
THESIS FOR THEDEGREE OFDOCTOR OFPHILOSOPHY

On Compositional Approaches for
Discrete Event Systems

Verification and Synthesis

SAHAR MOHAJERANI

Department of Signals and Systems
CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chalmers Research

https://core.ac.uk/display/198046062?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

On Compositional Approaches for Discrete Event Systems
Verification and Synthesis

SAHAR MOHAJERANI

ISBN 978-91-7597-140-7

c© SAHAR MOHAJERANI, 2015.

Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie nr 3821
ISSN 0346-718X

Department of Signals and Systems
CHALMERS UNIVERSITY OF TECHNOLOGY

SE–412 96 Göteborg
Sweden

Telephone: +46 (031)772- 1000

Cover: Abstraction of a finite-state machine with 132 statesto an equivalent
finite-state machine with 12 states.

Typeset by the author using LATEX.

Chalmers Reproservice
Göteborg, Sweden 2015

To my beloved Ali

4

Abstract

Over the past decades, human dependability on technical devices has rapidly in-
creased. Many activities of such devices can be described bysequences of events,
where the occurrence of an event causes the system to go from one state to an-
other. This is elegantly modelled bystate machines. Systems that are modelled
in this way are referred to asdiscrete event systems. Usually, these systems are
highly complex, and appear in settings that are safety critical, where small fail-
ures may result in huge financial and/or human losses. Havinga control function
is one way to guarantee system correctness.

The work presented in this thesis concernsverificationandsynthesisof such
systems using thesupervisory control theoryproposed byRamadgeandWonham
[1]. Supervisory control theory provides a general framework to automatically
calculate control functions for discrete event systems. Given a model of the
system, theplant to be controlled, and aspecificationof the desired behaviour,
it is possible to automatically compute, i.e.synthesise, asupervisorthat ensures
that the specification is satisfied.

Usually, systems aremodularand consist of several components interacting
with each other. Calculating a supervisor for such a system in the straightforward
way involves constructing the complete model of the considered system, which
may lead to the inherent complexity problem known as thestate-space explosion
problem. This problem occurs as the number of states grows exponentially with
the number of components, which makes it intractable to examine the global
states of a system due to lack of memory and time.

One way to alleviate the state-space explosion problem is touse a composi-
tional approach. A compositional approach exploits the modular structure of a
system to reduce the size of the model. This thesis mainly focuses on develop-
ing abstraction methods for the compositional approach in away that the final
verification and synthesis results are the same as it would have been for the non-
abstracted system. The algorithms have been implemented inthe discrete event
system software tool Supremica and have been applied to verify and compute
memory efficient supervisors for several large industrial models.

Keywords: Finite-state machines, Extended finite-state machines, Verification,
Synthesis, Abstraction, Compositional approach, Supervisory control theory.

i

ii

Acknowledgements

In three days, I will be sending the thesis for print. This is the final piece of
my thesis puzzle, and honestly the hardest part to write, because it has made me
realise that my amazing journey as a PhD student is coming to an end. So I will
take this last opportunity to try to thank the many wonderfulpeople who have
helped me on this journey. Ideally I would’ve preferred to mention everyone, but
space does not allow me to.

My journey began when Martin Fabian believed in me when nobody else,
even I myself, did not and for that I can eternally thankful. Icannot describe
in words how happy I was when you gave me the news and I’ll forever cherish
that moment. During the past five years, whenever I felt stressed you calmed me
down and I felt like I am talking to my friend instead of my supervisor. Your
valuable supervision, encouragement, and support made this work possible. You
are the most understanding and the greatest supervisor anybody could ask for
and I am forever grateful to you!

After being a PhD student for six months, I had the great opportunity to
meet Robi Malik, who then became my co-supervisor. I have visited Robi twice
in New Zealand during my PhD studies. You have made the time I spent in
New Zealand memorable and fruitful. You not only gave me great guidance and
supervision but you also showed me amazing places in New Zealand and never
let me feel homesick. I will always appreciate all the great discussions we had
and I hope we can collaborate in future. Robi you are awesome and thanks heaps
for everything!

I am also grateful to all my former and present colleagues andfriends in
the automation group for making the environment a really funplace to work
in. Thanks to Bengt Lennartson, KnutÅkesson, Peter Falkman, Mona, Nina,
Patrik and Sathya. I would specially like to thank Zhennan and Oskar for all the
fun discussions, the cheerful memories and all their helps.I would also like to
thank my Iranian friends at the Department of Signals and Systems; Roozbeh,
Mitra, Azita and Maryam thank you for being great friends andcheering me up
whenever I felt down. Big thanks go to my friends Sogol and Alexandra. You
are always there for me and your friendship means a lot.

On the administrative side I would like to thank Lars Börjesson, Madeleine

iii

ACKNOWLEDGEMENTS

Parsson and Christine Johansson for always being so helpful.
Finally, I would like to give my utmost gratitude to the sweetest people in

my life, my family. To my mother, thank you for all your unconditional love.
Sara, Maryam and Alireza, I love you guys so much and thanks for being fan-
tastic sisters and brother. To my father in law, for being always supportive and
understanding.

Now comes the most important person in my life, Ali. I could never have
done this without you. Every amazing thing that has happenedin my life is
because of you. Your constant support and love has been therefor me through
the good and tough times. You are my best friend and my soulmate. Being with
you is themarked stateof my life and my life is never complete without you. I
will always love you!

Sahar Mohajerani
Göteborg, February 2015

*** *************
This work was supported by the Swedish Research Council, Vetenskapsrådet
(VR).

iv

List of publications

This thesis is based on the following three appended papers:

Paper 1

S. Mohajerani, R. Malik, M. Fabian, “A Framework for Composi-
tional Nonblocking Verification of Extended Finite-State Machines”,
Invited paper to Journal of Discrete Event Dynamic Systems:The-
ory and Applications, special issue on WODES 2014.

Paper 2

S. Mohajerani, R. Malik, M. Fabian , “A Framework for Com-
positional Synthesis of Modular Nonblocking Supervisors”, IEEE
Transaction on Automatic Control, vol. 59, no. 1, pp 150-162, 2014.

Paper 3

S. Mohajerani, R. Malik, M. Fabian, “Compositional Supervisor
Synthesis with State Merging and Transition Removal”,Submitted
to Automatica, 2014.

Other publications

In addition to the appended papers, the following papers arealso written by the
author of the thesis:

(a) S. Mohajerani, J. Sjöberg “On Initialization of Iterative Algorithms for
Nonlinear ARX Models”,In proceeding of the 8th IFAC Symposium on Non-
linear Control Systems, September 2010, pp. 362-367.

(b) S. Mohajerani, R. Malik, S. Ware, M. Fabian, “Three variations of observa-
tion equivalence preserving synthesis abstraction”, University of
Waikato, Department of Computer Science, Hamilton, New Zealand,Tech-
nical Report, January, 2011.

v

L IST OF PUBLICATIONS

(c) S. Mohajerani, R. Malik, S. Ware, M. Fabian, “Compositional Synthesis of
Discrete Event Systems Using Synthesis Abstraction”,In Proceeding of the
23th Chinese Control and Decision Conference, May 2011, pp. 1549-1554.

(d) S. Mohajerani, R. Malik, S. Ware, M. Fabian, “On the use of observation
equivalence in synthesis abstraction”,In Proceeding of the 3rd International
Workshop on Dependable Control of Discrete Systems (DCDS), June 2011,
pp. 84-89.

(e) S. Mohajerani, R. Malik, M. Fabian, “Nondeterminism avoidance in com-
positional synthesis of discrete event systems”,In Proceeding of the 7th
IEEE International Conference on Automation Science and Engineering,
August 2011, pp. 19-24.

(f) S. Mohajerani, R. Malik, S. Ware, M. Fabian, “Synthesis observation equiv-
alence and weak synthesis observation equivalence”, University of Waikato,
Department of Computer Science, Hamilton, New Zealand,Technical Re-
port, July, 2012.

(g) S. Mohajerani, R. Malik, S. Ware, M. Fabian, “Five abstraction rules to re-
move transitions while preserving compositional synthesis results”, Univer-
sity of Waikato, Department of Computer Science, Hamilton,New Zealand,
Technical Report, July, 2012.

(h) S. Mohajerani, R. Malik, M. Fabian, “Transition removal for compositional
supervisor synthesis”,In Proceeding of the 8th IEEE International Confer-
ence on Automation Science and Engineering, August 2012, pp. 694-699.

(i) S. Mohajerani, R. Malik, M. Fabian, “An algorithm for weak synthesis ob-
servation equivalence for compositional supervisor synthesis”, In Proceed-
ing of the 11th International Workshop on Discrete Event Systems, October
2012, pp. 239-244.

(j) S. Mohajerani, R. Malik, S. Ware, M. Fabian, “Partial unfolding for compo-
sitional nonblocking verification of extended finite-statemachines”, Univer-
sity of Waikato, Department of Computer Science, Hamilton,New Zealand,
Technical Report, January, 2013.

(k) S. Mohajerani, R. Malik, M. Fabian, “Compositional nonblocking verifica-
tion for extended finite-state automata using partial unfolding,In Proceeding
of the 9th IEEE International Conference on Automation Science and Engi-
neering (CASE), August 2013, pp. 930-935.

vi

(l) S. Ware, R. Malik,S. Mohajerani, M. Fabian, “Certainly Unsupervisable
States”,In Proceeding 2nd International Workshop on Formal Techniques
for Safety-Critical Systems (FTSCS 2013), October 2013, pp. 3-18.

(m) S. Mohajerani, R. Malik, M. Fabian, “An algorithm for compositional non-
blocking verification of extended finite-state machines”,In Proceeding of
the 12th International Workshop on Discrete Event Systems (WODES’14),
October 2014, pp. 376-382.

vii

viii

Contents

Abstract i

Acknowledgements iii

List of publications v

Contents ix

I Introductory chapters

1 Introduction 1
1.1 Problem Statement . 2
1.2 Main Contributions . 3
1.3 Outline . 4

2 Preliminaries 5
2.1 Modelling Formalism . 5

2.1.1 Finite-State Machines 5
2.1.2 Extended Finite-State Machines 7

2.2 Interaction . 9
2.3 Event-Based Marking . 11
2.4 Equivalence Relations . 12

3 Supervisory Control Theory 15
3.1 Requirements for Supervisors 16

3.1.1 Nonblocking . 16
3.1.2 Controllability . 17
3.1.3 Least Restrictiveness 18

3.2 Synthesis and Verification . 18
3.3 Problems Considered . 20

ix

CONTENTS

4 The Compositional Approach 23
4.1 Alleviating the State-Space Explosion Problem 23
4.2 General Compositional Approach 24

4.2.1 Local Events and Hiding 25
4.2.2 Abstraction Methods 27
4.2.3 Heuristics . 27

4.3 Compositional Verification of EFSM Systems 28
4.3.1 Normalisation . 29
4.3.2 Partial Unfolding . 31
4.3.3 Adapting FSM Abstraction Methods for EFSMs 33
4.3.4 Experimental Results 34

4.4 Compositional Synthesis . 35
4.4.1 State Machine-Based Supervisor 35
4.4.2 Map-Based Supervisor 38
4.4.3 Abstraction Methods Preserving Synthesis Equivalence . 40
4.4.4 Experimental Results 42

5 Summary of Included Papers 43

6 Concluding Remarks 47

7 Future Work 49

References 51

II Included papers

Paper 1 A Framework for Compositional Nonblocking
Verification of Extended Finite-State Machines 61
1 Introduction . 61
2 Preliminaries . 63

2.1 Finite-State Machine 63
2.2 Extended Finite-State Machine 64

3 Motivating Example . 67
4 Normalisation . 73
5 EFSM-Based Compositional Verification 77

5.1 Update Simplification 78
5.2 Partial Composition 79
5.3 Variable Unfolding . 79
5.4 Event Simplification 82
5.5 FSM-Based Conflict Equivalence Abstraction 86

x

CONTENTS

6 Algorithm . 88
7 Experimental Results . 95
8 Conclusions . 100
A Proof of Normalisation . 100
B EFSM-Based Compositional Verification 103

B.1 Proof of Update Simplification 103
B.2 Proof of Partial Composition 104
B.3 Proof of Variable Unfolding 105
B.4 Proof of Event Simplification 109
B.5 Proof of FSM-Based Conflict Equivalence Abstraction . 117

References . 119

Paper 2 A Framework for Compositional Synthesis
of Modular Nonblocking Supervisors 125
1 Introduction . 125
2 Preliminaries . 127

2.1 Events and Languages 127
2.2 Finite-State Automata 128
2.3 Supervisory Control Theory 129

3 Motivating example . 131
4 Compositional Synthesis . 135

4.1 Basic Idea . 136
4.2 Renaming . 137
4.3 Synthesis Triples . 139

5 Synthesis Triple Abstraction Operations 141
5.1 Basic Rewrite Operations 141
5.2 Halfway Synthesis . 142
5.3 Renaming and Selfloop Removal 143
5.4 Abstraction Based on Observation Equivalence 144

6 Compositional Synthesis Algorithm 149
7 Experimental Results . 151
8 Conclusions . 155
References . 155

Paper 3 Compositional Supervisor Synthesis
with State Merging and Transition Removal 163
1 Introduction . 163
2 Preliminaries . 165

2.1 Events and Languages 165
2.2 Finite-State Automata 165
2.3 Supervisory Control Theory 167

3 Compositional Synthesis . 169

xi

CONTENTS

4 Abstraction Methods . 171
4.1 Hiding and State-Wise Synthesis Abstraction 171
4.2 Removal of Certainly Unsupervisable States 172
4.3 Abstraction by State Merging 174
4.4 Synthesis Transition Removal 175

5 State Representation Architecture 176
6 Automata-based Supervisor . 179
7 Experimental Results . 180
8 Conclusions . 185
References . 185

xii

Part I

Introductory chapters

Chapter 1

Introduction

The modern human being is a hybrid of a traditional homo-sapiens with fancy
electronic gadgets. We use electronic devices everyday, and it seems we are
never more than a meter away from our cellphones. These devices are designed
to help us live our lives easier, and one of our most importantrequirement on
them is consistency. We expect the devices to work in a certain way when we
provide them with a certain input. In engineering terms, everything between the
input that we provide and the output we see is broadly termed asystem. A coffee
machine, a printer and industrial robots are some examples of systems.

When dealing with different systems, many questions about the properties of
the systems arise. For example, in the case of a mobile phone one may wonder:
what will happen if I push a specific button? For a nuclear plant a question could
be: what will happen if a nuclear reactor core becomes too hot? Experimenta-
tion is one way to answer these kind of questions. In many cases, experiments
are very expensive or could even be dangerous. An alternative to answer such
questions is tomodelthe system behaviour.

Modelling is done from different perspectives. In some cases, using physical
knowledge, mathematical equations that describe the output of a system given an
input is derived. Newton’s law, gravity laws and differential equations are some
tools used in this context. In other cases, a system can be viewed asevent-driven,
for example, when a coffee machine goes out of coffee beans, theevent, it goes
from a workingstateto an idle state. The behaviour of such a system can then
be described by sequences of events, where the occurrence ofan event causes
the system to go from one state to another. Such system modelsare referred to
asdiscrete event systemsand are the main focus of this thesis. In order to model
a discrete event system, intuitive formalisms such asfinite-state machinesand
extended finite-state machinescan be used.

1

CHAPTER 1. INTRODUCTION

1.1 Problem Statement

Imagine a coffee machine that fills your glass with tea even though you asked
for coffee. In this case you may just accept the tea, get back to work and be
in a bad mood all day. However, many applications of discreteevent systems
take place in settings that are safety critical and small failures may result in huge
financial and/or human losses. Moreover, as discrete event systems are usually
complex, their development is error-prone. Thus we need to verify that a system
is error-free or if there are errors, remove them before using the system.

In this thesisformal verificationis used to approve or disprove the correct-
ness of a system. In formal verification, the first step is to identify a desired
property. Then, a model of the system is built and finally it isshown mathemat-
ically whether the property of interest is fulfilled or not. Thus, the final result
after verification is either “yes” or “no”.

In the case that the verification result is not satisfactory,the next step is to
design a control function to guarantee system correctness.

In 1989,RamadgeandWonham[1] proposed a framework to calculate a con-
trolling agent, called asupervisor, for discrete event systems. This framework
is called thesupervisory control theory. Given a model of a system to be con-
trolled, theplant, and the desired behaviour, thespecification, the supervisory
control theory proposes methods to design asupervisorin such a way that the
closed-loop system of plant and supervisor always acts according to the specifi-
cation.

For simple systems consisting of a small number of states, verification or
supervisor calculation can be done straightforwardly. However, this is not viable
for complex systems consisting of several interacting subsystems. Such systems
are referred to asmodular systems. Using the straightforward approach to verify
or calculate a supervisor for these systems, involves explicitly representing the
entire system by a single model which may consist of millionsof states. This
inherent complexity problem is known as thestate-space explosionproblem. A
brute force approach to verify and calculate a supervisor isto go through all
states and verify the property of interest for each particular state and remove
undesirable states. However, the state-space explosion makes it intractable to
analyse all states of a system due to lack of memory and time.

The state-space explosion problem typically occurs when one tries to model
a modular system by a single representation. However, it is possible to use the
knowledge of modularity of the system to our advantage. One way to exploit
the modularity of systems is to use acompositional approach. To avoid the
state-space explosion problem, a compositional approach tries to build a single
representation of a system in an iterative way. The general approach is as follows.
First the subsystems are simplified in such a way that the property of interest is

2

1.2. MAIN CONTRIBUTIONS

preserved. When no further simplification (also calledabstraction) is possible,
the subsystems are combined together one by one and simplified again in each
iteration.This process is repeated until it results in one final relatively simple
model. This simple model is finally used for verification or synthesis.

1.2 Main Contributions

The main focus of this thesis is to use the compositional approach for verification
and supervisor calculation. Questions that immediately arise are:

• What considerations need to be taken into account when the compositional
approach is used for different modelling formalism?

• What considerations need to be taken into account when the compositional
approach is used for verification and for synthesis?

• Is it possible to find methods in order to efficiently simplifysubsystems?

• In the case that the compositional approach is used for supervisor cal-
culation, does the supervisor have a modular structure and is it memory
efficient?

Attempting to answer these questions results in the following contributions
of this thesis:

• The compositional approach is well-developed for verification of systems
modelled as finite-state machines [2]. This framework is extended to con-
sider systems that are modelled as extended finite-state machines. It is
shown how the abstraction methods defined for finite-state machines can
be applied on extended finite-state machines (Paper 1).

• When using the compositional approach for supervisor calculation or ver-
ification, the property of interest is different and thus needs to be defined
first before using the compositional approach.Conflict equivalence[2] is
used as the property to be preserved when the task is to verifywhether the
system is able to finish some sub-tasks and it is used in Paper 1. When it
comes to supervisor calculation, the closed-loop behaviour is the property
to be preserved after simplification. For this purposesynthesis equivalence
is introduced in this thesis (Paper 2 and 3).

• The main focus of this thesis is to develop abstraction methods in the com-
positional approach such that the property of interest is preserved. It is
shown how any abstraction method defined for finite-state machines can

3

CHAPTER 1. INTRODUCTION

be applied on extended-finite state machines (Paper 1). Different abstrac-
tion methods for compositional synthesis are presented, which are mostly
based on a well known abstraction method calledobservation equivalence.
It is shown how observation equivalence can be strengthenedto be appli-
cable in the compositional synthesis framework (Paper 2 and3).

• The algorithms proposed in this work have been implemented in the dis-
crete event system software tool Supremica and have been applied to com-
pute supervisors for several benchmark examples. The experimental re-
sults show that the method efficiently computes modular supervisor for a
set of very large industrial models (Paper 2 and 3). The supervisor can also
be represented in a compact form and can be stored efficiently(Paper 3).

1.3 Outline

The first two chapters, Chapter 2 and Chapter 3, give the preliminaries and back-
ground of the supervisory control theory. In Chapter 4, the compositional veri-
fication and synthesis proposed in this work is described. The summary of ap-
pended paper is provided in Chapter 5. Finally some concluding remarks and
future work are given in chapters 6 and 7.

4

Chapter 2

Preliminaries

The behaviour of many technical devices and systems in common use can be
described by sequences of events, for example a robot arm picking up a work-
piece. This includes automated manufacturing systems, traffic control systems,
etc. The behaviour of these systems can be modelled asdiscrete event systems
(DES). A DES is a dynamic system with events and states as its basic elements.
Events represent incidents that cause transitions from onestate to another, and
states describe the current system status after the occurrence of an event.

2.1 Modelling Formalism

A prerequisite to formally analyse discrete event systems is developing suit-
able models that can accurately represent the activities ofthe system. Different
modelling formalisms have been used in the literature, for instance, state ma-
chines [3], Petri nets [4], process algebra [5] and formal languages [1,6].

In this thesis,finite-state machinesare used to represent the behaviour of
discrete event systems as these are intuitive and have structure that allows useful
manipulations. For example, abstraction may cause nondeterministic behaviour,
and state machines describe nondeterministic behaviour straightforwardly.

2.1.1 Finite-State Machines

Finite-state machines (FSM), referred to asfinite-state automatain Paper 2 and
3, are devices that represent the behaviour of discrete event systems. An FSM
can be considered as a directed graph. A state represents thecurrent status of a
system under which certain conditions hold, such as the position of a robot arm.
The state set of a system contains all possible situations that the system may
encounter. Events represent incidents that cause transitions from one state to
another. For a discrete event system, a finite alphabetΣ is defined, the elements

5

CHAPTER 2. PRELIMINARIES

of which are all the possible events in the system. A sequenceof events forms a
string, andΣ∗ is the set of all finite strings of events fromΣ. Transitions of FSMs
are written asx

σ
→ y, wherex is thesource state, andy is thetarget statereached

after the occurrence of the eventσ . Two more ingredients are necessary to define
an FSM:initial statesandmarked states. The system starts in one of the initial
states. Marked states are desired states with a special meaning attached to them
like completion of a task. In the figures, initial states are identified by an arrow
pointing into them, and the marked states are shaded grey.

Usually, systems have a unique initial state, and each occurrence of an event
in a given statex causes a transition to only one statey, and all the transitions
are labelled by events from the alphabet of the system. Underthese conditions,
the system is said to bedeterministic, as the state of the system can be uniquely
determined from the sequence of events that have occurred. However the main
focus of this thesis is abstraction, which may cause nondeterminism. Moreover,
events that representinternalbehaviour of a component in a system are removed
from the alphabet and the transitions labelled by those events are labelled by the
silent eventτ. This event is not part of the alphabet of the system, but its use is
explicitly mentioned by the notationΣτ = Σ∪{τ}. The act of transforming an
event into the silent event is referred to ashiding [7] and introduces nondeter-
minism. The formal definition of hiding can be found in Def. 3 of Paper 3.

Now we can state a formal definition for a finite-state machine.

Definition 1 A finite-state machine (FSM) is a tuple G= 〈Σ,Q,→,Q◦,Qω〉,
where

• Σ is thealphabet, a finite set of events,

• Q is the finite set ofstates,

• → ⊆Q×Στ ×Q is thestate transition relation,

• Q◦ ⊆Q is the set ofinitial states,

• Qω ⊆Q is the set ofmarked states.

An FSM G is deterministicif |Q◦| ≤ 1, meaning it has at most one initial state,
x

σ
→ y1 andx

σ
→ y2 always impliesy1 = y2, meaning that occurrence of an event

in a source state leads the system to a unique target state, and x
σ
→ y implies

σ 6= τ, meaning transitions are only labelled by events from the alphabet. In this
thesis,Q◦

σ
→ y means there existsx◦ ∈ Q◦ such thatx◦

σ
→ y andx→ y means

there existsσ ∈ Σ such thatx
σ
→ y. Moreover,x

s
→ means thatx

s
→ y for some

y∈Q.

6

2.1. MODELLING FORMALISM

M1 B M2
s1 f1 s2 f2

Figure 2.1: Manufacturing system overview.

M1
I1

W1

s1 f1

B

s2f1

E

F

M2

s2 f2

I2

W2

Figure 2.2: FSM models of manufacturing system.

Normally a system is modelled as a set of FSMs where each FSM represents
the behaviour of an individual component of the system. Thismakes the mod-
elling task easier as it is more intuitive to describe each component behaviour
rather than the entire system at once.

Example 1 Consider the simple manufacturing system shown in Fig. 2.1.The
system consists of two machines M1 and M2, which are linked by a buffer B that
can store one workpiece. The first machine M1 takes workpieces from outside the
system (event s1), processes them, and puts them into B (event f1). Machine M2

takes workpieces from B (event s2), processes them and outputs them from the
system (event f2). Fig. 2.2 shows FSMs modelling the system.

2.1.2 Extended Finite-State Machines

Finite-state machines describe the behaviour of a system using states and events.
For systems with data dependency, it is natural to extend finite-state machines
with variables and updates. This results inextended finite-state machines (EFSM),
also referred to asextended finite-state automata[8].

EFSMs are similar to conventional finite-state machines, but the transitions
are not only labelled by events, but also byupdates[8–12]. Updates are predi-
cates and can be evaluated toT or F. They are constructed from variables, integer
constants, the Boolean literalstrue andfalse, and the usual arithmetic and logic
connectives. Similar to FSMs, a system changes its state on the occurrence of an
event, but the transition in an EFSM is enabled only if the corresponding update

evaluates toT. The transitions of an EFSM are represented asx
σ :p
−−→ y, wherex is

thesource location, andy is thetarget locationafter the occurrence of the event
σ , and p represents the update associated to the transition. Once a transition

7

CHAPTER 2. PRELIMINARIES

occurs, the system moves from the source location to the target location, and the
variables in the update of the transition may change their value, while the rest of
the variables remain unchanged. Thus, the states of an EFSM are combinations
of locations of the EFSM and the variable values.

As mentioned, updates are constructed from variables. Eachvariable has a
discrete domain, dom(v), that represents the possible values of the variable. For
example, if a buffer with capacity 3 is represented as a variable b in the sys-
tem then the domain ofb is {0,1,2,3}, where each value represents the number
of workpieces in the buffer. A variable also has an initial value, v◦ ∈ dom(v).
For example, if the buffer is initially empty thenb◦ = 0. As mentioned, when
a transition occurs, the values of the variables in the corresponding update may
change while the variables not in the update remain unchanged. To distinguish
the changing variables, a second set of variables callednext-state variables, de-
noted byV ′, is used, which have the same domain as the variables inV. For
example, again assume we have a buffer with capacity 3 represented by the vari-
ableb, a transition with updateb′ = b+1 adds a workpiece to the buffer, if the
number of workpieces in the buffer is currently less than 3. Otherwise, ifb= 3,
then the buffer is full and the transition is disabled since no more workpieces can
be added. In the model this is detected since the value ofb′ would become equal
to 4, which is outside of the domain ofb. An update likeb= 3 simply checks
if the number of workpieces in the buffer is 3 and enables the transition only if
this is true. In this case the value ofb in the target location remains unchanged
as no workpiece is added to the buffer. Differently, an update likeb′ = 3 always
enables its transition, and the value ofb in the target location is forced to be 3.

In the figures of this thesis, for simplicity updates only constructed fromtrue
are not shown on transitions of EFSMs.

Definition 2 Anextended finite-state machine (EFSM)is a tuple E= 〈Σ,Q,→,
Q◦,Qω〉, whereΣ is a set of events, Q is a finite set oflocations,→ ⊆ Q×Σ×
ΠV×Q is theconditional transition relationand p∈ΠV , whereΠV contains all
possible updates over the variable set V , Q◦ ⊆ Q is the set ofinitial locations,
and Qω ⊆Q is the set ofmarked locations.

In this thesis, the termstate machineis used to refer to both finite-state ma-
chine and extended finite-state machine.

EFSMs usually simplify the modelling task. However, to analyse EFSM sys-
tems the straightforward way would be to convert the EFSM to an FSM by eval-
uating all the updates to find the variable values in each location of the EFSM.
The states of the resultant FSM are then combinations of the locations of the
EFSM and the variable values. This is referred to asunfoldingvariables. The
complete process of transforming an EFSM to FSM is calledflattening, and the

8

2.2. INTERACTION

M1
I1

W1

s1f1 : b′ = b+1

M2
I2

W2

s2 : b′ = b−1f2

Figure 2.3: EFSM models of the manufacturing system.

resultant FSM is referred to as theflattened FSM. At the beginning of the flat-
tening process, the value of each variable is equal to its initial value. Thus, the
initial locationsx◦ are combined with the initial values of the variables, denoted
asv̂◦, to create the initial states of the form(x◦, v̂◦). Next, based on the updates
of the transitions going out of the initial locations, the values of some of the vari-

ables change at the next locations, and so on. Thus, for each transitionx
σ :p
−−→ y

in the EFSM model there exist transitions(x, v̂)
σ
→ (y, ŵ) in the flattened FSM

model wheneverp evaluates toT for the values ˆv andŵ. The formal definition
of flattening can be found in Def. 10 of Paper 1.

Example 2 Consider again the manufacturing system shown in Fig. 2.1. The
EFSM model of the system consists of M1 and M2 as shown in Fig. 2.3. It uses
a variable b with domain{0,1} to represent the number of workpieces in the
buffer. The update b′ = b+1 represents an addition of a workpiece to the buffer
when the event f1 is executed. As the domain of b is{0,1}, event f1 can only
be executed if the current value of b is zero, or in other wordswhen there is no
workpiece in the buffer. If the buffer is full, then b= 1 and b′ = 1+1= 2, which
cannot happen as 2 is not in the domain of b. Thus, if the bufferis full, M1 cannot
add another workpiece to the buffer.

2.2 Interaction

As mentioned before, discrete event systems are usuallymodular, in that they
are modelled as a set of interacting subsystems. The reason is that typically sys-
tems are complex and modelling them by only one state machineis impractical.
However, it is possible to combine the state machine components of a system
into a single state machine. This process is referred to assynchronous composi-
tion [13].

When a system is modelled as a set of interacting state machines, a transition
in the synchronous composition occurs only if it is possiblein all the components
sharingthe event labelling the transition, otherwise the transition is disabled. Af-

9

CHAPTER 2. PRELIMINARIES

M1‖B‖M2

I1,E, I2
I1,E,W2

I1,F,W2

I1,F, I2

W1,F,W2

W1,E,W2

W1,F, I2

W1,E, I2
s1

s1

s1

s1

s2

s2 f1

f1

f2

f2

f2

f2

Figure 2.4: Synchronous composition of FSM model of the manufacturing sys-
tem.

ter an occurrence of a shared event, the states (locations) of all the state machines
with that event in their alphabet are updated concurrently.If an event only ap-
pears in one component then this event is called alocal eventand it is always
executed independently. Transitions of EFSMs are in addition to events also la-
belled by updates. Thus, updates need to be considered during synchronisation.
The updates of the shared events are combined byconjunctionwhile the updates
of local events remain unchanged. Using these principles itis possible to build
a single state machine that represents the behaviour of a setof interacting state
machines. The formal definition of synchronisation of FSMs is given in Def. 2
in Paper 2 and 3, and of EFSMs in Def. 9 of Paper 1.

After the synchronisation ofG1 andG2, in the worst case the number of the
states (locations) of the synchronisation result ofG1 andG2 is |Q1|×|Q2|. Thus,
the state-space of systems consisting of many interacting components may easily
become unmanageable. This problem is commonly referred to as thestate-space
explosionproblem.

Example 3 Fig. 2.2 shows the model of the small manufacturing system ofEx-
ample 1. Initially the machines and the buffer are in their respective I and E
states. Thus, the initial state of the synchronous composition is (I1,E, I2). In
this state, only the local event s1 is possible. Note that f2 and s2 are enabled in
states E and I2 respectively. However, they are not enabled in(I1,E, I2) as they
are restricted by the other components. After the occurrence of event s1, the first
machine moves to the W1 state and the buffer and the second machine remain in
their respective E and I2 states. The entire synchronous composition is shown
in Fig. 2.4. Fig. 2.5 shows the synchronous composition of the EFSM model.
The updates in the synchronisation result are the same as in M1 and M2 because

10

2.3. EVENT-BASED MARKING

M1‖M2

I1, I2

I1,W2 W1,W2

W1, I2

s1

s1

f2 f2 s2 : b′ = b−1s2 : b′ = b−1

f1 : b′ = b+1

f1 : b′ = b+1

Figure 2.5: Synchronous composition of the EFSM model of themanufacturing
system.

these two EFSMs do not share any events. Flattening the synchronised EFSM
M1‖M2 results in an FSM isomorphic to FSM M1‖B‖M2 shown in Fig. 2.4.

2.3 Event-Based Marking

Marking is used to represent states of a system that have a special meaning at-
tached to them, like completion of a task. The standard way torepresent the
marking in a system is by labelling some states (locations) as marked[1, 6].
This thesis is mainly focused on equivalence relations to abstract state machines.
For this purpose, in Paper 2 and 3 marking of states of FSMs is transformed to
an event-based representation, otherwise marking needs special consideration in
most of the definitions in these papers. For this, atermination eventω is intro-
duced. This event, similarly to the silent event, is not included in the alphabet of
the system, but its use is explicitly mentioned by the notationΣω = Σ∪{ω}.

Consider an FSM withQω as the set of marked states and the alphabetΣ. To
transform this to event-based marking, the first step is to add to the set of states
a termination state⊥ ∈ Q\Qω . This state has no outgoing transitions and is
not originally inQ. After adding the termination state, the transition relation is
extended to→⊆Q×Σω ×Q by adding transitions

qω ω
→⊥ for eachqω ∈Qω (2.1)

In synchronous composition,ω is considered as an ordinary event. Thus, for
a composed state(x1,x2), it holds that(x1,x2)

ω
→⊥ only if x1

ω
→⊥ andx2

ω
→⊥.

For simplicity in the figures, marked states are shown instead of theω and⊥.

11

CHAPTER 2. PRELIMINARIES

2.4 Equivalence Relations

One way to alleviate the state-space explosion problem is toabstractthe com-
ponents of the system by merging some states or removing sometransitions. To
merge states it is important that the states are equivalent based on some criteria
that preserves the property of interest. Anequivalence relationis a binary rela-
tion that partitions a set into disjoint subsets. Thus, an equivalence relation can
be used to partition a state setQ into the set of itsequivalence classes. States
that belong to the same equivalence class can be merged and consequently an
FSM with less states can be obtained, which is referred to as thequotient FSM.
The quotient FSM is an abstracted FSM. After merging states,the new state has
the union of incoming and outgoing transitions of the mergedstates. The formal
definition of quotient state machine is given in Paper 2 and 3 in Defs. 4 and 5,
respectively.

Note that, in Paper 1, an EFSM is first transformed to an FSM before apply-
ing state merging abstraction.Thus, in the following the definitions are given for
FSMs.

Two fundamental equivalence relations that play an important role in this
thesis arebisimulation equivalenceandobservation equivalence.

Bisimulation requires two equivalent states to have the same future behaviour.
Thus, the formal definition of bisimulation [14] is based on relation on states.

Definition 3 [14] Let G = 〈Σ,Q,→,Q◦,Qω〉 be an FSM. An equivalence re-
lation ≈ ⊆ Q×Q is called abisimulationon G, if the following holds for all
x1,x2 ∈Q such that x1 ≈ x2: if x1

σ
→ y1 for someσ ∈ (Σω ∪Στ), then there exists

y2 ∈Q such that x2
σ
→ y2 and y1 ≈ y2.

Bisimulation considers states to be equivalent if they havethe outgoing tran-
sitions with the same events including the silent and marking events to equivalent
states. Bisimulation can be computed by an efficient partition refinement algo-
rithm [15]. This algorithm represents an equivalence relation as a partition, i.e.,
a set of equivalence classes each representing a set of equivalent states. The al-
gorithm starts with an initial partition consisting of onlyone equivalence class
contains all the states of an FSM, which is iteratively refined until a stable par-
titioning is reached. At each step, those states in equivalence classes that do not
transit to the same equivalence classes on the same event areseparated into other
equivalence classes. This efficient algorithm gives theminimalFSM G̃, which is
bisimilar to the original FSMG.

It is possible to relax bisimulation by ignoring the silent events. Then we
can consider two states equivalent if from both of them equivalent states can be
reached by the same sequences of events aside from silent events. This results
in weak bisimulation, also known asobservation equivalence. In order to ignore

12

2.4. EQUIVALENCE RELATIONS

the silent events,natural projection P: Σ∗τ → Σ∗ is used which removes silent
eventsτ from every strings.

Definition 4 [14] Let G= 〈Σ,Q,→,Q◦,Qω〉 be an FSM. An equivalence rela-
tion∼⊆Q×Q is called anobservation equivalenceon G, if the following holds
for all x1,x2 ∈ Q such that x1 ∼ x2: if x1

s1→ y1 for some s1 ∈ (Σω ∪Στ)
∗, then

there exists y2 ∈ Q and s2 ∈ (Σω ∪Στ)
∗ such that P(s1) = P(s2), x2

s2→ y2, and
y1∼ y2.

For observation equivalence a generalised version of the bisimulation algo-
rithm [15] can be used. The only difference is that a split is performed on

each known equivalence classC, separating statesx with x
τ∗P(σ)τ∗
−−−−−→C, for all

σ ∈ (Σω ∪Στ), from other states, i.e, thetransitive closureof the silent tran-
sitions needs to be considered. Similar to bisimulation thealgorithm gives the
minimal FSM.

Besides state merging abstraction, an FSM can be abstractedby removing
redundant transitions. More precisely, a transitionx

σ
→ y is observation equiv-

alence redundantand can be removed [16] if the FSMG contains amatching
path. A matching path starts fromx and ends up in the statey by a string con-
sisting ofσ and sequences of silent events before or afterσ . The matching path
must not contain the transition itself. After removal of theredundant transitions
from G the abstract FSMH is obtained. The following definition describes how
G andH are related.

Definition 5 Let G= 〈Σ,Q,→G,Q◦〉 be an FSM. FSM H= 〈Σ,Q,→H ,Q◦〉with
→H ⊆→G is a result ofobservation equivalence redundant transition removal

from G, if for all transitions x
σ
→G y there exist x

τ∗P(σ)τ∗
−−−−−→H y.

Bisimulation and observation equivalence are well-known general abstrac-
tion methods to merge states. In Chapter 4, bisimulation anda restricted version
of observation equivalence are used to abstract FSMs.

G
q0 q1

q2 q3

q4

α

α

α

α

τ G̃

q4

q01

q23

α

α

τ
H

q4

q01

q23

α

α

Figure 2.6: Example of observation equivalence based abstractions.

13

CHAPTER 2. PRELIMINARIES

Example 4 Consider the FSM G shown in Fig. 2.6. States q2 and q3 are bisimi-
lar as state q4 can be reached from both of them by executing eventα. Moreover,
states q0 and q1 can be merged by applying observation equivalence. These
two state merging abstraction steps result in the abstracted FSMG̃ shown in
Fig. 2.6. Next, transition q01

τ
→ q01 is redundant because of q01

ε
→ q01, whereε

is the empty string, and can be removed, resulting in the abstracted FSM H in
Fig. 2.6.

14

Chapter 3

Supervisory Control Theory

A discrete event system usually consists of a set ofplantsandspecificationsmod-
elled as interacting state machines. Plants can be seen as event generators and
describe the behaviour of theuncontrolledsystem. Usually, the system behaviour
is not acceptable in that it violates some specified requirements, for example, a
machine trying to add a workpiece in a buffer that is currently full. Thus, com-
monly for a system a set of specifications is defined that describe the desired
behaviour of the system. Now the task is to firstverify whether the system sat-
isfies the given specification, and, if not, restrict the system behaviour such that
the given specification is fulfilled.

The supervisory control theory[1] provides a mathematical framework to
automatically calculate, orsynthesise, a control function called asupervisorthat
restricts the behaviour of the plant such that the specification is always fulfilled.
In this thesis, plants, specifications, and supervisors areusually denoted byG,
K, andS, respectively.

Fig. 3.1, shows the feedback loop of supervisor and plant. The plant gener-
ates events inΣ and the supervisor as a functionS(.), based on the earlier gener-
ated events, influences the plant behaviour, and thus the closed-loop system, by
deciding whether or not to enable the possible events. Thus,the supervisor itself
is incapable of generating events and only enables or disables them. In [17],

Supervisor

Plant

ΣS(.)

Figure 3.1: The feedback loop of supervisor and plant.

15

CHAPTER 3. SUPERVISORYCONTROL THEORY

it was shown that when the plant and supervisor are modelled as FSMs, syn-
chronous composition of the plant and supervisor can describe the behaviour of
the plant under the control of the supervisor. This results in a simplified notion
of controlled behaviour.

Supervisory control theory is generalised for nondeterministic models in [18–
20] among others. In [18, 19], even though the plant may be nondeterministic,
the specification must be deterministic. This condition is relaxed in [20], where
both the plant and specification can be nondeterministic, with the objective that
the controlled system be bisimulation equivalent to the specification. This thesis
considers systems where both plants and specifications are modelled by deter-
ministic finite-state machines, and the nondeterminism considered in this thesis
is the result of abstraction.

3.1 Requirements for Supervisors

A plant describes everything that the uncontrolled system is capable of doing and
the specification expresses the desired behaviour. Then a supervisor is a device
that restricts the plant behaviour such that the plant in theclosed-loop with the
supervisor acts as desired. Besides this essential requirement, there are three
more requirements that a supervisor should have.

3.1.1 Nonblocking

The supervisor is designed to fulfil a given specification. However, this is not
per se useful if the supervisor restricts the plant from doing what it is supposed
to do, for example, if the plant under the control of a supervisor gets stuck in
a state or a loop from which no tasks can be completed. To avoidthese kinds
of situations, as mentioned in Chapter 2, some states of particular interest in the
plant and the specification can be marked. Then the idea is to design a supervisor
such that the closed-loop system can always reach a state that is marked by both
the plant and the specification. Such a supervisor is referred to as anonblocking
supervisor [1].

Definition 6 Let G= 〈Σ,Q,→,Q◦,Qω〉. A state x∈ Q is calledreachablein G

if Q◦
s
→ x for some s∈ Σ∗τ , andcoreachableif x

t
→Qω for some t∈ Σ∗τ . G is said

to benonblockingif every reachable state is coreachable.

An FSM is nonblocking if from all the reachable states a marked state can be
reached by executing a sequence of events. Given a plantG and a supervisorS
the resultant closed-loop behaviour isG/S (reading asScontrollingG), and the
closed-loop system should be nonblocking. The nonblockingdefinition can be

16

3.1. REQUIREMENTS FORSUPERVISORS

easily extended to an EFSM. An EFSM is nonblocking if the resultant flattened
FSM is nonblocking. The formal definition of nonblocking forEFSM is given in
Paper 1 in Def. 11. As mentioned in Section 2.3 in this thesis,the special event
ω is used to represent the marking of states. Then, the nonblocking definition
should also be adapted to event-based marking.

Definition 7 [21] An FSM G= 〈Σ,Q,→,Q◦,Qω〉 is nonblocking, if for every
state x∈Q and every trace s∈ Σ∗τ such that Q◦

s
→ x there exists t∈ Σ∗τ such that

x
tω
→.

Similarly to Def. 6, Def. 7 says that if a state is reachable from an initial state
by a sequence of events fromΣτ , then there must be from that state a sequence of
events that ends withω. In Def. 7, the condition thatsandt are constructed from
the setΣτ and thus do not containω is important. For example, ifs∈ Σ∗τ,ω then
the state⊥ that is used to represent the marking of a state becomes reachable.
As noω transition is coming out of⊥, the FSM may falsely seem blocking.

3.1.2 Controllability

A supervisor is a device that restricts the plant behaviour by disabling some
events. It is reasonable to assume that some events cannot bedisabled by the su-
pervisor, for example, the breaking of a device. Thus, for the purpose of supervi-
sory control, the alphabet of a system is partitioned into two disjoint subsets, the
setΣc of controllableevents and the setΣu of uncontrollableevents. Controllable
events can be disabled by a supervisor, but uncontrollable events cannot. Now
the question arises whether the silent eventτ and the termination eventω are
controllable or uncontrollable. The termination event is considered as a control-
lable event because the supervisor should be able to disableω in order to remove
some markings. Moreover, in this thesis having a silent event in the model of a
system is the result of hiding a local event. Thus, in the casethat the control-
lability of events is relevant, the silent event will have the same controllability
characteristic as the local event that it replaces. In that,the notation ofτu andτc

is used for the uncontrollable and the controllable silent events, respectively. In
the case that the controllability of the events are not relevant, the silent eventτ is
used, for example in Paper 1, where only nonblocking verification is considered.

To distinguish controllable events and uncontrollable events in the figures,
uncontrollable events are prefixed by an exclamation mark (!).

Considering uncontrollable events, one requirement for the computed super-
visor is that it never tries to disable an executable uncontrollable event in order to
restrict the system. In other words, a supervisor is controllable with respect to a
plant if the occurrence of an uncontrollable event does not lead to a string which
is not acceptable by the supervisor [1]. The formal definition of controllability

17

CHAPTER 3. SUPERVISORYCONTROL THEORY

for deterministic FSMs is given in Paper 2 in Def. 5, and for nondeterministic
FSMs in Paper 3, Def. 7.

3.1.3 Least Restrictiveness

The purpose of a supervisor is to restrict a plant behaviour to fulfil a given spec-
ification. It is typically required of a supervisor to achieve some minimum func-
tionality. To ensure this minimum functionality, in this thesis theleast restrictive
supervisor, which restricts the system as little as possible is considered. Least
restrictiveness may not always be required, and it can in fact ease the synthesis
work. However, if a non-least restrictive algorithm synthesizes an overly restric-
tive supervisor, such as one giving an empty closed-loop system, it is not clear if
this is due to a problematic plant/specification combination, or just an ill-chosen
synthesis result. With an algorithm that guarantees a leastrestrictive supervisor,
on the other hand, an overly restrictive supervisor will be the best achievable
result and hence definitely a consequence of a problematic plant/specification
combination. And of course, if you are going to do something why not try to do
it optimally!

In this thesis, one goal is to calculate a least restrictive,controllable, and
nonblocking supervisor and such a supervisor always existsand is unique with
respect to a given plant and specification [1].

3.2 Synthesis and Verification

When we are dealing with safety critical systems such as medical devices or sys-
tems where errors are expensive such as factories, it is important to know if the
systems works as expected in all possible situations.Formal verificationis used
to prove that a system satisfies a given specification. Two important properties
that are typically verified arenonblockingandcontrollability. Nonblocking ver-
ification proves that a system can always complete a certain significant sub-task
without violating the specification, and controllability verification proves that the
system does not uncontrollably violate the specification.

In this thesis only, nonblocking verification of systems modelled as a set
of EFSMs are considered. Nonblocking and controllability verification of FSM
models are well-developed in the literature [1, 6, 7]. It wasshown in [22] that
controllability problems can be converted into nonblocking problems, making it
possible to verify both nonblocking and controllability byrunning the nonblock-
ing verification algorithm only once.

The straightforward approach to verify the nonblocking property is to com-
pose all the components of the system. In the case that the system is modelled
as a set of EFSMs, the next step is to flatten the composed EFSM.The final step

18

3.2. SYNTHESIS AND VERIFICATION

is to check if the resultant FSM is nonblocking by inspectingif it is possible to
reach a marked state from all the reachable states.

Example 5 Consider the manufacturing system in Example 1. The EFSM model
of the system is shown in Fig. 2.3 and the synchronous composition result is
shown in Fig. 2.5. To use the straightforward approach to verify the nonblocking
property of the system, the system needs to be flattened first.Fig. 3.2 shows the
flattened FSM H. Initially the buffer is empty, which means b= 0, and M1 and
M2 are in initial locations I1 and I2. Thus, the initial state of H is(0, I1, I2).
At this state the event s1 can occur. After occurrence of this event, the buffer is
still empty and M2 is still in the location I2. M1 however, moves to location W1.
Thus the next state of the system is(0,W1, I2) and so on. The flattened FSM H
is isomorphic to FSM M1‖B‖M2 shown in Fig. 2.4. This confirms that both the
FSM and EFSM models describe the same behaviour. FSM H is nonblocking as
from all the states, the marked state(0, I1, I2) can be reached. Thus, the original
EFSM system is nonblocking.

H

0, I1, I2
0, I1,W2

1, I1,W2

1, I1, I2

1,W1,W2

0,W1,W2

1,W1, I2

0,W1, I2
s1

s1

s1

s1

s2

s2 f1

f1

f2

f2

f2

f2

Figure 3.2: The flattened FSM of the EFSM model of the manufacturing system.

After verification, if the result is satisfactory then the task is done and there
is no need to design a supervisor as the specification can be used as a supervisor.
Otherwise, a supervisor needs to be designed to prevent the system to go to the
bad states. To this end, supervisory control theory [1, 6], which automatically
synthesisessuch a supervisor is proposed.

The synthesis algorithm in this thesis first transforms all the specifications to
plants [22]. A specification FSM is transformed into a plant by adding, for every
uncontrollable event that is not enabled in a state, a transition to a new blocking

19

CHAPTER 3. SUPERVISORYCONTROL THEORY

state⊥. The formal definition ofplantificationis given in Paper 2, Def. 8. Plan-
tification essentially transforms all initial controllability problems into blocking
problems. Then, the plantG and the transformed specificationK⊥ are synchro-
nised and the synthesis algorithm iteratively identifies and removes blocking
states, and the states that uncontrollably go to blocking states. The algorithm
in the end returns the least restrictive nonblocking and controllable behaviour
allowed by a specificationK with respect to a plantG.

Example 6 Consider the manufacturing system in Example 1. The events! f1
and ! f2 are uncontrollable and s1 and s2 are controllable. The safety issue in
this system is that machine M1 should not try to put a workpiece in the buffer
B if the buffer is currently full, and M2 should not try to remove a workpiece
if the buffer is empty. Therefore, FSM B is considered as the specification to
avoid buffer overflow and underflow and the machines are considered as the
plants. This specification is uncontrollable as it disablesthe uncontrollable event
! f1 in the states(F,W1,W2) and (F,W1, I2) to avoid adding a workpiece in a
currently full buffer. Thus, the plant violates the specification uncontrollably
and a supervisor needs to be designed. The first step to designa supervisor is
to plantify the specification. Fig. 3.3 shows the FSM B⊥, which is the result
of plantification. Next, B⊥ is composed with M1 and M2. The state⊥ in the
composed FSM B⊥ ‖M1 ‖M2 represents the initial controllability problem, and
it is a blocking state as can be seen in Fig. 3.3. The plant needs to be restricted
to avoid ending up in the blocking state⊥. This state however, is reached from
(F,W1,W2) and(F,W1, I2) by the uncontrollable event! f1, which the supervisor
cannot disable. Thus, the best control decision is to disable event s1 in the states
(F, I1,W2) and(F, I1, I2) and thus avoid starting machine M1 when the buffer is
full. The least restrictive, nonblocking and controllablesupervisor S is shown in
Fig. 3.3.

In the finite-state case, the iteration to remove all problematic states is guar-
anteed to terminate, and the complexity isO(|Q||→|), where|Q| and|→| are the
numbers of states and transitions of the state machine. As shown by [23] the syn-
thesis problem is NP-hard, since the size ofQ and→ grows exponentially with
the number of components. Thus, the straightforward approaches for verification
and synthesis described in Section 3.2 are limited by thestate-space explosion
problem. Therefore, this thesis proposes acompositionalapproach, described in
Chapter 4, to solve synthesis and verification problems moreefficiently.

3.3 Problems Considered

We assume that the components of a system are given asdeterministicfinite-
state machines or extended finite-state machines. The individual components

20

3.3. PROBLEMS CONSIDERED

B

s2! f1

E

F

B⊥

s2! f1
! f1

⊥

E

F

B⊥ ‖M1‖M2
s1

s1

s1

s1

s2

s2

! f1

! f1

! f1

! f1

! f2

! f2

! f2

! f2

E, I1, I2
E, I1,W2

F, I1,W2

F, I1, I2

F,W1,W2

E,W1,W2

F,W1, I2

E,W1, I2

⊥

S

s1

s1

s2

! f1

! f1

! f2

! f2

! f2

E, I1, I2
E, I1,W2

F, I1,W2

F, I1, I2

E,W1,W2

E,W1, I2

Figure 3.3: The specification and the supervisor of the manufacturing system.

21

CHAPTER 3. SUPERVISORYCONTROL THEORY

have arbitrary alphabets, all the events of the systems are observable and the
controllability characteristic of an event does not changefrom one component to
another.

To be more detailed, the two problems considered are:

The modular nonblocking verification problem A modular system is mod-
elled as

E = {E1, . . . ,En} (3.1)

where eachEi is an extended finite-state machine. The task is to verify
whether the systemE is nonblocking. As only nonblocking verification is
considered, the controllability of the events is irrelevant. Also, there is no
need to treat specifications and supervisors differently from plants.

The modular supervisor synthesis problem A modular plantG= {G1, . . . ,
Gm} and a modular specificationK = {K1, . . . ,Kl} are given as FSM mod-
els. As mentioned before, the specifications are plantified and thus, the
system is

G = {G1, . . . ,Gn} (3.2)

The task is to calculate a least restrictive, controllable and nonblocking
supervisor which has a modular structure. Here, as the supervisor not only
needs to be nonblocking but also controllable, in contrast to nonblocking
verification, the controllability of events is considered.

22

Chapter 4

The Compositional Approach

Usually discrete event systems aremodular in the sense that the model of the
system consists of a set of plant components and a set of specifications, all in-
teracting with each other. The straightforward way to analyse a system involves
building an explicit monolithic model which may lead to the inherent complex-
ity problem known as thestate-space explosionproblem. This combinatorial
problem occurs as the number of states grows exponentially with the number of
components. This problem makes it intractable to examine the monolithic state-
space of a system due to lack of memory and time. Consequently, constructing
the explicit monolithic model of the system is not efficient and methods to ex-
ploit the modular structure or methods that efficiently represent the state-space
of the system are needed. One way to exploit the modular structure of a system
is to use acompositional approach. The compositional approach has previously
been successfully used forverificationof discrete event systems [2, 24–27]. In
this thesis, the compositional approach is used both for verification and synthesis
of systems, which are respectively modelled as a set of interacting EFSMs and
FSMs.

In this chapter, Section 4.1 briefly overviews different existing approaches
that help to avoid the state-space explosion problem. The general compositional
approach is described in Section 4.2. The compositional nonblocking verifica-
tion algorithm for EFSM systems is explained in Section 4.3.Finally, Section 4.4
describes two frameworks for compositional synthesis of FSM.

4.1 Alleviating the State-Space Explosion Problem

Various approaches to avoid state-space explosion have been proposed in the
literature. This section briefly describes themodular, hierarchical, andsymbolic
representationapproaches.

The modular approach was first introduced in [28]. In this work it was shown

23

CHAPTER 4. THE COMPOSITIONAL APPROACH

that controllability verification and controllability synthesis can be done by con-
sidering one specification at a time with the plant components it imposes require-
ments on. This approach was later developed in [29,30]. The modular approach
is very efficient, however all the works mentioned only consider controllability
of a supervisor, and they do not guarantee global nonblocking of the closed-
loop behaviour. The work in [31], resolves conflict among modular supervisors.
However, in this work the supervisor is not necessarily least restrictive.

Hierarchical approaches divide the system into different levels of hierarchy.
This was first introduced by [32], and was later developed in [33]. In [33], the
authors divide the system into high-level and low-level subsystems where sub-
systems communicate throughinterfaces. More recently, decentralized and hier-
archical approaches are presented in [34–36]. In these works, the authors obtain
decentralized supervisors for each specification and partition the plant compo-
nents and decentralized supervisor into subsystems.Natural projectionwith the
observer property is used as a method to abstract each subsystem. The work
in [34] does not necessarily result in a least restrictive supervisor. To guaran-
tee least restrictiveness,output control consistency[35] and the less restrictive
condition oflocal control consistency[36] are proposed.

Algorithms based on Binary Decision Diagrams (BDDs) [37] convert the
model of the system to a symbolic representation in the form of BDDs [38]
and explore the full state-space symbolically [39]. By symbolic we mean that
during analysis, the system is not represented directly as states and transitions but
indirectly as Boolean functions. Representing a system symbolically, in many
cases results in smaller representation of the state-spaceof the system. BDDs
were first brought into the supervisory control theory by [40] and were later
developed by [41–43].

4.2 General Compositional Approach

In this thesis, the compositional approach is used to alleviate the state-space ex-
plosion problem, and it is used both for nonblocking verification and supervisor
synthesis. If the task is to verify nonblocking, then the controllability of the
events is irrelevant and thus, the specifications can be considered as plants. Oth-
erwise, the specifications are first plantified as explained in Section 3.2. There-
fore, in both nonblocking verification and synthesis, the input to the composi-
tional approach is a set of interacting plant components

G = G1‖ · · · ‖Gn. (4.1)

To alleviate the state-space explosion problem, the compositional approach
constructs the monolithic model gradually, while abstracting components at each

24

4.2. GENERAL COMPOSITIONAL APPROACH

step. Before beginning the synchronisation process, each individual component
is first abstracted, and the abstractions replace the original components. By ab-
stractions we mean removing redundancy, and an abstracted component has less
states or transitions compared to the original component. If no more abstraction
is possible then some components need to be composed or, if the system is an
EFSM system, some variables are removed bypartially unfoldingthem (as ex-
plained in Section 4.3.2). Iteratively, the intermediate results are composed and
abstracted again and again, until eventually, the procedure leads to a single state
machine, which is an abstract representation of the system.This state machine
has less states and transitions than the original system. The final step is to use
the final abstracted state machine for either verification orsupervisor calculation.
Fig. 4.1 illustrates the general compositional approach.

The compositional approach explained above is general and can be used for
any system and any property of interest. Once the property ofinterest is deter-
mined, we can define abstraction methods that abstract each component in such
a way that the property is preserved. Abstraction methods play an important role
in the efficiency of the compositional algorithm. The reasonis that the size of
the final component depends on the abstractions at each step and the smaller the
size, the more efficient the analysis.

Another main ingredient for the compositional approach to work is heuristics,
which decide what components to compose at each step of the algorithm.

In the following sections, some general points regarding hiding events, which
is essential for abstraction, heuristics, and issues that need to be considered when
abstracting components are discussed.

4.2.1 Local Events and Hiding

The state-space explosion problem is more noticeable when the components are
loosely coupled, which means some components have internalbehaviours inde-
pendent of others. While this independence can result in state-space explosion, it
can also be useful when abstracting components in the compositional approach.

The events that represent the internal behaviour of components are referred to
aslocal events. The reason that they are called local is that these events appear
locally in only one component of the system. In this thesis, the setϒ denotes
the set of local events. Non-local,shared, events are denoted byΩ = Σ \ϒ.
In general, abstraction methods depend on the local events and the more local
events, the more possibility of abstraction.

In compositional nonblocking verification, the identity ofthe local events can
be hidden. Local events can thus be replaced by the silent event τ. This is possi-
ble because hiding of local events does not change the nonblocking property of
a system [2]. Paper 1 only considers compositional nonblocking verification and

25

CHAPTER 4. THE COMPOSITIONAL APPROACH

G1 || G2 || G3 || G4 || . . . || Gn

∼ ∼ ∼ ∼ ∼

G̃1 G̃2 G̃3 G̃4 G̃n

||

∼
...

H̃ = (G̃2||G̃3||G̃4)
′

||

∼

G̃n||H̃

...

G̃

Figure 4.1: General compositional approach. The modular system is described
by {G1,G2, · · · ,Gn} which is a set of plant state machines and∼ is a proper
equivalence relation.

26

4.2. GENERAL COMPOSITIONAL APPROACH

thus, the local events are hidden when possible. In the compositional synthesis
approach presented in Paper 2, the local events are not hidden as the supervisor
may need to know the identity of the events to make control decisions. Paper 3,
similar to Paper 2, uses the compositional approach for supervisor calculation.
However, as the supervisor in Paper 3 makes control decisions based on the states
rather than the events, hiding is possible in this paper. In this paper the local un-
controllable and controllable events are replaced byτu andτc, respectively.

In the figures, if local events are not hidden, they are shown with parentheses
around them.

4.2.2 Abstraction Methods

Generally, the compositional approach attempts to replaceindividual compo-
nents by abstracted versions. This requires that the abstracted components are
properly related to the original components. In this respect, a proper notion of
equivalence needs to be identified. This can be done by defining the property
that is required to be preserved.

For compositional nonblocking verification, the property of interest is non-
blocking. Thus, we consider two state machines equivalent if both have the same
nonblocking results in synchronisation with an arbitrary test state machine. This
equivalence relation is calledconflict equivalence. It was introduced in [44] and
is used in Paper 1. The test state machine essentially represents the rest of the
system and the reason for considering it arbitrary is to havea general framework,
which works for arbitrary systems.

In the case of compositional synthesis, the intention is to calculate a super-
visor to control a system. Thus, given a plantG and the supervisorS calcu-
lated in a monolithic way, in order to calculate a supervisorS̃ by the composi-
tional approach, the equivalence relation could be defined as either maintaining
the same supervisor as the monolithic supervisor,L (S) = L (S̃), or having the
same closed-loop behaviourL (G‖S) = L (G‖ S̃). Technically, supervisors
are calculated to modify the closed-loop behaviour of the system such that the
specification is fulfilled. Consequently, in Paper 2 and 3, maintaining the same
closed-loop behaviour is considered as the property of interest when calculating
a supervisor. This equivalence relation is calledsynthesis equivalence.

4.2.3 Heuristics

The efficiency of the compositional algorithms is sensitiveto the order in which
state machines are composed and abstracted. As there are many options at each
step, a number of heuristics has been defined to decide what state machines to
compose.

27

CHAPTER 4. THE COMPOSITIONAL APPROACH

As mentioned before, abstraction methods play an importantrole in the per-
formance of the compositional approach, and usually local events and hiding
are essential for abstraction. Moreover, it is important tokeep the intermediate
results small. Based on these principles a variety of heuristics to decide what
FSMs of a system to compose are proposed in [2]. These heuristics are used in
the compositional synthesis approach in Paper 2 and 3.

For compositional nonblocking verification of EFSM systems, the algorithm,
besides composing EFSMs at each step, also needs to gradually remove vari-
ables. Thus, the heuristics for EFSM systems do not only consider what EFSMs
to compose, but also which variables to remove at each step. In general, it is a
good idea to remove variables with small domains as this produces smaller inter-
mediate results, or variables that appear frequently as removing them simplifies
large numbers of updates. Different heuristics for EFSM systems are proposed
in Paper 1.

4.3 Compositional Verification of EFSM Systems

The compositional nonblocking verification algorithm for EFSM systems seeks
to repeatedly apply conflict equivalence abstractions to individual EFSMs and
partially unfold variables. In the end of the compositionalalgorithm, all the
variables are partially unfolded and the system is simple enough to be verified
monolithically.

As mentioned before, one of the most important steps in the compositional
approach is abstraction. In [2], a variety of abstraction methods for FSMs are
proposed that preserve conflict equivalence. This framework is extended to
EFSM systems in Paper 1. In general, the nonblocking property of an EFSM
system is not necessarily preserved after applying the abstraction methods de-
fined for FSMs to an EFSM without considering the updates of the EFSM. In the
following, by the help of an example it is shown how updates inan EFSM affect
the abstraction methods defined for FSMs.

G
q0

q1

τ β

G̃

βq01

E
q0

q1

βτ : x> 0

Ẽ

βq01τ : x> 0

Figure 4.2: FSMG̃ andG are conflict equivalent, while EFSM̃E andE are not
conflict equivalent.

28

4.3. COMPOSITIONAL VERIFICATION OF EFSM SYSTEMS

Example 7 Consider the FSM G and EFSM E in Fig. 4.2. The events of the
transitions q0

τ
→ q1 in G and E are local and hidden. First consider the FSM

G. Clearly from q0 and q1 the same states can be reached by executing the same
events if the silent eventτ is not considered. Thus, q0 and q1 are observation
equivalent, Def. 4. As observation equivalence preserves conflict equivalence
[45], states q0 and q1 can be merged, resulting in the conflict equivalent FSMG̃
shown in Fig. 4.2.

Now consider the EFSM E. The domain of the variable x is{0,1,2} and
x◦ = 0. This EFSM is blocking because, to reach the marked locationq1, the

transition q0
τ:x>0
−−−→ q1 needs to happen, and as initially x= 0, this is impossible.

If we apply to E the same abstraction method as on G, without considering the
update x> 0, the EFSMẼ, shown in Fig. 4.2, is obtained, which is clearly
nonblocking. Thus, E andẼ are not conflict equivalent.

In Example 7, we blindly applied the same abstraction methodon bothG and
E. However, since the update of the silent event inE was disregarded,E andẼ
in contrast toG andG̃ are not conflict equivalent.

Now questions arise. Can we apply conflict equivalence abstractions devel-
oped for FSM on EFSMs? When can we use a silent event for an abstraction?
How can we remove variables from the system without facing the state-space
explosion problem?

All the above questions are answered in Paper 1, and some details of the
paper are discussed in the following sections.

4.3.1 Normalisation

At first sight, it seems that the main obstacle to apply the abstraction methods
developed for FSMs to EFSMs is the updates of EFSMs. In an EFSMsystem,
transitions of components are labelled by eventsand updates, and most likely
each event associates with different updates in different transitions, as this gives
the user more freedom to model the system. This makes it hard to see how
executing an event in an EFSM system affects the variables. The first step of
the compositional nonblocking verification algorithm is thereforenormalisation.
Normalisation associates each event with its own distinct update. To normalise
an EFSM system, components are first individually normalised and then the sys-
tem is globally normalised.

A component is not normalised if an event appears on different transitions
with different updates. To individually normalise components we userenaming,
which introduces new events to the system for each updatep associated with
eventσ . Note that the events introduced by renaming should not already be in the
alphabet of the system, otherwise the renaming process may not converge. After
renaming one component, the other components of the system are changed to use

29

CHAPTER 4. THE COMPOSITIONAL APPROACH

E1

q0

q1

q2

α : y′ = 1

α : x′ = x+1

E2

q0

q1

q2

α : x= 0

α : x= 0

β

E′1
q0

q1

q2

α1 : y′ = 1

α2 : x′ = x+1

E′2
q0

q1

q2

α1 : x= 0

α1 : x= 0

α2 : x= 0

α2 : x= 0

β

Figure 4.3: The result of individual normalisation ofE1 andE2.

the new events. Prop. 2 in Paper 1 confirms that the behaviour of a system before
and after individual normalisation of each component is identical up to renaming
of the events. As renaming preserves the nonblocking property, normalisation of
individual EFSMs does not change the nonblocking property of the system.

Example 8 Consider the EFSM system{E1,E2}, where E1 and E2 are shown
in Fig. 4.3. EFSM E2 is already individually normalised as bothα andβ in this
EFSM have unique updates. However, EFSM E1 is not normalised as the eventα
appears with updates y′= 1 and x′ = x+1. To normalise EFSM E1, the eventsα1

andα2 are introduced. These events replace the eventα in transitions q0
α:y′=1
−−−−→

q1 and q1
α:x′=x+1
−−−−−→ q2 of E1 respectively, which results in the normalised E′1

shown in Fig. 4.3 bottom left. Now, we need to replace the event α in E2 by
the new events to comply with the event modification. The updates of the events
α1 and α2 in the modified EFSM E′2 are equal to the update ofα in E2. The
normalised EFSM E′2 is shown in Fig. 4.3 bottom right.

After normalising individual components, the system needsto be globally
normalised. This is done by assigning to each event an update, which is the con-
junction of all the updates associated with that event in theEFSMs in the system.

30

4.3. COMPOSITIONAL VERIFICATION OF EFSM SYSTEMS

The updates associated to each event after this step are essentially the updates
that would have been calculated by synchronisation. However, normalisation in
contrast to synchronisation retains the modular structure, which is essential for
the compositional approach.

If an EFSM system is normalised, the need to have updates on each transi-
tion is removed. Moreover, the synchronisation task becomes simpler because
updates can be disregarded and standard FSM synchronisation can be used for
normalised EFSM systems.

N (E′1) N (E′2)

α1

α2

q0

q1

q2

α1

α1

α2

α2

β

q0

q1

q2

Event Update
α1 y′ = 1∧x= 0
α2 x′ = x+1∧x= 0
β true

Figure 4.4: The normalised system in Example 9.

Example 9 Consider the EFSM system{E′1,E
′
2} shown in Fig. 4.3 where com-

ponents are individually normalised. The update of the event α1 is y′ = 1 in E′1
and x= 0 in E′2. To globally normalise the system, the update ofα1 becomes the
conjunction of y′ = 1 and x= 0, which is y′ = 1∧x= 0. Similarly, the update of
α2 is x′ = x+1 in E′1 and x= 0 in E′2, and thus the update ofα2 in the normalised
system is x′ = x+1∧x = 0. The update of the eventβ does not change as this
event is local to E′2. After normalisation of the system, writing the updates on
the transitions becomes unnecessary, and the information regarding the update
of each event is given in the table in Fig. 4.4. The figure also showsN (E′1) and
N (E′2), which replace E′1 and E′2 respectively after the normalisation procedure.

The normalisation procedure preserves the nonblocking property of the sys-
tem and is explained in detail in Section 4 of Paper 1. From nowon we assume
that EFSM systems are normalised.

4.3.2 Partial Unfolding

As mentioned before, the straightforward approach to verify an EFSM system
unfolds all the variables of the system at once, which results in the state-space
explosion problem. To alleviate this problem, the compositional approach for

31

CHAPTER 4. THE COMPOSITIONAL APPROACH

Y

replacements

(α1,0,0)

(α1,1,1)

(α1,0,1)(α1,1,0)

0

1

Y′

(α1,1,1)

(α1,0,1)

0

1

H1

(α1,1,1)
(α1,0,1)

α2

q0

q1

q2

H2

β

(α1,1,1)

(α1,1,1)

(α1,0,1)

(α1,0,1)
α2

α2

q0

q1

q2

Event Update
α1 y′ = 1∧x= 0
α2 x′ = x+1∧x= 0
β true

(α1,0,0) false
(α1,0,1) x= 0
(α1,1,0) false
(α1,1,1) x= 0

α2 x′ = x+1∧x= 0
β true

Figure 4.5: Example of partially unfolding a variabley.

EFSM systems unfolds variables gradually and replaces themby EFSMs called
variable EFSMs. This process is referred to aspartial unfolding.

Assume that we want to remove a variablev from the system and replace
it with the variable EFSMV. The locations of the variable EFSM correspond
to the domain of the variablev. To label the transitions of the variable EFSM,
first events with the variablev in their updates are identified. These events, in
combination with variable values create new events that label the transitions of

the variable EFSM. An event of the form(σ ,a,b) labels the transitiona
(σ ,a,b)
−−−−→ b

of the variable EFSMV. Now, if the update ofσ is p, the valuesa andb are
substituted forv andv′, respectively, in updates that have the variablev. This
results in simpler updates with fewer variables, which are assigned as the updates
of the new events(σ ,a,b).

Since partial unfolding introduces new events in the system, all the EFSMs
of the system need to be modified to use the new events.

Example 10 Consider the normalised EFSM system shown in Fig. 4.4 with the
updates in the table of the figure. Assumedom(x) = dom(y) = {0,1} and x◦ =
y◦ = 0. Partially unfolding the variable y results in the variableEFSM Y with
locations 0 and 1 in Fig. 4.5 top left. The only event that has the variable y in
its update isα1 with update y′ = 1∧ x = 0. This event is replaced by four new

32

4.3. COMPOSITIONAL VERIFICATION OF EFSM SYSTEMS

events representing(α,y,y′) for the possible combinations of y’s domain values:

(α1,0,0) with update(y′ = 1∧x= 0)[y 7→ 0,y′ 7→ 0]≡ 0= 1∧x= 0⇔ false

(α1,0,1) with update(y′ = 1∧x= 0)[y 7→ 0,y′ 7→ 1]≡ 1= 1∧x= 0⇔ x= 0

(α1,1,0) with update(y′ = 1∧x= 0)[y 7→ 1,y′ 7→ 0]≡ 0= 1∧x= 0⇔ false

(α1,1,1) with update(y′ = 1∧x= 0)[y 7→ 1,y′ 7→ 1]≡ 1= 1∧x= 0⇔ x= 0

The new events and their simplified updates are shown in the table in Fig. 4.5.
All the events withfalseupdate can be removed as the transitions labelled with
these events can never happen. Fig. 4.5 shows EFSM Y′, which is obtained by
removing transitions withfalseupdates from Y. After introducing new events,
the EFSMs need to be changed to use the new events. Fig. 4.5 shows H1 and H2

at the bottom, which replaceN (E′1) andN (E′2) in Fig. 4.4 respectively.

Note that after unfolding a variablev, we replace the variable in an update
with different values. Then the system is not necessarily normalised if we do not
introduce the new events in the system. Therefore, we replace σ with (σ ,a,b).

The question at this point is how partial unfolding can help with the state-
space explosion problem? Partial unfolding simplifies updates in the sense that
they have less variables. This helps with the abstraction methods, as explained
in the next section.

4.3.3 Adapting FSM Abstraction Methods for EFSMs

One of the contributions of Paper 1 is to find a way to apply the conflict equiv-
alence abstraction methods defined for FSMs [2] directly on EFSMs. As most
abstraction methods defined for FSMs use the silent eventτ, the first step is to
extend the notion of silent events into the EFSM framework.

Silent events replacelocal events, i.e., events that only appear in one FSM
in the system. Local events can be replaced by silent events because they do not
interact with other components of the system. In an EFSM system however, as
shown in Example 7, only considering local events when abstracting an EFSM
does not necessarily yield conflict equivalence abstraction. This is because even
though local events do not interact with other components, the variables in the
updates associated with those local events may be shared, and thus interact, with
other components. Thus, intuitively we can hide events thatare local and have no
variables in their updates. As updates are predicates, updates with no variables
can be replaced bytrue or false. As transitions withfalseupdate are always
disabled, they can be removed from the system. This leaves uswith trueupdates
as the updates with no variables. Thus, we can hide events that are local and have
trueupdates. This makes sense because transitions of an EFSM that are labelled

33

CHAPTER 4. THE COMPOSITIONAL APPROACH

by silent events andtrue updates are always enabled, similarly to transitions
labelled by silent events in an FSM.

Once we identified the local events that can be hidden, we can regard the
normalised EFSM as an FSM, and hence apply all the abstractions defined for
FSMs in [2]. This approach is explained in detail in Section 5.5 of Paper 1 and
the proof of correctness is given in Section B.5 of Paper 1.

G G̃

(α1,1,1)

(α1,1,1)

(α1,0,1)

(α1,0,1)
α2

α2

τ

q0

q1

q2

(α1,1,1)

(α1,1,1)
(α1,0,1)

(α1,0,1)

α2

α2

q0

q12

Event Update
(α1,0,1) x= 0
(α1,1,1) x= 0

α2 x′ = x+1∧x= 0
β true

Figure 4.6: Example of FSM-based conflict equivalence abstraction.

Example 11 Consider the EFSM system H1,H2,Y′ shown in Fig. 4.5. Eventβ
is a local event withtrue update and thus, this event can be hidden. The next
step is to consider the EFSM H2 as an FSM and hide eventβ . Fig. 4.6 on
the left shows the resultant FSM G. Now applying to G observation equivalence
abstraction, which preserves conflict equivalence [2], results in merging of states
q1 and q2 and the abstracted FSM̃G. AfterwardsG̃ is regarded as an EFSM, by
considering the updates again.G̃ is shown in Fig. 4.6 to the right.

4.3.4 Experimental Results

The compositional verification has been implemented in the DES software tool
Supremica [46] and applied on several large industrial models taken from [47–
54]. The test cases include complex industrial models such as manufacturing
systems and automotive body electronics. For a detailed discussion, we refer to
Paper 1.

To evaluate the efficiency of the EFSM-based compositional nonblocking
verification algorithm, its performance is compared with the BDD-based algo-
rithm and FSM-based compositional algorithm both implemented in Supremica.
The BDD-based algorithm converts an EFSM system to a symbolic representa-
tion and the FSM-based algorithm converts the EFSM system toa modular FSM
system. Paper 1 explains in detail how an EFSM system is converted to an FSM
system.

34

4.4. COMPOSITIONAL SYNTHESIS

The compositional nonblocking verification algorithm successfully verifies
all the test cases in a few seconds or minutes, while the BDD-based algorithm
fails for large scaled-up systems and the FSM-based algorithm fails for EFSM
systems with complicated updates. The reason that the BDD-based algorithm
fails for some examples is, while the algorithm copes well with complicated
updates it is limited by the size and search depth of the state-space, and the BDDs
representing these systems are large. On the other hand, thereason for failure
of the FSM-based algorithm for systems with complicated updates is that, the
more complicated the updates in an EFSM system are, the more events appear in
the converted FSM-based compositional algorithm. Thus, ittakes a long time to
convert the systems and in some cases, the conversion takes longer time than the
verification itself.

The EFSM-based compositional algorithm outperforms the two
well-developed verification algorithms in most of the cases, and shows promis-
ing results even for large industrial models.

4.4 Compositional Synthesis

This section discusses the compositional synthesis approach, which is the sub-
ject of Paper 2 and 3. In compositional synthesis, in contrast to verification, we
are concerned with more than giving a “yes” or “no” answer, and the task is to
remove the states that violate the specification. In addition, since we are inter-
ested in calculating a controllable supervisor, we need to take into account the
controllability of the events.

As mentioned before, the property of interest in Paper 2 and 3is synthesis
equivalence, a property that preserves the same closed-loop behaviour.

In Paper 2 the supervisor is represented as a set of FSMs and inPaper 3
the framework is extended and the supervisor is a set of statemaps. Having a
supervisor as a state map allows nondeterminism after abstraction and transition
removal abstraction, both of which are avoided in Paper 2.

In the following, some details regarding each approach are given.

4.4.1 State Machine-Based Supervisor

The supervisor calculated in Paper 2 is a set of FSMs that disables controllable
events that the plant would otherwise have generated. As mentioned before, the
property of interest in Paper 2 is synthesis equivalence, which requires the same
closed-loop behaviour after each abstraction. In the framework of Paper 2, to
preserve synthesis equivalence after each abstraction, the abstracted FSM needs
to be deterministic. The following example makes it clear why this condition is
essential.

35

CHAPTER 4. THE COMPOSITIONAL APPROACH

G1

q0

q1

q2

q3

(α)

(β)
ξ γ

G̃1

q1 q3

q02
(α)
(β)

ξ γ

T

γ

t0

t1

S1
(α)
(β)

γ

s0

s1

G2 (α)

(β)
γγ

q0

q1

q2

q3

G̃2
(α)
(β)

γγ
q1 q3

q02

S2
(α)
(β)

γ

s0

s1

Figure 4.7: Abstraction ofG1 results in the deterministic FSM̃G1, while abstrac-
tion of G2 results in the nondeterministic FSM̃G2.

Example 12 Consider FSMs G1, G̃1, and T in Fig. 4.7. All events are control-
lable, and eventsα andβ are local events in G1. States q0 and q2 in G1 can be
merged because if from one of them a marked state can be reached, then from
the other one a marked state can also be reached by executing the local events.
Thus, synthesis always removes either both or none of them. This results inG̃1,
which is synthesis equivalent with G1. Calculating a supervisor for̃G1 and T
results in S1, shown in Fig. 4.7 to the right. Supervisor S1 in composition with
G1 and T disables eventξ in state q0 and enables eventγ in q2 of G1. This
supervisor will give the same closed-loop system when controlling G and T, as
would the monolithic supervisor. Now consider FSM G2 in Fig. 4.7. Applying
the same abstraction method to G2 results inG̃2. The supervisor calculated from
G̃2 and T is S2 shown in Fig. 4.7. This supervisor enables eventγ in the states
q0 and q2 of G2. Thus, S2 is a blocking supervisor for G2 and T, since it permits
the blocking state q1 of G2 to be reached.

In Example 12, a correct supervisor needs to be aware of the states ofG2

in order to decide whether to enable the controllable eventγ or not, and it is
not straightforward to construct such a supervisor only from the abstractioñG2.
For a supervisor FSM to work correctly, nondeterminism should be avoided after
abstraction. Then we have two solutions: either we do not merge states if it leads
to nondeterminism, which may make some desirable abstraction impossible, or
we use renaming. In Paper 2, to avoid nondeterminism after abstraction, the idea
of distinguishing sensors[55] is adapted andrenamingis proposed. Similarly
to renaming in Paper 1, renaming in the framework of Paper 2 introduces new
events. After applying a renaming to one component, new events are introduced,
so the remaining components need to be modified to use the new events.

36

4.4. COMPOSITIONAL SYNTHESIS

G′2 (α)
(β)

γ1 γ2

q1 q3

q02

T ′

γ1
γ2

t0

t1

S′
(α)
(β)

γ2

s0

s1

Figure 4.8: Applying renaming toG′2 to avoid nondeterminism after abstraction.

D (α)

(β)
γ1 γ2

d0

d1

d2

d3

Figure 4.9: A distinguisher for the system shown in Fig. 4.8.

Example 13 Consider again FSMs G2, G̃2, and T in Fig. 4.7. As shown in
Example 12, merging states q0 and q2 in G2 results in nondeterminism. To avoid
this, a renaming is introduced that replaces eventγ by two new eventsγ1 andγ2.
ThenG̃2 is replaced by the abstraction G′2 in Fig. 4.8, which is a deterministic
FSM. Next, since FSM T has eventγ, it needs to be modified to use the new
events. Thus, T is replaced by T′ shown in Fig. 4.8. Now we can calculate a
supervisor for G′2 and T′, which is shown in Fig. 4.8 as FSM S′.

The question that arises at this point is how the supervisor synthesised from
the renamed model can control the original plant? To make this possible, adis-
tinguisheris introduced in Paper 2, which is considered to be a part of the final
supervisor. A distinguisher is an FSM that differentiates between the renamed
events and it guarantees that only one of the renamed events is enabled at each
state. Distinguishers enable the final supervisor to choosethe correct transitions.
For example, FSMD shown in Fig. 4.9 is a distinguisher that differentiates event
γ1 from γ2 since it enables at most one of these events in each state. Technically,
a distinguisher is the original FSM before abstraction withthe renamed events to
distinguish.

To see how supervisorS′ and distinguisherD control the original system
consisting ofG2 andT, assume that the plant wants to execute eventγ in its
initial state(q0, t0). From the renaming, we see that this event is replaced by
γ1 andγ2. At this point, the distinguisherD is in its initial stated0 and it only
enablesγ1. However, the supervisorS′ disables eventγ1 in its states0. Thus, the
eventγ is disabled at the initial state. Now assume that the plant wants to execute
the eventα in the state(q0, t0). As this event is enabled by the supervisor, the
plant can execute this event and move to the state(q2, t0). After execution of

37

CHAPTER 4. THE COMPOSITIONAL APPROACH

eventα, the distinguisher goes to the stated2 andS′ stays ats0. Now assume
the plant asks if it is safe to execute eventγ. Then the renaming again tells the
supervisor that this event is replaced byγ1 andγ2. Since the distinguisherD is
in the stated2, only eventγ2 can be enabled. As the supervisor also enables the
controllable eventγ2 the eventγ can be executed at the global state(q2, t0).

In the framework of Paper 2, the supervisor is a set of FSMs. Asshown
above, one drawback with having supervisor as a set of FSMs isthat nondeter-
minism should be avoided at all the steps of the compositional synthesis. Another
issue with having the supervisor as a set of FSMs is that transition removal ab-
straction may result in a not necessarily least restrictivesupervisor. These issues
are resolved in the framework of Paper 3.

4.4.2 Map-Based Supervisor

As mentioned in the previous section, in the framework of Paper 2 nondeter-
minism is avoided at all the steps of the compositional approach. Moreover,
transition removal abstractions are not used unless it becomes clear that the su-
pervisor FSM does not need them to make a control decision, asfor example
selfloop-only events in Def. 17 of Paper 2. Otherwise, in the absence of a tran-
sition in the supervisor, the event of that transition, if itis controllable, will be
interpreted as a disabled event. This can result in a supervisor, which is not least
restrictive. Thus, transition removal abstractions are not used in Paper 2. How-
ever, there are usually much more transitions than states ina state machine, and
removing transitions can significantly decrease the memoryusage. These issues
are resolved in Paper 3.

The following example illustrates how abstraction by removing a transition
can result in not having a least restrictive supervisor FSM.

G1
p0

p1

p2

p3

p4

α

α

α
γ

(!β)

G2

α

α

γ

q0

q1

q2

G̃1

α

α
γ

p0

p1

p2

p3

p4(!β)

S

α

α

(!β)

s0

s1

s2

s3

Figure 4.10: Transition removal results in the supervisorS, which is not a least
restrictive supervisor.

38

4.4. COMPOSITIONAL SYNTHESIS

Example 14 Consider the systemG = {G1,G2} in Fig. 4.10. Eventα is a
shared controllable event and eventβ is a local uncontrollable event and thus,
can be hidden. The transition p1

α
→ p3 in G1 is a redundant transition as there

is the matching path p1
τu→ p2

α
→ p3. If we remove the redundant transition the

abstracted FSMG̃1 is obtained as shown in Fig. 4.10. Now using FSMG̃1 and
G2 to calculate a supervisor results in supervisor S shown in Fig. 4.10. This
supervisor disables eventα at state p1 of G1, while the monolithic supervisor
would enable it. Thus, this supervisor is not a least restrictive supervisor.

The problem in Example 14 happens because the supervisor is an FSM. As
the supervisor works in synchrony with the plant, in the absence of the transition
s1

α
→ s3, the eventα will be interpreted as disabled by the supervisor. However,

as we can see from the supervisorS in Fig. 4.10, statesp1 andp3 are considered
assafestates. Thus, if eventα happens in statep1, this event would drive the
plant to the safe statep3. This gives us the idea to have a supervisor as a map
instead of an FSM, that links the states of the original plantat the start of the
compositional algorithm to the states of the current abstraction, and finally states
that are determined assafestates by the final supervisor. This supervisor map
only contains the safe states, and at each state of the plant enables controllable
events, by which a state in the supervisor map is reached.

Example 15 Consider the systemG = {G̃1,G2} and the calculated supervisor
S in Fig. 4.10. Instead of having the supervisor S as an FSM we can have the
mapµ shown in Fig. 4.11 as a supervisor.

S
s0

s1

s2 s3

s4

α

α
γ

τu

µ

G1 G2 µ (p0,q0) (p1,q1) (p2,q1) (p3,q2)

s0 s1 s2 s3

Figure 4.11: Supervisor map for systemG shown in Fig. 4.10.

To show how the supervisor map controls the system, assume that the system
is in the state(p0,q0), where the eventα is enabled and would lead the system
to state(p1,q1). To see whether this event is enabled by the supervisor or not
we need to check if state(p1,q1) is considered safe in the supervisor map. This
state corresponds to states1 in the mapµ, which is a safe state. Thus,α should
be enabled. Next, at the state(p1,q1) the plant enables eventsγ, !β andα. Event

39

CHAPTER 4. THE COMPOSITIONAL APPROACH

β is uncontrollable and must be enabled. By eventγ, the system ends up in the
state(p4,q1), which is not in the supervisor map. The absence of this stateis
interpreted as it being unsafe, and thusγ is disabled by the supervisor. Eventα
leads the system to the state(p3,q2). The image of this state in the map iss3.
Thus, eventα is enabled by the supervisor.

The supervisor mapµ shown in Fig. 4.11, in contrast to the supervisor FSM
Sshown in Fig. 4.10, enables eventα in the statep1 of G1, even after removing
transitionp1

α
→ p3. Thus, in the framework of Paper 3, in addition to state merg-

ing abstraction, transition removal abstraction is also used, which can decrease
the memory usage.

The following section briefly explains state merging, stateremoval and tran-
sition removal abstractions that preserve synthesis equivalence.

4.4.3 Abstraction Methods Preserving Synthesis Equivalence

Even though it may be easy to define an equivalence relation that should be pre-
served, finding methodologies to simplify the systems in a way that the property
of interest is preserved is not straightforward.

The main challenge in the compositional synthesis approachis to find meth-
ods to abstract FSMs of the system such that synthesis equivalence is preserved.
Since the only step in the compositional approach that actually reduces the size
of a system is the abstraction step, the efficiency of the compositional approach
considerably depends on the abstraction methods.

Generally, abstraction methods for compositional verification such as those
proposed in [2], are not applicable for compositional synthesis. Technically, less
states can be merged in the compositional synthesis compared to compositional
verification, since merged states should not only have the same blocking prop-
erty, they should also have the same synthesis property.

The state merging abstraction methods used in Paper 2 and 3 are based on
bisimulationandobservation equivalence[14]. While it is proven in [56] that
bisimulation preserves synthesis equivalence, by using a counterexample it is
shown in Paper 2 that observation equivalence does not. However, it is possible
to strengthen observation equivalence to be applicable in compositional synthe-
sis. For this purpose,weak synthesis observation equivalenceis introduced in
Paper 2 and also used as an abstraction method in Paper 3.

Weak synthesis observation equivalence, similarly to observation equiva-
lence, is a state merging abstraction. In weak synthesis observation equivalence,
the equivalent states should not only have the same future behaviour but also the
same synthesis behaviour. This means that two states are considered equivalent
if the synthesis algorithm either removes both of them or none of them. As men-
tioned before, states are removed either because of controllability or blocking

40

4.4. COMPOSITIONAL SYNTHESIS

issues.

As can be seen in Def. 4 in Section 2.4, to consider two states observation
equivalent they should have equivalent paths. If one state has a path, the other
must have amatchingpath,s1 ands2 in the definition, containing the same shared
events going to equivalent states. In weak synthesis observation equivalence, in
contrast to observation equivalence, the controllabilitycharacteristics of events
is important. If an uncontrollable event is going out of one of the states, then the
matching path must only contain uncontrollable events. This condition makes
sure that if one of the states is removed due to controllability issues, the other
one will be also removed because of the controllability problem. For controllable
events, more care must be taken. In the first part of the matching path, before the
controllable event, states reached by controllable local events should be equiv-
alent to the start state of the path,x1 in Def. 4. In addition, in the path of local
events after the controllable event, if a local uncontrollable transition goes out
of the path, it must lead to a state equivalent to a state on thepath, and shared
uncontrollable transitions going out of the path must also be possible in the end
state of the path and lead to an equivalent state. These conditions guarantee that
if a marked state is reachable from one of the equivalent states, then from the
other one a marked state can also be reached via a matching path.

The formal definition of weak synthesis observation equivalence can be found
in Def. 22 of Paper 2. After applying weak synthesis observation equivalence in
Paper 3, a map that links the states of the original FSM to the states of the ab-
stracted FSM is generated.

Beside the state merging abstraction, in Paper 2 and Paper 3halfway synthe-
sis[22] andunsupervisability removal[57] are used, respectively. These abstrac-
tion methods identify and remove states of an FSM that synthesis will definitely
remove later, no matter what the behaviour of the rest of the system is. An exam-
ple of such states are blocking states in an FSM. Halfway synthesis works well in
compositional synthesis. However, it does not identify allthe removable states.
Unsupervisability removal on the other hand removes the largest possible set of
states [57]. After applying halfway synthesis, in Paper 2 the result of halfway
synthesis is added to the supervisor set, and in Paper 3 a map is generated that
links all the states of the original FSM to the abstracted state machine, and the
map does not contain the removed states. As mentioned before, the absence of a
state in the map is interpreted as the state being unsafe.

In Paper 3, in addition to all state-based abstractions,synthesis transition re-
movalis used as an abstraction method. Synthesis transition removal is obtained
by restricting the observation equivalence redundant transition removal, defined
in Def. 5 in Section 2.4. Similar to weak synthesis observation equivalence for
uncontrollable events, the local events on the matching path must all be uncon-
trollable. For controllable events, the local events before the controllable event

41

CHAPTER 4. THE COMPOSITIONAL APPROACH

in the matching path should all be uncontrollable and any transition going out of
the path after the controllable event should beτu and should lead to a state on the
path. The formal definition of synthesis transition removalis given in Def. 18 of
Paper 3.

4.4.4 Experimental Results

Both of the compositional synthesis algorithms described above have been im-
plemented in the DES software tool Supremica [46] and applied to several large
and complex industrial models taken from [47–54]. Both algorithms successfully
compute supervisors, even for systems with more than 1017 reachable states,
within a few seconds or minutes.

For most examples, the supervisor maps require less memory than the su-
pervisor FSMs. In the few cases that a state machine-based supervisor uses less
memory compared to the supervisor maps, the supervisor FSMsobtained after
unsupervisability removal as well as the final supervisor have few states. How-
ever, the map-based supervisor needs to save all the maps from unsupervisability
removal and weak synthesis observation equivalence. This makes the supervisor
represented as a set of maps larger than the supervisor represented as a set of
FSMs for these systems.

The memory usage to store a supervisor is an important aspectwhen it comes
to implementing supervisors in memory limited devices likePLCs. As the su-
pervisor map can be stored efficiently, it looks promising for use of supervisory
control theory in industrial settings. More information about the experiments can
be found in Section 7 of Paper 2 and 3.

42

Chapter 5

Summary of Included Papers

This chapter provides a brief summary of the papers that are included in the the-
sis. Full versions of the papers are included in Part II. The papers are reformatted
for uniformity and increase readability.

Paper 1

Mohajerani, Sahar; Malik, Robi; Fabian, Martin.A Framework
for Compositional Nonblocking Verification of Extended Finite-State
Machines. Invited paper to Journal of Discrete Event Dynamic Sys-
tems: Theory and Applications, special issue on WODES 2014.

This paper develops a general framework fornonblocking verificationof dis-
crete event systems modelled asextended finite-state machines. The extended
finite-state machines of the system communicate both via shared events and
shared variables. To alleviate the state-space explosion problem the algorithm
gradually composes the components and applies conflict equivalence abstraction
on the individual components and partially unfolds variables. The conflict equiv-
alence abstraction methods used in this framework are a generalised form of the
abstraction methods proposed for FSM in [2].

The algorithm has been implemented in Supremica, and has been success-
fully used to verify several large industrial models. It is shown to outperform two
well-developed existing algorithms, both of which are described in Section 7 of
the paper.

This paper subsumes Paper (m) by considering systems modelled as EFSMs
that do not only communicate via shared variables but also via shared events. In
addition, more experimental results are reported.

My contributions are: Developing the abstraction methods,mathematical
proof of correctness, collecting experimental results, involved in implementa-
tion, authoring the paper.

43

CHAPTER 5. SUMMARY OF INCLUDED PAPERS

Paper 2

Mohajerani, Sahar; Malik, Robi; Fabian, Martin.A Framework
for Compositional Synthesis of Modular Nonblocking Supervisors.
IEEE Transaction on Automatic Control, 59(1):150-162, January
2014.

This paper presents a general framework for compositionalsupervisor syn-
thesisof discrete event systems modelled asdeterministic finite-state machines
(in the paper referred to as finite-state automata). The state-space explosion is
mitigated by the use of state-merging and state-removal based abstractions that
preserve synthesis equivalence. The supervisor calculated in this framework is
a modular, least restrictive, controllable and nonblocking supervisor. The super-
visor consists of a set of FSMs that disable controllable events by operating in
synchrony with each other and the plant.

The framework requires all FSMs and their abstractions to bedeterministic,
and thus, renaming is used to avoid nondeterminism after abstraction.

The algorithm has been implemented in Supremica and appliedto compute
modular supervisors for several large industrial models. It successfully computes
modular supervisors, even for systems with more than 1014 reachable states,
within 30 seconds and using no more than 640 MB of memory.

This paper subsumes Paper (d) and (e), by introducing a general framework
for compositional synthesis, and adding experimental results. The proof of cor-
rectness of theorems in this paper can be found in (b).

My contributions are: Developing the abstraction methods,mathematical
proof of correctness, collecting experimental results, involved in implementa-
tion, authoring the paper.

Paper 3

Mohajerani, Sahar; Malik, Robi; Fabian, Martin.Compositional
Supervisor Synthesis with State Merging and Transition Removal.
Submitted to Automatica, 2014.

This paper proposes a framework to obtain memory-efficientsupervisorsfor
large discrete event systems modelled as interactingfinite-state machines(in
the paper referred to as finite-state automata). The supervisors obtained in this
framework are least restrictive, controllable and nonblocking.

The approach combines state-based abstraction with transition removal ab-
straction to alleviate the state-space explosion problem.Moreover, hiding and
nondeterminism after abstraction are supported. This becomes possible because

44

the supervisor in this framework is a cascaded map that represents the set of safe
states.

The algorithm has been implemented in Supremica and appliedto compute
supervisors for several large industrial models. The performance of the algorithm
is compared with the algorithm of Paper 2. For most models thesupervisor map
requires less memory compared to the supervisor state machine. This is impor-
tant when it comes to implementing the supervisor in memory limited devices
like PLCs.

This paper contains ideas from Paper (h). The proof of correctness of the
theorems in the paper are given in (g).

My contributions are: Developing the supervisor map idea together with the
co-authors, collecting experimental results, involved inimplementation, author-
ing the paper.

45

46

Chapter 6

Concluding Remarks

The state-space explosion problem is the main obstacle in analysis of large dis-
crete events systems. In brief, the problem arises when one tries to build the ex-
plicit monolithic model of the system. As the state-space ofthe model grows ex-
ponentially with the number of components, explicitly exploring the state-space
of the system fails due to time and memory limitations. However, many systems
are modular which makes it possible to use approaches that exploit the modular
structure of the system. One of these approaches is the compositional approach,
which uses abstraction to reduce complexity of the system before analysis.

The main contribution of this thesis is the compositional approach for verifi-
cation and synthesis of discrete event systems modelled as FSMs and EFSMs.

The compositional nonblocking verification developed for FSM systems [2]
is extended to consider conflict equivalence based abstractions for EFSMs com-
municating via both shared variables and shared events. Partial unfolding is in-
troduced, which removes variables gradually to avoid the state-space explosion.

The compositional approach is also used for synthesising a least restrictive,
controllable and nonblocking supervisor. Different kindsof abstractions that are
guaranteed to preserve the final result are presented. Theseabstraction methods
can considerably reduce the amount of states to examine, saving memory and
time. The final supervisors can be presented as a set of FSMs oras cascaded state
maps. The supervisor FSMs work in synchrony with the plant. In this setting
however, nondeterminism and transition removal abstractions are avoided. The
supervisor map on the other hand, only represents the safe states. This allows
for transition removal abstraction and also nondeterminism after abstraction and
generally more memory-efficient supervisors can be achieved.

All the algorithms have been implemented and applied to several large in-
dustrial models. The experiments show that all the systems can be successfully
verified or synthesised by the implemented algorithms and inthe case of synthe-
sis, a memory efficient supervisor can be obtained. This is very important for the
practicality of the supervisory control theory.

47

48

Chapter 7

Future Work

The work presented in this thesis develops the compositional approach for veri-
fication and synthesis of discrete event systems modelled asdeterministic FSM
or EFSM. There are number of directions towards future improvements and ex-
tensions.

It would be interesting to investigate the possibility of combining the compo-
sitional approach with the symbolic approach. Specificallydeveloping abstrac-
tion methods to abstract the BDDs representing the system instead of abstracting
FSMs or EFSMs. This may result in having smaller symbolic representations,
allowing to treat even larger systems.

The compositional approach presented in this thesis is verygeneral and can
be applied to arbitrary systems. While this can be considered an advantage, it is
possible to abstract more if the structure of the system is known. In this case, the
synthesis equivalence and conflict equivalence propertiesdo not need to consider
arbitrary test state machines, it is enough to consider those tests that represent
the actual rest of the system that is considered.

The compositional approach proposed here does not considerunobservable
events in the models. It would be interesting to extend the approach to consider
unobservability and nondeterminism.

For compositional verification, the most natural contribution is controllability
verification of EFSM systems. In addition, it would be interesting to investigate
the possibility of hiding events in an EFSM system even though their updates
are not necessarilytrue. This allows more abstraction and consequently a more
efficient algorithm.

Further development of the compositional synthesis is needed. In the compo-
sitional synthesis, in contrast to the compositional verification, only observation
equivalence based abstraction are used to merge states. It would be interesting
to develop abstraction methods beyond observation equivalence. Moreover, it
would be interesting to generalise the present compositional synthesis algorithms
to support systems modelled as interacting EFSMs.

49

50

References

[1] P. J. G. Ramadge and W. M. Wonham, “The control of discreteevent sys-
tems,”Proceedings of the IEEE, vol. 77, no. 1, pp. 81–98, Jan. 1989.

[2] H. Flordal and R. Malik, “Compositional verification in supervisory con-
trol,” SIAM Journal of Control and Optimization, vol. 48, no. 3, pp. 1914–
1938, 2009.

[3] A. Arnold, Finite Transition Systems: Semantics of Communicating Sys-
tems. Hertfordshire, UK: Prentice-Hall, 1994.

[4] A. Giua and F. DiCesare, “Petri net structural analysis for supervisory con-
trol,” IEEE Transactions on Robotics and Automation, vol. 10, no. 2, pp.
185–195, Apr. 1994.

[5] J. A. Bergstra and J. W. Klop, “Process algebra for synchronous communi-
cation,” Information and Control, vol. 60, no. 1–3, pp. 109–137, 1984.

[6] C. G. Cassandras and S. Lafortune,Introduction to Discrete Event Systems.
Kluwer Academic Publishers, Sep. 1999.

[7] H. Flordal, “Compositional approaches in supervisory control,” Ph.D. dis-
sertation, Chalmers University of Technology, Göteborg,Sweden, 2006.

[8] M. Sköldstam, K.Åkesson, and M. Fabian, “Modeling of discrete event
systems using finite automata with variables,” inProceedings of the 46th
IEEE Conference on Decision and Control, CDC ’07, Dec. 2007, pp. 3387–
3392.

[9] K. T. Cheng and A. S. Krishnakumar, “Automatic functional test generation
using the extended finite state machine model,” inProceedings of the 30th
ACM/IEEE Design Automation Conference, Dallas, TX, USA, 1993, pp.
86–91.

[10] Y. Chen and F. Lin, “Modeling of discrete event systems using finite state
machines with parameters,” inProceedings of 2000 IEEE International

51

REFERENCES

Conference on Control Applications (CCA), Anchorage, Alaska, USA,
2000, pp. 941–946.

[11] J. Zhaoa, Y.-L. Chen, Z. Chen, F. Lin, C. Wang, and H. Zhang, “Model-
ing and control of discrete event systems using finite state machines with
variables and their applications in power grids,”Systems & Control Letters,
vol. 61, no. 1, pp. 212–222, Jan. 2012.

[12] M. Teixeira, R. Malik, J. E. R. Cury, and M. H. de Queiroz,“Variable
abstraction and approximations in supervisory control synthesis,” in2013
American Control Conference, Washington, DC, USA, Jun. 2013, pp. 120–
125.

[13] C. A. R. Hoare,Communicating Sequential Processes. Prentice-Hall,
1985.

[14] R. Milner,Communication and concurrency. Prentice-Hall, 1989.

[15] J.-C. Fernandez, “An implementation of an efficient algorithm for bisimu-
lation equivalence,”Science of Computer Programming, vol. 13, pp. 219–
236, 1990.

[16] J. Eloranta, “Minimizing the number of transitions with respect to observa-
tion equivalence,”BIT, vol. 31, no. 4, pp. 397–419, 1991.

[17] R. Kumar, V. Garg, and S. I. Marcus, “On controllabilityand normality of
discrete event dynamical systems,”Systems & Control Letters, vol. 17, pp.
157–168, 1991.

[18] R. Kumar and M. A. Shayman, “Centralized and decentralized supervisory
control of nondeterministic systems under partial observation,” SIAM Jour-
nal of Control and Optimization, vol. 35, no. 2, pp. 363–383, Mar. 1997.

[19] M.Heymann and F.Lin, “Discrete-event control of nondeterministic sys-
tems,” IEEE Transactions on Automatic Control, vol. 43, no. 1, pp. 3–17,
Jan. 1998.

[20] C. Zhou and R. Kumar, “A small model theorem for bisimilarity control
under partial observation,” inProceedings of American Control Confer-
ence 2005, Portland, OR, USA, Aug. 2005, pp. 3937–3942.

[21] R. Malik, D. Streader, and S. Reeves, “Conflicts and fairtesting,” Inter-
national Journal of Foundations of Computer Science, vol. 17, no. 4, pp.
797–813, 2006.

52

REFERENCES

[22] H. Flordal, R. Malik, M. Fabian, and K.̊Akesson, “Compositional synthe-
sis of maximally permissive supervisors using supervisionequivalence,”
Discrete Event Dynamic Systems: Theory and Applications, vol. 17, no. 4,
pp. 475–504, 2007.

[23] P. Gohari and W. M. Wonham, “On the complexity of supervisory control
design in the RW framework,”IEEE Transactions on Systems, Man, and
Cybernetics, vol. 30, no. 5, pp. 643–652, Oct. 2000.

[24] S. Ware and R. Malik, “The use of language projection forcompositional
verification of discrete event systems,” inProceedings of the 9th Interna-
tional Workshop on Discrete Event Systems, WODES’08. Göteborg, Swe-
den: IEEE, May 2008, pp. 322–327.

[25] ——, “Compositional nonblocking verification using annotated automata,”
in Proceedings of the 10th International Workshop on DiscreteEvent Sys-
tems, WODES’10, Berlin, Germany, 2010, pp. 374–379.

[26] E. M. Clarke, D. E. Long, and K. L. McMillan, “Compositional model
checking,” inProceedings of the 5th IEEE Symposium on Logic in Com-
puter Science, 1989, pp. 353–362.

[27] A. Aziz, V. Singhal, G. M. Swamy, and R. K. Brayton, “Minimizing inter-
acting finite state machines: A compositional approach to language con-
tainment,” inProceedings of IEEE International Conference on Computer
Design: VLSI in Computers and Processors, ICCD ’94, 1994, pp. 255–261.

[28] W. M. Wonham and P. J. Ramadge, “Modular supervisory control of dis-
crete event systems,”Mathematics of Control, Signals and Systems, vol. 1,
no. 1, pp. 13–30, Jan. 1988.

[29] M. H. de Queiroz and J. E. R. Cury, “Modular supervisory control of large
scale discrete event systems,” inProceedings of the 5th International Work-
shop on Discrete Event Systems, WODES ’00, Ghent, Belgium, Aug. 2000,
pp. 103–110.

[30] K. Åkesson, H. Flordal, and M. Fabian, “Exploiting modularityfor synthe-
sis and verification of supervisors,” inProceedings of the 15th IFAC World
Congress on Automatic Control, Barcelona, Spain, 2002.

[31] R. C. Hill, D. M. Tilbury, and S. Lafortune, “Modular supervisory control
with equivalence-based abstraction and covering-based conflict resolution,”
Discrete Event Dynamic Systems: Theory and Applications, vol. 20, no. 1,
pp. 139–185, 2010.

53

REFERENCES

[32] H. Zhong and W. M. Wonham, “On the consistency of hierarchical supervi-
sion in discrete-event systems,”IEEE Transactions on Automatic Control,
vol. 35, no. 10, pp. 1125–1134, 1990.

[33] R. Song and R. J. Leduc, “Symbolic synthesis and verification of hierarchi-
cal interface-based supervisory control,” inProceedings of the 8th Interna-
tional Workshop on Discrete Event Systems, WODES’06. Ann Arbor, MI,
USA: IEEE, Jul. 2006, pp. 419–426.

[34] R. C. Hill and D. M. Tilbury, “Incremental hierarchicalconstruction of
modular supervisors for discrete-event systems,”International Journal of
Control, vol. 81, no. 9, pp. 1364–1381, May 2008.

[35] L. Feng and W. M. Wonham, “Supervisory control architecture for discrete-
event systems,”IEEE Transactions on Automatic Control, vol. 53, no. 6, pp.
1449–1461, Jul. 2008.

[36] K. Schmidt and C. Breindl, “Maximally permissive hierarchical control
of decentralized discrete event systems,”IEEE Transactions on Automatic
Control, vol. 56, no. 4, pp. 723–737, Apr. 2011.

[37] S. B. AKERS, “Binary decision diagrams,”IEEE Transactions on Comput-
ers, vol. 27, no. 6, pp. 509–516, 1978.

[38] R. E. Bryant, “Symbolic Boolean manipulation with ordered binary-
decision diagrams,”ACM Computing Surveys, vol. 24, no. 3, pp. 293–318,
1992.

[39] K. L. McMillan, Symbolic Model Checking. Boston, MA, USA: Kluwer
Academic Publishers, 1993.

[40] S. Balemi, G. J. Hoffmann, P. Gyugyi, H. Wong-Toi, and G.F. Franklin,
“Supervisory control of a rapid thermal multiprocessor,”IEEE Transac-
tions on Automatic Control, vol. 38, no. 7, pp. 1040–1059, Jul. 1993.

[41] A. Vahidi, “Efficient analysis of discrete event systems—supervisor synthe-
sis with binary decision diagrams,” Ph.D. dissertation, Chalmers University
of Technology, Göteborg, Sweden, 2004.

[42] Z. Fei, “On symbolic analysis of discrete event systemsmodeled as auto-
mata with variables,” Ph.D. dissertation, Chalmers University of Technol-
ogy, Göteborg, Sweden, 2012.

[43] Z. Fei, S. Miremadi, K.Åkesson, and B. Lennartson, “Efficient symbolic
supervisor synthesis for extended finite automata,”IEEE Transactions on
Control Systems Technology, vol. 22, no. 6, pp. 2368–2375, Feb. 2014.

54

REFERENCES

[44] R. Malik, “On the set of certain conflicts of a given language,” in Pro-
ceedings of the 7th International Workshop on Discrete Event Systems,
WODES ’04. Reims, France: IFAC, Sep. 2004, pp. 277–282.

[45] R. Malik, D. Streader, and S. Reeves, “Fair testing revisited: A process-
algebraic characterisation of conflicts,” inProceedings of the 2nd Interna-
tional Symposium on Automated Technology for Verification and Analysis,
ATVA 2004, ser. LNCS, F. Wang, Ed., vol. 3299. Taipei, Taiwan: Springer,
Oct.–Nov. 2004, pp. 120–134.

[46] K. Åkesson, M. Fabian, H. Flordal, and R. Malik, “Supremica—aninte-
grated environment for verification, synthesis and simulation of discrete
event systems,” inProceedings of the 8th International Workshop on Dis-
crete Event Systems, WODES’06. Ann Arbor, MI, USA: IEEE, Jul. 2006,
pp. 384–385.

[47] J. O. Moody and P. J. Antsaklis,Supervisory Control of Discrete Event
Systems Using Petri Nets. Kluwer Academic Publishers, 1998.

[48] B. Brandin and F. Charbonnier, “The supervisory control of the automated
manufacturing system of the AIP,” inProceedings of Rensselaer’s 4th In-
ternational Conference on Computer Integrated Manufacturing and Au-
tomation Technology. Troy, NY, USA: IEEE Computer Society Press,
1994, pp. 319–324.

[49] L. Feng, K. Cai, and W. M. Wonham, “A structural approachto the
non-blocking supervisory control of discrete-event systems,” International
Journal of Advanced Manufacturing Technology, vol. 41, pp. 1152–1168,
2009.

[50] R. J. Leduc, “PLC implementation of a DES supervisor fora manufacturing
testbed: An implementation perspective,” Master’s thesis, Department of
Electrical Engineering, University of Toronto, Ontario, Canada, 1996.
[Online]. Available: http://www.cas.mcmaster.ca/∼leduc

[51] KORSYS Project. [Online]. Available: http://www4.in.tum.de/proj/korsys/

[52] F. Lin and W. M. Wonham, “Decentralized control and coordination of
discrete-event systems with partial observation,”IEEE Transactions on Au-
tomatic Control, vol. 35, no. 12, pp. 1330–1337, Dec. 1990.

[53] S. Parsaeian, “Implementation of a framework for restart after unforeseen
errors in manufacturing systems,” Master’s thesis, Chalmers University of
Technology, Göteborg, Sweden, 2014.

55

REFERENCES

[54] R. Malik and R. Mühlfeld, “A case study in verification of UML statecharts:
the PROFIsafe protocol,”Journal of Universal Computer Science, vol. 9,
no. 2, pp. 138–151, Feb. 2003.

[55] G. Bouzon, M. H. de Queiroz, and J. E. R. Cury, “Exploiting distin-
guishing sensors in supervisory control of DES,” inProceedings of the
7th IEEE International Conference on Control and Automation, ICCA ’09,
Christchurch, New Zealand, Dec. 2009, pp. 442–447.

[56] S. Mohajerani, R. Malik, S. Ware, and M. Fabian, “Compositional synthe-
sis of discrete event systems using synthesis abstraction,” in Proceedings
of the 23rd Chinese Control and Decision Conference, CCDC 2011, Mi-
anyang, China, 2011, pp. 1549–1554.

[57] S. Ware, R. Malik, S. Mohajerani, and M. Fabian, “Certainly unsupervis-
able states,” inProceedings of the 2nd International Workshop on Formal
Techniques for Safety-Critical Systems, FTSCS 2013, Queenstown, New
Zealand, 2013, pp. 3–18.

56

