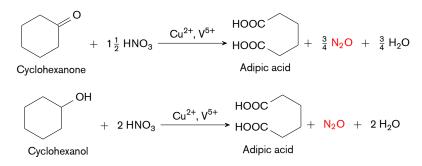
Prospective LCA of a biorefinery concept for production of bulk and fine chemicals

Matty Janssen ¹, Sara Badr ², Elin Svensson ³ & Stavros Papadokonstantakis ⁴

¹ Technology Management and Economics, Chalmers University of Technology, Sweden
 ² Chemical System Engineering, The University of Tokyo, Japan
 ³ CIT Industriell Energi AB, Sweden
 ⁴ Space, Earth and Environment, Chalmers University of Technology, Sweden

September 24, 2018

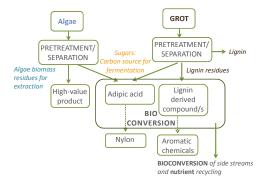
|--|


Outline

- 1 The case for bio-based adipic acid production
- 2 Set-up of the systems analysis
- 3 Environmental impacts of the biorefinery concept
- 4 Lessons learned (so far) from the analysis

Fossil-based production of adipic acid

■ Traditional production from fossil resources → KA oil¹



¹ A. Shimizu, K. Tanaka, and M. Fujimori. Chemosphere - Global Change Science 2.3-4 (2000), pp. 425-434.

UNIVERSITY OF TECHNOLOGY			Department of Technology Manag	gement & Economics
Outline	Introduction	Analysis set-un	Results	Conclusion

Bio-based production of adipic acid

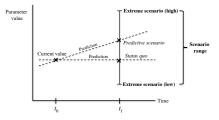
Biorefinery concept for the production of bulk and fine chemicals

■ Bulk chemical → Adipic acid², lignin derivative, lignin as a product
 ■ Fine chemical → Lutein

² R. Aryapratama and M. Janssen. *J Clean Prod* 164 (2017), pp. 434-443.

Applying prospective life cycle assessment

- Appropriate methodological choices need to be made³
 - Technology alternatives
 - Foreground system
 - Background system

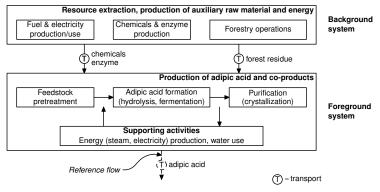

³R. Arvidsson et al. J Ind Ecol (2018). doi: 10.1111/jiec.12690.

Conclusion

Applying prospective life cycle assessment

Appropriate methodological choices need to be made³

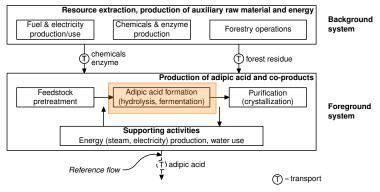
- Technology alternatives
- Foreground system
- Background system



- \blacksquare Predictive scenarios \rightarrow Based on forecasts or trends
- $\blacksquare \ Scenario \ ranges \rightarrow III ustrate \ potential \ environmental \ impact$

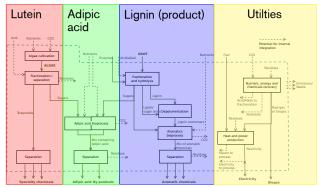
³R. Arvidsson et al. *J Ind Ecol* (2018). doi: 10.1111/jiec.12690.

Life cycle assessment

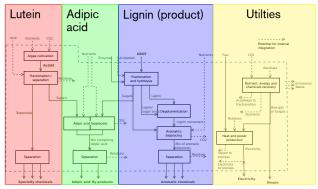


Goals

- Guiding technology development
- Future environmental performance of the concept
- \blacksquare Functional unit \rightarrow 10 000 t of adipic acid produced

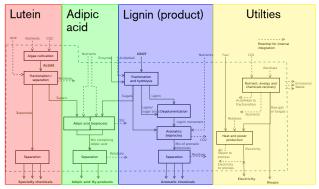


Life cycle assessment



- Goals
 - Guiding technology development
 - Future environmental performance of the concept
- \blacksquare Functional unit \rightarrow 10 000 t of adipic acid produced

Integrated biorefinery concept

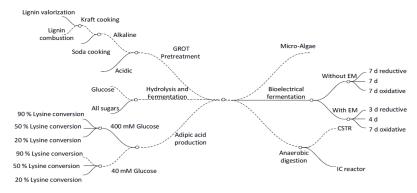


Integrated biorefinery concept

- Alkaline pretreatment (Kraft cooking) with Lignoboost
- Water from anaerobic digestion to conventional WWTP

Integrated biorefinery concept

- Alkaline pretreatment (Kraft cooking) with Lignoboost
- Water from anaerobic digestion to conventional WWTP
- Process integration
 - \blacksquare Pretreatment with adipic acid production $\rightarrow CO_2$
 - Adipic acid production with microalgae cultivation \rightarrow CO₂, water

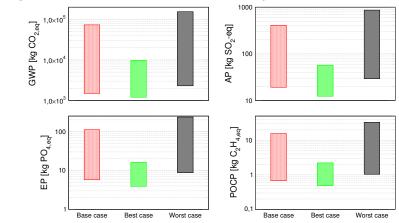

Outline

Analysis set-up

Results Cond

Construction of process alternatives

Introduction

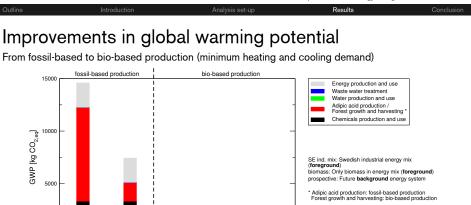

- Twelve alternatives were constructed for the assessment
 - \blacksquare Lysine conversion \rightarrow 20 %, 50 % and 90 %
 - \blacksquare Sugar concentration \rightarrow 40 mM and 400 mM
 - Sugar conversion → Only glucose, all sugars

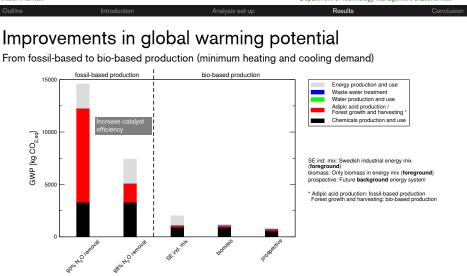
CHALMERS

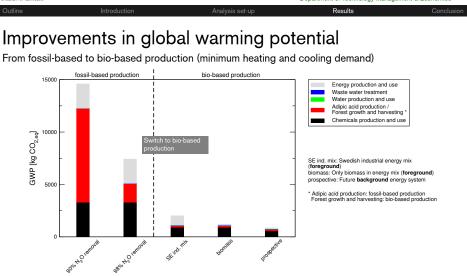
Department of Technology Management & Economics

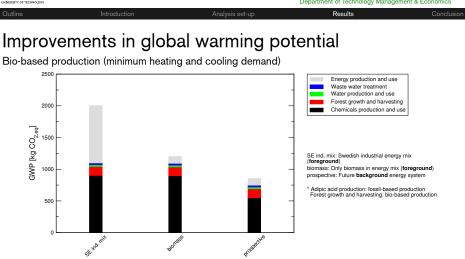
 Outline
 Introduction
 Analysis set-up
 Results
 Conc

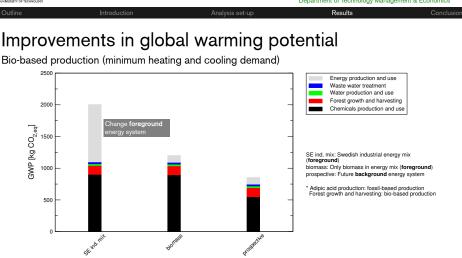
 Range of current environmental impacts

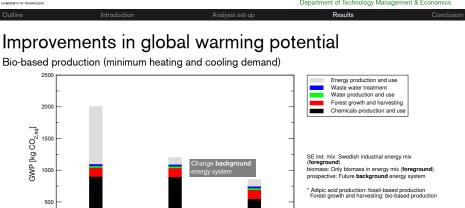


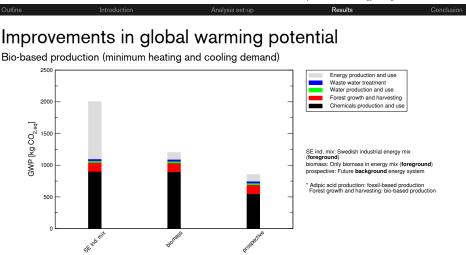

- Variation due to
 - $\blacksquare \ Between \ alternatives \rightarrow Foreground \ system$
 - \blacksquare Within alternatives \rightarrow Heating and cooling demands


1.8% N2 ranoval

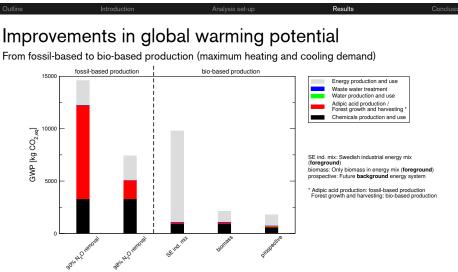

SEIND. MIN


90% N2 180000





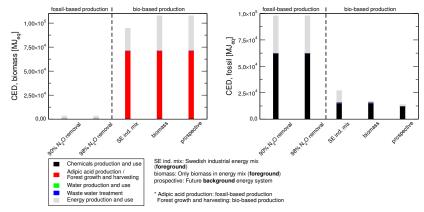
SE Ind. mit



orospective

onass

- Further improvements in the foreground system are possible
- Change in background energy system mainly affects chemicals production


- Fossil-based production could be the better option
- Clean foreground energy system is crucial

CHALMERS

UNIVERSITY OF TECHNOLOG

Changes in energy use

From fossil-based to bio-based production (minimum heating and cooling demand)

- Prospective scenario does not affect renewable energy use
- Changes in environmental impact driven by changes in fossil energy use

Conclusion

CHALMERS

Technology

- Switch to bio-based production of adipic acid can lower environmental impacts significantly
- Changes in foreground and background both affect environmental performance
 - Clean foreground energy system is crucial
 - Future changes in the background energy system may improve chemicals production and use

Conclusion

CHALMERS

Technology

- Switch to bio-based production of adipic acid can lower environmental impacts significantly
- Changes in foreground and background both affect environmental performance
 - Clean foreground energy system is crucial
 - Future changes in the background energy system may improve chemicals production and use
- Methodology
 - Construction of process alternatives helps identify process and environmental risks
 - Inventory data generated with detailed process simulation
 - Making changes in datasets to model future background energy systems need to be facilitated

Department of Technology Management & Economics

Outline Introduction Analysis set-up Results Conclusion	Outline	Introduction	Analysis set-up		Conclusion
---	---------	--------------	-----------------	--	------------

THANK YOU Any questions?

