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Abstract

Autonomous Systems (AS) are becoming ubiquitous in our society. Some ex-
amples are autonomous vehicles, unmanned aerial vehicles (UAV), autonomous
trading systems, self-managing Telecom networks and smart factories. Au-
tonomous Systems are based on a continuous interaction with the environment
in which they are deployed, and more often than not this environment can
be dynamic and partially unknown. AS must be able to take decisions au-
tonomously at run-time also in presence of uncertainty. Software is the main
enabler of AS and it allows the AS to self-adapt in response to changes in the
environment and to evolve, via the deployment of new features.

Traditionally, software development techniques are based on a complete
description at design time of how the system must behave in different en-
vironmental conditions. This is no longer effective since the system has to
be able to explore and learn from the environment in which it is operating
also after its deployment. Reinforcement learning (RL) algorithms discover
policies that can lead AS to achieve their goals in a dynamic and unknown
environment. The developer does not specify anymore how the system should
act in each possible situation but rather the RL algorithm can achieve an
optimal behaviour by trial and error. Once trained, the AS will be capable of
taking decisions and performing actions autonomously while still learning from
the environment. These systems are becoming increasingly powerful, yet this
flexibility comes at a cost: the learned policy does not necessarily guarantee
safety or the achievement of the goals.

This thesis explores the problem of building trustworthy autonomous sys-
tems from different angles. Firstly, we have identified the state of the art
and challenges of building autonomous systems, with a particular focus on
autonomous vehicles. Then, we have analysed how current approaches of formal
verification can provide assurances in a System of Systems scenario. Finally,
we have proposed methods that combine formal verification with reinforce-
ment learning agents to address two major challenges: how to trust that an
autonomous system will be able to achieve its goals and how to ensure that
the behaviour of AS is safe.

Keywords

Autonomous Systems, Automotive, System Trustworthiness, Formal Verifica-
tion, Machine Learning, Runtime verification, Monitoring and enforcement.
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Chapter 1

Introduction

1.1 Introduction

Autonomous Systems (AS) are becoming ubiquitous in our society. Autonomous
vehicles, unmanned aerial vehicles (UAV), autonomous trading systems, self-
managing telecom networks, smart factories can be all considered Autonomous
Systems. In the near future, we will assist in systems exhibiting higher and
higher levels of autonomy that will put new demands on the engineering of
such systems.

Some communities refer to autonomous systems as self-adaptive systems,
i.e. systems that are able to adapt their behaviour at runtime without human
intervention [1–3] in response to changes in the environment or in their internal
state. They implement some sort of feedback loop to perform their adapta-
tions [4]. A self-adaptive system gathers observations from the environment,
processes them considering also its internal state and adapts itself to achieve
its goals.

Classical software development techniques require to fully describe the
system behaviour in each possible environmental condition. The developer
models different configurations at design-time that are then activated at runtime
according to the events coming from the environment [5]. This is becoming
unpractical — if not even impossible — in AS where there is a high, or even
infinite, number of environmental conditions to be considered for adaptation.
For this reason, modern development techniques for AS must rely on techniques
that allow creating systems that autonomously learn how to behave in different
environmental conditions.

AS are intrinsically based on a strong interaction with their environment.
Such an environment is usually unknown, meaning that AS have to operate
under high uncertainty [6–8]. Sources of uncertainty could be external to
the system, such as the environment in which the software is deployed, the
availability of the resources that the system can access at a given time or
the difficulty of predicting the other systems behaviour. Other sources of
uncertainty can be internal to the system, such as the inability of the system
to predict the impact of its adaptations on the environment. Uncertainty can
require the system to dynamically change its goals and adapt itself while it is
running.
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Reinforcement learning (RL) [9] has been successfully used as a technique
to act in an unknown environment in order to achieve a goal. It enables the
software agent to autonomously learn to perform actions by trial and error. As
with self-adaptive systems, it is based on a feedback loop where the software
agent performs actions on the environment in response to the observations,
receiving a numerical value (reward) for each action. The goal of the RL
agent is to maximise the cumulative received reward. After training, the RL
agent can effectively handle changes i.e., when a change occurs the system
autonomously learns new policies for actions execution.

The use of reinforcement learning as the main driver of the system’s adap-
tation introduces flexibility in terms of explore and acting in an unknown
environment but it also poses new challenges. The choice of which adaptation
to perform in the environment is no longer in the developer’s hands but is rather
automatic. When dealing with safety-critical systems one major challenge is
the assurance safety.

The use of formal methods is often seen as a way to increase confidence in
a software system. Mathematical techniques can be used to reduce errors in a
software system. Methods such as model checking and theorem proving can
formally proof the compliance of a model with some formally specified properties.
When dealing with self-adaptive systems applying traditional techniques at
design time is not enough to certify the compliance of the deployed system
with its requirements. This is due to the fact that in AS the requirements are
dynamic and subject to change at runtime [10], so at least part of the analysis
must be shifted at runtime as well. Techniques such as runtime verification
(RV) [11, 12] can be used to monitor software executions. It can then detect
violations of safety properties at runtime and it provides the possibility of
reacting to the incorrect behaviour of the software agent whenever an error is
detected.

Our research goes in the direction of building trustworthy self-adaptive
software systems with particular emphasis on reinforcement learning to drive
the system adaptations. In the context of this thesis trustworthiness means
assuring the correct inference of the goal to the autonomous software agent
and assuring safety during its execution in scenarios affected by uncertainty.

In conclusion, this thesis: (i) analyses the state of the art, the challenges, and
future trends in Autonomous Systems, with autonomous vehicles as the main
area, and (ii) proposes methods for addressing trustworthiness that combine
Formal verification (model-checking and runtime monitoring) techniques to
formally assure the compliance of the system with safety-critical properties with
Reinforcement learning, used as the main enabler for the decision-making
process of the autonomous system.
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1.2 Background and Related Works

1.2.1 Self-Adaptive Systems

Traditionally software is developed by programmers who craft it according
to the decisions they made. Modern systems are increasingly requested to
operate in dynamic and often unknown environments that are dominated by
uncertainty. Consequently, it is extremely difficult to anticipate all the possible
and subtle variations of the environment at design-time. Furthermore, in an
environment with a lot of variability and uncertainty, it is often impossible to
completely define safety cases and to follow traditional certification processes.
In this context, systems are required to continuously adapt to changes that
occur in the environment.

Self-adaptive systems implement some sort of feedback loop that drives
their adaptations [4]. This basic mechanism for adaptation has been applied
for years in control engineering; it consists of four main activities: collect,
analyse, decide, and act. A feedback loop particularly important for decision-
making is the OODA loop by Boyd [13] where we do not only predict what
our system has to do but also what the external systems are going to be doing.
Another well-known reference model for describing the adaptation processes is
the MAPE-K loop (consisting of the parts Model, Analyse, Plan, Execute, and
the Knowledge Base) [14]. Furthermore, often systems collect data from the
environment, learn from them, and, consequently, continuously improve. An
example of such a system is the Never-Ending Language Learning [15].

1.2.2 Reinforcement Learning

Reinforcement Learning (RL) [16] is a machine learning approach where a
software agent can learn to self-adapt by exploring the environment. RL
techniques search for optimal policies by performing actions and observing the
effect of these actions in the underlying environment.

RL Agent

Environment

reward Rt

state St

Rt+1

St+1

action At

Figure 1.1: Reinforcement learning framework showing the interaction between
the agent and the environment.
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The agent and the environment interact in discrete time steps as shown
in the Figure 1.1. At each time step st the agent receives observations from
the environment that correspond to a certain state St. It then chooses an
action At among the set of possible actions A. The action is then applied to
the environment that moves to a state St+1 and returns a reward Rt+1 to the
agent. The environment where an RL agent acts can be formally described as
a Markov Decision Process (MDP), which can be defined as follows.

Definition - Markov Decision Process (MDP).
An MDP is a tuple < S,A, T ,R, γ > where:

— S is a finite set of states

— A is a finite set of actions

— T is a state transition probability matrix
Pass′ = P[St+1 = s′|St = s,At = a] that assigns the probability of the
next state to be s′ by taking action a from the current state s.

— R is the reward function. It assigns an immediate reward rt+1 after
transitioning from state s to state s′ due to action a. It is formalised as
the expected reward at next time step: Ras = E[rt+1|St = s,At = a]

— γ is the discount factor γ ∈ [0, 1]. It represents the difference in impor-
tance between future rewards and present rewards. At each step all future
rewards are discounted by γ as follows: rt + γrt+1 + γ2rt+2 + γ3rt+3 + ...

The MDP satisfies the Markov Property : the next state only depends on
the current state and the chosen action, so it is conditionally independent of
all previous states and actions. In other words: “ the future is independent of
the past given the present ”

Definition - Return.
The return G =

∑∞
t=0 γ

trt+1 is the sum of all the discounted rewards that the
agent will get from time step 0 infinitely into the future. The discount factor
indicates the preference between receiving a short-term reward (γ = 0) versus
a long-term reward (γ = 1).

Definition - Policy.
A policy π fully defines the behaviour of a RL agent. It can be either deter-
ministic or stochastic. A stochastic policy is a distribution over actions given a
state: π(a|S) = P[At = a|St = s]. Otherwise, if the policy is deterministic it
becomes a mapping function from state to action Π : S → A.

The goal of the RL agent is to learn a policy that maximises the return.
The optimal policy π∗ is the one that, among all possible policies, maximises
the expectation of the return: π∗ = maxπ∈ΠEπ(G)

The reward function.
A well-defined reward function has demonstrated to be successful in several
cases such as Atari games [17] and board games [17]. These examples show
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that a simple reward function, such as the score of the game, can teach the
agent to achieve the optimal policy. In other methods such as apprenticeship
learning, the reward function is learned from observations [18]. The idea is that
we take as given an expert optimal policy and we determine the underlying
reward structure.

Sometimes the agent needs an early feedback on the success of their actions
without having to wait for the end of the task. Reward shaping has been
addressing this topic by providing guidance to the agent and incorporating
prior knowledge in the reinforcement learning [19,20].

Learning.
Q-learning [21] is a simple and effective way to learn the optimal policy of
an MDP. It estimates the long-term expected return of each action that can
be executed from a given state. These estimations represent the quality of
the actions at a particular state and are known as Q-values. These values
are learned at each iteration by integrating the reward received from the
environment in the update of the current Q-value estimate:

Q(st, at) := Q(st, at) + α(rt + γmax
a

Q(st+1, a)−Q(st, at))

Where α ∈ [0, 1] is the learning rate and determines how much the newly
acquired information overrides the previous knowledge of the Q-value and
maxaQ(st+1) is the the max Q-value over all the possible actions in the next
resulting state st+1.

Deep Learning.
When the state space becomes too big to store a Q-value for each individual
state-action pair an approximate model is needed. Neural networks can be used
to approximate the Q-value and policy functions. Deep learning methods use
neural networks composed of many layers between the input and output layers.
Hence, instead of updating individual Q-values, now the updates are made
to the parameters of the neural networks with techniques such has stochastic
gradient descent.

Actor-critic algorithms such as the Deep Policy Gradient (DPG) algo-
rithm [22], Deterministic Deep Policy Gradient (DDPG) [23] and A2C [24] use
two neural networks: the actor and the critic. The actor is the policy πθ(a|s)
where θ are the parameters of the network. The critic instead estimates a value
function Qw(s, a) and has parameters w. The actor conducts actions in the
environment while the critic assists the actor in the learning. For example,
in DDPG the critic estimates the value of the current policy by Q-learning
and the actor updates its policy in a direction that improves the action-value
function Q.

Partial Observability.
In real-world applications, an RL agent cannot be provided with the full state
of the environment because this can also be impossible to determine. Usually,
the agent perceives partial observations of the environment through its sensors.
In the case of partial observations, the Markov assumption of the MDP is
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not valid anymore. The true state of the environment is revealed gradually
from several observations over time. Partially Observable Markov Decision
Processes (POMDP) better capture the dynamics of real-world environments
by assuming that what the agent receives are only some measurements (e.g.
from its sensors) of the underlying system state.

Formally, a POMDP is a tuple < S,A, T ,R,Ω,O, γ >, where S, A, T , R
and γ are the states, actions, transition probabilities, reward function, and
discount factor, respectively. However, this time the agent does not receive the
true state of the system but instead it gets an observation o ∈ Ω. Finally, O is
an observation model that gives us the probability of seeing observation o in a
state s: O(o|s).

In order to decode the underlying state of the POMDP, multiple observations
have to be integrated over time so to gradually reveal the state of the system.
Traditional neural networks cannot use information from previous states to
infer next ones. Recurrent Neural Networks (RNN) address this issue by having
loops they have the capacity to learn temporal dependencies. Long Short-Term
Memory (LSTM) [25] are a particular kind of RNN that work very well in
practice and have been successfully used in combination with deep learning
algorithms such as Deep Q-Learning [26] and DPG [27] to solve a variety of
tasks in partially observable environments.

In all our works we do not modify existing algorithms and techniques, but
rather we use state-of-the-art approaches to validate general methods that
can be applied to a variety of algorithms. In Paper B, we have worked on
engineering the reward function and validated our results on an agent that
uses DDPG as the learning algorithm. In Paper E, an agent has to move
safely into a partially observable environment. We use the A2C algorithm in
combination with LTSM in order to tackle the partial observations conveyed
to the agent. In both papers, we use reward-shaping to modify the reward of
the agent at runtime and guiding towards the goal.

1.2.3 Trustworthiness

Especially when dealing with safety-critical applications, it is essential to
guarantee that AS act safely in the environment where they are deployed. In
other words, the software must work in a reliable manner and must be safe for
humans as life may depend on it. In this thesis, we refer to building trustworthy
self-adaptive systems meaning to provide evidence that important aspects of
the AS are correct. In presence of self-adaptation systems, the fulfilment of
the requirements cannot be guaranteed completely at design-time but at least
part of the assurance needs to be performed at runtime [10]. In this thesis
we to provide assurance to the software system [28] by combining design-time
modelling and verification, such as model checking, and runtime assurances
techniques such as runtime verification.

Model Checking.
The main purpose of a model-checker is to verify a given model of a system
with respect to a requirement specification by exhaustively and automatically
checking all its states. The state space is a directed graph whose nodes encode
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the states of the whole system and whose edges represent the state change. It
ultimately represents all the behaviours of the modelled system by branching
all possible ways the components can interact with each other. Because of the
exploration of all states in a brute-force manner, model checking suffers of the
scalability problem.

One possible way to represent the system to be verified is with timed-
automata. Like the model, the requirement specification (or properties) to be
checked must be expressed in a formally well-defined and machine-readable
language. Uppaal is a tool where one can model the system with timed-
automata and the properties with a subset of TCTL (timed computation tree
logic) [29, 30]. It allows the verification of safety and behavioural properties of
a model, such as the absence of deadlocks or the propagation of a safety-critical
message within a certain time. For example, the path formulae A <> ϕ (or
equivalently ¬E[ ]¬ϕ) expresses that ϕ will be eventually satisfied, or more
precisely, that in each path will exist a state that satisfies ϕ. The path formulae
A[ ]ϕ expresses that ϕ should be true in all reachable states.

Runtime Verification.
Runtime Verification (RV) [11, 12] is a lightweight verification technique based
on monitoring software executions. It has its origins in model checking but it
mitigates the state explosion problem by having a more scalable approach to
software verification. It detects violations of properties, occurring while the
monitored program is running, eventually providing the possibility of reacting
to the incorrect behaviour of the program whenever an error is detected.

Properties verified with RV are specified using any of the following ap-
proaches: (i) annotating the source code of the program under scrutiny with
assertions [31]; (ii) using a high-level specification language [32–34]; or (iii)
using an automaton-based specification language [35–37].

One way to verify properties at runtime is through the use of monitors.
A monitor is a piece of software that runs in parallel to the program under
scrutiny, controlling that the execution of the latter does not violate any of the
properties. In addition, monitors usually create a log file where they add entries
reflecting the verdict obtained when a property is verified. In general, monitors
are automatically generated from the annotated/specified properties [38].

On one hand, static verification approaches such as model checking can
verify that the system is compliant with some important properties, but some
systems are too complex to be model checked in practice. On the other hand,
runtime verification can prove the satisfaction of the properties on large systems
but only on the fraction that is executing during the verification. We use model
checking in Paper C to verify that the protocol for on-the-fly vehicle platooning
is compliant with the properties. We randomly generate different scenarios and
check the properties on all of them. In Paper B we use Uppaal to model and
statically verify the reward function at design-time and runtime verification
approaches to enforce it during the learning of the agent. Finally, in Paper E
we model runtime monitors in the form of patterns [39] to verify properties on
the RL agent itself.
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1.3 Goals and Methodology

The overall goals of this thesis are:

G1: To investigate the state-of-the-art and current challenges in autonomous
systems with the focus on the automotive domain.

G2: To propose concrete solutions on how to build trustworthy AS that can
perform safely also in presence of uncertainty.

The goal G1 aims to create a big picture of the problem with respect to
Figure 1.2. It aims to investigate AS as entities that on one level - short loop -
locally self-adapts at runtime. On another level - long loop - field data collected
by a set of AS are exploited by developers to produce new versions of the
software to be then deployed on the agents. G2 aims to address issues within
the autonomous systems, represented in the lower part of Figure 1.2. The
autonomous systems act in an environment that is at best partially known,
hence trusting the system that it will always act as intended is one of the
challenges that need to be addressed.

For the first goal we have formulated the following research question:

RQ1: What is the state-of-the-art, the challenges and future trends in building
Autonomous Systems in the automotive domain?

Research question RQ1 has been addressed in Paper A with respect to
autonomous vehicles. We have conducted a study of what is the state-of-the-art
of autonomous vehicles with respect to the vehicle functionalists and the several
vehicle software architectures. Current trends are in using machine learning
to find solutions to several autonomous vehicles problems, from perception to
decision-making. We have identified five challenges for guaranteeing safety in
autonomous vehicles with the use of machine learning being a major one.

Methodology: We have conducted a literature review to understand the
state-of-the-art of autonomous systems and the state-of-practice of the major
automotive companies. We have sampled papers from a number of conferences
and journals articles.

Due to the complexity of goal G2, we have broken it down into several
research questions that build up in the direction of engineering trustworthy
autonomous systems. One of the main problems is that it is impossible
to predefine all the system’s adaptations at design-time. This is because
the environment where the system is going to be deployed is dominated by
uncertainty. Machine learning techniques offer flexibility as they can make
decisions based on data also in presence of uncertainty. Such techniques have
been increasingly used in autonomous vehicles. However, the flexibility offered
by such techniques has to balance with the lack of control from the developer
of the software. Many challenges need to be overcome before such systems
can be trusted to act safely. Generally, we can group our research under the
umbrella of the following research question:

RQ2: How to build trustworthy autonomous systems also in presence of
uncertainty?



1.3. GOALS AND METHODOLOGY 9

RQ2.1 How to make sure that the resulting system satisfies certain
desired properties?

RQ2.2 How to ensure that the resulting system reflects the designer’s
intentions without manifesting unwanted behaviours?

RQ2.3 How to provide assurances when several autonomous systems
collaborate to create a new and more complex system?

Research question RQ2 has a wide scope and aims to build a trustworthy
system also when not all the behaviours are defined at design-time. We have
investigated how to use machine learning techniques, such as reinforcement
learning, to let the system acquire the desired behaviour at runtime in order to
achieve a goal. We have split this problem into two sub-questions. The first
one (RQ2.1) goes in the direction of formally verifying that the behaviour
emerging from the system is compliant with some important safety-properties
(invariants) also while it is exploring the environment. We aim to achieve
this challenging goal by using a combination of machine learning and runtime
monitoring as described in Paper D and validated in Paper E.

The question RQ2.2 builds in the direction of assuring that the goals as
intended by the designer are correctly transferred to the AS itself. In Paper B,
we deal with the problem of conveying the functional requirements to a machine
learning agent solely using the reward function. A problem with such systems
is that the agent could manifest unwanted behaviours and consequences. We
aim to give the system designer more control and understanding of the reward
function on which the reinforcement learning agent is going to build its decision
making policy.

Finally, the research question RQ2.3 does not focus on the behaviour of a
single autonomous system but instead, it deals with a system constituted by
several individual systems (System of Systems, SoS). We want to investigate
how current verification techniques can be applied to such systems. We have
addressed this research question in Paper C by modelling a SoS scenario where
multiple vehicles have to interact in order to form a platoon. The individual
systems can independently adapt their behaviour at runtime and the rules
defining the SoS are modelled at design-time. We have modelled different
modes where the SoS can be and defined properties we want the SoS to have
as invariants. Finally, we have formally verified that in randomly generated
scenarios the resulting system is compliant with them using model checking.
With respect to Figure 1.2, this work concerns the elicitation and verification
of system’s invariants.

Methodology: For RQ2 we have used Design Science as research method-
ology [40]. The two main activities are the of design science are: (i) designing
an artefact, (ii) empirically evaluating its performance in a context. In most of
the papers addressing RQ2 the artefact is the proposed method. In Paper E
and Paper B we have implemented a framework that supports the proposed
methods; the validation has been done by defining a case study and collecting
data from experiments conducted by computer simulation [41]. In Paper C
the artefact is the protocol for vehicle platooning and it has been validated by
formal-verification (model-checking) on randomly generated scenarios. Finally,
in Paper D we have proposed a general method, a specific case of this method
is then implemented and and validated in Paper E.
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Figure 1.2: Proposed Framework for Trustworthy Self-Adaptive Autonomous
System. The letters indicate the papers contributing in different parts of the
framework.

Figure 1.2 maps the contributions of this thesis into a general framework
describing our proposal of Trustworthy Self-Adaptive Autonomous System.
This framework has been first introduced in [42], where we describe a method
that combines machine learning for decision-making with assurance techniques
to guarantee the preservation of safety-critical system’s invariants. On one
level - short loop - each software agent locally self-adapts at runtime using
machine learning techniques. On another level - long loop - field data collected
by a set of agents is exploited to produce new versions of the software to be
then deployed on the single autonomous systems.

The decisions are driven by the goals that the agent must achieve, depending
on the observation perceived from the environment and the current state.
On one side, the agent uses reinforcement learning to select the actions to
be performed. On the other side, important properties, such as safety of
requirement, are broken down in terms of invariants that must be assured at
all times. Monitor and training will prevent the agent to choose an action that
violates the invariants and it will also train the agent to perform better in the
future.

In the following sections we describe the included papers starting from
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the first research questions RQ1 addressing the state of the art (Paper A),
then going to RQ2 presenting the papers about achieving goals (Paper B),
preserving the invariants (Paper C) and finally monitoring the behaviour of
the AS at runtime (Paper D and Paper E).

1.4.1 State of art, future trends, and challenges

During recent years, the automotive sector has been experiencing major trans-
formations. Connected vehicles will benefit from Intelligent Transport Systems
(ITS), Smart Cities, and the Internet of Things (IoT). They will combine data
from inside vehicle with external data coming from the environment (other
vehicles, the road, the signs, and the cloud). Software is the main enabler of
autonomous vehicles and its volume has been keeping increasing for years; it is
expected to increase by 50% by 2020 [43]. 80% to 90% of the innovation within
the automotive industry is based on electronics, and a big part of electronics is
software [44,45].

Paper A deals with Autonomous Systems in a broader scope, identifying
what are the challenges and possible solutions in the automotive domain. We
describe the different levels of autonomy, from vehicles with partial autonomy
to fully autonomous systems that have to continue operating safely also during
faults. Several functionalities contribute to increasing the autonomy level
of modern vehicles, from assisting the driver during parking manoeuvres to
enhancing the vision during the night. Furthermore, the software architecture
of such autonomous vehicles has to change in order to accommodate different
modules dealing with observations, sensor information, interpretation of the
data, and actuation.

In this paper, we report the state of the art, future trends, and challenges
of autonomous vehicles, with a special focus on software. We describe some
of the functionalities of autonomous vehicles and their software architecture.
Then, we have identified some of the key challenges of autonomous vehicles.
The use of machine learning is one of the major challenges as the vehicles will
have to deal with uncertainties that characterise the environments in which
autonomous vehicles will need to operate while guaranteeing safety properties
in all situations.

1.4.2 Conveying the right goals to the system

An intelligent autonomous system must figure out how to achieve its goals
by itself. The system designer job is to specify what goal to achieve and the
decision-making component of an Autonomous System must figure out how to
achieve it. In reinforcement learning the only way that the system designer has
to convey the goal to the agent is through the reward function. The encoding
of system goals into a reward function can lead to unexpected behaviours in
the agent, either because the designer does not include or have the correct
information or because she/he makes mistakes during the design of the reward
function.

Paper B addresses some of the challenges identified in Paper A regarding
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the transfer of goals to a reinforcement learning agent, as also shown in
Figure 1.2. We have proposed an approach for engineering complex reward
functions that can be formally verified against defined properties at design-time
and automatically enforced to the agent at runtime. Our aim is to reduce
the gap between the designer’s intention and the reward specification. By
embedding more domain knowledge in the reward function one could avoid
the reward hacking phenomenon; this would also help the agent to learn the
desired policy faster [46]. However, as reward functions become more complex,
in turn, it becomes harder to spot mistakes and to be confident whether the
reward values that are finally sent to the agent actually reflect the designer’s
intentions.

Our work goes in the direction of a better structuring of the reward function
with the aim of closing the gap between the designer informal goals and the
reward signal. Our contribution is the design and validation of a software
infrastructure that enables the verification and enforcement of reward functions
to an RL agent. From a high-level perspective our approach, which we have
called MoVEMo, consists of four steps:

1. Modelling complex reward functions as a network of state machines.

2. Formally verifying the correctness of the reward model.

3. Enforcing the reward model to the agent at runtime using a monitoring
and enforcing approach called Larva.

4. Monitoring the behaviour of the agent as it transverses the state machines
to collect the rewards.

Steps 1 and 2 are performed by the designer that iterates the reward function
model until it is compliant with the high-level properties that she/he expresses.
Steps 3 and 4 are automatically derived and performed from the reward model.
We have validated our approach in the context of self-driving cars with an
open-source driving simulator.

1.4.3 Verifying Invariants

Some system requirements can be expressed in terms of invariants, meaning
properties that always have to hold, despite the system adaptations. Such
properties can target an individual system of multiple systems and the way
they interact with each other. Autonomous Systems can also collaborate with
other systems forming a System of System (SoS). Due to the complexity of
such systems, it becomes hard to verify the correctness of their actions.

Formal verification techniques such as model checking can prove that a
system satisfies certain desired formal properties. In Paper C, we model an
Autonomous Systems as a network timed-automata and verify that certain
properties hold when they interact. Specifically, we have modelled invariants
in terms of temporal logic properties and formally verified such invariants in a
system of systems scenario. We have successfully verified several invariants on
a vehicle platooning protocol with randomly generated scenarios.
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1.4.4 Keep intelligence under control

Using techniques such as reinforcement learning we can create systems that
autonomously learn which action to execute in order to achieve the desired
informal goal. When a change occurs, machine learning techniques allow the
system to autonomously learn new policies and strategies for actions execution.
This flexibility comes at a cost: the developer has no longer full control on the
system behaviour. To overcome this issue, we believe that machine learning
techniques should be combined with suitable reasoning mechanisms aimed at
assuring that the decisions taken by the machine learning algorithm do not
violate safety-critical requirements.

Paper D closes the loop in Figure 1.2 describing how to combine the
decision-making agent with the assurance of safety-critical properties. The
approach aims at creating systems that, on one hand, are able to learn and
adapt their behaviour based on changes that occur in the environment using
reinforcement learning, on the other are able to ensure that adaptation does not
cause invariants violation using runtime monitoring. The runtime monitoring
part is explained in details and evaluated in Paper E.

1.4.5 Runtime monitoring of the intelligent system

In Paper E, we propose a concrete solution to the approach proposed by
Paper D showing its effectiveness through a large experimentation. This
approach, named WiseML, uses reinforcement learning in combination with
runtime monitoring to prevent the agent from performing catastrophic actions
in the environment. The approach is general and external to the RL algorithm,
so it does not modify how the RL algorithm works; in this sense, the approach is
agnostic to the RL algorithm since one could use any RL algorithm. WiseML
wraps the RL agent at its interfaces and it places it inside a safety envelope that
protects it from performing actions that violate its safety-critical requirements.

The requirements of the RL agent are expressed in terms of patterns, they
describe the safety-properties to be enforced by the monitoring component.
We have implemented four patterns that one can use to model the invariants:
absence, globally, precedence and response. Our results show that the runtime
monitors will always prevent the agent from violating any of the modelled
properties. Furthermore, the RL agent will converge faster to its goals thanks to
reward shaping that steer the agent towards its goal by modifying its rewards
at runtime, according to the compliance or the violation of the monitored
properties.
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1.5 Conclusions and Future Work

Collecting data at runtime, self-adapt, and continuously evolve are fascinating
concepts that pose some serious challenges. When dealing with safety-critical
systems, any change to the system must be certified as safe before it can be
applied. With the intensive use of machine learning techniques, it is hard to test
the software and be sure that it will act always in a correct way. Reinforcement
learning can be used as a technique to drive the system’s self-adaptation and
learn how to perform decisions in previously unknown environments. However,
the resulting system still has to meet its safety requirements despite the
adaptations.

In this thesis, we have presented the state-of-the-art and the challenges of
engineering trustworthy autonomous systems. We have proposed and validated
methods that go in the directions of combining formal methods with machine
learning approaches. Our goal is to engineering systems that continuously adapt
using Reinforcement Learning to perform decisions. At the same time, we want
to keep the preservation of the system’s invariants by continuously monitoring
how the system reacts to the changes in the environment. This is performed
by a continuous runtime monitoring of the machine-learning generated actions.

In the future, we will focus on the integration of different state-of-the-
art methods with the vision to build an Autonomous System that can make
safety-certifiable decisions.


