic conductivity
µl – Liquid phase dynamic viscosity
µl,eff – Liquid phase effective dynamic viscosity
νa – Air phase kinematic viscosity
νl – Liquid phase kinematic viscosity
ρa – Air phase density
ρl – Liquid phase density
ρwall – Contact angle equivalency in LBM code
τ – Arbitrary Darcy’s law unsteady term coefficient
τen – Volume-averaged energy equation Darcy’s law unsteady term coefficient
τf – Relaxation time coefficient
τva – Volume-averaged Darcy’s law unsteady term coefficient
τvm – Virtual mass Darcy’s law unsteady term coefficient
φω – Arbitrary scalar quantity
ψl – Liquid phase scalar or vector value
Ω – Particle collision characteristic angle
ω – Phase indicatior variable, can be liquid and air
Bo – Bond number
Re – Reynolds number
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Chapter 1

Introduction

This text concerns the modeling of stormwater as it passes through an unsaturated
porous medium, however before delving into the details it is logical to provide some
background information on the topics involved as well as motivate why this research
is undertaken at all. With this in mind we will begin with a discussion on green
roofs (our porous medium of choice) and why we wish to model stormwater flowing
through them. This discussion will be followed by a short explanation on the primary
technique involved in modeling such problems, computational fluid dynamics.

1.1 An introduction to green roofs
Green roofs can be characterized as any roof construction incorporating vegetation
which can range from moss, sedum and grasses to bushes and trees. Their use
stretches back to medieval times at the very latest and excavations have shown their
implemetation in various parts of the world. Perhaps most famously they were used
by the Viking settlers in Newfoundland and Iceland around 700-1000 A.D. In more
modern times these types of roofs have experienced a resurgence of interest within
the building sector for a variety of reasons, however the designs employed today
are slightly different in terms of layering and materials. Most green roofs consist of
several layers, as shown in Figure 1.1.

Figure 1.1: Green roof layering, image courtesy of Godfrey Roofing Inc. [1].
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4 1.1. An introduction to green roofs

There must be a base roofing membrane layer that protects the interior of the
structure in case of any leakage. Above this is a root barrier to prevent any infil-
tration of plant material into the primary structure. This is particularly important
if grasses and trees are used due to their extensive root systems. Above this sits
a drainage element that may consist of a cup structure as shown above or other
drainage material such as lightweight expanded clay aggregate (LECA). This layer is
primarily meant to facilitate removal of excess water from the roof once it passes
through the vegetation and growth substrate layers. Above this drainage layer sits a
filter fabric or similar material to prevent soil and other particulates from clogging
the drainage layer and causing extraneous maintanence. The final layers are the plant
and, of particular interest, the growth media (or substrate). The growth substrate
may consist of a large variety of materials, from peat moss, to gravel and clay, etc. It
is essentially soil though the exact composition varies on the vegetation and sourcing
by production companies. It is this layer that we wish to look at more closely as it
plays a critical role in a green roof’s ability to capture stormwater and retain it. This
process is important for two reasons; one being that the roof should retain sufficient
moisture to provide for the vegetations’ continued survival, the other being that it
releases water so that the roof suffers no damage and the vegetation is not flooded.

The primary benefits of green roofs can be defined into a few categories.

• Aesthetic effects and their contribution to social wellbeing.

• Pollution and noise reduction and urban habitat creation.

• Contribution to urban stormwater management, climate control within the
structure and building facade protection.

It is understandably difficult to quantify the social well-being benefits of green
roofs or similar constructions so we will focus on the measurable impacts and studies.
There has been research into the ability of green roofs to remove particulate as well
as heavy metal pollution from the urban environment. One such study involved to
usage of seaweed in the growth medium to trap heavy metals such as Cadmium,
Nickel, and Chromium and the findings suggested viability of such an inclusion [2].
Another such example is the investigation on the acoustic efficiency of a green wall
with the results ranging from 0-10dB reductions depending on frequency and height
level [3].

Of these benefits, stormwater runoff reduction is the most documented. Histori-
cally the motivation for this is the increase in rainfall [4] and the subsequent interest
in using green roofs to minimize flooding occurances. This work has been undertaken
on a global scale, such as Great Britain [5], Italy [6] and Hong Kong [7], to name a few.
The research into stormwater runoff reduction consists of two practical approaches.
The first approach one can take is: how can we optimize green roofs by placement?
This question is difficult to answer in practice and we will cover a few of the reasons
why. In order to optimize placement of green roofs in an urban environment we
must have some data on a number of items. Firstly we must know where on a
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building the rain falls most, which is immensely difficult to predict. Predicting
rainfall patterns on a building facade has been researched quite actively through the
application of computational fluid dynamics as well as collecting experimental data.
Blocken and Carmeliet have utilized CFD to predict rainfall on building facades by
extending steady-state solution methods to transient systems [8], [9]. Inclusion of
additional terms such as turbulent dispersion [10], [11] and incident wind directions
[12] (oblique) have improved the accuracy of the approach and its applicability.
Experimental data for use in validating such results has been collected in a few
locations including at VLIET in Belgium [13], EMPA in Switzerland [14] and Norway
[15]. The details of approach can be found in the references above. The author
expanded upon the methodology applied in these papers by including a turbulence
model directly to solve for turbulent dispersion in the entire domain however the
results were mixed due to numerical instabilities and spatial averaging difficulties [16].

The difficulties involved in predicting rainfall patterns on structures stems from
highly variable wind directions, rainfall intensities and the urban morphology itself.
More damagingly than these modeling impracticalities are the restrictions placed on
spatial and temporal resolution imposed by using the modeling techniques themselves,
although these are sometimes ignored to the detriment of result accuracy. Thus
without significant advances in techniques or computational power it is difficult
to champion this alternative for optimization, particularly at such scales as urban
districts. This leaves us with another option by which we can attempt to improve
urban stormwater management, optimization by design.

1.2 Aim of the research

The reasoning of optimization by design leads us to the following conclusions when
taking the structure of a green roof into account. One cannot easily isolate and
quantify the contributions of the vegetation on stormwater retention, though many
researchers such as [17] and [18] are working on this issue. The drainage layer
design can be optimized for given rainfall intensities but this layer does not have the
capacity for absorption and so we can quite easily estimate its performance. The
most logical layer to focus on for improvement is the growth substrate, where we have
definite flexibility on material choice and how we mix and layer it. Thus we must
either perform extensive experiments for each possibility or apply some theoretical
framework and methodology to aid us in this endeavor, enter computational fluid
dynamics (CFD). CFD has been chosen because it is a powerful tool for accurately
modeling flows of most liquids (including gases) with great accuracy. It is dissimilar
to empirical approaches because the solutions are not tuned from experimentation,
thus the method can be applied to inummerable cases with ease while maintaining
confidence in the results. In addition, the method has been extensively validated
against experimental results and is a perfect candidate of choice for our problem.
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1.3 A brief explanation of computational fluid dy-
namics

Computational fluid dynamics (CFD) is a numerical methodology for solving the
equations of fluid flow, most notably the Navier-Stokes equations. It was first
developed in the 1920’s and progressed in complexity and scope over the century. It
is now used to model a large variety of problems in engineering and other scientific
and artistic fields. The applications within engineering range from the microscopic
to the macroscopic scale. Examples range from tracking the motion of a single
microscopic particle in a given flow to airflow and turbulent effects around cars
or trains. In many cases it is necessary to look at the problem on many levels of
detail and gain an understanding of the most important processes at work in a
particular problem. This can be the effect of gravity, particles bouncing off one
another, the speed of the flow, density and viscosity of the fluid, and so on. It is a
very powerful technique for reaching the desired level of accuracy in a solution to a
particular problem for the lowest computational and time cost. The downsides of
the method are mainly difficulties in correctly defining the problem and constructing
the appropriate computational grid to accurately capture the physics involved. In
general these computations are quite expensive in terms of computational power and
the time required to solve the problem accurately, ranging from hours to months
depending upon the problem complexity.

1.4 Document structure
The application of this technique, in particular to a problem as complex as the one
we propose, requires a thorough background in the theoretical framework with which
we will work and its complimentary limitations, outside of which the framework no
longer applies. We begin constructing this framework by deriving the governing
equations for subsurface flow and work in Chapter 2 and conclude with the theory
behind the Lattice Boltzmann method in Chapter 3. The following chapters discuss
the implementation of the technique and the results generated by its application,
and finally a look into future work.



Chapter 2

Macroscale simulations using CFD

In this chapter we introduce the theoretical framework required to calculate subsurface
flow. A thorough derivation of the relevant equations is undertaken with the aim of
providing the reader with a solid background for the limitations and assumptions
of the model. If we ignore these limitations and assumptions we run the risk of
creating a framework that is mathematically and physically inconsistent and its
application to unsuitable problems can lead to inaccurate and ultimately irrelevant
results. The information provided by the derivation is invaluable when discussing the
application of this framework to our problem, particularly when we reach the transient
multiphase extensions that are necessary to describe stormwater flow through a green
roof substrate.

2.1 Deriving Darcy’s law for single phase flow
The derivation of the subsurface flow equation, known as Darcy’s law, begins from
the Stokes equation for steady, single phase incompressible flow

∇ · vl = 0, (2.1)
0 = µl∇2vl −∇pl + ρlg, (2.2)

where vl is the velocity, µl is the dynamic viscosity, ρl is the density, pl is the pressure
and g is gravity.

During the derivation we will make use of volume averaging and this requires
the distinction between phase averaging and intrinsic phase averaging, represented
respectively by

〈ψl〉 = 1
V

ˆ
Vl

ψldV, (2.3)

〈ψl〉l = 1
Vl

ˆ
Vl

ψldV, (2.4)

where l is the liquid phase and V is the averaging volume. The reason for the
distinction is the inclusion of the solid matrix in the averaging vcolume in addition
to the liquid phase, thus we can relate the averages using the porosity of the porous
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8 2.1. Deriving Darcy’s law for single phase flow

medium, or equivalently the volume fraction of the liquid phase in the single phase
case.

〈ψl〉 = ε〈ψl〉l. (2.5)

2.1.1 Continuity equation
Without going into extreme detail we present the spatial averaging of 2.2 as

〈∇ · vl〉 = ∇ · 〈vl〉+ 1
V

ˆ
Als

nls · vldA = 0. (2.6)

This equation can be reduced to the standard continuity equation by application of
the no-slip boundary condition on the liquid-solid interface, giving the form

∇ · 〈vl〉 = 0. (2.7)

This result is reached by application of spatial averaging although in the derivation
of the momentum equation we will make use of the intrinsic spatially averaged
continuity equation, of the form

∇ · 〈vl〉l = −1
ε
∇ε · 〈vl〉l (2.8)

2.1.2 Momentum equation
The phase averaged momentum equation is

0 = −∇〈pl〉 −
1
V

ˆ
Als

nlspldA+ ερlg + µl〈∇ · ∇vl〉, (2.9)

however it is necessary to make use of the intrinsic phase averaged pressure due to
boundary effects. In order to represent this in equation 2.9 we make use of

〈pl〉 = ε〈pl〉l, (2.10)
pl = 〈pl〉l + p̃l, (2.11)

where the former equation represents the averaging relation and the latter Gray’s
decomposition [19]. p̃l is the spatial deviation of the pressure from the average. We
can then expand the pressure averaged term as

−∇〈pl〉 −
1
V

ˆ
Als

nlspldA = −ε∇〈pl〉l − 〈pl〉l∇ε

− 1
V

ˆ
Als

nls〈pl〉ldA−
1
V

ˆ
Als

nlsp̃ldA.
(2.12)

We now introduce a length scale constraint to the model of the form(
r0

L0

)2
<< 1, (2.13)
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where r0 is the averaging volume characteristic length and L0 is the macroscopic
characteristic length. This requirement is especially important as it states that the
final form of Darcy’s law must adhere to a definite separation of scale magnitudes in
order to be valid. The introduction of this restriction is to allow the transformation

1
V

ˆ
Als

nls〈pl〉ldA = 1
V

(ˆ
Als

nlsdA
)
〈pl〉l (2.14)

Taking advantage of this relation we can rewrite 2.12 as

−∇〈pl〉 −
1
V

ˆ
Als

nlspldA = −ε∇〈pl〉l −
1
V

ˆ
Als

nlsp̃ldA. (2.15)

Now that we have the pressure terms we apply the phase averaging twice to the
viscous term in equation 2.9 and reduce the resulting terms by applying the no slip
condition, resulting in

0 = −ε∇〈pl〉l −
1
V

ˆ
Als

nlsp̃ldA+ ερlg

+ µl

(
∇2〈vl〉+ 1

V

ˆ
Als

nls · ∇vldA
)
.

(2.16)

In a similar manner to the preceding discussion on the pressure term we can apply
the following relations to the last term in 2.16

〈vl〉 = ε〈vl〉l, (2.17)
vl = 〈vl〉l + ṽl, (2.18)

and get the relation
1
V

ˆ
Als

nls · ∇vldA = −∇ε · ∇〈vl〉l + 1
V

ˆ
Als

nls · ∇ṽldA. (2.19)

Once again we must apply the intrinsic phase average to the viscous term in 2.16
and apply relation 2.19 to get

0 = −∇〈pl〉l −
1
εVl

ˆ
Als

nlsp̃ldA+ ρlg

+ µl

(
∇2〈vl〉l + ∇ε

ε
· ∇〈vl〉l + 〈vl〉

l∇2ε

ε

)
+ µl
Vl

ˆ
Als

nls · ∇ṽldA.
(2.20)

At this stage we apply an analysis on the orders of magnitude of the terms in 2.20,
beginning with scale restriction we imposed earlier, which implies that

ṽl = O(lcap), (2.21)

where lcap is the capillary radius of the porous medium and we note that lcap < r0 < L0.
From this we can determine the order for the velocity spatial deviation term and
relate it to the spatial average.

∇ṽl = O(ṽl/lcap), (2.22)
ṽl = O(〈vl〉l/lcap). (2.23)
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By construction of our equations we know the length scales for 〈vl〉l, 〈pl〉l and ε are
the same, namely the macroscopic scale L0. Thus we can relate the viscous terms in
equation 2.20 to respective orders of magnitude.

µl
Vl

ˆ
Als

nls · ∇ṽldA = O(µl〈vl〉l/l2cap), (2.24)

µl∇2〈vl〉l = O(µl〈vl〉l/L2
0), (2.25)

∇ε
ε
· ∇〈vl〉l = O(µl〈vl〉l/L2

0), (2.26)

〈vl〉l∇2ε

ε
= O(µl〈vl〉l/L2

0). (2.27)

From this analysis the viscous terms that do not include the integral are insignificant
when compared to the contribution of the the integral term and we can therefore
remove them from our formulation, giving us

0 = −∇〈pl〉l −
1
εVl

ˆ
Als

nlsp̃ldA+ ρlg + µl
Vl

ˆ
Als

nls · ∇ṽldA. (2.28)

In order to close this equation we must determine the spatial deviation terms for
pressure and velocity in terms of the spatially averaged values. This process requires
the formulation of successive governing equations for the spatial deviation variables
until a homogeneous boundary value problem is reached. The logic of this reduction
is similar to that used in the steps detailed up to this point and we will not elaborate
on them further. We note only that within this reduction the assumption that p̃l and
ṽl are of equal magnitude is used. Ultimately we get representations of the spatial
deviation variables as

ṽl = B · 〈vl〉l, (2.29)
p̃l = µlb · 〈vl〉l. (2.30)

where B and b are arbitrary and appear in the final boundary value problem. Now
we can rewrite 2.28 as

0 = −∇〈pl〉l + ρlg +
(
µl
Vl

ˆ
Als

nls · (∇B− Ib)dA
)
· 〈vl〉l. (2.31)

The integral terms have been slightly rewritten to move the averaged velocity term
outside of the integral using the justification developed concerning the magnitudes
of the length scales, namely lcap << L0. Finally we can rewrite the integral term in
the form

C = − 1
Vl

ˆ
Als

nls · (∇B− Ib)dA, (2.32)

and express the phase averaged velocity as

〈vl〉l = −C−1

µl
· (∇〈pl〉l − ρlg). (2.33)
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We convert to phase average velocity by rewriting the permeability tensor as

K = εC−1 (2.34)

and get the standard form of Darcy’s law

〈vl〉 = −K
µl
· (∇〈pl〉l − ρlg). (2.35)

Now that we have successfully derived Darcy’s law under the stipulated assumptions
we will continue with the understanding that the appropriate spatial averaging has
been applied and thus we can write simply

vl = −K
µl
· (∇〈pl〉l − ρlg). (2.36)

2.1.3 Unsteady formulation
Now that we have derived the steady-state single phase form of Darcy’s law we wish
to briefly discuss the extension of the equation to include the unsteady term and
its implications. We will not explicitly derive the equation but rather discuss the
possible forms the unsteady term can take, beginning with the standard unsteady
Darcy’s law euqations

∇ · (ρlvl) = 0, (2.37)

τ
∂vl
∂t

+ vl = −K
µl

(∇〈pl〉l − ρlg). (2.38)

Note that the only deviation from the previous representation is the addition of the
unsteady term in the momentum equation. The difficulty is to properly define the
coefficient for the unsteady and there exist several methods for its derivation. Due to
the difficulties arising from the implementation of the transient term numerically it is
largely ignored on the basis that its effect is limited outside of special cases wherein
the permeability is linked to this term at very low Reynolds numbers. Therefore
we will only present the possible formulations in the interest of completeness of the
theoretical framework as the work undertaken is considered to be transient. The
interested reader is encouraged to refer to [20] for a more thorough treatment of
unsteady term in Darcy’s law. One possible method is to apply the volume averaging
technique used in the steady formulation derivation on the Navier-Stokes momentum
equation, which gives

τva = Kρl
µlε

. (2.39)

Another representation of τ can be attained by introducing a virtual mass coefficient
to account for flow accelerations around obstacles, in this case soil particles. The
virtual mass coefficient is of the form

τvm = Kρl
µlε

[
1 + Cvm

1− ε
ε

]
, (2.40)
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where Cvm is an empirical coefficient accounting for pore-scale flow inhomogeneities.
The final representation of the unsteady term coefficient is based upon volume
averaging the kinetic energy equation, resulting in

τen = Kρl
µl

〈vl · vl〉
〈vl〉 · 〈vl〉

, (2.41)

where the brackets represent spatial averaging as defined previously.

2.2 Porous - free-flow interface
Another aspect to consider when working with Darcy’s law is the incompatability
of boundary conditions that arises when one wishes to couple a non-porous region
to one or several porous regions. This incompatability stems from the theoretical
formulations for each region. We have already presented the formulation for flow in
porous media but we have not discussed flow in a non-porous region, where inertial
effects must be considered. We present the Navier-Stokes equations for single-phase
unsteady incompressible flow

∇ · ul = 0, (2.42)

ρl
∂ul
∂t

+ ρl(ul · ∇ul) = −∇pl + µl∇2ul + ρlg, (2.43)

and reiterate the Stokes equation for creeping flow for convenience.

∇ · ul = 0, (2.44)

ρl
∂ul
∂t

= −∇pl + µl∇2ul + ρlg. (2.45)

As we can see in equation 2.43 we have inclusion of the inertial term and thus we
cannot combine this with the continuity equation as we can in the case of Darcy’s
law to remove the dependent variable ul. Due to this restriction we must provide an
additional boundary condition in order to ensure a proper solution. This additional
boundary condition for the Navier-Stokes formulation will act on the Darcy’s law
boundary as an overdetermination of the equation system however we must ensure
continuity of both momentum and mass across the interface. This difficulty has
been explored relatively thoroughly with the conclusion there is no perfect solution.
We present the most common methods to bypass this conundrum by defining the
additional boundary condition in terms of the solution of Darcy’s law. The most
straightforward boundary conditions is the requirement of velocity continuity and its
interface-normal gradient.

ul = vl, (2.46)
∇ul · n = ∇vl · −n. (2.47)

This formulation may be straightforward although it doesn’t say anything about
the velocity behaviour tangential to the interface thus we may experience some
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discontiuity or numerical forcing that impacts the accuracy, particularly locally.
Another similar formulation applies an effective dynamic viscosity coefficient to the
porous media side of the condition, given as

ul = vl, (2.48)
µl∇ul · n = µl,eff∇vl · −n. (2.49)

The third formulation introduces the concept of a jump condition that maintains
the velocity continuity across the interface however the velocity normal derivative is
modified to be

ul = vl, (2.50)
µl∇ul · n + β1

µl
K
· ul = µl

ε
∇vl · −n. (2.51)

where β1 is a dimensionless coefficient. This formulation allows for the solution of
each domain separately by allowing for different velocity derivatives at the interface.
An extension of this jump condition includes an additional term proportional to the
velocity squared.

ul = vl, (2.52)
µl∇ul · n + β1

µl
K
· ul + β2ρlu2

l = µl
ε
∇vl · −n. (2.53)

Once again the additional coefficient β2 is dimensionless. The final formulation of
the boundary interfacial condition is of more interest and was developed by Joseph
and Beavers in 1967 [21] and only concerns the free flow velocity derivative at the
interface.

ul = vl, (2.54)

∇ul · n = α∗

K
· (ul,int − ul,∞), (2.55)

where α∗ is a dimensionless slip coefficient, ul,int is an interfacial velocity and ul,∞ is
the free-flow velocity. It is worthwhile to note at this point that while this condition
has been proven rigorously consistent by [22] for single phase flows there is no such
backing for its extension to multiphase flows even though it is commonly used in
such cases.

2.3 Extending single phase equations to multiphase

In general, the extension of single phase equations to multiphase is straightforward;
define a set of equations for each fluid phase and a scalar variable equation representing
the fraction of each phase present in a single averaging (or computational) volume.
Darcy’s law can be extended to multiphasic systems by including a subscript ω(= η),
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giving

ω = l, a, (2.56)
ωl + ωa + ε = 1, (2.57)

∂αω
∂t

+∇ · vω = 0, (2.58)

vω = −Kω

µω
· (∇〈pω〉ω − ρωg) + Kωη · vω, (2.59)

where αω is the volume fraction of each phase and Kωη represent viscous drag effects
of one phase upon the other. It is worthwhile to mention that Kls 6= Ksl and
that these terms can be considered negligible when the magnitude difference of the
viscosities is non-unity. The discussion surrounding these terms and the details of
the derivation for multiphase Darcy’s law can be found in Whitaker [23] though it is
beyond the scope of this work.

In single phase Darcy’s law we only considered a single permeability K however
in multiphase we now have to consider the interactions between the solid matrix and
the fluid phases in addition to their effects on each other. This requirement leads
to the introduction of relative permeability krω and its mathematical relationship to
(absolute) permeability

Kω = krωK. (2.60)

We must be very careful when representing the permeabilities in this manner as
the interactions described are not isotropic and the exact relation between these
quantities is unknown therefore we are forced settle for a coefficient. Additionally we
note that the relative permeability is not isotropic either and should be a tensor. The
difficulty in determining such a complex tensor experimentally or numerically means
we simplify it to a scalar between 0 and 1 though the sum of relative permeabilities
needn’t be unity.

2.4 Relative permeability and variable saturation
When working with a single phase subsurface flow problem we can experimentally
determine the permeability of the solid matrix however with the addition of more
phases and consequently relative permeability, we must construct a relationship
between the two phases. This interaction aims to capture lubricating effects on the
solid matrix, capillary suction and interpenetration of the phases. When we say inter-
penetration of the phases we must stress that the phases are considered immiscible
and the only possible mass transfer must occur via condensation/evaporation. As
we have not introduced temperature dependence this will not be considered further.
The phase interaction represented by relative permeabilities is by its construction
phasic volume fraction dependent thus we must introduce the concepts of saturation
and volumetric water content. Volumetric water content is denoted by θ and can be
related to saturation by

Sl = θ

ε
, (2.61)
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for a representative volume. It is important to stress that saturation is not equivalent
to effective saturation (also known as normalized water content) which is defined as

Se = θ − θr
θs − θr

, (2.62)

where θs is saturated volumetric water content and θr is residual volumetric water
content. There are several models to relate effective saturation to capillary pressure
or pressure head such as the Brooks-Corey model [24] used in the oil and gas industry
however the most common model in use is the van Genuchtem-Mualem model (VGM).

Se = [1 + (pc/pg)n]−m, (2.63)
m = 1− 1/n, (2.64)

where pc is the capillary pressure, pg is a pressure scaling value, and m and n are
fitting coefficients related to the pore size distribution. Capillary pressure is defined
as

pc = (pa − pl). (2.65)
In order to complete the relationship between relative permeability and effective
saturation we must introduce hydraulic conductivity, which describes the ability
of liquid to flow through the pore spaces of a porous medium. It is related to
permeability by

K = κ
µl
ρlg

. (2.66)

Now that we can relate permeability and hydraulic conductivity we can define the
relationship we require accordingly as

κ(Se) = κsκr(Se), (2.67)
κ(Se) = κsS

q
e(1− (1− S1/m

e )m)2, (2.68)

where κs is the saturated hydraulic conductivity and q is a model parameter rep-
resenting the pore connectivity. Our equation system is now closed. If we wish to
use the VGM model, we only require the coefficient values and easily measurable
material properties although generally this requires extensive and difficult experi-
mentation to correctly determine their values. As an alternative we will calculate
this relationship directly at the mesoscale. Before we do this we will touch on an
additional issue arising when attempting to include variable saturation in traditional
CFD simulations.

2.5 Variable saturation and mass conservation
When working with multiphase systems we must track the interface between the
phases in order to accurately determine the volumetric volume fractions for each
phase. This can be done using a variety of techniques including Volume of Fluid
(VOF), Level-set Method (LSM) and immersed boundary method (IBM). In most
cases the phase volume fractions are computed at every iteration of the simulation for
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all cells. We will focus on the VOF method in Fluent 17.1 and discuss the problems
that arise when implementing variable saturation. In Fluent 17.1 the VOF model
interphase tracking (mass conservation) is

1
ρω

 ∂
∂t

(αωρω) +∇ · (αωρωvω) = Sαω +
∑
η=l,a

(ṁηω − ṁωη)
 , (2.69)

where Sαω is a phasic source term and ṁηω is mass transfer from phase η to ω. The
issue becomes plain if we examine the equation for multiphase scalar transport.

∂

∂t
(αωρωφω) +∇ · (αωρωvωφω) = ∇ · (αωΓω∇φω) + Sφ,ω, (2.70)

where φω is any scalar quantity and Γω is the diffusion coefficient. If we recall
previously that since both effective saturation and volumetric fractions range from
0 to 1 and represent the quantity of liquid vs. air in a volume, they are essentially
identical. We can safely argue that diffusion is a non-negligible process with regard to
saturation and therefore the diffusion term must be present in any transport equation.
This disconnect between the two equations will cause a myriad of inaccuracies,
particularly in mass conservation, in the solution of the entire system, rendering
the result useless. In order to rectify this problem a correction factor must be used
and tuning this unphysical correction term is time consuming and must rely on
experimentation to adjust accurately for each unique case. Another method to
account for this disconnect is to solve for saturation on a smaller scale using the
Lattice Boltzmann method.



Chapter 3

Mesoscale simulations using
Lattice Boltzmann

3.1 The Lattice Boltzmann Method
We begin with a short background of the Lattice Boltzmann method (LBM) and a
derivation of the discrete Boltzmann equation. This is followed by its application to
our problem regarding saturation and relative permeability over time.

3.1.1 The Boltzmann equation
The Lattice Boltzmann method is an alternative to the traditional Navier-Stokes
approach by solving the Boltzmann equation. It can be applied to the mesoscopic
scale as well as the macroscopic scale, depending on the desired resolution and
problem scale. While it has advantages over traditional CFD modeling I do not
believe it can be used as a substitute due to the extensive background enjoyed by
CFD. The original method to use this approach was developed in the 1950s by Ulam
and von Neumann and was called the Lattice Gas Automaton. The method has been
modified since its earliest form and is experiencing a resurgence in interest due to its
capacity for handling multiphase flows in complex geometries, among other benefits.
Once again we will present a brief derivation of the discrete Boltzmann equation that
is solved in LBM and stress the assumptions required for its application. A more
complete derivation can be found in [25]. Similarly to the derivation of Darcy’s law
the background provided by this derivation is useful both for understanding exactly
how the method works but also its inherent limitations.

Before we can present the Boltzmann equation we must discuss the idea of a
phase space and a corresponding density function. A phase space is defined as a
space in which every state of a system corresponds to a single point within the
space. In our case it is defined by positional coordinates ~x and momenta ~p = M~v
where M is mass and ~v is velocity. The space is 6-dimensional and each position is
parametrized by time t. Thus a differential elementary volume can be written as

d3~xd3~p = dxdydzdpxdpydpz, (3.1)

17
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and the corresponding density function f(~x, ~p, t) is defined such that the probable
number of particles in the volume is given by

N =
ˆ
d3~p

ˆ
d3~xf(~x, ~p, t). (3.2)

We can now represent the general Boltzmann equation in terms of the density
distribution function by

df

dt
=
(
∂f

∂t

)
force

+
(
∂f

∂t

)
diff

+
(
∂f

∂t

)
coll

, (3.3)

where the force term represents any external force applied to the particles, the
diffusion term represents particle diffusion, and the collision term represents inter-
particle collisions. After some re-representation of the force and diffusion terms we
can rewrite equation 3.3 by balancing these terms against the collision term.

∂f

∂t
+ ~p

M
· ∇f + ~F · ∂f

∂~p
=
(
∂f

∂t

)
coll

. (3.4)

Before we can solve this equation we must find a representation for the collision term.
Deriving this term requires knowledge of statistical mechanics beyond the scope of
this work however we will give its representation and most common simplified form
in the interest of completeness.(

∂f

∂t

)
coll

=
ˆ

(f̂12 − f12)~gI(~g,Ω)dΩd~p12, (3.5)

where f̂12 is the post-collision distribution of particles 1 and 2, ~g = ~v1 − ~v2 is
the relative velocity between the particles, I is the differential cross-section of the
collision and Ω is the characteristic angle of collision. It is important to note
that in order to calculate such interactions Boltzmann applied the argument of
so-called Stosszahlansatz, or "molecular chaos". This argument states that while the
probabilities or two particles colliding is reliant on the collisions of other particles with
them ad infinitum, however we can consider their distribution functions independent
of each other, such that

f12 = f1f2, (3.6)

and consequently we can rewrite equation 3.5 as(
∂f

∂t

)
coll

=
ˆ ˆ

(f̂1f̂2 − f1f2)~gI(~g,Ω)dΩd~p1d~p2. (3.7)

For covenience when describing the the discrete Boltzmann equation we can rewrite
3.4 in terms of a streaming operator S and a collision operator C .

S f = C12. (3.8)
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In addition we can relate the macroscopic quantities density ρ, momentum ρv and
energy density ρe to the collision invariants. These collision invariants are the particle
number, momentum and energy. These quantities are related by

ρ = M

ˆ
fd~v, (3.9)

ρv = M

ˆ
fd~v, (3.10)

ρe = M

ˆ
f
~v2

2 d~v. (3.11)

The few final notes on the Boltzmann equation deal with equilibria. The distri-
bution function satisfies the condition of local equilibirium, that is particles entering
the element are balanced with those exiting. In addition, fluids tend to local equilib-
rium and this process is called local equilibrium relaxation. This relaxation takes
place from one-body distribution to local equilibrium among particles and finally
to global equilibrium over the domain. It is therefore unsurprising that one can
link the particle kinetics to macroscopic scale theory by spanning ever-larger time
scales. It is possible to derive the Navier-Stokes equations of motion from the Boltz-
mann equation by expanding the variables appropriately. This is done by applying
the Chapman-Enskog expansion however the details are beyond the scope of this work.

3.1.2 Lattice-Gas Cellular Automata
In order to reach the discrete Boltzmann equation formulation we must start with the
theory behind the predecessor of LBM, the Lattice-Gas Cellular Automata (LGCA).
In this method a cell is composed of nodes and vectors connecting them to each
other. The cell can be a variety of shapes in 2 and 3 dimensions but we shall focus on
a square 2-dimensional lattice for our explanation. The vectors connecting the nodes
are given as ~cr = [cri, crj] where r is a node number a i, j are Cartesian coordinates
x, y. There are a few rules for lattice occupancy, namely:

• All particles have the same mass, M = 1.

• A particle can move only in one direction in a single time interval.

• A particle moves from ~x to ~x+ ~cr.

• Two particles in the same position cannot move in the same direction.

These rules allow for a cell to hold up to 8 fluid particles simultaneously at a single
time instant and we therefore define an occupancy number nr to define the possible
states

nr(~x, t) = 0, no particles present, (3.12)
nr(~x, t) = 1, a particle is present. (3.13)
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The streaming and collision operators given in the compressed Boltzmann equation
3.8 can be written in discrete format to describe a particle’s motion in the lattice by

Srnr = nr(~x+ ~cr, t+ 1)− nr(~x, t), (3.14)
Cr(n1, ..., n9) = ñr(~x, t)− nr(~x, t), (3.15)

Srnr = Cr(n1, ..., n9), (3.16)

where ñr is the post-collision state. In order to recover the Navier-Stokes equations
the collisions in this system must satisfy conservation of mass and momentum.
In addition, the cells must be shaped such that the rotational invariance of the
Navier-Stokes stress and strain tensor elements is properly captured.

3.1.3 The Lattice Boltzmann equation
An improvement upon the LGCA was developed by McNamara and Zanetti [26] in
1988 that removes the occupancy number Boolean values and replaced them with a
mean and fluctuating value

nr = fr + rr, (3.17)

where fr is the spatial and temportal mean value of the occupancy number. This
modification meant that rather than fixing particles to a specific point, each location
is assigned a mean probability of finding a particle at that location. The motivation
for this change was to reduce statistical noise which was present in the LGCA.
Substituting equation 3.17 into 3.16 we get

S fr = Cr(f1, ..., f9) +Rr, (3.18)

where Rr is the sum of the fluctuations. Due to the concept of molecular chaos
mentioned earlier all particles are uncorrelated and thus all have the same probabilities
thus Rr = 0. Thus the non-linear Lattice Boltzmann is written as

S fr = Cr(f1, ..., f9). (3.19)

In order to overcome the nonlinearity of the collision operator the Chapman-Enskog
expansion was suggested by both McNamara and Zanetti [26] as well as Higuera and
Jimenez [27] to generate the quasi-linear Lattice Boltzmann equation

S fr = Ar1r2(fr1 − f er2), (3.20)

where r1, r2 are distinct directions and A is a scattering matrix. A further modifica-
tion of this equation resulted in the Lattice-Bhatnagar-Gross-Krook (LBGK) model.
This model replaced the scattering matrix with a single parameter τf to define the
physics of the fluid and is written as

S fr = − 1
τf

(fr1 − f er ). (3.21)
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This model is also known as the single time relaxation model and requires the
satisfaction of the conditions:

ρ =
∑
r

f er =
∑
r

fr, (3.22)

ρvi =
∑
r

f er cri =
∑
r

frcri. (3.23)

The equilibrium distributions f er must be chosen to correctly reflect the Navier-Stokes
equations in terms of conservation and depend on the choice of cell dimension and
shape. In addition there is some restriction of the choice of τf as it is related to fluid
kinematic viscosity by

ν = c2
s(τf − 0.5), (3.24)

where cs is a speed of sound coefficient. From this we can see that values of τf below
0.5 will induce a negative viscosity and if we increase it too much we will increase
the fluid viscosity similarly.

3.1.4 The Washburn equation
The last theoretical concept we will introduce related to LBM is the usage of the
Washburn equation to calculate an analystical solution for saturation over time in a
tube as a guide for our simulation results. The Washburn equation is given as

h2
c(t) = γ cos(θc)Rc

2µl
t, (3.25)

where hc is the liquid penetration depth along the main flow direction, γ is the
surface tension, θc is the liquid-air contact angle and Rc is the capillary radius. it
describes the capillary rise of liquid in a pore or tube without external forces. It
can be derived from the Stokes equation for flow in a pipe of constant radius and
applying an initial condition of h(0) = 0. We neglect the intertial term as our flow is
of sufficiently low velocity that it will be negligible and the resulting equation is

hc(t) =
(
γ cos(θc)Rc

2µl
− ∆P

Lp

l∆PR
2
c

4µl

) 1
2

t
1
2 , (3.26)

where l∆P is the liquid volume thickness. By taking an analogue for the definition of
saturation we can nondimensionalize equation 3.26 an relate it to saturation. This
analogue is based upon arguing that the liquid volume present as a function of time
can be related to capillary rise if we look at the domain as a singular volume, thus
we can argue

Sl(t) = Vl
εV
≈ 〈hc(t)〉

Lp
, (3.27)

and subsequently

Sl(t) =
(
γ cos(θc)Rc

2µlL2 − ∆P
Lp

l∆PR
2
c

4µlL2

) 1
2

t
1
2 . (3.28)
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By grouping the terms as ratios between capillary and viscous forces, and pressure
gradient and viscous forces, respectively, we can rewrite equation 3.28 in terms of a
dimensionless time t∗

Uγ = 2γ cos(θc)Rc

µlL
, (3.29)

U∆P = −∆P
Lp

l∆PR
2
c

4µlL
, (3.30)

t∗ = (U∆P + Uγ)
L

, (3.31)

Sl(t) ≈
1
2t
∗ 1

2 . (3.32)

This result will be used in chapter 4 to give an idea of the accuracy of the simulations
when compared to an ideal capillary system. Note that this analytical result is based
upon a constant capillary radius, which does not reflect our cases but it is useful as
a guide on the temporal dynamics of the system. We are now ready to implement
the therotical framework discussed in this chapter in a LBM code.

3.2 Implementation of LBM
During the course of the work with Lattice Boltzmann the open source code developed
by Dario Maggiolo was used [28]. It is capable of handling multiphase flow with the
caveat that the density difference must not exceed 104, which holds for our case of
air and water. Moreover the code allows for thermal effects should this be desired;
in the current work this is neglected.

Lattice generation

Before any simulations can be run a binary 3D lattice must be generated, representa-
tive of the desired soil geometry. There are a myriad of approaches that may be taken
to accomplish this task, from structured or randomized volume packing algorithms to
image analysis of X-ray tomography scans. The approach used here takes advantage
of an modeling software called Blender, which can handle a large number of objects
and apply simple collision physics to allow for a randomized packing in a chosen
volume. The volume dimensions are chosen such that they adhere to restrictions
regarding wall effects on the calculated flow field [29]. It is common practice to
ensure the boundaries are at least 15-20 times the particle diameter perpendicular to
the flow direction to ensure the minimization of wall effects, thus we must determine
the appropriate particle diameter.

The spherical particle diameter is calculated from the desired pore-size that you
wish to resolve using LBM. In this case there is information available on the typical
pore sizes of lightweight expanded clay aggregates (LECA) [30]. It is alternatively
possible to simply determine by experimentation your particle size-distribution and
either generate a representative quantity of particles or choose a mean approximation.
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In order to determine the equivalent grain size from our resolved pore size we apply
the Revil, Glover, Pezard and Zamora (RGPZ) model [31], [32] which states

deff = 2Θreff , (3.33)

Θ =
√
ew2

8ε2w , (3.34)

where e is a parameter valued 8/3, w is the cementation exponent valued 1.5 for
spherical particles and ε is the porosity.

In the software Blender the spheres are initialized in the desired quantity, in this
case 5376, above the domain box and are allowed to fall and interact with each other
by application of rigid body physics (collision with no deformation). These spheres
can be considered randomly packed and this method of packing has been validated
for use as such in [33]. We give an example of such a packing being formed by the
falling spheres in Blender in Figure 3.1. The spheres within the box will be converted
into the lattice using MATLAB.

Figure 3.1: Blender simulation of randomly packed spheres after 150 seconds.

The spheres’ center coordinates are tracked over a sufficient number of frames
until they come to rest and the final values are exported for use in the lattice
generation. In order to generate the binary lattice we determine an appropriate
number of nodes for each direction that allow us to capture the geometry accurately
and is determined by testing. Due to the nature of the restriction on domain size
we mentioned previously and the resolution requirements we find the simulation
complexity can increase extremely quickly, as demonstrated by Table 3.1.

To generate the lattice a MATLAB code is used to detemine which nodes are
solid and which are void spaces based upon sphere radii and node location. Note
that in Blender the spheres are detemined by physical measurements however the
lattice has no metric, thus the conversion must be done to preserve the integrity of
the packed spheres. An example of the conversion can be found in Figure 3.2. This
conversion preserves only the sphere centers and approximates as best as possible the
full sphere volumes however before we can use the lattice we must add a non-porous
zone above the porous zone to contain the liquid and we add walls as well. Once
this is done the lattice is ready to use in the LBM code.
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Table 3.1: Lattice node quantities for several grid resolutions.

NZ NX NY Total Nodes
Grid 1 50 150 150 1.125 ×106

Grid 2 60 180 180 1.994 ×106

Grid 3 70 210 210 3.087 ×106

Grid 4 80 240 240 4.608 ×106

Grid 5 140 420 420 2.4696 ×107

(a) Converted lattice, NZ = 70. (b) Free-flow and walls added, NZ = 140.

Figure 3.2: Conversion and modification of Blender domain, 2D slice at X = 105.

In the rest of this document we will discuss different cases run on a single lattice.
This lattice is defined in Table 3.1 as Grid 3. This lattice consists of a domain
measuring Z ×X × Y = 1.0× 1.5× 1.5 [cm]. of which half is porous media. This
domain is pictured in Figure 3.3

Non-dimensionalized simulation inputs

In this code all inputs into the LBM simulation must be non-dimensional and here
we discuss the method by which the conversions are done with regard to the code in
use. We begin with 3 characteristic lengths that will be used

L = 1.5× 10−2[m], (3.35)
h = 2.5× 10−3[m], (3.36)
d = 7.4× 10−4[m], (3.37)

which are defined as the domain length perpendicular to the direction of flow, the
standing water height and the soil particle diameter, respectively. From these values
and a choice of lattice resolution we can convert from metric units to LBM units
with relative ease.

LLB = 210, (3.38)

∆xvox = L∆xLB
LLB

= 7.14× 10−5[m], (3.39)

dLB = d∆xLB
∆xvox

= 10.4. (3.40)
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Figure 3.3: 3D lattice reconstruction, [140, 210, 210] = [1.0, 1.5, 1.5] [cm].

Note here that the lattice increment is 1. Any desired conversion can be done in this
way and we will only provide some relevant relations that are used in the course of
the work.

U = K

µl

(
∆P
L

)
= Reνl

d
, (3.41)

Bo = ∆ρgh2

γ
, (3.42)

g = γ

∆ρh2Bo
, (3.43)

t = tLB
L2

L2
LB

νl,LB
νl

, (3.44)

K = Uµl(
∆P
L

)
L2
, (3.45)

Re = Kd

µlνl

(
∆P
L

)
. (3.46)

where U and U are the velocity and spatially averaged velocity, K is the permeability,
νl is the kinematic viscosity, g is the gravitational constant, γ is surface tension,
Bo is the bond number and represents the ratio of gravitational forces to surface
tension and Re is the Reynolds number representing the ratio of viscous and interial
forces. In Table 3.2 we present the dimensional anad non-dimensional values for the
parameters of interest. In our simulations we have chosen the standard liquid height
h to be 2.5 [mm], resulting in a bond number of approximately 1. From this we can
back calculate the pressure difference in lattice units since these equations are valid
for both physical values and lattice unit equivalencies. We now have the necessary
to run the simulations, beginning with single phase.
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Table 3.2: Physical and non-dimensional constants.

Quantity Non-dim. value Physical value Unit
L 210 15 [mm]
h 15/35/50 1/2.5/3.6 [mm]
d 10.4 0.74 [mm]
µl 2.4/6 1.00e-3 [Ns/m2]
µa 0.12/6 1.68e-7 [Ns/m2]
νl 1/6 1.00e-6 [m2/s]
νa 1/6 1.27e-5 [m2/s]
ρl 2.4 998 [kg/m3]
ρa 0.12 1.20 [kg/m3]
γ 0.093 0.074 [N/m]

3.2.1 Single phase simulations
Before running simulations to determine saturation we undertake a grid resolution
test. We do this to determine the optimal resolution to capture the flow without
unnecessary computation time and effort. This is accomplished by increasing and
decreasing the number of nodes and generating a new lattice accordingly. Simulations
are run for 10,000 iterations and the determination of grid resolution accuracy is
accomplished by calculating the permeability as well as checking the Reynolds
number.

Table 3.3: Grid resolution test case input and results.

Case dPdL Re Permeability % Error
Grid 1 6.53E-5 0.00195 1.39E-6 -
Grid 2 4.53E-5 0.00221 1.29E-6 7
Grid 3 3.30E-5 0.00245 1.22E-6 5
Grid 4 2.55E-5 0.00276 1.18E-6 3

The selection of the appropriate grid is reliant on the acceptable error tolerance
upon grid refinement. In our case we are comfortable with the 5% relative error thus
we choose the Grid 3 and its solution for single phase air flow as the starting point
for the multiphase simulations.

3.2.2 Multiphase simulations
Once the appropriate grid resolution has been chosen, in our case Grid 3 where
L = 210, we can extend the simulations to include rainfall imbibition and drainage.
The lattice must be modified accordingly to incorporate surface water or water
already present in the soil matrix. In our case we simply define a height of water
directly above the porous medium across the domain.
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The additional parameters required to run the simulations in multiphase is the
density of the liquid phase and the contact angle of the walls (also interpreted as
hydrophilicity/phobicity of the solid matrix. This quantity is represented in the code
as ρwall. It is important to mention that we do not modify the gravity (or pressure
difference) value from the single phase base case as this would disrupt the simulation.
The liquid density is

ρl,LB = 2.4, (3.47)

and the values for ρwall range from 0.03 to 0.06. The details concerning contact angles
and their effect on the flow will be discussed in Chapter 4. After the liquid phase
has been defined in the lattice and the new parameters chosen the simulations are
run wherein the liquid simply infiltrates the porous medium driven only by gravity.
The simulation is run sufficiently long as to allow full imibibition or drainage to
take place or for a desired number of iterations. After it is complete the results are
exported for a desired number of timesteps and the results can be analyzed.

Figure 3.4: Infiltration on Grid 3, example at iteration 150,000.

An example of how these simulations look after a given number of timesteps
is shown in Figure 3.4. The exported quantities, excluding thermal and chemical
reactions, are the velocity vector, density, and the lattice information. With this
information it is possible to calculate several quantities of interest, most notably
permeability, porosity, average velocity, pore size distribution and saturation. It is
worthwhile to note that to ensure no effects from the walls are included we only
perform analysis on the interior two-thirds of the domain perpendicular to the flow.
The analysis of a variety of multiphase cases is presented in the next section.





Chapter 4

Results

4.1 The effect of contact angles on saturation
The first tests carried out using LBM investigated the effect of variable contact
angles on the flow and consequently the saturation over time. This investigation was
undertaken over a variety of cases with the aim of quantifying and understanding
the magnitude of effect this variable has on the results. As it is an easy modification
within the code and can be controlled in the design process it is a relative parameter
to study. The cases studied are outlined in detail below and will be henceforth
referred to in the manner presented within the table.

Table 4.1: Multiphase cases run using LBM, OC - old code, NC - new code, ZV -
no single phase convergence prior to multiphase.

Case h ρwall Additional Notes
MP 1 35 0.06 OC
MP 2 35 0.03 OC+NC
MP 3 35 0.04 OC
MP 4 50 0.04 OC
MP 5 50 0.06 OC
MP 6 50 0.03 OC+NC
MP 7 35 0.06 NC, ZV
MP 8 15 0.04 NC

The 8 cases are categorized by water film height (or hydraulic pressure applied)
h and contact angle (or hydrophilicity) ρwall where the angles correspondly relate as

0.06 = 72◦, (4.1)
0.04 = 78◦, (4.2)
0.03 = 81◦. (4.3)

These values are taken from the old code but since the majority of the cases were
run in this way we will use these as the standard. It is sufficient to note that the
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differences between the values from each code are minimal but it is mentioned in the
interest of clarity.

We have plotted saturation over time for the simulations and compared the results
to the theoretical solution for saturation as a function of time as given in equation
3.32. As we can see the result matches fairly well for the case of higher hydrophilicity
(Figure 4.1a) however in the case nearest to neutrality, 4.1c, we see a complete failure
of liquid imbibition. This result will be tackled in more detail later in this section.
As for the case of no single phase convergence prior to adding water, as seen in 4.1b,
we see a delay in the imbibition at the beginning but the slope quickly establishes
itself in accordance with the first case as expected. Similarly we can see quite clearly
that in Figure 4.1d that the imbibition is delayed but after some time the slope
matches that of the higher hydrophilicity cases.

(a) Case MP 1. (b) Case MP 7, no single phase prior.

(c) Case MP 2. (d) Case MP 3.

Figure 4.1: Effect of contact angle on saturation over time.

Since case MP 2 seems to be problematic we need to be sure that there is no
error with the lattice resolution. This is checked by increasing the pressure head,
modifying the water height from h = 35 to h = 50 and reducing case MP 3 to h = 15
to see if we can recreate the bloacking effect. Once again the results are plotted and
we can immediately see a few interesting changes. In Figure 4.2a we see a slightly
better convergence to the theoretical result and in 4.2d we see a slight increase in
hydraulic head results in very little difference in saturation. The most interesting
cases are 4.2b and 4.2c, where we approach the blockage scenario encountered in 4.1c.
The implication here is that we can force imbibition by increasing hydrophilicity
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simultaneously with pressure head reduction OR simply increase the hydraulic head
and keep hydrophilicity steady.

(a) Case MP 5. (b) Case MP 8.

(c) Case MP 6. (d) Case MP 4.

Figure 4.2: Effect of contact angle on saturation over time.

These results are in keeping with physical theory and thus we can be confident
the simulations are capturing the phenomena accurately however there may still be
the issue with lattice resolution. We test this by running case MP 2 on a higher
resolution lattice and check if the imibibition is improved.

(a) Case MP 2. (b) Case MP 2 with lattice [160 240 240].

Figure 4.3: Effect of increasing lattice resolution on case MP 2.

As we can see, the lattice resolution increase has no effect on the imbibition
over time and thus we can safely conclude the effect we are witnessing is accurate
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and stems from the capillary nature of the domain itself in combination with the
contact angle. To check if this case and its higher hydraulic head analogue eventually
converge we extend the length of the simulation from 150,000 iterations to 450,000
and plot the results.

(a) Case MP 2. (b) Case MP 6.

Figure 4.4: MP 2 and 6 extended to 450,000 iterations.

It is noteworthy to mention that when running these simulations from 150,000 to
450,000 iterations the code was updated to redefine contact angle values however the
modifications are minimal therefore we consider these plots to be reasonably accurate.
It is clear that increasing the hydraulic head allows for eventual imbibition after
sufficient energy accumulates to break the surface tension force. This phenomenon is
called a capillary barrier and more information regarding this can be found in [34]
and [35]. Since we have identified problematic cases regarding imbibition when the
solid mactrix is only slightly hydrophilic we wish to analyze the evolution of the
liquid front over time.
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4.2 Liquid front evolution over time
When looking into the liquid front evolution we will focus on a more limited number
of cases, particularly of interest are the borderline blockage cases. In the interest of
clarity we will relist the cases that will be considered within this section.

Table 4.2: Multiphase cases run using LBM, OC - old code, NC - new code.

Case h ρwall Additional Notes
MP 1 35 0.06 OC
MP 2 35 0.03 OC+NC
MP 6 50 0.03 OC+NC
MP 8 15 0.04 NC

We plot the penetration depths of the water as a function of time and look at the
effect of channeling (or ganglia formation) due to the wetting process. This physical
phenomena can be described by the increased local hydraulic conductivity due to
the changing contact angle in pre-wetted areas. In such areas the liquid will follow
these established paths rather than create new ones. On the microsocopic scale there
exists the concept of dynamic contact angles and their effect on the flow patterns
in the capillary structure. This process is beyond the scope of this work however
it can be noted that these effects can be considered significant in conditions with
heterogeneous surface smoothness and specific flow conditions. The interested reader
is invited to pursue this topic in the works of [36], [37], [38] and [39]. The presented
graphs show the largest depth at which the liquid phase has penetrated by the given
iteration number. They do not represent a particular 2D plane but rather a "map"
of the ganglia formation as a function of the domain. If we refer to Figure 3.4 as a
reference the top of the porous zone is equivalent to 0 and the bottom of the porous
zone is 70 in Figures 4.5, 4.6 and 4.7.

By comparing the liquid penetration depth between the different cases we can
look at the formation of ganglia or alternately determine if the flow is primarily
spatially homogeneous. In Figures 4.5a, 4.6a and 4.7a we see that the pattern
is relatively homoegneous, likely due to the moderately high hydrophilicity which
facilitates the flow and prevents any capillary barrier formation. The other cases are
less homogeneous and exhibit the formation of localized ganglia. This behaviour can
be used to channel flow through porous media in specific patterns provided one can
keep a desired area wetted or by finding another method to facilitate a similar effect.

It is worthwhile to discuss the penetration pattern formation at time t = 150, 000
for two reasons. In Figure 4.7a we can see that the vast majority of the liquid has
reached the base of the porous layer and the purple areas denote the location of
solid particles within the matrix. In Figure 4.7d we see a slightly more homogeneous
distribution that those present in 4.7b and 4.7c. This leads to the hypothesis that
even a slight shift in hydrophilicity has a larger effect on flow distribution than seen
by the increase in hydraulic head. It is which this consideration in mind that we
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(a) Case MP 1. (b) Case MP 2.

(c) Case MP 6. (d) Case MP 8.

Figure 4.5: Liquid penetration depth at t = 60, 000.

continue our analysis of these cases by calculating the interfacial areas between the 3
phases present in our simulation.
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(a) Case MP 1. (b) Case MP 2.

(c) Case MP 6. (d) Case MP 8.

Figure 4.6: Liquid penetration depth at t = 90, 000.
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(a) Case MP 1. (b) Case MP 2.

(c) Case MP 6. (d) Case MP 8.

Figure 4.7: Liquid penetration depth at t = 150, 000.
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4.3 Liquid-air interfacial area
In this section we will look at the effect of cumulative interfacial areas over the
domain as a function of time. This information can be of use since we know
that in order to facilitate faster saturation we need to maximize the liquid-solid
interface. The primary obstacle to this is the balance between the gravity effect
on the liquid and the interfacial surface tension. The increase in total liquid-solid
interface within the domain is plotted in Figure 4.8, although we should mention
that minute changes cannot be captured over the full time interval. What we can
see is the direct correlation between wetted area of the solid matrix and saturation.
This is unsurprising due to the definition of saturation however we cannot consider
interfacial area at a given depth only due to the penetration inhomogeneity we have
observed previously in section 4.2. The best method to bypass this issue is to look
only at a particular time interval of interest but this is not covered in this work as
we find the liquid-air interface of more interest.

Figure 4.8: Saturation and liquid-solid interfacial area over time.

In Figure 4.9 we can see the initial buildup of liquid-air interfacial area followed
by the sharp decline which loosely corresponds to the beginning of the saturation
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for the case with higher hydrophilicity. The other cases are much more difficult to
accurately evaluate however we can see that the slower the imbibition the lower the
interfacial area seems to be. In addition, we do not see such pronounced variation
as in the more active cases which may correspond to the homogeneity of flow when
compared to isolated pockets of infiltration.

Figure 4.9: Saturation and liquid-air interfacial area over time.

When it comes to practical implications we can say a few words regarding the
liquid-air interfacial area. When designing a porous structure with the intention
of multiphasic flow, particularly that of decently large density differences as with
air and water, it could be a good idea to look into the effects of rapidly expanding
pores and their contribution to blockages in infiltration. While it is an extension to
claim infiltration problems arise solely due to this phenomenon we can state that
as interfacial areas increase rapidly in the flow direction we do see blocking effects.
A more prduent designer may take this into account and attempt to reduce such
blockage problems by introducing a more hydrophilic material or adding particles
of variable radius to reduce the possibility of such pore expansions forming in a
randomly packed medium. Further work must be done to accurately quantify this
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effect however we believe it is worth a mention.

This concludes the results obtained thus far and so in the next chapter we provide
a short conclusion and discuss future work on the mesoscopic and macroscopic level
as well as experimental plans.





Chapter 5

Conclusions on LBM and future
work

Up to this point we have managed to examine in relative detail the relationships
between hydrophilicity of the porous matrix and the subsequent flow patterns we
observe. This information is already valuable from a design perspective in that one
can choose materials with specific hydrophilic/phobic properties and particle sizes to
perform under specific conditions. We also get a glimpse of the methodology that
can be applied to optimizing packing structures if so desired or at all possible in
practical situations. It is possible to extend this investigation further with regard to
pore structures and their direct influence on flow patterns or blockage.

5.1 Future plans
There are several paths on which one can continue the investigations within the
topic discussed in this work, both at the meso-scale and at the macroscopic scale
and both will be considered. We will begin with a small discussion on the continued
application of LBM on the mesoscopic scale and what more information we can
extract from such simulations that can be of use for our work.

5.1.1 Mesoscopic scale
One important thing to note that as of yet we have not performed any simulations
on drainage of the porous matrix however we know from extensive literature on the
topic that the imbibition and drainage processes behave differently and that the
difference is known as hysteresis. It would be of value to confirm this effect on our
porous matrices of choice and indeed compare the results to some experimental data
if possible. The most difficult aspect of this validation would be to procure a sample
for testing and accuratelly reproduce its lattice structure in 3D with decent accuracy.
This is possible using imaging techniques however one must be careful not to disrupt
porous matrix during experimentation as any cracks or shifting of material will alter
the results. In addition material purity may be an issue as well as the scale at which
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these experiments must be performed.

Another interesting possibility to tackle is the characterization of the porous
medium itself with regard to pore structure and connection. Since we know from
previous discussion that hydrophilicity plays an important role on imbibition, we
can explore other parameters that we can modify to improve or tweak performance
as desired. These parameters can include surface roughness, particle size characteri-
zation, layering of materials, etc. Specific designs may be possible by using these
parameters whereby they facilitate imbibition from the surface but actively retard
drainage for a given amount of time. The possibilities for such designs can be an
attractive argument for pursuing such research and the applications are not limited
to the subject matter discussed in this work.

Thermal effects should also be considered at some stage and this inclusion will
alter the performance of a given porous structure, if we include the possibility of
freezing especially. This topic is quite a difficult one to tackle as some work would
be necessary to determine the temperature range at which the relationship between
relative permeability and saturation can be charcterized by a singular function.
If one desires to contruct a system that can dynamically change this relationship
simply given temperature at a locality this tool can be quite powerful in hydraulic
performance predictions, particularly if one also allows for dynamic changes to the
lattice when freezing occurs, however this is beyond the scope of this text and will
not be considered further.

5.1.2 Macroscopic scale
If we return to the macroscopic scale there are several prominent issues to be tackled
to complete the proposed model and validate its applicability to green roofs. We will
cover first the final step in modeling stormwater flow in green roofs and this text
with a brief discussion on experimentation and plans for validation at a variety of
scales.

Implementation of saturation in CFD model

We have discussed how one can generate the curves relating saturation and relative
permeability that are necessary when modeling macroscopic flow through porous
media. The implementation of this information can be tricky since we have calculated
it for a given volume over a time interval, thus we must have a way to relate this
correctly in a CFD simulation where computational cells (volumes) are not necessarily
uniform across the domain. We must therefore detect the presence of liquid when it
crosses into a computational cell and enforce the relationship of saturation over time
and its corresponding relative permeability. This can be done by introducing custom
scalar fields however this step has not been finalized as of this text and the exact
method not set in stone. It is immediately evident that such an approach must be
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validated thus it is in our best interest to test this proposed method against well
documented cases, either from simulations and/or experimental data.

Experimental work

In addition to the finalization of the model several experiments are planned to
provide comparative data that can be used to validate the model at a variety of
levels. The experiments will be carried out in two stages. The first stage will
be to construct a laboratory experiment to measure imbibition and drainage of a
homogeneous porous material layering and compare the results to our simulations.
Once this has been completed and the results are satisfactory a single green roof
"tile" will be tested similarly under controlled conditions. Representative material
properties will have to be extracted and used as inputs to the model. It will be of
use to quantify the error when moving from a well-defined homogeneous material to
the real product which includes the vegetation itself. Since we are in a controlled
environment we can eliminate some sources of error and pinpoint the contributions
from inhomogeneity, vegetation, etc., though to separate such contributions precisely
would be a monumental task and is not of real interest to us at this stage. Finally
we have access to full-scale green roof experimental results, courtesy of efforts by
NTNU and SINTEF in Trondheim, Norway [40]. This data can be used to check
the scalability of the simulation work proposed in this text to realistic conditions. If
we are able to predict performance with reasonable accuracy at a small scale there
is no guarantee this will scale to larger installations and it is imperative to analyze
this possibility to deterimine the precise applicability of such simulations. This
comparison will be the final step in the proposed work plan as it is the culmination of
an effort that spans from modeling flow at the mesoscopic scale where interial forces
are insignificant when compared to surface tension to determining performances of
roofs of more than 80 square meters.

5.2 Final thoughts
It is constructive to point out that while none of the methods presented in this work
are new, their combination in the methodology presented here is novel. In particular,
the application of lattice Boltzmann to solve unsaturated soil aggregate behaviour for
use in larger scale simulations is an approach that looks promising. If it is possible
to extract accurate information on the relationship between relative permeability
and saturation without peforming extensive experimentation and use the results
in macroscopic simulations; we can greatly reduce the time required to solve such
problems and provide a tool to optimize design performance in terms of imbibition
at the mesoscopic scale.
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