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Abstract

Over the past decades, human dependability on techniceleddvas rapidly in-
creased. Many activities of such devices can be describeddpences of events,
where the occurrence of an event causes the system to go frerstate to an-
other. This is elegantly modelled lsyate machinesSystems that are modelled
in this way are referred to atiscrete event systemgsually, these systems are
highly complex, and appear in settings that are safetycatitivhere small fail-
ures may result in huge financial and/or human losses. Havaagtrol function
is one way to guarantee system correctness.

The work presented in this thesis concevesficationandsynthesi®f such
systems using theupervisory control theorgroposed byramadgeandWonham
[1]. Supervisory control theory provides a general frameéwto automatically
calculate control functions for discrete event systemsvefia model of the
system, theplant to be controlled, and apecificationof the desired behaviour,
it is possible to automatically compute, is/nthesiseasupervisorthat ensures
that the specification is satisfied.

Usually, systems amnmodularand consist of several components interacting
with each other. Calculating a supervisor for such a systeima straightforward
way involves constructing the complete model of the considaystem, which
may lead to the inherent complexity problem known asstiage-space explosion
problem. This problem occurs as the number of states gropeentially with
the number of components, which makes it intractable to @xarhe global
states of a system due to lack of memory and time.

One way to alleviate the state-space explosion problemuséca composi-
tional approach. A compositional approach exploits the merdstructure of a
system to reduce the size of the model. This thesis mainlysies on develop-
ing abstraction methods for the compositional approachway that the final
verification and synthesis results are the same as it wowiel I@en for the non-
abstracted system. The algorithms have been implementéd iscrete event
system software tool Supremica and have been applied tfy\serd compute
memory efficient supervisors for several large industriatieis.

Keywords: Finite-state machines, Extended finite-state machina#jdztion,
Synthesis, Abstraction, Compositional approach, Superyicontrol theory.
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Chapter 1

Introduction

The modern human being is a hybrid of a traditional homoesapivith fancy
electronic gadgets. We use electronic devices everydayjtasseems we are
never more than a meter away from our cellphones. Theseateare designed
to help us live our lives easier, and one of our most impontaguirement on
them is consistency. We expect the devices to work in a ceway when we
provide them with a certain input. In engineering termsgveng between the
input that we provide and the output we see is broadly ternsdt@mA coffee
machine, a printer and industrial robots are some exampkgstems.

When dealing with different systems, many questions allmiptoperties of
the systems arise. For example, in the case of a mobile phwaay wonder:
what will happen if | push a specific button? For a nuclear {dequestion could
be: what will happen if a nuclear reactor core becomes to8 lE{perimenta-
tion is one way to answer these kind of questions. In manysgasgeriments
are very expensive or could even be dangerous. An alteentianswer such
guestions is tanodelthe system behaviour.

Modelling is done from different perspectives. In some saasing physical
knowledge, mathematical equations that describe the batpusystem given an
input is derived. Newton'’s law, gravity laws and differetequations are some
tools used in this context. In other cases, a system can bediasevent-driven
for example, when a coffee machine goes out of coffee belaasyent it goes
from a workingstateto an idle state. The behaviour of such a system can then
be described by sequences of events, where the occurremreesent causes
the system to go from one state to another. Such system madetsferred to
asdiscrete event systeraad are the main focus of this thesis. In order to model
a discrete event system, intuitive formalisms sucliirie-state machineand
extended finite-state machinesn be used.
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1.1 Problem Statement

Imagine a coffee machine that fills your glass with tea evenigh you asked
for coffee. In this case you may just accept the tea, get baakork and be
in a bad mood all day. However, many applications of discestnt systems
take place in settings that are safety critical and smallfas may result in huge
financial and/or human losses. Moreover, as discrete eystdras are usually
complex, their development is error-prone. Thus we neee@tifwthat a system
is error-free or if there are errors, remove them beforegudie system.

In this thesisformal verificationis used to approve or disprove the correct-
ness of a system. In formal verification, the first step is enidy a desired
property. Then, a model of the system is built and finally Eh®wn mathemat-
ically whether the property of interest is fulfilled or nothds, the final result
after verification is either “yes” or “no”.

In the case that the verification result is not satisfactthrg, next step is to
design a control function to guarantee system correctness.

In 1989,RamadgendWonhanjl] proposed a framework to calculate a con-
trolling agent, called supervisor for discrete event systems. This framework
is called thesupervisory control theoryGiven a model of a system to be con-
trolled, theplant, and the desired behaviour, tepecification the supervisory
control theory proposes methods to desigsupervisorin such a way that the
closed-loop system of plant and supervisor always actsrdicgpto the specifi-
cation.

For simple systems consisting of a small number of statajoation or
supervisor calculation can be done straightforwardly. E\ay, this is not viable
for complex systems consisting of several interacting gsiesns. Such systems
are referred to asrodular systemdJsing the straightforward approach to verify
or calculate a supervisor for these systems, involves @plrepresenting the
entire system by a single model which may consist of milliohstates. This
inherent complexity problem is known as thtate-space explosigroblem. A
brute force approach to verify and calculate a supervisao igo through all
states and verify the property of interest for each pamiicstate and remove
undesirable states. However, the state-space explosikasniaintractable to
analyse all states of a system due to lack of memory and time.

The state-space explosion problem typically occurs whentoes to model
a modular system by a single representation. However, ibs$siple to use the
knowledge of modularity of the system to our advantage. Oag to exploit
the modularity of systems is to usecampositional approach To avoid the
state-space explosion problem, a compositional appraashtd build a single
representation of a system in an iterative way. The genppaibach is as follows.
First the subsystems are simplified in such a way that thegptppf interest is
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preserved. When no further simplification (also caldédxtractior) is possible,
the subsystems are combined together one by one and simh@algan in each
iteration.This process is repeated until it results in onalfrelatively simple
model. This simple model is finally used for verification on#esis.

1.2 Main Contributions

The main focus of this thesis is to use the compositional@gagr for verification
and supervisor calculation. Questions that immediatebeaare:

e What considerations need to be taken into account when thpasitional
approach is used for different modelling formalism?

e What considerations need to be taken into account when thpasitional
approach is used for verification and for synthesis?

e Is it possible to find methods in order to efficiently simplybsystems?

e In the case that the compositional approach is used for gispercal-
culation, does the supervisor have a modular structure aitdniemory
efficient?

Attempting to answer these questions results in the folgwdontributions
of this thesis:

e The compositional approach is well-developed for verifarabf systems
modelled as finite-state machines [2]. This framework igedéed to con-
sider systems that are modelled as extended finite-stathimesc It is
shown how the abstraction methods defined for finite-statehimas can
be applied on extended finite-state machines (Paper 1).

e When using the compositional approach for supervisor taticun or ver-
ification, the property of interest is different and thusdaweto be defined
first before using the compositional approa€tonflict equivalencg?] is
used as the property to be preserved when the task is to vdudyher the
system is able to finish some sub-tasks and it is used in Pap&hén it
comes to supervisor calculation, the closed-loop behavsoine property
to be preserved after simplification. For this purpsgethesis equivalence
is introduced in this thesis (Paper 2 and 3).

e The main focus of this thesis is to develop abstraction nmihothe com-
positional approach such that the property of interest ésqmved. It is
shown how any abstraction method defined for finite-statehmas can
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be applied on extended-finite state machines (Paper 1)erBift abstrac-
tion methods for compositional synthesis are presented;hndre mostly
based on a well known abstraction method catlbdervation equivalence
It is shown how observation equivalence can be strengthtenled appli-

cable in the compositional synthesis framework (Paper 23and

e The algorithms proposed in this work have been implememteda dis-
crete event system software tool Supremica and have beéadfipcom-
pute supervisors for several benchmark examples. The iexpatal re-
sults show that the method efficiently computes modular rsig for a
set of very large industrial models (Paper 2 and 3). The sigm@rcan also
be represented in a compact form and can be stored efficigtaper 3).

1.3 Outline

The first two chapters, Chapter 2 and Chapter 3, give thenpirediries and back-
ground of the supervisory control theory. In Chapter 4, thvgositional veri-
fication and synthesis proposed in this work is describec Sutmmary of ap-
pended paper is provided in Chapter 5. Finally some conotudemarks and
future work are given in chapters 6 and 7.



Chapter 2

Preliminaries

The behaviour of many technical devices and systems in canmuse can be
described by sequences of events, for example a robot akingiap a work-
piece. This includes automated manufacturing systenféictcantrol systems,
etc. The behaviour of these systems can be modellelisagete event systems
(DES). A DES is a dynamic system with events and states aasis Blements.
Events represent incidents that cause transitions fronstate to another, and
states describe the current system status after the onceroé an event.

2.1 Modelling Formalism

A prerequisite to formally analyse discrete event systesndeveloping suit-
able models that can accurately represent the activitifseo$ystem. Different
modelling formalisms have been used in the literature, figtance, state ma-
chines [3], Petri nets [4], process algebra [5] and formagdjieages [1, 6].

In this thesis finite-state machineare used to represent the behaviour of
discrete event systems as these are intuitive and havéwtudbat allows useful
manipulations. For example, abstraction may cause nomdigiistic behaviour,
and state machines describe nondeterministic behavi@igistforwardly.

2.1.1 Finite-State Machines

Finite-state machines (FSM), referred tofimste-state automatan Paper 2 and
3, are devices that represent the behaviour of discretd systems. An FSM
can be considered as a directed graph. A state represerusrtieat status of a
system under which certain conditions hold, such as thdipof a robot arm.
The state set of a system contains all possible situaticaisttie system may
encounter. Events represent incidents that cause t@msitiom one state to
another. For a discrete event system, a finite alphalietefined, the elements
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of which are all the possible events in the system. A sequeheeents forms a
string, and* is the set of all finite strings of events fram Transitions of FSMs
are written ax > y, wherex is thesource stateandy is thetarget stateeached
after the occurrence of the evemt Two more ingredients are necessary to define
an FSM:initial statesandmarked statesThe system starts in one of the initial
states. Marked states are desired states with a specialnmgesitached to them
like completion of a task. In the figures, initial states afenitified by an arrow
pointing into them, and the marked states are shaded grey.

Usually, systems have a unique initial state, and each oeroce of an event
in a given stat causes a transition to only one stgteand all the transitions
are labelled by events from the alphabet of the system. Uih@se conditions,
the system is said to lseterministic as the state of the system can be uniquely
determined from the sequence of events that have occurredevér the main
focus of this thesis is abstraction, which may cause nona@tesm. Moreover,
events that represemternal behaviour of a component in a system are removed
from the alphabet and the transitions labelled by thosetes® labelled by the
silent eventr. This event is not part of the alphabet of the system, butsésisi
explicitly mentioned by the notatiob; = 2 U {1}. The act of transforming an
event into the silent event is referred tolading [7] and introduces nondeter-
minism. The formal definition of hiding can be found in Def.f3Raper 3.

Now we can state a formal definition for a finite-state machine

Definition 1 A finite-state machine (FSM) is a tuple (2, Q,—,Q°,Q%),
where

e 2 is thealphabeta finite set of events,

e Q is the finite set obtates

e — C Qx2Z; xQ isthestate transition relatign
e Q° C Qisthe set ofnitial states

e Q¥ C Qs the set oimarked states

An FSM G is deterministidf |Q°| < 1, meaning it has at most one initial state,
X% y1 andx A y» always impliesy; = y», meaning that occurrence of an event
in a source state leads the system to a unique target state; -any implies

0 # T, meaning transitions are only labelled by events from thaalbet. In this
thesis,Q° > y means there exist¢ € Q° such that¢ > y andx — y means
there existsr € = such thatx > y. Moreover,x > means thax > y for some
yeQ.



2.1. MODELLING FORMALISM
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Figure 2.1: Manufacturing system overview.
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Figure 2.2: FSM models of manufacturing system.

Normally a system is modelled as a set of FSMs where each FSidsents
the behaviour of an individual component of the system. Tiédkes the mod-
elling task easier as it is more intuitive to describe eaammanent behaviour
rather than the entire system at once.

Example 1 Consider the simple manufacturing system shown in Fig. 2k
system consists of two machines &hd M, which are linked by a buffer B that
can store one workpiece. The first machingtlikes workpieces from outside the
system (event}y processes them, and puts them into B (evgntMachine M
takes workpieces from B (even),sprocesses them and outputs them from the
system (evenb). Fig. 2.2 shows FSMs modelling the system.

2.1.2 Extended Finite-State Machines

Finite-state machines describe the behaviour of a systerg states and events.
For systems with data dependency, it is natural to extentéfgiate machines
with variables and updates. This resultextended finite-state machines (EFSM)
also referred to asxtended finite-state automdg.

EFSMs are similar to conventional finite-state machineshwei transitions
are not only labelled by events, but also igydated8—12]. Updates are predi-
cates and can be evaluatedtor F. They are constructed from variables, integer
constants, the Boolean literdlsie andfalse and the usual arithmetic and logic
connectives. Similar to FSMs, a system changes its statesoocicurrence of an
event, but the transition in an EFSM is enabled only if theesponding update
evaluates td@. The transitions of an EFSM are representeﬁg& Yy, wherex is
thesource locationandy is thetarget locationafter the occurrence of the event
o, and p represents the update associated to the transition. Onemsition
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occurs, the system moves from the source location to thettbrgation, and the
variables in the update of the transition may change théueyavhile the rest of
the variables remain unchanged. Thus, the states of an EFSkbmbinations
of locations of the EFSM and the variable values.

As mentioned, updates are constructed from variables. #Zaghble has a
discrete domain, dow), that represents the possible values of the variable. For
example, if a buffer with capacity 3 is represented as a bbaia in the sys-
tem then the domain df is {0, 1,2, 3}, where each value represents the number
of workpieces in the buffer. A variable also has an initidueaVv® € dom(v).
For example, if the buffer is initially empty thdst = 0. As mentioned, when
a transition occurs, the values of the variables in the spoeding update may
change while the variables not in the update remain uncltanfe distinguish
the changing variables, a second set of variables cabetistate variablede-
noted byV’, is used, which have the same domain as the variabl¥s ikor
example, again assume we have a buffer with capacity 3 reptexs by the vari-
ableb, a transition with updatb’ = b+ 1 adds a workpiece to the buffer, if the
number of workpieces in the buffer is currently less than She@wise, ifb = 3,
then the buffer is full and the transition is disabled sinogrmore workpieces can
be added. In the model this is detected since the valbewduld become equal
to 4, which is outside of the domain bf An update likeb = 3 simply checks
if the number of workpieces in the buffer is 3 and enables rhuesition only if
this is true. In this case the value loin the target location remains unchanged
as no workpiece is added to the buffer. Differently, an updiae b’ = 3 always
enables its transition, and the valuebdh the target location is forced to be 3.

In the figures of this thesis, for simplicity updates only swacted frontrue
are not shown on transitions of EFSMs.

Definition 2 Anextended finite-state machine (EFSiglpa tuple E= (X,Q, —,
Q°,Q%), whereX is a set of events, Q is a finite setlotations -+ C Q x X x
My x Q is theconditional transition relatioand pe My, wherelly contains all
possible updates over the variable set \V*,QQ is the set ofinitial locations
and @ C Q is the set oimarked locations

In this thesis, the termtate machinés used to refer to both finite-state ma-
chine and extended finite-state machine.

EFSMs usually simplify the modelling task. However, to gsalEFSM sys-
tems the straightforward way would be to convert the EFSVht& &M by eval-
uating all the updates to find the variable values in eachtilmcaf the EFSM.
The states of the resultant FSM are then combinations ofabtatibns of the
EFSM and the variable values. This is referred taialdingvariables. The
complete process of transforming an EFSM to FSM is cdlkgtiening and the
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Figure 2.3: EFSM models of the manufacturing system.

resultant FSM is referred to as tiattened FSMAt the beginning of the flat-
tening process, the value of each variable is equal to iteimalue. Thus, the
initial locationsx® are combined with the initial values of the variables, dedot
asV®, to create the initial states of the forfx’,V°). Next, based on the updates
of the transitions going out of the initial locations, théues of some of the vari-
ables change at the next locations, and so on. Thus, for emts$ittonx TP, y

in the EFSM model there exist transitiofis V) - (y,W) in the flattened FSM
model whenevep evaluates td for the valuessrandw. The formal definition
of flattening can be found in Def. 10 of Paper 1.

Example 2 Consider again the manufacturing system shown in Fig. 2lde T
EFSM model of the system consists afad M, as shown in Fig. 2.3. It uses
a variable b with domain{0,1} to represent the number of workpieces in the
buffer. The update’b= b+ 1 represents an addition of a workpiece to the buffer
when the event; fis executed. As the domain of b{i8,1}, event {f can only
be executed if the current value of b is zero, or in other wevben there is no
workpiece in the buffer. If the buffer is full, thensbl and B = 1+ 1 = 2, which
cannot happen as 2 is not in the domain of b. Thus, if the bisffeitl, M, cannot
add another workpiece to the buffer.

2.2 Interaction

As mentioned before, discrete event systems are usoadbular, in that they
are modelled as a set of interacting subsystems. The resfioat itypically sys-
tems are complex and modelling them by only one state machingractical.
However, it is possible to combine the state machine compusna a system
into a single state machine. This process is referred gymashronous composi-
tion [13].

When a system is modelled as a set of interacting state meshartransition
in the synchronous composition occurs only if it is possiblal the components
sharingthe event labelling the transition, otherwise the traasiis disabled. Af-
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Figure 2.4: Synchronous composition of FSM model of the nmfeturing sys-
tem.

ter an occurrence of a shared event, the states (locatibakjlve state machines
with that event in their alphabet are updated concurretitlgn event only ap-

pears in one component then this event is calléocal eventand it is always

executed independently. Transitions of EFSMs are in aafdith events also la-
belled by updates. Thus, updates need to be consideredydymichronisation.
The updates of the shared events are combinembhjunctionwhile the updates
of local events remain unchanged. Using these principlisspbssible to build

a single state machine that represents the behaviour ofdd s#eracting state
machines. The formal definition of synchronisation of FSklgiven in Def. 2

in Paper 2 and 3, and of EFSMs in Def. 9 of Paper 1.

After the synchronisation db; andGy, in the worst case the number of the
states (locations) of the synchronisation resulbfindG; is |Q1| x |Qz|. Thus,
the state-space of systems consisting of many interactimgponents may easily
become unmanageable. This problem is commonly referreslttteatate-space
explosionproblem.

Example 3 Fig. 2.2 shows the model of the small manufacturing systelax-of
ample 1. Initially the machines and the buffer are in thespective | and E
states. Thus, the initial state of the synchronous comipasis (11,E,l2). In

this state, only the local event & possible. Note that,fand $ are enabled in
states E andjl respectively. However, they are not enabledIinE,I,) as they

are restricted by the other components. After the occueai@vent g the first
machine moves to the;Wtate and the buffer and the second machine remain in
their respective E andIstates. The entire synchronous composition is shown
in Fig. 2.4. Fig. 2.5 shows the synchronous composition efERSM model.
The updates in the synchronisation result are the same ag iand M, because

10
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M1 || M2 fi:b=b+1

Figure 2.5: Synchronous composition of the EFSM model ohtlaaufacturing
system.

these two EFSMs do not share any events. Flattening the symised EFSM
M1 || M2 results in an FSM isomorphic to FSMiM B || M2 shown in Fig. 2.4.

2.3 Event-Based Marking

Marking is used to represent states of a system that haveceabp®aning at-
tached to them, like completion of a task. The standard wagpoesent the
marking in a system is by labelling some states (locatiossharked[1, 6].
This thesis is mainly focused on equivalence relations strabt state machines.
For this purpose, in Paper 2 and 3 marking of states of FSMarnsfiormed to
an event-based representation, otherwise marking needsmbponsideration in
most of the definitions in these papers. For thiggranination eventw is intro-
duced. This event, similarly to the silent event, is notuileld in the alphabet of
the system, but its use is explicitly mentioned by the noteli, = Z U {w}.

Consider an FSM witlQ® as the set of marked states and the alphab&b
transform this to event-based marking, the first step is tbtadhe set of states
a termination state. € Q\ Q“. This state has no outgoing transitions and is
not originally inQ. After adding the termination state, the transition relatis
extended to— C Q x 2, x Q by adding transitions

q° 2 1 for eachg® € Q¥ (2.1)

In synchronous composition) is considered as an ordinary event. Thus, for
a composed state, Xo), it holds that(xz, o) Ll only if x; 2 L andx & 1.
For simplicity in the figures, marked states are shown instéahew and 1.

11
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2.4 Equivalence Relations

One way to alleviate the state-space explosion problem ébstractthe com-
ponents of the system by merging some states or removing sanmsgtions. To
merge states it is important that the states are equivasssdoon some criteria
that preserves the property of interest. égquivalence relatiofis a binary rela-
tion that partitions a set into disjoint subsets. Thus, anwadence relation can
be used to partition a state ggtinto the set of itsequivalence classesStates
that belong to the same equivalence class can be merged asdguently an
FSM with less states can be obtained, which is referred thexguotient FSM
The quotient FSM is an abstracted FSM. After merging stéibesnew state has
the union of incoming and outgoing transitions of the mergfades. The formal
definition of quotient state machine is given in Paper 2 anad Befs. 4 and 5,
respectively.

Note that, in Paper 1, an EFSM is first transformed to an FSMreedpply-
ing state merging abstraction.Thus, in the following theragons are given for
FSMs.

Two fundamental equivalence relations that play an impontale in this
thesis ardisimulation equivalencandobservation equivalence

Bisimulation requires two equivalent states to have theedatare behaviour.
Thus, the formal definition of bisimulation [14] is based efation on states.

Definition 3 [14] Let G = (£,Q,—,Q°, Q%) be an FSM. An equivalence re-
lation ~ C Q x Q is called abisimulationon G, if the following holds for all
X1,X%2 € Q such that x &~ Xp: if X1 LN y1 for someo € (£, UZ;), then there exists
y> € Q such that x> y, and yi = y».

Bisimulation considers states to be equivalent if they laeeoutgoing tran-
sitions with the same events including the silent and markirents to equivalent
states. Bisimulation can be computed by an efficient pantitefinement algo-
rithm [15]. This algorithm represents an equivalence reteas a partition, i.e.,
a set of equivalence classes each representing a set ohkniistates. The al-
gorithm starts with an initial partition consisting of ontyie equivalence class
contains all the states of an FSM, which is iteratively refinatil a stable par-
titioning is reached. At each step, those states in equicalelasses that do not
transit to the same equivalence classes on the same eveeparmted into other
equivalence classes. This efficient algorithm givestiemal FSM G, which is
bisimilar to the original FSMG.

It is possible to relax bisimulation by ignoring the sileneats. Then we
can consider two states equivalent if from both of them egaivt states can be
reached by the same sequences of events aside from silens.eVdis results
in weak bisimulationalso known agbservation equivalencén order to ignore

12
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the silent eventspatural projection P Z; — Z* is used which removes silent
eventsr from every strings.

Definition 4 [14] Let G= (Z,Q,—,Q°, Q%) be an FSM. An equivalence rela-
tion ~ C Q x Q is called anobservation equivalenan G, if the following holds
for all x1,X € Q such that x ~ xo: if X1 N y; for some g € (£, UZ¢)*, then
there exists yc Q and $ € (2, UZ;)* such that Rs)) = P(s), X 2 Yo, and
Y1~ Y.

For observation equivalence a generalised version of tienblation algo-

rithm [15] can be used. The only difference is that a split ésf@rmed on

. . . *P(o)T*
each known equivalence claSs separating stateswith x % C, for all

o € (ZyoUZ;), from other states, i.e, theansitive closureof the silent tran-
sitions needs to be considered. Similar to bisimulationaligerithm gives the
minimal FSM.

Besides state merging abstraction, an FSM can be abstragtezimoving
redundant transitions. More precisely, a transitiofs y is observation equiv-
alence redundanand can be removed [16] if the FSM contains amatching
path A matching path starts fromand ends up in the stayeby a string con-
sisting of o and sequences of silent events before or afteFhe matching path
must not contain the transition itself. After removal of teeundant transitions
from G the abstract FSNH is obtained. The following definition describes how
G andH are related.

Definition 5 Let G= (Z,Q, —g,Q°) be an FSM. FSM H= (Z,Q, —, Q°) with

—n € — is a result ofobservation equivalence redundant transition removal

. " ., _TP(o)T*
from G, if for all transitions x> y there exist xﬂm y.

Bisimulation and observation equivalence are well-knowneagal abstrac-
tion methods to merge states. In Chapter 4, bisimulatiorsamedtricted version
of observation equivalence are used to abstract FSMs.

G . G H
o J1 do1 T doz
a a a o
gz as 023 gz23
a o a a
Ja a4 da

Figure 2.6: Example of observation equivalence basedaisins.
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Example 4 Consider the FSM G shown in Fig. 2.6. Statesqd ¢ are bisimi-

lar as state g can be reached from both of them by executing eeeiMoreover,
states g and g can be merged by applying observation equivalence. These
two state merging abstraction steps result in the abstch&8M G shown in

Fig. 2.6. Next, transition ¢ N Joz1 is redundant because ot)gi Jo1, Wheree

is the empty string, and can be removed, resulting in therabigtd FSM H in

Fig. 2.6.

14



Chapter 3

Supervisory Control Theory

A discrete event system usually consists of a sptarfitsandspecificationsnod-
elled as interacting state machines. Plants can be seereasganerators and
describe the behaviour of tkacontrolledsystem. Usually, the system behaviour
is not acceptable in that it violates some specified requerdgs) for example, a
machine trying to add a workpiece in a buffer that is cursefull. Thus, com-
monly for a system a set of specifications is defined that desthe desired
behaviour of the system. Now the task is to firstify whether the system sat-
isfies the given specification, and, if not, restrict the sysbehaviour such that
the given specification is fulfilled.

The supervisory control theoryl] provides a mathematical framework to
automatically calculate, @ynthesisga control function called aupervisorthat
restricts the behaviour of the plant such that the spedificas always fulfilled.

In this thesis, plants, specifications, and supervisorsiapally denoted bys,
K, andS, respectively.

Fig. 3.1, shows the feedback loop of supervisor and plane glant gener-
ates events iz and the supervisor as a functigf ), based on the earlier gener-
ated events, influences the plant behaviour, and thus teedllmop system, by
deciding whether or not to enable the possible events. Thasupervisor itself
is incapable of generating events and only enables or disghem. In [17],

N

Supervisor «—

S0 2

Plant —

Figure 3.1: The feedback loop of supervisor and plant.
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it was shown that when the plant and supervisor are modefidelSMs, syn-
chronous composition of the plant and supervisor can destie behaviour of
the plant under the control of the supervisor. This resula simplified notion
of controlled behaviour.

Supervisory control theory is generalised for nondeteistioimodels in [18—
20] among others. In [18, 19], even though the plant may belam@mministic,
the specification must be deterministic. This conditioreisxed in [20], where
both the plant and specification can be nondeterministit) thie objective that
the controlled system be bisimulation equivalent to the#jgation. This thesis
considers systems where both plants and specifications edelied by deter-
ministic finite-state machines, and the nondeterminisnsiciamned in this thesis
is the result of abstraction.

3.1 Requirements for Supervisors

A plant describes everything that the uncontrolled sysgecapable of doing and
the specification expresses the desired behaviour. Thepesgsor is a device

that restricts the plant behaviour such that the plant inrctbsed-loop with the

supervisor acts as desired. Besides this essential reagmte there are three
more requirements that a supervisor should have.

3.1.1 Nonblocking

The supervisor is designed to fulfil a given specification.wideer, this is not
per se useful if the supervisor restricts the plant from deuhat it is supposed
to do, for example, if the plant under the control of a sumawigets stuck in
a state or a loop from which no tasks can be completed. To dlegk kinds
of situations, as mentioned in Chapter 2, some states atplartinterest in the
plant and the specification can be marked. Then the idea esigla supervisor
such that the closed-loop system can always reach a stais tharked by both
the plant and the specification. Such a supervisor is reféoras anonblocking

supervisor [1].

Definition 6 Let G= (X Q,—,Q°, Q). A state xc Q is calledreachablen G

if Q° > x for some & X*, andcoreachabléf x 1 QW for some te 27. Gissaid
to benonblockingif every reachable state is coreachable.

An FSM is nonblocking if from all the reachable states a mditate can be
reached by executing a sequence of events. Given a @land a supervisob
the resultant closed-loop behavioui@gS (reading asS controllingG), and the
closed-loop system should be nonblocking. The nonblocHifgition can be
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easily extended to an EFSM. An EFSM is nonblocking if the itast flattened
FSM is nonblocking. The formal definition of nonblocking 8FSM is given in
Paper 1 in Def. 11. As mentioned in Section 2.3 in this théses special event
w is used to represent the marking of states. Then, the ndkibipdefinition
should also be adapted to event-based marking.

Definition 7 [21] An FSM G= (Z,Q,—,Q°,Q%) is nonblocking if for every
state xc Q and every trace § Z; such that Q S X there exists € 27 such that

tw
X—.

Similarly to Def. 6, Def. 7 says that if a state is reachabdefian initial state
by a sequence of events framp, then there must be from that state a sequence of
events that ends wittv. In Def. 7, the condition thatandt are constructed from
the set; and thus do not contai is important. For example, g€ %7 , then
the statel that is used to represent the marking of a state becomesatgiach
As now transition is coming out of_, the FSM may falsely seem blocking.

3.1.2 Controllability

A supervisor is a device that restricts the plant behavigudisabling some
events. Itis reasonable to assume that some events candisbéed by the su-
pervisor, for example, the breaking of a device. Thus, feqtharpose of supervi-
sory control, the alphabet of a system is partitioned into éigjoint subsets, the
setZ . of controllableevents and the s&t, of uncontrollableevents. Controllable
events can be disabled by a supervisor, but uncontrollalgete cannot. Now
the question arises whether the silent everind the termination evernb are
controllable or uncontrollable. The termination eventassidered as a control-
lable event because the supervisor should be able to diggahlerder to remove
some markings. Moreover, in this thesis having a silent evetihe model of a
system is the result of hiding a local event. Thus, in the thaethe control-
lability of events is relevant, the silent event will have ttame controllability
characteristic as the local event that it replaces. In thatnotation ofry, andt,
is used for the uncontrollable and the controllable silereis, respectively. In
the case that the controllability of the events are not eglevthe silent everttis
used, for example in Paper 1, where only nonblocking vetifioas considered.

To distinguish controllable events and uncontrollablenésven the figures,
uncontrollable events are prefixed by an exclamation mawk (!

Considering uncontrollable events, one requirement feictmputed super-
visor is that it never tries to disable an executable unctiatsle eventin order to
restrict the system. In other words, a supervisor is colaiotg with respect to a
plant if the occurrence of an uncontrollable event doesewd ko a string which
is not acceptable by the supervisor [1]. The formal definitwd controllability
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for deterministic FSMs is given in Paper 2 in Def. 5, and fondeterministic
FSMs in Paper 3, Def. 7.

3.1.3 Least Restrictiveness

The purpose of a supervisor is to restrict a plant behavimtulfil a given spec-
ification. It is typically required of a supervisor to achégesome minimum func-
tionality. To ensure this minimum functionality, in thisetsis thdeast restrictive
supervisor, which restricts the system as little as possgtonsidered. Least
restrictiveness may not always be required, and it can indase the synthesis
work. However, if a non-least restrictive algorithm syrdizes an overly restric-
tive supervisor, such as one giving an empty closed-loogsyst is not clear if
this is due to a problematic plant/specification combimgta just an ill-chosen
synthesis result. With an algorithm that guarantees a teasictive supervisor,
on the other hand, an overly restrictive supervisor will be best achievable
result and hence definitely a consequence of a problematit/ppecification
combination. And of course, if you are going to do somethirny wot try to do
it optimally!

In this thesis, one goal is to calculate a least restrictiamtrollable, and
nonblocking supervisor and such a supervisor always eaigiss unique with
respect to a given plant and specification [1].

3.2 Synthesis and Verification

When we are dealing with safety critical systems such ascaédevices or sys-
tems where errors are expensive such as factories, it isrtamgdo know if the
systems works as expected in all possible situatiboanal verificationis used
to prove that a system satisfies a given specification. Twaitapt properties
that are typically verified areonblockingandcontrollability. Nonblocking ver-
ification proves that a system can always complete a cer@mifisant sub-task
without violating the specification, and controllabilitgnfication proves that the
system does not uncontrollably violate the specification.

In this thesis only, nonblocking verification of systems ralbet as a set
of EFSMs are considered. Nonblocking and controllabilgyification of FSM
models are well-developed in the literature [1, 6, 7]. It vgaswn in [22] that
controllability problems can be converted into nonblogmmoblems, making it
possible to verify both nonblocking and controllability ynning the nonblock-
ing verification algorithm only once.

The straightforward approach to verify the nonblockingganay is to com-
pose all the components of the system. In the case that thensys modelled
as a set of EFSMs, the next step is to flatten the composed EFH®Minal step
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is to check if the resultant FSM is nonblocking by inspeciingis possible to
reach a marked state from all the reachable states.

Example 5 Consider the manufacturing system in Example 1. The EFSMimod
of the system is shown in Fig. 2.3 and the synchronous cotigposesult is
shown in Fig. 2.5. To use the straightforward approach tafyehe nonblocking
property of the system, the system needs to be flattened=igsB.2 shows the
flattened FSM H. Initially the buffer is empty, which means 6, and M, and

M2 are in initial locations § and b. Thus, the initial state of H i$0,11,12).

At this state the event €an occur. After occurrence of this event, the buffer is
still empty and M is still in the location . M1 however, moves to locatiomW
Thus the next state of the systenfdsM, |») and so on. The flattened FSM H
is isomorphic to FSM M|| B|| M2 shown in Fig. 2.4. This confirms that both the
FSM and EFSM models describe the same behaviour. FSM H idoukiig as
from all the states, the marked stdt|4,1,) can be reached. Thus, the original
EFSM system is nonblocking.

0,W1,W>

Figure 3.2: The flattened FSM of the EFSM model of the manufaay system.

After verification, if the result is satisfactory then thekas done and there
is no need to design a supervisor as the specification carebleassa supervisor.
Otherwise, a supervisor needs to be designed to prevenystensto go to the
bad states. To this end, supervisory control theory [1, Glictv automatically
synthesisesuch a supervisor is proposed.

The synthesis algorithm in this thesis first transformshalgpecifications to
plants [22]. A specification FSM is transformed into a playpalding, for every
uncontrollable event that is not enabled in a state, a tiango a new blocking
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stateL. The formal definition oplantificationis given in Paper 2, Def. 8. Plan-
tification essentially transforms all initial controlléiby problems into blocking

problems. Then, the pla@ and the transformed specificati&t are synchro-

nised and the synthesis algorithm iteratively identified amoves blocking

states, and the states that uncontrollably go to blockiatgst The algorithm
in the end returns the least restrictive nonblocking androtiable behaviour

allowed by a specificatioK with respect to a plar.

Example 6 Consider the manufacturing system in Example 1. The eVénts
and!f, are uncontrollable andsand $ are controllable. The safety issue in
this system is that machine;Mhould not try to put a workpiece in the buffer
B if the buffer is currently full, and Mshould not try to remove a workpiece
if the buffer is empty. Therefore, FSM B is considered as feeiication to
avoid buffer overflow and underflow and the machines are densd as the
plants. This specification is uncontrollable as it disalilesuncontrollable event
I'f1 in the states(F,W;,W,) and (F,W,1,) to avoid adding a workpiece in a
currently full buffer. Thus, the plant violates the speaitien uncontrollably
and a supervisor needs to be designed. The first step to dasgpervisor is
to plantify the specification. Fig. 3.3 shows the FSM, Bvhich is the result
of plantification. Next, B is composed with Mand M. The statel in the
composed FSM B|| M || My represents the initial controllability problem, and
it is a blocking state as can be seen in Fig. 3.3. The plant si¢ethe restricted
to avoid ending up in the blocking state This state however, is reached from
(F,W;,W,) and (F,Wi, I2) by the uncontrollable everf;, which the supervisor
cannot disable. Thus, the best control decision is to desalknt sin the states
(F,11,W5) and (F,11,12) and thus avoid starting machine;Mvhen the buffer is
full. The least restrictive, nonblocking and controllaklgpervisor S is shown in
Fig. 3.3.

In the finite-state case, the iteration to remove all probligcrstates is guar-
anteed to terminate, and the complexitPi@Q||—|), where|Q| and|— | are the
numbers of states and transitions of the state machine. dvasby [23] the syn-
thesis problem is NP-hard, since the siz&dnd— grows exponentially with
the number of components. Thus, the straightforward agpesafor verification
and synthesis described in Section 3.2 are limited bysthte-space explosion
problem. Therefore, this thesis proposeompositionabpproach, described in
Chapter 4, to solve synthesis and verification problems reficently.

3.3 Problems Considered

We assume that the components of a system are giveletasministicfinite-
state machines or extended finite-state machines. Theidiidlvcomponents
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B BL
E E
Ify S Ify S
If1
F F L
B || M1 || M2

E,11,W

E,W1,W;

Figure 3.3: The specification and the supervisor of the nantufing system.
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have arbitrary alphabets, all the events of the systemslasereable and the
controllability characteristic of an event does not chaingen one component to
another.

To be more detailed, the two problems considered are:

The modular nonblocking verification problem A modular system is mod-
elled as

& ={Ey,...,En} (3.1)

where eaclE; is an extended finite-state machine. The task is to verify
whether the systerd is nonblocking. As only nonblocking verification is
considered, the controllability of the events is irrelevakiso, there is no
need to treat specifications and supervisors differentijfplants.

The modular supervisor synthesis problem A modular plantG = {Ggy, ...,
Gm} and a modular specificatidd = {Ky, ..., K} are given as FSM mod-
els. As mentioned before, the specifications are plantiflretithus, the
system is

4 ={Gy,...,Gy} (3.2)

The task is to calculate a least restrictive, controllalrid aonblocking
supervisor which has a modular structure. Here, as the@ispenot only
needs to be nonblocking but also controllable, in cont@stonblocking
verification, the controllability of events is considered.
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Chapter 4

The Compositional Approach

Usually discrete event systems am@dularin the sense that the model of the
system consists of a set of plant components and a set ofispgons, all in-
teracting with each other. The straightforward way to aselg system involves
building an explicit monolithic model which may lead to timerent complex-
ity problem known as thetate-space explosigoroblem. This combinatorial
problem occurs as the number of states grows exponentidtytiae number of
components. This problem makes it intractable to examieertbnolithic state-
space of a system due to lack of memory and time. Consequeatigtructing
the explicit monolithic model of the system is not efficiendanethods to ex-
ploit the modular structure or methods that efficiently esgnt the state-space
of the system are needed. One way to exploit the modulartateiof a system
is to use a&ompositional approachlThe compositional approach has previously
been successfully used foerificationof discrete event systems [2,24-27]. In
this thesis, the compositional approach is used both faficeion and synthesis
of systems, which are respectively modelled as a set ofaatieig EFSMs and
FSMs.

In this chapter, Section 4.1 briefly overviews differentstixig approaches
that help to avoid the state-space explosion problem. Thergécompositional
approach is described in Section 4.2. The compositionablocking verifica-
tion algorithm for EFSM systems is explained in Section &iRally, Section 4.4
describes two framewaorks for compositional synthesis dfIFS

4.1 Alleviating the State-Space Explosion Problem

Various approaches to avoid state-space explosion have freposed in the
literature. This section briefly describes tnedular, hierarchical andsymbolic
representatiorapproaches.

The modular approach was first introduced in [28]. In thiskwbwas shown
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that controllability verification and controllability syimesis can be done by con-
sidering one specification at a time with the plant compaogimposes require-
ments on. This approach was later developed in [29, 30]. Toduhar approach
is very efficient, however all the works mentioned only cdesicontrollability
of a supervisor, and they do not guarantee global nonblgckinthe closed-
loop behaviour. The work in [31], resolves conflict among mladsupervisors.
However, in this work the supervisor is not necessarilytleastrictive.

Hierarchical approaches divide the system into differemels of hierarchy.
This was first introduced by [32], and was later developedBj.[ In [33], the
authors divide the system into high-level and low-levelssigbems where sub-
systems communicate througtierfaces More recently, decentralized and hier-
archical approaches are presented in [34—36]. In theseswtirl authors obtain
decentralized supervisors for each specification andtjpartine plant compo-
nents and decentralized supervisor into subsystélatiral projectionwith the
observer property is used as a method to abstract each sernsy$he work
in [34] does not necessarily result in a least restrictiveesvisor. To guaran-
tee least restrictivenessutput control consistendy5] and the less restrictive
condition oflocal control consistenc|B6] are proposed.

Algorithms based on Binary Decision Diagrams (BDDs) [37hwert the
model of the system to a symbolic representation in the fofrB@Ds [38]
and explore the full state-space symbolically [39]. By spititbwe mean that
during analysis, the system is not represented directliafsssand transitions but
indirectly as Boolean functions. Representing a systembsjically, in many
cases results in smaller representation of the state-ggabe system. BDDs
were first brought into the supervisory control theory by][40d were later
developed by [41-43].

4.2 General Compositional Approach

In this thesis, the compositional approach is used to atethe state-space ex-
plosion problem, and it is used both for nonblocking vertimaand supervisor
synthesis. If the task is to verify nonblocking, then the toolfability of the
events is irrelevant and thus, the specifications can bademesl as plants. Oth-
erwise, the specifications are first plantified as explaine8ection 3.2. There-
fore, in both nonblocking verification and synthesis, theuinto the composi-
tional approach is a set of interacting plant components

Y =Ga--[|Gn. (4.1)

To alleviate the state-space explosion problem, the coitiposl approach
constructs the monolithic model gradually, while abstractomponents at each
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step. Before beginning the synchronisation process, eatividual component
is first abstracted, and the abstractions replace the atiggmponents. By ab-
stractions we mean removing redundancy, and an abstraategonent has less
states or transitions compared to the original componénb more abstraction
is possible then some components need to be composed a&, si/hem is an
EFSM system, some variables are removegéastially unfoldingthem (as ex-
plained in Section 4.3.2). Iteratively, the intermediasults are composed and
abstracted again and again, until eventually, the proeckdads to a single state
machine, which is an abstract representation of the sysidms. state machine
has less states and transitions than the original system fiff&l step is to use
the final abstracted state machine for either verificatiagupervisor calculation.
Fig. 4.1 illustrates the general compositional approach.

The compositional approach explained above is general amthe used for
any system and any property of interest. Once the properiytefest is deter-
mined, we can define abstraction methods that abstract eagbonent in such
a way that the property is preserved. Abstraction methaasao important role
in the efficiency of the compositional algorithm. The reasothat the size of
the final component depends on the abstractions at eachrateépeasmaller the
size, the more efficient the analysis.

Another main ingredient for the compositional approachaokis heuristics,
which decide what components to compose at each step ofgbetam.

In the following sections, some general points regardidgigi events, which
is essential for abstraction, heuristics, and issues et to be considered when
abstracting components are discussed.

4.2.1 Local Events and Hiding

The state-space explosion problem is more noticeable wieecamponents are
loosely coupled, which means some components have inteehaliours inde-
pendent of others. While this independence can resultie-sggace explosion, it
can also be useful when abstracting components in the cotigpas approach.

The events that represent the internal behaviour of comysiaee referred to
aslocal events The reason that they are called local is that these eveptsaap
locally in only one component of the system. In this thegig, setY denotes
the set of local events. Non-locadhared events are denoted iy = >\ Y.
In general, abstraction methods depend on the local evedtsh@ more local
events, the more possibility of abstraction.

In compositional nonblocking verification, the identitytb& local events can
be hidden. Local events can thus be replaced by the silent evé&his is possi-
ble because hiding of local events does not change the nckibépproperty of
a system [2]. Paper 1 only considers compositional nonlogockerification and
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Figure 4.1: General compositional approach. The modulstesy is described
by {G1,Gg,---,Gn} which is a set of plant state machines ands a proper
equivalence relation.
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thus, the local events are hidden when possible. In the csitiqaal synthesis
approach presented in Paper 2, the local events are notrhiddiie supervisor
may need to know the identity of the events to make controkt®ts. Paper 3,
similar to Paper 2, uses the compositional approach forrsigoe calculation.
However, as the supervisor in Paper 3 makes control desibi@ased on the states
rather than the events, hiding is possible in this papehiggaper the local un-
controllable and controllable events are replacedjgndtc, respectively.

In the figures, if local events are not hidden, they are shoitmparentheses
around them.

4.2.2 Abstraction Methods

Generally, the compositional approach attempts to repiladiwidual compo-
nents by abstracted versions. This requires that the abstr@omponents are
properly related to the original components. In this respe@roper notion of
equivalence needs to be identified. This can be done by dgftha property
that is required to be preserved.

For compositional nonblocking verification, the properfyirderest is non-
blocking. Thus, we consider two state machines equival&ath have the same
nonblocking results in synchronisation with an arbitrasttstate machine. This
equivalence relation is callembnflict equivalencelt was introduced in [44] and
is used in Paper 1. The test state machine essentially egyisethe rest of the
system and the reason for considering it arbitrary is to laayeneral framework,
which works for arbitrary systems.

In the case of compositional synthesis, the intention isalouwate a super-
visor to control a system. Thus, given a pl&tand the supervisog calcu-
lated in a monolithic way, in order to calculate a superviStay the composi-
tional approach, the equivalence relation could be defigeglither maintaining
the same supervisor as the monolithic superviots) = Z(S), or having the
same closed-loop behaviou?(G|| S) = Z(G||S). Technically, supervisors
are calculated to modify the closed-loop behaviour of thetesy such that the
specification is fulfilled. Consequently, in Paper 2 and 3intaéning the same
closed-loop behaviour is considered as the property ofestevhen calculating
a supervisor. This equivalence relation is cabgdthesis equivalence

4.2.3 Heuristics

The efficiency of the compositional algorithms is sensitwéhe order in which
state machines are composed and abstracted. As there ayeoptaoms at each
step, a number of heuristics has been defined to decide wdtatreichines to
compose.

27



CHAPTER 4. THE COMPOSITIONAL APPROACH

As mentioned before, abstraction methods play an importd@in the per-
formance of the compositional approach, and usually logahts and hiding
are essential for abstraction. Moreover, it is importarkdep the intermediate
results small. Based on these principles a variety of hicsiso decide what
FSMs of a system to compose are proposed in [2]. These Hesrse used in
the compositional synthesis approach in Paper 2 and 3.

For compositional nonblocking verification of EFSM systeths algorithm,
besides composing EFSMs at each step, also needs to gyackralbve vari-
ables. Thus, the heuristics for EFSM systems do not onlyidens/hat EFSMs
to compose, but also which variables to remove at each stegerieral, it is a
good idea to remove variables with small domains as thisymesismaller inter-
mediate results, or variables that appear frequently asvigrg them simplifies
large numbers of updates. Different heuristics for EFSMesyis are proposed
in Paper 1.

4.3 Compositional Verification of EFSM Systems

The compositional nonblocking verification algorithm fdF&M systems seeks
to repeatedly apply conflict equivalence abstractions dividual EFSMs and
partially unfold variables. In the end of the compositioajorithm, all the
variables are partially unfolded and the system is simptaugh to be verified
monolithically.

As mentioned before, one of the most important steps in thepositional
approach is abstraction. In [2], a variety of abstractiorthods for FSMs are
proposed that preserve conflict equivalence. This framewsrextended to
EFSM systems in Paper 1. In general, the nonblocking proméran EFSM
system is not necessarily preserved after applying theadbstn methods de-
fined for FSMs to an EFSM without considering the updates®@BRSM. In the
following, by the help of an example it is shown how updateanrEFSM affect
the abstraction methods defined for FSMs.

G G E E
Jo do
dor B T:X>0 Qo1 B

Figure 4.2: FSMG andG are conflict equivalent, while EFSH andE are not
conflict equivalent.
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Example 7 Consider the FSM G and EFSM E in Fig. 4.2. The events of the
transitions @ 5 g1 in G and E are local and hidden. First consider the FSM
G. Clearly from @ and g the same states can be reached by executing the same
events if the silent eventis not considered. Thusp@nd g are observation
equivalent, Def. 4. As observation equivalence presereaflict equivalence
[45], states @ and g can be merged, resulting in the conflict equivalent FSM
shown in Fig. 4.2.

Now consider the EFSM E. The domain of the variable %0sl,2} and
x> = 0. This EFSM is blocking because, to reach the marked locatipnhe

transition g x>0, g1 heeds to happen, and as initially=xO0, this is impossible.
If we apply to E the same abstraction method as on G, withausidering the
update x> 0, the EFSME, shown in Fig. 4.2, is obtained, which is clearly
nonblocking Thus, E an& are not conflict equivalent.

In Example 7, we blindly applied the same abstraction metimloothG and
E. However, since the update of the silent everEiwas disregarded andE
in contrast taG andG are not conflict equivalent.

Now questions arise. Can we apply conflict equivalence attsbns devel-
oped for FSM on EFSMs? When can we use a silent event for araatish?
How can we remove variables from the system without faciregdtate-space
explosion problem?

All the above questions are answered in Paper 1, and somisdutahe
paper are discussed in the following sections.

4.3.1 Normalisation

At first sight, it seems that the main obstacle to apply thdérabson methods
developed for FSMs to EFSMs is the updates of EFSMs. In an EE@&tem,
transitions of components are labelled by eveartd updates, and most likely
each event associates with different updates in differansttions, as this gives
the user more freedom to model the system. This makes it loasge¢ how
executing an event in an EFSM system affects the variablég. fifst step of
the compositional nonblocking verification algorithm igteforenormalisation
Normalisation associates each event with its own distipdiate. To normalise
an EFSM system, components are first individually normelessd then the sys-
tem is globally normalised.

A component is not normalised if an event appears on differansitions
with different updates. To individually normalise compatsewe useéenaming
which introduces new events to the system for each upplatssociated with
evento. Note that the events introduced by renaming should ncadyree in the
alphabet of the system, otherwise the renaming process otapnverge. After
renaming one component, the other components of the syséechanged to use
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El E2
do do
a:y=1 a:x=0
a o a:x=0
a: X =x+1 B
a2 az
= E;
do do
S a1 x=0
apiy =1 az:x=0
o HOSFi ot
or: X =x+1 B
az az

Figure 4.3: The result of individual normalisationef andE,.

the new events. Prop. 2 in Paper 1 confirms that the behaviaeusystem before
and after individual normalisation of each component isfaal up to renaming
of the events. As renaming preserves the nonblocking prgpermalisation of
individual EFSMs does not change the nonblocking propdrthie@system.

Example 8 Consider the EFSM systefie;, E,}, where B and E, are shown
in Fig. 4.3. EFSM Rk is already individually normalised as bothand in this
EFSM have unique updates. However, EFSMsEhot normalised as the evemt
appears with updates y= 1 and X = x+ 1. To normalise EFSM E the eventsr;

. . .. y=1
anda» are introduced. These events replace the ewenttransitions @ L

g1 and g ax=xtl, g of E; respectively, which results in the normalisel E
shown in Fig. 4.3 bottom left. Now, we need to replace thetewein E, by
the new events to comply with the event modification. Thetapad the events
a1 and az in the modified EFSM fare equal to the update af in E;. The

normalised EFSM Eis shown in Fig. 4.3 bottom right.

After normalising individual components, the system netedbe globally
normalised. This is done by assigning to each event an upahteh is the con-
junction of all the updates associated with that event irefR8Ms in the system.
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The updates associated to each event after this step ardiabgehe updates
that would have been calculated by synchronisation. Horwyeeemalisation in
contrast to synchronisation retains the modular structuhéch is essential for
the compositional approach.

If an EFSM system is normalised, the need to have updatesamtesnsi-
tion is removed. Moreover, the synchronisation task besosmapler because
updates can be disregarded and standard FSM synchronisatiobe used for
normalised EFSM systems.

A (Ep) N (E)

Jo Jo
a Event Update
az 1
oy a; |Y=1Ax=0
' =Xx+1AXx=0
o1 a as X =X+
9 az B | true
ar B
Q2 02

Figure 4.4: The normalised system in Example 9.

Example 9 Consider the EFSM systefit], E5} shown in Fig. 4.3 where com-
ponents are individually normalised. The update of the eagris Y = 1in E]
and x= 0in E;. To globally normalise the system, the updatepbecomes the
conjunction of =1 and x= 0, which is y = 1 Ax = 0. Similarly, the update of
azis X =x+1in Ej and x=0in E5, and thus the update of in the normalised
system is’x= x+ 1A x = 0. The update of the evefitdoes not change as this
event is local to & After normalisation of the system, writing the updates on
the transitions becomes unnecessary, and the informadigarding the update
of each event is given in the table in Fig. 4.4. The figure amws. 4 (E}) and

A (E5), which replace Eand E, respectively after the normalisation procedure.

The normalisation procedure preserves the nonblockinggety of the sys-
tem and is explained in detail in Section 4 of Paper 1. From oowe assume
that EFSM systems are normalised.

4.3.2 Partial Unfolding

As mentioned before, the straightforward approach to yenif EFSM system
unfolds all the variables of the system at once, which resolthe state-space
explosion problem. To alleviate this problem, the composéal approach for
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Y (a1,0,0) Y’
0 0
.1,0 ,0,1 (01,0,1)
(01,1,0) (01,0.1) ' Event Update
1 1 a; |Y=1Ax=0
( )

e J—
(017171) al,l,l ?32 i( —X+1/\X—O
rue
|('1|1 Hz (a1,0,0) |false
i qo (01707 1) X:O
,0,1
Eal’cl)’ }; gi,l, 1% (a1,1,0) | false
al> ) aZ (0171,1) X:O
Ja 41 Egi:%ig a, | X=x+1Ax=0
az B true
ar B
az az

Figure 4.5: Example of partially unfolding a varialyle

EFSM systems unfolds variables gradually and replaces tyeBFSMs called
variable EFSMsThis process is referred to partial unfolding

Assume that we want to remove a variablérom the system and replace
it with the variable EFSMV. The locations of the variable EFSM correspond
to the domain of the variable To label the transitions of the variable EFSM,
first events with the variable in their updates are identified. These events, in
combination with variable values create new events thatl ldde transitions of

the variable EFSM. An event of the forfo, a, b) labels the transitioa (oab)

of the variable EFSMW/. Now, if the update ot is p, the valuesa andb are
substituted forv andV/, respectively, in updates that have the variablélhis
results in simpler updates with fewer variables, which asgned as the updates
of the new eventéo,a,b).

Since partial unfolding introduces new events in the systdhithe EFSMs
of the system need to be modified to use the new events.

Example 10 Consider the normalised EFSM system shown in Fig. 4.4 wéh th
updates in the table of the figure. Assudwen(x) = dom(y) = {0,1} and X =

y° = 0. Partially unfolding the variable y results in the variabld=SM Y with
locations 0 and 1 in Fig. 4.5 top left. The only event that Hes\ariable y in

its update isa; with update ¥= 1 Ax = 0. This event is replaced by four new
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events representingr,y,y) for the possible combinations of y’s domain values:

(01,0,0) with update(y’ = 1Ax=0)[y+~ 0,y — 0] =0=1Ax= 0« false
(a1,0,1) with update(y = 1Ax=0)y—~ 0,y =1 =1=1Ax=0<x=0
(a1,1,0) with update(y = 1Ax=0)[y— 1y — 0 =0=1Ax= 0« false
(01,1,1) with update(y = 1Ax=0)[y—~ 1Ly —» 1 =1=1Ax=0&x=0

The new events and their simplified updates are shown in tile ia Fig. 4.5.

All the events withlialseupdate can be removed as the transitions labelled with
these events can never happen. Fig. 4.5 shows EFSMhich is obtained by
removing transitions witlialse updates from Y. After introducing new events,
the EFSMs need to be changed to use the new events. Fig. 45 slhand H

at the bottom, which replace/"(E;) and.#(E5) in Fig. 4.4 respectively.

Note that after unfolding a variable we replace the variable in an update
with different values. Then the system is not necessaritynatised if we do not
introduce the new events in the system. Therefore, we repiagith (o,a,b).

The question at this point is how partial unfolding can helthwhe state-
space explosion problem? Partial unfolding simplifies tgslen the sense that
they have less variables. This helps with the abstracticinods, as explained
in the next section.

4.3.3 Adapting FSM Abstraction Methods for EFSMs

One of the contributions of Paper 1 is to find a way to apply thaflect equiv-

alence abstraction methods defined for FSMs [2] directly B6Ms. As most
abstraction methods defined for FSMs use the silent eneie first step is to
extend the notion of silent events into the EFSM framework.

Silent events replaclecal events, i.e., events that only appear in one FSM
in the system. Local events can be replaced by silent evegtise they do not
interact with other components of the system. In an EFSMesys$towever, as
shown in Example 7, only considering local events when abstrg an EFSM
does not necessarily yield conflict equivalence abstraciitiis is because even
though local events do not interact with other componehts variables in the
updates associated with those local events may be shacethuminteract, with
other components. Thus, intuitively we can hide eventsaralocal and have no
variables in their updates. As updates are predicatestegpdath no variables
can be replaced btrue or false As transitions withfalse update are always
disabled, they can be removed from the system. This leavegtlusrue updates
as the updates with no variables. Thus, we can hide eventthical and have
true updates. This makes sense because transitions of an EFSMdHabelled
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by silent events andfue updates are always enabled, similarly to transitions
labelled by silent events in an FSM.

Once we identified the local events that can be hidden, we egard the
normalised EFSM as an FSM, and hence apply all the abstnactiefined for
FSMs in [2]. This approach is explained in detail in Sectioh & Paper 1 and
the proof of correctness is given in Section B.5 of Paper 1.

G G
do do
Event t
(01,0,1) (01,0,1) ve Update
(a1,1,1) (a1,1,1) (01,0,1) | x=0
az (G 0.1 a2 (01717 1) x=0
ef] (o 11) 912 a, | X=x+1Ax=0
a2 B true
T (alvov l)
(alvlv 1)
(o az

Figure 4.6: Example of FSM-based conflict equivalence abstm.

Example 11 Consider the EFSM system HH,, Y’ shown in Fig. 4.5. Evens

is a local event withtrue update and thus, this event can be hidden. The next
step is to consider the EFSMyHas an FSM and hide eveift. Fig. 4.6 on

the left shows the resultant FSM G. Now applying to G obsemwaquivalence
abstraction, which preserves conflict equwalence [2]uttssin merging of states

or and ¢ and the abstracted FSK. AfterwardsG is regarded as an EFSM, by
considering the updates agai. is shown in Fig. 4.6 to the right.

4.3.4 Experimental Results

The compositional verification has been implemented in t&& Boftware tool
Supremica [46] and applied on several large industrial rnso@déen from [47—
54]. The test cases include complex industrial models sscmanufacturing
systems and automotive body electronics. For a detailedissson, we refer to
Paper 1.

To evaluate the efficiency of the EFSM-based compositionabiocking
verification algorithm, its performance is compared with BDD-based algo-
rithm and FSM-based compositional algorithm both impleteéin Supremica.
The BDD-based algorithm converts an EFSM system to a symbepiresenta-
tion and the FSM-based algorithm converts the EFSM systeamtodular FSM
system. Paper 1 explains in detail how an EFSM system is cau/® an FSM
system.

34



4.4. COMPOSITIONAL SYNTHESIS

The compositional nonblocking verification algorithm sessfully verifies
all the test cases in a few seconds or minutes, while the BRé&d algorithm
fails for large scaled-up systems and the FSM-based dhgorails for EFSM
systems with complicated updates. The reason that the Bdeebalgorithm
fails for some examples is, while the algorithm copes wethwdomplicated
updatesitis limited by the size and search depth of the-stzdee, and the BDDs
representing these systems are large. On the other handaben for failure
of the FSM-based algorithm for systems with complicatedatgsl is that, the
more complicated the updates in an EFSM system are, the memnéseappear in
the converted FSM-based compositional algorithm. Thuak#s a long time to
convert the systems and in some cases, the conversion tailges kime than the
verification itself.

The EFSM-based compositional algorithm outperforms theo tw
well-developed verification algorithms in most of the casesl shows promis-
ing results even for large industrial models.

4.4 Compositional Synthesis

This section discusses the compositional synthesis apipreeich is the sub-
ject of Paper 2 and 3. In compositional synthesis, in contoagerification, we

are concerned with more than giving a “yes” or “no” answed #re task is to
remove the states that violate the specification. In addiince we are inter-
ested in calculating a controllable supervisor, we nee@ke tnto account the
controllability of the events.

As mentioned before, the property of interest in Paper 2 aisdsgnthesis
equivalence, a property that preserves the same closed&wviour.

In Paper 2 the supervisor is represented as a set of FSMs dnaper 3
the framework is extended and the supervisor is a set of staps. Having a
supervisor as a state map allows nondeterminism afteraaibistin and transition
removal abstraction, both of which are avoided in Paper 2.

In the following, some details regarding each approach &eng

4.4.1 State Machine-Based Supervisor

The supervisor calculated in Paper 2 is a set of FSMs thablgisaontrollable
events that the plant would otherwise have generated. Asionex before, the
property of interest in Paper 2 is synthesis equivalencewiequires the same
closed-loop behaviour after each abstraction. In the freonle of Paper 2, to
preserve synthesis equivalence after each abstracteaptracted FSM needs
to be deterministic. The following example makes it cleagliis condition is
essential.
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R
R

Figure 4.7: Abstraction dB1 results in the deterministic FSK4;, while abstrac-
tion of G, results in the nondeterministic FSGb.

Example 12 Consider FSMs g Gy, and T in Fig. 4.7. All events are control-
lable, and events and 3 are local events in @ States gand ¢ in G; can be
merged because if from one of them a marked state can be haittes from
the other one a marked state can also be reached by exectgrigdal events.
Thus, synthesis always removes either both or none of theis résults inGy,
which is synthesis equivalent withy GCalculating a supervisor fo65; and T
results in $, shown in Fig. 4.7 to the right. Supervisor BB composition with
G1 and T disables everd in state ¢ and enables eventin g, of G;. This
supervisor will give the same closed-loop system whenaltinf G and T, as
would the monolithic supervisor. Now consider FSMiG Fig. 4.7. Applying
the same abstraction method te @sults inG,. The supervisor calculated from
G, and T is $ shown in Fig. 4.7. This supervisor enables eweirt the states
go and ¢ of G,. Thus, $is a blocking supervisor for &and T, since it permits
the blocking state gof G, to be reached.

In Example 12, a correct supervisor needs to be aware of #tessofG,
in order to decide whether to enable the controllable eyemt not, and it is
not straightforward to construct such a supervisor onlynftbe abstractios,.
For a supervisor FSM to work correctly, nondeterminism $thbe avoided after
abstraction. Then we have two solutions: either we do nogestates if it leads
to nondeterminism, which may make some desirable absirattipossible, or
we use renaming. In Paper 2, to avoid nondeterminism aftdratiion, the idea
of distinguishing sensorfb5] is adapted andenamingis proposed. Similarly
to renaming in Paper 1, renaming in the framework of Papetrddaces new
events. After applying a renaming to one component, newts\ae introduced,
so the remaining components need to be modified to use thevenise
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Figure 4.9: A distinguisher for the system shown in Fig. 4.8.

Example 13 Consider again FSMs £ Gy, and T in Fig. 4.7. As shown in
Example 12, merging stateg gnd ¢ in G, results in nondeterminism. To avoid
this, a renaming is introduced that replaces evgby two new eventg and .
ThenG; is replaced by the abstractionGn Fig. 4.8, which is a deterministic
FSM. Next, since FSM T has evantit needs to be modified to use the new
events. Thus, T is replaced by §hown in Fig. 4.8. Now we can calculate a
supervisor for G and T, which is shown in Fig. 4.8 as FSM.S

The question that arises at this point is how the superviguthesised from
the renamed model can control the original plant? To malepbssible, alis-
tinguisheris introduced in Paper 2, which is considered to be a parteofittal
supervisor. A distinguisher is an FSM that differentiatesaeen the renamed
events and it guarantees that only one of the renamed eweaitsbled at each
state. Distinguishers enable the final supervisor to chth@seorrect transitions.
For example, FSND shown in Fig. 4.9 is a distinguisher that differentiatesgve
y1 from y» since it enables at most one of these events in each stateitalty,

a distinguisher is the original FSM before abstraction wlignrenamed events to
distinguish.

To see how supervisd® and distinguisheD control the original system
consisting ofG, and T, assume that the plant wants to execute eyeint its
initial state(qgp,tp). From the renaming, we see that this event is replaced by
yi andys. At this point, the distinguisheD is in its initial statedy and it only
enabless. However, the supervis@ disables eveny in its statesy. Thus, the
eventy is disabled at the initial state. Now assume that the plantsv@ execute
the eventa in the statg(qo,to). As this event is enabled by the supervisor, the
plant can execute this event and move to the Staiep). After execution of
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eventa, the distinguisher goes to the stakeand S stays atsy. Now assume

the plant asks if it is safe to execute evgntThen the renaming again tells the
supervisor that this event is replaced fayand y». Since the distinguishéD is

in the statedy, only eventy, can be enabled. As the supervisor also enables the
controllable evens, the eventy can be executed at the global stédg, to).

In the framework of Paper 2, the supervisor is a set of FSMs.shfsvn
above, one drawback with having supervisor as a set of FSkmishondeter-
minism should be avoided at all the steps of the compositsymahesis. Another
issue with having the supervisor as a set of FSMs is thatitransemoval ab-
straction may result in a not necessarily least restriciygervisor. These issues
are resolved in the framework of Paper 3.

4.4.2 Map-Based Supervisor

As mentioned in the previous section, in the framework oféPdbnondeter-
minism is avoided at all the steps of the compositional aggino Moreover,
transition removal abstractions are not used unless itrhesalear that the su-
pervisor FSM does not need them to make a control decisiofgraesxample
selfloop-only events in Def. 17 of Paper 2. Otherwise, in theeace of a tran-
sition in the supervisor, the event of that transition, isicontrollable, will be
interpreted as a disabled event. This can result in a stgzerwhich is not least
restrictive. Thus, transition removal abstractions areused in Paper 2. How-
ever, there are usually much more transitions than statesiate machine, and
removing transitions can significantly decrease the memsage. These issues
are resolved in Paper 3.

The following example illustrates how abstraction by remgwa transition
can result in not having a least restrictive supervisor FSM.

G, G S
do Po S
o a a
y

d1 y P1 S1
a (1p)Pa ('B)

dz p2 S

a o
P3 $3

Figure 4.10: Transition removal results in the supervisarhich is not a least
restrictive supervisor.
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Example 14 Consider the syster¥ = {G1,Gy} in Fig. 4.10. Eventa is a
shared controllable event and evehis a local uncontrollable event and thus,
can be hidden. The transitiomp% ps3 in G1 is a redundant transition as there
is the matching path;p# p2 N ps. If we remove the redundant transition the
abstracted FSM5; is obtained as shown in Fig. 4.10. Now using F&yland
G to calculate a supervisor results in supervisor S shown m Bil0. This
supervisor disables event at state p of G;, while the monolithic supervisor
would enable it. Thus, this supervisor is not a least resitrecsupervisor.

The problem in Example 14 happens because the supervisoFSHd. As

the supervisor works in synchrony with the plant, in the absef the transition

s1 3 53, the eventr will be interpreted as disabled by the supervisor. However,
as we can see from the supervi§&in Fig. 4.10, statep, andps are considered
assafestates. Thus, if evertt happens in statp,, this event would drive the
plant to the safe statps. This gives us the idea to have a supervisor as a map
instead of an FSM, that links the states of the original p&rthe start of the
compositional algorithm to the states of the current abstrma, and finally states
that are determined amfestates by the final supervisor. This supervisor map
only contains the safe states, and at each state of the plabtes controllable
events, by which a state in the supervisor map is reached.

Example 15 Consider the systed = {él,Gz} and the calculated supervisor
S in Fig. 4.10. Instead of having the supervisor S as an FSMamehave the
mapu shown in Fig. 4.11 as a supervisor.

S Gi Gy | M| (Po;T0) | (P1,91) | (P2,q1) | (P3; o)
S \_|_1 S S ) 3
a
v u
S $4
Ly
%2 S3

Figure 4.11: Supervisor map for systéfrshown in Fig. 4.10.

To show how the supervisor map controls the system, assuahththsystem
is in the stat€ po, o), Where the eventr is enabled and would lead the system
to state(p1,q1). To see whether this event is enabled by the supervisor or not
we need to check if statgs, q1) is considered safe in the supervisor map. This
state corresponds to statein the mapy, which is a safe state. Thug,should
be enabled. Next, at the stdfe, q1) the plant enables evengs! 3 anda. Event
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B is uncontrollable and must be enabled. By euwgrnihe system ends up in the
state(ps,01), which is not in the supervisor map. The absence of this &ate
interpreted as it being unsafe, and thus disabled by the supervisor. Evemt
leads the system to the stdtgs,g2). The image of this state in the mapss
Thus, eventr is enabled by the supervisor.

The supervisor map shown in Fig. 4.11, in contrast to the supervisor FSM
Sshown in Fig. 4.10, enables evanin the statep; of G1, even after removing
transitionp; N ps. Thus, in the framework of Paper 3, in addition to state merg-
ing abstraction, transition removal abstraction is alsedusvhich can decrease
the memory usage.

The following section briefly explains state merging, stat@oval and tran-
sition removal abstractions that preserve synthesis atgrnce.

4.4.3 Abstraction Methods Preserving Synthesis Equivalere

Even though it may be easy to define an equivalence relatairstiould be pre-
served, finding methodologies to simplify the systems in @ twat the property
of interest is preserved is not straightforward.

The main challenge in the compositional synthesis apprsichfind meth-
ods to abstract FSMs of the system such that synthesis éejubeais preserved.
Since the only step in the compositional approach that dgttedduces the size
of a system is the abstraction step, the efficiency of the cmitipnal approach
considerably depends on the abstraction methods.

Generally, abstraction methods for compositional vetificasuch as those
proposed in [2], are not applicable for compositional sgsth. Technically, less
states can be merged in the compositional synthesis cothfmmmpositional
verification, since merged states should not only have theedaocking prop-
erty, they should also have the same synthesis property.

The state merging abstraction methods used in Paper 2 arellfased on
bisimulationand observation equivalendd4]. While it is proven in [56] that
bisimulation preserves synthesis equivalence, by usinguaterexample it is
shown in Paper 2 that observation equivalence does not. Ywieis possible
to strengthen observation equivalence to be applicablenmpositional synthe-
sis. For this purposeyeak synthesis observation equivalemcetroduced in
Paper 2 and also used as an abstraction method in Paper 3.

Weak synthesis observation equivalence, similarly to olag®n equiva-
lence, is a state merging abstraction. In weak syntheseradison equivalence,
the equivalent states should not only have the same futinavomur but also the
same synthesis behaviour. This means that two states asaleoed equivalent
if the synthesis algorithm either removes both of them orenafithem. As men-
tioned before, states are removed either because of caifity or blocking
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issues.

As can be seen in Def. 4 in Section 2.4, to consider two stdissreation
equivalent they should have equivalent paths. If one stageahpath, the other
must have anatchingpath,s; ands; in the definition, containing the same shared
events going to equivalent states. In weak synthesis o@semequivalence, in
contrast to observation equivalence, the controllabditgracteristics of events
is important. If an uncontrollable event is going out of of¢he states, then the
matching path must only contain uncontrollable events.s Toindition makes
sure that if one of the states is removed due to controltghgsues, the other
one will be also removed because of the controllability pgob For controllable
events, more care must be taken. In the first part of the maggdath, before the
controllable event, states reached by controllable locahts should be equiv-
alent to the start state of the paiy,in Def. 4. In addition, in the path of local
events after the controllable event, if a local uncontkd#aransition goes out
of the path, it must lead to a state equivalent to a state opdtig and shared
uncontrollable transitions going out of the path must als@abssible in the end
state of the path and lead to an equivalent state. Thesetmmsdguarantee that
if a marked state is reachable from one of the equivalen¢staihen from the
other one a marked state can also be reached via a matching pat

The formal definition of weak synthesis observation eqeineé can be found
in Def. 22 of Paper 2. After applying weak synthesis obs@&magquivalence in
Paper 3, a map that links the states of the original FSM to tidies of the ab-
stracted FSM is generated.

Beside the state merging abstraction, in Paper 2 and Pdpfvay synthe-
sis[22] andunsupervisability removdb7] are used, respectively. These abstrac-
tion methods identify and remove states of an FSM that sgigtvell definitely
remove later, no matter what the behaviour of the rest ofyetem is. An exam-
ple of such states are blocking states in an FSM. Halfwayh&gis works well in
compositional synthesis. However, it does not identifytlad removable states.
Unsupervisability removal on the other hand removes thgekrpossible set of
states [57]. After applying halfway synthesis, in Paper @ risult of halfway
synthesis is added to the supervisor set, and in Paper 3 aswgmnerated that
links all the states of the original FSM to the abstractetestaachine, and the
map does not contain the removed states. As mentioned b#ferabsence of a
state in the map is interpreted as the state being unsafe.

In Paper 3, in addition to all state-based abstractisyisthesis transition re-
movalis used as an abstraction method. Synthesis transitionvansaobtained
by restricting the observation equivalence redundantitiam removal, defined
in Def. 5 in Section 2.4. Similar to weak synthesis obseoragquivalence for
uncontrollable events, the local events on the matchinly patst all be uncon-
trollable. For controllable events, the local events betiie controllable event
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in the matching path should all be uncontrollable and anysiteon going out of
the path after the controllable event shouldrpand should lead to a state on the
path. The formal definition of synthesis transition remasajiven in Def. 18 of
Paper 3.

4.4.4 Experimental Results

Both of the compositional synthesis algorithms descridealva have been im-
plemented in the DES software tool Supremica [46] and agptieseveral large
and complex industrial models taken from [47-54]. Both atgms successfully
compute supervisors, even for systems with more thar f€achable states,
within a few seconds or minutes.

For most examples, the supervisor maps require less mernanythe su-
pervisor FSMs. In the few cases that a state machine-bapedvssor uses less
memory compared to the supervisor maps, the supervisor FEBkdsned after
unsupervisability removal as well as the final supervismelfaw states. How-
ever, the map-based supervisor needs to save all the mapsifreupervisability
removal and weak synthesis observation equivalence. Tékesthe supervisor
represented as a set of maps larger than the supervisoseaped as a set of
FSMs for these systems.

The memory usage to store a supervisor is an important aspectit comes
to implementing supervisors in memory limited devices BReCs. As the su-
pervisor map can be stored efficiently, it looks promisinguse of supervisory
control theory in industrial settings. More informatioroaibthe experiments can
be found in Section 7 of Paper 2 and 3.
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Chapter 5

Summary of Included Papers

This chapter provides a brief summary of the papers thanateded in the the-
sis. Full versions of the papers are included in Part Il. Tdqegps are reformatted
for uniformity and increase readability.

Paper 1

Mohajerani, Sahar; Malik, Robi; Fabian, MartinA Framework
for Compositional Nonblocking Verification of ExtendeditérState
Machines Invited paper to Journal of Discrete Event Dynamic Sys-
tems: Theory and Applications, special issue on WODES 2014.

This paper develops a general frameworkrfonblocking verificatiomf dis-
crete event systems modelled @dended finite-state machine$he extended
finite-state machines of the system communicate both vieedhavents and
shared variables. To alleviate the state-space explosmigm the algorithm
gradually composes the components and applies conflict&gurce abstraction
on the individual components and partially unfolds vamsbIThe conflict equiv-
alence abstraction methods used in this framework are aaessel form of the
abstraction methods proposed for FSM in [2].

The algorithm has been implemented in Supremica, and has a@eess-
fully used to verify several large industrial models. Itle#/n to outperform two
well-developed existing algorithms, both of which are diésx in Section 7 of
the paper.

This paper subsumes Paper (m) by considering systems rad@slEFSMs
that do not only communicate via shared variables but alsshvared events. In
addition, more experimental results are reported.

My contributions are: Developing the abstraction methadathematical
proof of correctness, collecting experimental resultgplved in implementa-
tion, authoring the paper.
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Paper 2

Mohajerani, Sahar; Malik, Robi; Fabian, MartinA Framework
for Compositional Synthesis of Modular Nonblocking Suisers.
IEEE Transaction on Automatic Control, 59(1):150-162, ukag
2014.

This paper presents a general framework for compositismgérvisor syn-
thesisof discrete event systems modelleddeterministic finite-state machines
(in the paper referred to as finite-state automata). The-sgace explosion is
mitigated by the use of state-merging and state-removadoabstractions that
preserve synthesis equivalence. The supervisor calduiatinis framework is
a modular, least restrictive, controllable and nonbloglsapervisor. The super-
visor consists of a set of FSMs that disable controllablenes/by operating in
synchrony with each other and the plant.

The framework requires all FSMs and their abstractions tddierministic,
and thus, renaming is used to avoid nondeterminism afteraaii®on.

The algorithm has been implemented in Supremica and apfaiedmpute
modular supervisors for several large industrial modesudcessfully computes
modular supervisors, even for systems with more thatf i€achable states,
within 30 seconds and using no more than 640 MB of memory.

This paper subsumes Paper (d) and (e), by introducing a gen@mework
for compositional synthesis, and adding experimentallt@silihe proof of cor-
rectness of theorems in this paper can be found in (b).

My contributions are: Developing the abstraction methadathematical
proof of correctness, collecting experimental resultgpived in implementa-
tion, authoring the paper.

Paper 3

Mohajerani, Sahar; Malik, Robi; Fabian, MartirCompositional
Supervisor Synthesis with State Merging and Transition dam
Submitted to Automatica, 2014.

This paper proposes a framework to obtain memory-effigapervisorgor
large discrete event systems modelled as interadtimtg-state machine§n
the paper referred to as finite-state automata). The sigoesvobtained in this
framework are least restrictive, controllable and nonkilog.

The approach combines state-based abstraction with ticansemoval ab-
straction to alleviate the state-space explosion problstareover, hiding and
nondeterminism after abstraction are supported. Thisrhesgossible because
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the supervisor in this framework is a cascaded map thatsepts the set of safe
states.

The algorithm has been implemented in Supremica and apjgiedmpute
supervisors for several large industrial models. The perémce of the algorithm
is compared with the algorithm of Paper 2. For most modelstpervisor map
requires less memory compared to the supervisor state neachhis is impor-
tant when it comes to implementing the supervisor in memionjtéd devices
like PLCs.

This paper contains ideas from Paper (h). The proof of coress of the
theorems in the paper are givenin (g).

My contributions are: Developing the supervisor map idegetber with the
co-authors, collecting experimental results, involvediplementation, author-
ing the paper.
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Chapter 6

Concluding Remarks

The state-space explosion problem is the main obstaclealysis of large dis-
crete events systems. In brief, the problem arises whenr@msetd build the ex-
plicit monolithic model of the system. As the state-spacthefmodel grows ex-
ponentially with the number of components, explicitly eoqiohg the state-space
of the system fails due to time and memory limitations. Hogvgmnany systems
are modular which makes it possible to use approaches tphhtiethe modular
structure of the system. One of these approaches is the citopal approach,
which uses abstraction to reduce complexity of the systdoréanalysis.

The main contribution of this thesis is the compositiongdrapach for verifi-
cation and synthesis of discrete event systems modelle8sls Bnd EFSMs.

The compositional nonblocking verification developed f&MFsystems [2]
is extended to consider conflict equivalence based abistnadbr EFSMs com-
municating via both shared variables and shared eventsalRarfolding is in-
troduced, which removes variables gradually to avoid thtestpace explosion.

The compositional approach is also used for synthesisie@st restrictive,
controllable and nonblocking supervisor. Different kimdsbstractions that are
guaranteed to preserve the final result are presented. @hsesaction methods
can considerably reduce the amount of states to examinmggsaemory and
time. The final supervisors can be presented as a set of FSMsascaded state
maps. The supervisor FSMs work in synchrony with the plantthis setting
however, nondeterminism and transition removal abstrastare avoided. The
supervisor map on the other hand, only represents the s#fsstThis allows
for transition removal abstraction and also nondetermra$ier abstraction and
generally more memory-efficient supervisors can be acHieve

All the algorithms have been implemented and applied torsévarge in-
dustrial models. The experiments show that all the systemse successfully
verified or synthesised by the implemented algorithms anlkdarcase of synthe-
sis, a memory efficient supervisor can be obtained. Thisrisivgportant for the
practicality of the supervisory control theory.
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Chapter 7
Future Work

The work presented in this thesis develops the composltapaoach for veri-
fication and synthesis of discrete event systems modelleét@sministic FSM
or EFSM. There are number of directions towards future im@nmoents and ex-
tensions.

It would be interesting to investigate the possibility ofdaining the compo-
sitional approach with the symbolic approach. Specificddyeloping abstrac-
tion methods to abstract the BDDs representing the syststadd of abstracting
FSMs or EFSMs. This may result in having smaller symbolicespntations,
allowing to treat even larger systems.

The compositional approach presented in this thesis isgengral and can
be applied to arbitrary systems. While this can be consttlaneadvantage, it is
possible to abstract more if the structure of the systemasvikn In this case, the
synthesis equivalence and conflict equivalence propettiest need to consider
arbitrary test state machines, it is enough to considerthests that represent
the actual rest of the system that is considered.

The compositional approach proposed here does not considéservable
events in the models. It would be interesting to extend theagrh to consider
unobservability and nondeterminism.

For compositional verification, the most natural contribais controllability
verification of EFSM systems. In addition, it would be int&ieg to investigate
the possibility of hiding events in an EFSM system even tlmotgeir updates
are not necessarityue. This allows more abstraction and consequently a more
efficient algorithm.

Further development of the compositional synthesis is @&elh the compo-
sitional synthesis, in contrast to the compositional veaiion, only observation
equivalence based abstraction are used to merge statesuld fae interesting
to develop abstraction methods beyond observation egmgal Moreover, it
would be interesting to generalise the present compositgymthesis algorithms
to support systems modelled as interacting EFSMs.
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