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The Role of Sugars for Protein Stabilization
Christoffer Olsson
Department of Physics
Chalmers University of Technology

Abstract

The understanding of biomolecular interactions with water and co-solutes can lead to
greater knowledge regarding the mechanisms behind biomolecular stabilization. This
is highly important for developing technologies aimed to preserve biological materials.
Such techniques include cryopreservation of pharmaceuticals or human organ trans-
plants, for example. For these purposes, the disaccharide trehalose has been shown
to be an outstanding biomolecular stabilizing agent during cryostorage or storage of
desiccated materials.

In this thesis, the questions regarding the stabilizing role of trehalose is addressed
from several different angles. Structural properties of trehalose in water are studied and
are compared to those of a similar sugar molecule, namely sucrose. From these studies
it was concluded that there were surprisingly small differences between the interactions
of trehalose or sucrose with water. The thermodynamic properties of trehalose–water–
protein systems were investigated using DSC, where it was indirectly found that the
protein hydration shell was not substituted by trehalose, and that the protein stability
did not necessarily couple to the glass transition temperature of the trehalose–protein–
water-matrix. The structure and dynamics of such a ternary trehalose–water–protein
system was also investigated using neutron diffraction combined with EPSR, and QENS
combined with an MD simulation. In these studies, it was primarily found that the
trehalose molecules were preferentially excluded from the protein surface, and that the
local motions of the protein residues were slowed down via a reduction in the motion of
the water molecules at the protein surface. Furthermore, the temperature dependences
of relaxation dynamics in this system were measured using dielectric spectroscopy. This
study showed that the presence of protein hinder certain local trehalose motions, and
that the relatively slow dynamics of the trehalose solvent governs the conformational
motions of the protein.

The presented results elucidates some fundamental properties of how proteins and
trehalose behave and interact, which may benefit the development of new biomolecular
protective co-solutes.

Keywords: trehalose, protein, biomolecule, water, amorphous, cryopreservation,
neutron scattering, neutron diffraction, EPSR, DSC
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1
Introduction

In the end of May 2013, pictures of a frozen wholly mammoth began to pop

up in the newspapers. A team of Russian and South Korean scientists had

discovered this extinct animal in a sheet of ice in Siberia; an occurrence which

has become relatively more common recently. What was so spectacular about

this particular mammoth however, was that it was possible to extract blood and

seemingly fresh meat from it, after it had been frozen for over 43 000 years.1

This fascinating discovery could very well mean that it could be possible to

extract DNA from an intact mammoth cell, which could furthermore lead to

the cloning of an animal that went extinct around 4000 years ago. Shortly

after this discovery, I began my PhD-studies aimed to study the fundamentals

of cryopreservation. Thus, this story about the mammoth served as a great

source of inspiration; what made this particular mammoth-carcass able to be

so well preserved for such a long time? How come biological material in general

degenerate over time? What are the mechanisms responsible for suppressing

these degenerations? There are multitudes of answers to these questions, most

of them reaching far beyond the scope of any single thesis, but at least some

of these questions will be addressed here.

The process of preserving biological material has huge importance in a large

number of different fields. For example, the field of preserving biological compo-

1



2 Chapter 1 Introduction

nents for human transplants, such as body tissues, or blood, has the capabilities

of saving many lives. Improved preservation techniques may have a special in-

crease of demand in the future due to advances in e.g. tissue engineering,2

where appropriate storage of the created tissues is needed. In other areas such

as pharmaceutics or food-production, it is of course also important to obtain

a long shelf-life for all the different products. Similarly, in several areas within

biotechnology it is vital to keep cell cultures or other biological material viable

for longer periods of time.

Two of the most common methods of preserving biological material are cryop-

reservation and freeze-drying.3 Cryopreservation is the term used to describe

preservation of materials at low temperatures. This technique is advantageous

due to the decrease of molecular motions of the stored complex biomolecular

structures; motions which normally are required for biological function, but

are also capable of disrupting or breaking these structures. However, a huge

disadvantage of this temperature decrease is the formation of ice, which of-

ten cause great damage to the preserved material.4 Freeze-drying on the other

hand attempts to immobilize the biological material by removing the water

around it. Without an aqueous medium, most biological processes cease, and

the biomolecules become stabilized. This process can however also damage the

biological molecules and is far from optimal in many scenarios.5,6 The prob-

lems connected to cryopreservation or freeze-drying are commonly, at least in

part, dealt with by the addition of protective molecules (cryoprotectants and

lyoprotectants). There are many such molecules, each typically well suited for

one of the two methods, but there is one molecule that excels in stabilizing

biological material when it comes to both mentioned methods: trehalose.

Trehalose is a sugar-molecule, very similar to more common sugar-molecules

such as sucrose. Although sucrose and other sugar molecules typically exhibit

good stabilization properties,7 trehalose almost always has the superior prop-

erties (see e.g. Ref. 8). Why trehalose possess these superior properties is still
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unclear, and it is the aim of this thesis to provide insights into this question.

For this purpose, the work in this thesis investigates different aspects about

trehalose. In paper I, the structural properties of trehalose in an aqueous so-

lution (33 wt% trehalose) is studied, and in paper II this work is compared

to a similar study of sucrose with the same water concentration. The work in

these two papers was done by neutron diffraction and empirical potential struc-

ture refinement-modeling. Papers III–VI concerns the interaction of trehalose

with water and protein. Thermodynamic properties, such as glass transition-

and denaturation temperatures, was studied by the use of differential scanning

calorimetry in paper III. The molecular structure of this three-component sys-

tem was studied by the use of neutron diffraction and empirical potential struc-

ture refinement-modeling in paper IV, and the dynamics of the same system

was investigated using quasielastic neutron scattering and molecular dynamic

simulations in paper V. The dynamics of a set of drier systems, and thus slower

dynamics, was studied in paper VI, by the use of broadband dielectric spec-

troscopy.

In the structural diffraction study of water with trehalose (paper I), the

interaction between water and trehalose was studied. It was shown that plenty,

although relatively weak, hydrogen bonds between trehalose and water forms,

and also that trehalose has a very small probability of forming intermolecu-

lar clusters. As a comparison to the results for trehalose obtained in paper I,

sucrose was also studied, using the same methods, in paper II. There it was

shown that trehalose and sucrose exhibit quite similar structure when dissolved

to this particular concentration. A similar amount of hydrogen bonding, and

a similar lack of clustering is shown, however there are indications of that tre-

halose exhibits a larger destructuring effect on the bulk-like structure of water.

In the differential scanning calorimetry study (paper III), evidence for the pref-
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erential hydration model was found. The study also includes glass transition

and denaturation temperatures for a wide concentration range of both trehalose

and protein. Evidence for the preferential hydration model was also found in

paper IV and paper V for a more hydrated system than those generally studied

in paper III. Paper IV also shows how trehalose inhibits protein–protein inter-

actions, and how water interacts with trehalose in the presence of proteins.

In paper V it is also shown how the presence of trehalose slows down certain

protein motions.

This thesis contains background information about the materials and the

experimental techniques that are used in these studies. Chapter 2 gives an

overview of liquids and amorphous materials and how these can be investi-

gated. This is followed by a more detailed description of the specific molecules

used for these studies: water, myoglobin, sucrose, and trehalose. Subsequently,

some models regarding interactions between these materials, and how protein

stabilization occurs, are presented.

Chapter 3 describes the theories behind the different techniques, and in chapter

4 it is explained how these techniques were applied in the presented studies.

Chapter 5 briefly describes the obtained results from the papers, and chapter 6

gives a summary of this work and an outlook on how to proceed with answering

the questions concerning the stabilizing role of trehalose.



2
Materials

2.1 Liquids and amorphous materials

When discussing the structure of a liquid or an amorphous material, a specific

framework is necessary to define what is meant by structure. As opposed to

the structure of a crystal, where all the atoms and molecules have a more or

less well-defined position relative to one another, an amorphous material lack

most of such structural ordering. In fact, the definition of an amorphous mate-

rial is a material which lack long-range order between atoms, i.e. there are no

repeating units that can be found throughout the material.9 Of course, the lack

of long-range order does not mean that there is no structure at all. On shorter

length scales, molecules in an amorphous material can exhibit very complex

and interesting structures which determine the properties of the material, such

as clusters, vesicles and ring structures, to name a few examples. The mate-

rials studied in this thesis appear in two types of amorphous phases, liquids

and glasses. This section gives a brief general overview of these two phases

concerning their general properties and how their structures can be described.

5



6 Chapter 2 Materials

2.1.1 From liquids to glasses

Typically, when a liquid is cooled the viscosity increases, partly due to the

decrease in kinetic motion of the individual particles in the liquid, and partly

due to an increase in density. When the motion becomes slower the particles

propagate through the material at a slower rate – they become "caged" by

the surrounding molecules. Thus when a force is applied to the liquid it takes

longer time for the particles to react to that force. This phenomenon is what

we typically experience as a high viscosity. When the liquid is cooled below its

freezing point it becomes energetically favorable for the particles to form lattices

of particles, a process known as crystallization. However, for crystallization

to occur the particles need some time to reorient themselves into the correct

position of a lattice site. Thus if the freezing occurs very fast (quenching) the

viscosity increases rapidly – the movements of the particles quickly slow down

– and the time required for the particles to arrange themselves into a crystal

lattice-structure may grow to extremely long times. When these time spans

become larger than the experimental time spans (i.e. such that particle motions

are too slow to react during the time span of the experiment) the material can

go through what is called the glass transition; the material becomes vitrified.

The glass transition is often detected by e.g. calorimetric measurements,

and can be seen as a gradual change of the enthalpy (H) dependent on tem-

perature (Figure 2.1). This change in the slope of the enthalpy shows that the

glass transition behaves rather differently compared to a "normal" transition,

such as a crystallization process, where the enthalpy changes abruptly at a

certain temperature (melting/crystallization-temperature Tm/Tc).∗

A transition that exhibit a discontinuity in the directly observable thermody-

namic quantities, such as enthalpy (and also volume and entropy), is called

a first-order transition. A glass transition however displays a change in the

slope of these thermodynamic properties (Figure 2.1), which means that the
∗Other thermodynamic properties, such as the thermal expansion behaves similar to the

heat capacity.
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derivatives of these thermodynamic quantities – such as the thermal expansion

αT = δlnV
δT

, or the heat capacity C = δH
δT

– are discontinuous at the glass tran-

sition. This type of transition is a so called second-order transition.9,10

The temperature at which these discontinuities occur often serves as the defini-

tion of the glass transition temperature (Tg). An important difference between

this transition temperature and that of for example a crystallization temper-

ature, is that the glass transition temperature depends on the history of the

material. For example, Tg will typically become lower if the material is cooled

at a slower rate. This is due to the extra time available for the material to

reach equilibrium at a slower cooling rate. If the material is cooled at a greater

rate, the particles in the material become immobilised before they are able to

reach a new equilibrium.9

Figure 2.1: Graph showing how a substance varies in volume or enthalpy de-
pending on temperature during transitions from a liquid state into either a
glassy state or into a crystal.

A common definition for the glass transition is that it occurs when a ma-

terial reaches a viscosity of 1013 poise. At this viscosity the material can be

regarded as a solid for all practical purposes. Another common directly related

definition for the glass transition is that it occurs at the temperature where

the characteristic α-relaxation process of the material, which is related to co-
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operative motions of the particles, reaches a relaxation time of 100 seconds.

As previously mentioned, when a particle in a liquid is perturbed by a force it

can only move if there are available sites for the particle to move to. The α-

relaxation time (τα) is thus the characteristic time it takes for several particles

to perform such cooperative motions. In a low viscosity liquid, τα is short and

thus the particles collectively move in response to an applied force, but as τα

increases the longer it takes for these collective motions to occur, and thus the

material appears as more and more viscous. τα can typically be probed using

techniques such as dielectric spectroscopy.

2.1.2 Structure of Liquids and Glasses

In order to discuss the structure of a liquid there is a need for establishing a

formalism that can accurately describe this. The most common and simple way

to do this is via the pair correlation function, g(r)∗. This function is essentially

the probability of finding another atom within a spherical shell between r and

r + dr at a distance r from the center of any arbitrary atom, as illustrated in

Figure 2.2.

In a crystalline material this function show sharp peaks at specific r values,

corresponding to the well-defined atomic distances within a crystal (bottom

figure in Figure 2.2). The broadening of these peaks is mainly due to struc-

tural thermal fluctuations of the atoms. The pair correlation function for an

amorphous material (upper figure in Figure 2.2) on the other hand oscillates

smoothly around unity at relatively large distances from the center. This re-

flects the random orientation of atoms at large distances from any given atom,

where it is expected to find a number of atoms within a given volume, n(r),

equal to that of the average number density (ρ) of the material (n(r) = ρg(r)).

The peaks in an amorphous material at short distances are generally also

broader compared to those in a crystalline structure. This is mainly due to

∗More specifically, the static pair correlation function.
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Figure 2.2: Pair correlation functions. Upper figure shows the pair correla-
tion function of a hard-sphere liquid. Lower figure shows the pair correlation
function of a crystal structure.

that the bonding sites are less well-defined in an amorphous material, but also

partly due to a higher degree of structural thermal fluctuations of the atoms.9

The pair correlation function originates from the autocorrelation function of

the local atomic density n(r), defined as11:

n(r) =
∑
i

δ(r− ri) (2.1)

Where δ is the Dirac delta function, and ri is the position of atom i. The

autocorrelation of n(r) is∗:

G(r) =
1

N

∫
n(r′)n(r′ + r))dr =

1

N

N∑
ij

δ(r + rj − ri) (2.2)

and by separating the summation in two terms, one where i = j and one where

∗This autocorrelation function can be interpreted as a measure of the degree of correlation
between two atoms separated by a distance r.
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i 6= j, this can be reduced to:

G(r) = δ(r) +
1

N

N∑
i 6=j

δ(r + rj − ri) = δ(r) + ρg(r) (2.3)

where the relationship ρg(r) = 1
N

∑
i 6=j δ(r+rj−ri) is the definition of g(r)

and refers to the pair correlation function (i.e. the correlation between any

two different atoms), whereas the first Dirac delta term in equation 2.3 is the

self-correlation part, i.e. how an atom correlates with itself in space.

Multicomponent systems

When a material contains more than one atom type it is often useful to reduce

the total pair correlation function into a weighted sum of so called partial

pair correlation functions of different atom pairs. These are often denoted as

gαβ(r), where α and β represent two different atom types, and is interpreted

as a probability of finding an atom of type β at a distance r from an atom

of type α (or vice versa since gαβ(r) ≡ gβ,α(−r)). The sum, describing the

autocorrelation function is then:11

G(r) = δ(r) + ρg(r) =
∑
α

cαδ(r) + ρ
∑
α,β≥α

(2− δαβ)cαcβgαβ(r) (2.4)

Where cα and cβ are the fractions of atoms α and β in the sample respec-

tively. The partial pair correlation functions are very useful for the analysis of

an amorphous material since the sum of them completely describes the average

structure of the material as one single function, and the individual pair correla-

tion functions captures specific average structures between different molecular

species. Various information which can be extracted will be discussed in more

detail in section 4.2. Section 3.1.1 describes how to obtain the pair correlation

functions by neutron scattering and modeling techniques.
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Dynamic correlation function

The correlation function discussed so far assumed stationary particles, however

this formulation can be expanded to include displacements over time. The

obtained dynamic pair correlation function, called the van Hove function, is

often written as∗:

G(r, t) =
1

N

N∑
i,j

δ(r + ri(0)− rj(t))dr (2.5)

This should be viewed as the probability density of finding a particle at po-

sition r at time t, given that this or another particle was at the origin at time 0.

Again, separating this function into its pair-correlation function (G(r, t)Distinct)

and its self-correlation function (G(r, t)Self ), the following two equations can

be written:

G(r, t)Distinct =
1

N

N∑
i,j 6=i

δ(r + rj(0)− ri(t)) (2.6)

G(r, t)Self =
1

N

N∑
i

δ(r + ri(0)− ri(t)) (2.7)

It is easy to see that the different van Hove functions reduce to the static

case when t = 0.

2.2 Water

Equipped with the tools to characterize the structure of a liquid, the formalism

described above will be exemplified in this section using a relatively simple

compound, one of the most abundant substances on earth: water. This is – to

no surprise – a well-studied material, due to its presence in a vast number of

chemical and biological reactions. For the scope of this thesis, it is important

to highlight some of the properties of water, since it is the medium in which all
∗Or rather, the real part of the van Hove function12
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the studied materials were dissolved in. Furthermore, the structure of water is

also highly relevant for a part of the study presented in papers I and II.

2.2.1 Properties

Water consists of one oxygen atom covalently bonded to two hydrogen atoms.

The hydrogen atoms are bonded to the oxygen in a triangular shape, where the

H–O–H angle is around 104.5◦ on average.13 This geometry stems from how the

electron density in a water molecule is slightly higher at the oxygen atom and

slightly lower at the hydrogen atoms, which also gives the molecule its dipole

moment. Water molecules attract each other through hydrogen bonds (HBs)

between hydrogens and oxygens due to this resultantly small charge difference.

Compared to the covalent intramolecular bonds, the intermolecular hydrogen

bonds are relatively weak. However, these hydrogen bonds are widely believed

to be the main reason for a series of peculiar properties of water.

Water is in many aspects not a normal material, but possesses several

anomalous properties. Most commonly known is probably the density max-

imum of water at 4◦C; this property means that for a certain temperature

interval, the density of H2O decreases with decreasing temperature, as opposed

to almost every other known substance.13 Another anomalous property of wa-

ter is its high specific heat capacity (4.18J g−1K−1 at 25◦) which is one of the

highest heat capacities out of all known substances.∗

To understand these anomalous properties, the hydrogen bonded networks

and structures formed within water at its different phases (ice and liquid) is

discussed below.

∗There are of course a lot more anomalous properties of water which are not mentioned
here. For more information, the reader is referred to e.g. Ref. 13
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2.2.2 Structure

The intermolecular structure of ice is typically shown as in Figure 2.3 a. Each

water molecule has four other water molecules as first-order neighbors (as dis-

cussed in section 4.2.1),13 forming a tetrahedral structure in three dimensions.

Ice is in a crystalline (relatively∗) well-structured state; each water molecule

is in a well-defined lattice point, connected symmetrically to four other wa-

ter molecules. Liquid water is not as symmetrical since the water molecules

translate and rotate due to thermal fluctuations. One widely accepted view

of water structure has been that water molecules form on average a tetrahe-

dral network, where each water molecule, on average, binds to 4.4 other water

molecules.14 These bonds constantly break and form with a lifetime of ∼1 ps

at room temperature.15

(a) Ice (b) Water

Figure 2.3: Schematic of ice and water structure.

The structure of regular bulk water can be studied by the partial pair cor-

relation functions, O–O, O–H, and H–H (Figure 2.4). Particularly gOO(r) –

the partial pair correlation function between two water-oxygen atoms – tell us

something interesting regarding the coordination numbers of water at 298K

compared to ice at 220K. The first sharp peak at 2.8 Å indicates the typical

∗Ice is actually not specifically structured compared to other crystalline materials.



14 Chapter 2 Materials

distance to the first-order neighbor of a water molecule. Notably, this peak,

which shows the first-order distance, moves only to slightly higher values and

becomes somewhat broader as the ice melts. A much more pronounced effect

however is seen for the second peak (i.e. the second-order coordination shell),

at about 4.5 Å, which is highly pronounced in the ice structure and is signifi-

cantly less pronounced in liquid water. This second peak is seen as a signature

of tetrahedral structure in water and ice. In ice, the water molecules are pretty

well coordinated at the second-order neighboring (and to third and fourth etc.

as well, but to a lower and lower extent). In liquid water this coordination is

still present, however less defined, particularly at higher temperatures.∗ 16,17

From these correlation functions and other similar derived quantities, it has

been shown that in liquid water a water molecule is typically surrounded by a

tetrahedral structure of neighboring water molecules. The molecules in these

structures are not stationary but rather fluctuate in their positions. First

order neighbors exchange with second-order neighbors, and interstitial water

molecules break up the otherwise four-coordinated water into five-coordinated

water.18,19

The abnormal density maximum of water can thus be explained by noting

that the existence of destructured water arrangements increase with increas-

ing temperature, and the destructured water is more densely packed than the

structured ones, even though both types of structures expand in volume with

increasing temperature. Hence, at a certain point (at ∼4◦C) the sum of the

existence of density-increasing (destructured) water structures and the den-

sity increasing effect of lowering the temperature reaches a maximum. Below

this temperature, more tetrahedral structures begin to form, thus lowering the

density more than the decreasing temperature increases it.13

∗A similar trend is found for pressure dependence; higher pressure changes the partial
pair correlation functions similar to higher temperatures.16,17
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(a) Water at 298K

(b) Ice at 220K

Figure 2.4: Partial correlation functions for O–O, O–H, and H–H correlations of
(a) water at 298K and (b) ice at 220K. Data obtained from the ISIS disordered
materials database.17,20

2.3 Disaccharides

Disaccharides are very common molecules in biological materials, and are used

in many different biochemical reactions. The main focus of investigation in this

thesis is to improve stabilization of biological molecules, and for this purpose
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the disaccharide trehalose has shown many promising effects. Trehalose ap-

pear to be present in a wide range of different extremophiles, and it has been

shown in countless studies8,21,21–30 that trehalose possess an extraordinary abil-

ity to stabilize biological material against many different types of environmental

stresses, such as desiccation, extreme temperatures or extreme pressure (see for

example Ref. 31 wherein the extremophile tardigrade is studied, a small mi-

croscopic animal capable of surviving some extreme environments). Thus, in

order to understand the general mechanism behind biopreservation, the specific

interactions between trehalose and proteins have been investigated. However,

trehalose is by no means unique in its ability to stabilize proteins. For example,

the more common disaccharide, sucrose, has a very similar chemical structure

to trehalose and also exhibit many stabilizing properties, although not to the

same extent as trehalose. By comparing the differences between properties

of these two disaccharides one may thus obtain a more detailed answer as to

what mechanisms yield the most biomolecular stabilization. Before going into

the details regarding their role in biomolecular stabilization, this section will

however focus more on general properties of these two disaccharides.

2.3.1 Chemical Properties

Trehalose and sucrose have identical chemical formulas (C12H22O11), with a

molecular weight of 342.296Da. They both consist of two monosaccharides

connected by a glycosidic linkage; trehalose is built up by two glucose rings,

and sucrose by one glucose and one fructose rings. A simple cartoon of their

molecular structure can be seen in Figure 2.5. Their chemical formula are

furthermore identical to a number of other disaccharides, such as lactose and

maltose. In fact, many of the disaccharides, are very similar in their structures,

apart from the positioning of the different hydroxyl and hydroxy-methyl groups

on the monosaccharide rings. The similar disaccharides share many properties

with trehalose, however the small structural differences have been shown to
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play a highly important role for the molecular functions studied in the work

presented in this thesis.

Figure 2.5: Molecular structure of sucrose (left) and trehalose (right)

The melting point of water-free (anhydrous) trehalose is 203◦C, whereas

sucrose exhibits a more complex behavior as it decomposes at 186◦C into its two

monosaccharides, which are both in liquid form at that temperature∗. Trehalose

easily binds to two water molecules – forming dihydrate crystals – which is the

most stable form of trehalose at ambient conditions. This form has a melting

temperature of 97◦C and, after being melted, dissociates its water molecules

and forms the anhydrous solid phase at about 130◦C.32

Comparing with similar disaccharides, trehalose has the highest Tg.33 This

property is highly dependent on water concentration, as the water molecules

are able to plasticize the sugar matrix. It is also widely believed that trehalose

not only forms a glass at the highest temperature, but also that it is superior

in remaining in a stable glassy state.34,35 This effect stem from the fact that

trehalose can transform into the dihydrate phase when exposed to water. A

small water addition to any other glassy disaccharide matrix destabilizes the

entire glass by homogeneously distributing the water molecules. This process

leads to a decrease in Tg which subsequently leads to a lower stabilization

effect (see e.g. Refs. 26 and 36). In a glassy trehalose matrix however, the

molecules which are immediately exposed to water acts as a buffer by absorbing

it and thus excluding the water from the remaining glass-matrix. This process

∗This process is even more complex, including a caramelization-process which will not
be discussed.
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makes Tg more stable and therefore provides a more reliable stabilization.35

Other chemical properties of interest between these two disaccharides worth

mentioning include: Sucrose is much more soluble than trehalose; 1 g of water

dissolves as much as 2.14 g sucrose, but only 1.1 g trehalose.37 Sucrose is twice

as sweet-tasting as trehalose, which is a property that has been suggested to

be related to its higher solubility38.

2.3.2 Structure

Several studies have investigated intra- and inter-molecular clustering of disac-

charides in solution.39–42 The literature does however not agree on all issues,

and thus the current section only gives a brief overview of a selection of results.

Intramolecular structure

The structure of trehalose in an aqueous solution is highly dependent on the

water concentration. As the amount of water decreases, trehalose tend to fold

across its glycosidic linkage, forming intramolecular bonds between the two

glucose rings.40 This folding prevents intermolecular binding between the wa-

ter and trehalose due to that many of the hydroxyl groups on the trehalose

are occupied in the intramolecular fold. With an increasing amount of wa-

ter, the folded structure breaks up and subsequently makes more hydroxyl

groups available for further interactions between water and trehalose.40 For

more diluted cases it has been shown by molecular dynamics simulations that

trehalose exhibits a larger flexibility than sucrose, which is likely a consequence

of trehalose’s reluctancy to form intramolecular hydrogen-bonds compared to

sucrose.39

Intermolecular structure

Intermolecular disaccharide interactions are other important aspects for the

different properties of the disaccharides. In the dehydrated state (< 0.5 water
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molecules per trehalose), trehalose has been shown41 to exhibit a more homo-

geneous amorphous network than sucrose which form sucrose-rich crystalline

domains from which the water is expelled. This property could be partly used

to explain the superior stabilizing mechanism of trehalose during desiccation,

since this finding suggests that trehalose is better at hosting larger molecules

(such as proteins), and anchor them to the homogeneous glassy matrix via the

residual protein water molecules.41

At high hydration levels (>38 water molecules per trehalose), trehalose also

shows a high degree of homogeneity compared to sucrose, in the sense that the

trehalose molecules do not cluster substantially.39 This aspect is also found in

paper I, where it is shown by neutron diffraction experiments that the clus-

tering effect of trehalose is much smaller than previously reported.39,43 In fact,

according to the model in paper I, the trehalose molecules appeared to repel

each other to a small extent. This was however also shown in paper II to be

the case for sucrose at the same water concentration.

2.3.3 Effect on water structure

It was shown through a series of articles by Branca and Magazu et al44–50that

the structure and dynamics of water is highly altered by the presence of tre-

halose. This effect has however been under some discussion,51 which partly

motivated the work done in paper I. In paper I it was also shown that trehalose

perturb the bulk behavior of water by breaking up the tetrahedral network.

By extensive – although not necessarily strong – hydrogen bonding, the water

molecules are forced to reorient toward the trehalose hydroxyl groups, thus

allowing for more interstitial water molecules in the first coordination shell of

water. This also leads to a destruction of the second coordination shell (see

Figure 3,4, and 5 in paper I). A revised model of trehalose was presented in

paper II, which indicated not as strong effect on the water structure as in pa-

per I. However, in paper II the destructuring effect on the water was compared
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to that of water in sucrose, and it was found that the water structure indeed

deviated more in the presence of trehalose than in the presence of sucrose, in

support of e.g. Refs. 45, 48–50

The destruction of the water structure could be the main reason for why tre-

halose is good at depressing ice formation and why aqueous solutions of tre-

halose exhibits such a high Tg compared to similar disaccharides. However,

other explanation models have been proposed. For example, it was shown that

when a high concentration of the sugar-alcohol sorbitol (>70wt%) repress wa-

ter crystallization, the water structure remained tetrahedral and, more similar

to that of water in confined geometries.52 It was therefore suggested that a net-

work sorbitol molecules segregated water molecules into small water pockets,

thus effectively creating confined water clusters. Water in such confinements

are indeed also prevented from crystallizing, and exhibit slower dynamics53,54.

Similarly, this effect has also been suggested to be the cause of why trehalose

repress ice formation and reduce water mobility.55

2.4 Biomolecules

The term biomolecules typically refers to the molecules involved in biological

systems and processes. They can be very complex, such as proteins or DNA,

or much simpler, such as simple sugars involved in e.g. metabolism. When

discussing biological stability, it is typically the more complex molecules and

structures that are of interest since these are the ones more prone to breaking

from environmental stress. The focus of this thesis is on the stabilization of

proteins, but for a broader discussion it is important to sometimes deviate into

the role of stability of other complex structures such as cell membranes.
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2.4.1 Proteins

Proteins are the molecules that drives most biological processes. They are

essential for the basic functions behind the processes of life, thus the loss of

these functions are catastrophic for the organism hosting the proteins. Proteins

are made up from chains of different amino acids, which link together according

to different sequences in the DNA chain (i.e. genes). These protein chains

typically fold to a subset of configurations that give the proteins their particular

geometrical structures and functions. The folds and creases on the protein

surfaces exhibit different chemical properties – such as being hydrophilic or

hydrophobic – which typically determine their functions.56

Figure 2.6: 3D model of myoglobin. The structure of the illustrated figure was
obtained from the 1MBN entry from the protein data bank.57

Myoglobin

In papers III–VI, myoglobin was studied in solution with water and trehalose,

since it is a well-studied and relatively "simple" protein. Myoglobin was the first

protein which structure was determined (via X-ray crystallography in 1958),58
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and has since then been often used as a model protein. It is a relatively small

(∼17.6kDa∗) globular protein consisting of eight α-helices and a heme group

(see Figure 2.6). The protein stores oxygen in the heme group, specifically in

muscle tissue.56

2.4.2 Protein water and dynamics

The view of proteins is often simplified as being fixed structures, which func-

tions are only determined by their surface geometry. However, a functioning

protein is almost always in an aqueous environment. In fact, the most prevalent

molecule by mass in a majority of organisms is water.59 Protein functions thus

occur in the presence of water, and different configurations of a protein are nor-

mally slaved to this environment.60–62 Thus, the understanding how proteins

function is not always merely a question of their static geometry, but on their

dynamic behavior, and how this is affected by hydration or variation in local

environment, by e.g. addition of different solutes. This is of course particularly

important when considering the effects of protein stability in different environ-

ments.

Water at protein surfaces behaves – just as when water binds to any other

type of solute – very different from that in bulk. Hydration water, i.e. water

confined by interactions to protein surfaces does not participate in ice forma-

tion. Such water has also much slower dynamics than bulk water. For water

contents up to about 17 wt% the protein does not exhibit any function, and the

water that adsorbs to the protein surface mainly bind to the most hydrophilic

sites. As the hydration increases to 30 wt%, the protein is generally hydrated

with a single water layer and the function then resumes. The addition of water

enables dynamical behavior of the protein; at first, local motions related to

e.g. rotational motions of protein side-chains or dipole reorientations give rise

to the so called β-relaxations, but as more water is added collective motions –

∗For myoglobin obtained from horse heart-muscles
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coupled to the α-relaxation – can emerge. Full protein function does however

not return until hydration of about 50 wt%, i.e. equal amounts of water and

protein,63 at which point the protein flexibility associated with adding water

stops increasing substantially.

There are many different types of protein motions. Below the glass transition

temperature (Tg), hydrated proteins exhibit local relaxations, originating from

small side-chain fluctuations. At these colder temperatures these motions are

thought to be controlled by the local β-relaxation of the solvent. Above Tg, the

solvent molecules start to move cooperatively and the β-relaxation of the sol-

vent merges with the more large-scale α-relaxation.64,65 As the solvent begins

to exhibit an α-relaxation, so does the protein molecule, which is what facili-

tates the protein to undergo large-scale conformational changes, often needed

for the protein to function. By understanding the nature of these motions and

how they couple to different co-solvents, such as trehalose, one may understand

how to modify and improve protein stabilization effects.

2.5 Stabilization of biomolecules

Although the work done in this thesis is focused on the effects of trehalose,

this section will first describe why some solutes in general are able to stabilize

biomolecules, and secondly, in section 2.5.3 the discussion will focus on what

makes trehalose such an excellent protective solute.

2.5.1 Protein stability

Protein dynamics is indeed a criterion for the functionality of proteins, as pre-

viously described in section 2.4. However, with great flexibility and motions

comes greater risks for protein denaturation to occur. An increase of tempera-

ture involves an increase of protein dynamics, which in turn increases the risk

for it to irreversibly unfold. Thus, a certain decrease of the dynamics of the
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protein is essential for the long-term survivability of protein structures. One

method of doing this is to directly slow down the dynamics by decreasing the

temperature, so called cryopreservation. This method is common for storing

large and complex biological materials, such as cells or tissues, but it is also

used for storing proteins for example.2 Another common method of slowing

down the dynamics is to reduce the water concentration, which – as pointed

out in section 2.4 – reduces the conformational freedoms of proteins. This

can be done by many different methods, one of the most common methods

include freeze-drying (or lyophilization). Lyophilization is suitable for storing

less complex biological materials, such as proteins. It is done by first freezing

the material dissolved in water, followed by keeping the frozen material in a

vacuum, in which the water subsequently sublimates. One advantage of stor-

ing biological material in a lyophilized state is that this material can be kept

at a much higher temperature (e.g. room temperature).6 There are however

problems with both of these two different methods which have to be overcome

for improving biological storage techniques.

Cryoprotection

Depressing ice formation is probably the most important aspect of a success-

ful preservation of biological material at low temperatures.∗ Ice crystals can

grow extra- and intra-cellularly puncturing or completely bursting membranes.

Another serious problem with ice formation is that it effectively concentrates

different chemicals in the cell to high, sometimes toxic, levels. This is due

to the fact that ice does not dissolve any substantial amount of solute itself.

Similarly, if extracellular water freezes, an effective osmotic stress arises due to

the concentration of solutes at the cell membrane. This creates a concentra-

∗There are methods that do not involve the avoidance of crystallization, but instead
attempts to control the crystallization process by e.g. producing nucleation sites for the
crystal structures to grow on (see e.g. Ref. 2). Some organisms use a version of this method
by use of antifreeze proteins (see e.g. Ref. 66 for further information). These methods are
however beyond the scope of this thesis.
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tion gradient that effectively dries out the cells.67,68 Furthermore, a crystalline

ice structure can destroy the native configuration of proteins by forcing these

into unfavorable conformations through direct interactions between ice and

protein.69 It is therefore desirable to freeze the protein solution in such a way

that it avoids crystallization during cooling, by first entering the supercooled

regime and then the glassy state. The glassy state is thus – at least in prin-

ciple – a way of obtaining a solid but liquid-like environment that very much

adapts its structure to that of the protein. Hence the risk for unfavorable steric

constraints from a crystal structure is avoided.

Reaching the glassy state and avoiding crystallization is commonly done

by the addition of cryoprotectants. These are typically non-reactive molecules

that interfere with water crystallization and induce glass formation. There

are however some general problems with cryoprotectants. In order to achieve

a vitrified state, high concentrations of cryoprotectants are typically required,

and that can in itself be toxic. Some cryoprotectants are more toxic than others,

but generally, all cryoprotective compounds are damaging at a high enough

concentration.68 Another problem is that the loading of cryoprotectants into a

cell may induce osmotic stresses; if a cryoprotectant does not enter through the

cell membrane fast enough, the buildup of cryoprotectant extracellularly dries

out the cell, possibly leading to a volume collapse. Similarly, after successful

cryostorage, the cryoprotectants have to be washed away during reheating, and

a buildup of high intracellular cryoprotectant concentration may occur during

that stage. This leads to an expansion of the cell, which again may lead to

cellular rupture.68,70

Although avoiding ice formation may be crucial for successful cryopreser-

vation, it has been shown to not be a sufficient property. Some co-solutes

which depress ice formation and increase Tg offer little to no stabilization at

low temperatures.71 So even though crystallization prevention and glass form-

ing abilities seem to be near essential for successful storage of biomolecules,
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there has to be some other mechanisms that certain cryoprotectants provide

which others lack.

Lyophilisation

Removing water is another method of immobilizing biological molecules. The

reduction of water concentration leads to a reduction of molecular dynamics

and biomolecular functionality, which has a stabilizing effect. However, when a

biomolecule become desiccated, the loss of its function can also have negative

effects on its stability.72 If enough water disappears it could lead to the aggre-

gation and denaturation of protein73,74 and the destruction of different kinds

of cell membranes.75 This denaturation of protein from either freeze-drying or

just air-drying appears to occur when the first hydration shell disappears.73,74

In order to obtain a successful freeze-drying, it is also often necessary to

add protective molecules to ensure stability at a desiccated stage. It has

been pointed out however that the stabilizing mechanism of lyophilization-

protectants is fundamentally different from, and much more complex than,

that of cryoprotection.76–78 This aspect can be indirectly evidenced by the fact

that most cryoprotective molecules are not capable of desiccation-protection.

Molecules that actually have this capability of both cryo- and desiccation-

protection are disaccharides.7,79,80 Disaccharides may thus tell us a bit more

about stabilization properties in general than other co-solutes.

2.5.2 Stabilizing co-solutes

A well-proven thermodynamic theory of stabilization/destabilization mecha-

nisms through the addition of solutes has been developed by Timasheff et al.

(see for example Ref. 81 or Ref. 82). According to this theory, the stability of

the functional state of a protein is proportional to the difference in free energy

between the functional state and the denatured state. The greater the differ-

ence, the more energy is required to break the functional state.
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Generally, stabilizing co-solutes in dilute solutions with protein have been found

to be preferentially excluded from the protein surfaces, leading to preferential

hydration.83,84 It was pointed out that a preferentially excluded solute increases

the free energy of the material.83,84 This increase is proportional to the surface

area of the protein, and since the surface area is larger for the denatured pro-

tein, the free energy of the denatured state will increase more than that of the

functional protein state.

To elaborate on that, the stabilization due to the preferential exclusion of

co-solutes from the protein surface comes from that if the co-solutes have an

unfavorable interaction with the protein surface, the unfolded state will (de-

pendent on the specific protein, but in general) have a larger surface area with

more available unfavorable interaction sites. Another way of putting this is

that the free energy of the solution increases when the co-solute is added, but

it would increase even more if the proteins were to unfold.82,85

2.5.3 Bioprotective properties of trehalose

Trehalose emerges in more and more areas as a particularly excellent biological

stabilizer.21–30 Not only as a protectant against cold23,24 or heat,21,24–27 but

also as a lyophilization stabilizer.22,28,29 It also has the ability to stabilize both

lipid bilayers and proteins.28 The stabilization of proteins will however be the

main focus of this thesis. What exactly it is that makes trehalose different

from any other co-solute is not entirely understood, although there are some

debated theories, which will be discussed below, and is further investigated in

the attached papers.

Vitrification

Stabilizing co-solutes are typically associated with being glass formers. By en-

capsulating proteins in a glassy matrix, the dynamics of a biomolecule slow

down due to the decrease of solvent motions, but without the negative effects
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associated with crystallization (e.g. unfavorable molecular geometry). Com-

pared to other similar disaccharides, trehalose has been reported to have the

highest glass transition temperature, and to be an excellent glass former. This

observation led to the so called vitrification hypothesis – as first proposed by

Green and Angell33 – which suggests that the main reason for trehalose’s excep-

tionality resides in its glass forming properties. The reason for this high glass

forming property was previously discussed in e.g. section 2.3.3, and is further

discussed in papers I–II. Furthermore, when exposed to moisture, trehalose re-

mains at a stable Tg for higher water contents than other disaccharides,34,35,86

which was discussed in section 2.3.1.

This view – that trehalose’s protective properties are due to its extraor-

dinary glass forming properties – was however challenged by a range of stud-

ies where some researchers showed that, by using even better glass formers

– such as dextran – trehalose was still better at preventing degradation of

biomolecules.87,88 Thus, although the excellent glass forming properties of tre-

halose may be a very important aspect of its stabilizing properties, it is not

sufficient to explain what makes trehalose special. Rather, there ought to be

some more intricate interaction between trehalose and biomolecules. Several

different models exist that describe this type of interaction, and some of them

will be presented here. Specifically the water replacement model, and the pref-

erential hydration model.

Water replacement model

It has been proposed that one important mechanism for further trehalose stabi-

lization stems from direct trehalose–protein interactions. This model presumes

that there is a preferential interaction between protein and trehalose, and the

hydration layer would then be (at least partially) substituted with trehalose.

This is hypothesized to yield a stabilizing effect due to that the protein is kept

in its configuration through a direct coupling to a rigid trehalose matrix (see e.g.
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Ref. 79). Water replacement with trehalose has been shown to occur in the sta-

bilization of lipid bilayers,28 however it is less clear if this occurs during protein

stabilization. The water replacement model at first showed that the mechanism

of stabilization during freeze-drying differed from that of e.g. cryoprotection.

The cryoprotection mechanism had been proposed to act according to the pref-

erential hydration model81–84 mentioned above, but this model was based on

studies with relatively high water contents. The water replacement model on

the other hand was primarily concerned with the stabilization mechanism at

low water contents (e.g. during lyophilization). According to this model, water

replacement by trehalose occurs at extremely low water contents. This view

was however later disputed by e.g. Belton and Gil et al.,89 who proposed an

alternative theory: the water entrapment model, a variation of the preferential

hydration model.

= Water

= Protein

=Trehalose

Preferential hydration Water replacement

Figure 2.7: Sketch of preferential hydration model (left) and water replacement
model (right). According to the preferential hydration model, the native struc-
ture of the protein is maintained through direct interaction between water and
protein. In the water replacement theory, the hydration shell of the protein is
partially replaced by trehalose molecules.

Preferential hydration model

Rather than direct interactions between trehalose and protein, it has been sug-

gested that water molecules prefer to bind directly to the protein surfaces in

a solution.83,84 This effect is highly important, considering that if a layer of
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water molecules surrounds the protein, its native solvated state is preserved,

even though it may be embedded in a rigid trehalose matrix. The water en-

trapment theory is a special case of the preferential hydration theory, when the

trehalose-protein matrix has a lower water concentration. It has been shown

that this interaction remains even when the solution is freeze-dried,89 indi-

cating that trehalose entraps a hydration layer around the proteins (although

some trehalose–protein interaction may become prevalent for cases of extreme

desiccation). Support for this model was also found in this work, as presented

in papers III – V.

Furthermore, molecular dynamics simulations have shown in extension to this

model that in moderately diluted protein-trehalose-water-systems, the trehalose

molecules cluster around protein molecules, although without expelling the wa-

ter molecules.90,91 Close to the protein, the trehalose molecules and the protein

compete over the water molecules, which effectively reduces the strength of

the water-protein interaction, thus promoting intramolecular protein-protein

interactions which leads to a stabilized protein.90 If such trehalose structures

around proteins are formed it would indicate that trehalose provides a more

concentrated stabilizing effect than if the trehalose molecules would have been

distributed homogeneously throughout the solution.

Dynamic coupling of proteins with trehalose

Several studies have pointed out that trehalose, compared to its homologous

disaccharides, has a strong reducing effect on the dynamics of water.50,92–94 This

effect clearly plays a large role for why trehalose has a relatively high Tg and vis-

cosity in aqueous solutions. However, this strong dynamic coupling could have

other important effects for protein stabilization apart from these properties. It

has also been suggested – in line with the water entrapment model where the

protein is preferentially hydrated – that stabilizing disaccharides mainly couple

its dynamics indirectly to the protein via the water molecules at the protein
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surface, and that trehalose exhibits the strongest dynamic coupling.95,96 This

would make sense considering the aforementioned strong dynamic coupling be-

tween trehalose and water.

Other important mechanisms

When some sugar molecules interact with amino acids they may both partly

dissociate and form complexes at certain (mostly elevated) temperatures. This

reaction is called the Maillard reaction and is the cause for the often desired

browning of food, such as toasting of bread. If a sugar and a protein undergo

a Maillard reaction, then it follows that there is a subsequent loss in the func-

tionality of the protein.97,98 It has been shown99 that trehalose barely exhibits

a Maillard reaction with amino acids at all, as opposed to e.g. sucrose which

is highly prone to decompose into monosaccharides, which in turn are likely to

undergo this type of reaction under heat treatment. It has been proposed that

this ability to avoid reactions between sugar and protein is one of the reasons

behind the superior protective abilities of trehalose.25

2.5.4 Protein aggregation

Protein aggregation is another important issue for the study of protein stability.

Proteins may undergo unfolding of their native structure in a reversible man-

ner, without it affecting the long-term function of the protein. However, the

probability of said unfolding to be irreversible increases with increased protein-

protein interactions.100,101

Avoiding protein aggregation is an important field for medical and pharmaceu-

tical purposes. There are many diseases related to proteins aggregating within

cells, such as Alzheimer’s and Parkinson’s disease102,103. Likewise, when storing

complex pharmaceutics in a medium it is of utmost importance to their viabil-

ity that they remain as a homogeneous solution.100 Thus methods of preventing

protein aggregation have enormous potential benefits for society. There are nu-
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merous reasons for why protein forms aggregates, such as thermal, chemical, or

osmotic stress.104 As previously mentioned, protein aggregation appears to be

accompanied by unfolding, or partial unfolding of a protein (see e.g. Ref. 104

and references therein). Thus, protein aggregation can be prevented by adding

stabilizing co-solvents, which prevents proteins from unfolding. On the other

hand, there have been experiments which show that certain highly unfolded

protein structures do not aggregate, and thus there ought to be other effects

controlling protein aggregation. Other important mechanisms include the dif-

ferent intermolecular forces between proteins; these forces are governed by the

specific geometry and molecular composition of each protein, but also on solu-

tion properties, such as pH. If one can tune the solution such that it maximises

the protein-protein repulsive forces, the probability of protein aggregation is

decreased.

It is therefore hardly surprising that trehalose, with its stabilizing properties,

also reduces protein aggregation. This has been specifically shown for a number

of studies both in vivo 102,103,105–107 and in vitro 108–111, and was also shown in

paper IV. There it is furthermore hypothesised – based on the aforementioned

studies by Lins et al90 and Corradini et al91, which suggested that trehalose

forms a surrounding layer around the proteins – that surrounding trehalose

molecules might prevent proteins from direct interaction by steric hindrance,

however no evidence for this hypothesis is given at the time of writing.

2.6 Summary

In summary, there are many different aspects to be concerned about regard-

ing the excellent stabilizing properties of trehalose. In the discussion above, a

couple of important hypotheses have been brought up which has been of most

relevance to the current thesis; particularly the issue of the structure of aqueous

trehalose or the issue of water replacement/entrapment-theories.

There are probably different protective mechanisms for different types of en-
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vironmental stresses. For example, the mechanism that stabilizes during cry-

oprotection is not the same mechanism which is important for lyophilization.

However, some factors are very important for a molecule to be able to stabilize

biological materials. It needs to be able to slow down the surrounding water

dynamics and perturb the water structure, yielding a stabile glass without crys-

tallization of the water. It should also be non-reactive with the protein, and be

able to protect many different types of biomolecules (such as both proteins and

lipid bilayers). Trehalose seems to possess all these qualities. It has a strong

effect on water and it easily perturbs crystallization and enables glass forma-

tion. Moreover, it prefers to interact with water over protein, thus leaving the

protein hydrated, although with a more rigid hydration shell. The interaction

between trehalose and the hydration layer of the protein also creates weaker

protein-water bonds, which effectively strengthens intramolecular protein inter-

actions. Trehalose also appears to prevent proteins from aggregating, however

the exact nature of this effect remains to be investigated.
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3

Experimental and

Computational Methods

The main method used in this thesis is neutron diffraction combined with em-

pirical potential structure refinement (EPSR) modeling, used for the investiga-

tion of the structure of aqueous sugar and/or protein samples as in papers I,

II, and IV. Furthermore, differential scanning calorimetry (DSC) was used for

indirect structural investigations of aqueous trehalose containing protein (pa-

per III), quasielastic neutron scattering (QENS) in combination with molecular

dynamic (MD) simulations was used in paper V to investigate the dynamics of

aqueous samples of either trehalose, myoglobin, or both. Finally, broadband

dielectric spectroscopy (BDS) was used for the investigation of different relax-

ation phenomena of relatively dry myoglobin/trehalose/water samples in paper

VI. These six methods will be the main focus of the following chapter, contain-

ing a brief overview of the theory behind these techniques. More details about

the implementations of these techniques will be further discussed in chapter 4.

35
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3.1 Neutron Scattering

The use of scattering techniques for the study of all types of materials (includ-

ing biological material) have been around for a long time. The first images

of a protein (myoglobin) for example was, as previously mentioned, produced

by Kendrew et.al., using X-ray scattering.58 Scattering methods in general has

grown a lot in use during the past decades. For the investigation of biologi-

cal materials (and many other kinds of materials) there are often a lot to be

gained from using neutrons rather than X-rays, since the neutrons are electri-

cally neutral and are capable of penetrating deep into the material. However,

perhaps the biggest advantage of using neutrons is that hydrogen – which is

extremely abundant in biological materials – has a high cross section for neu-

tron interaction, and is thus easier to study using neutrons. The cross section

of atoms using X-rays is proportional to the number of electrons in each atom,

and thus hydrogens are objects which are difficult to detect. The cross sec-

tion of atoms as seen by neutrons however, vary more sporadically for different

elements and isotopes. Furthermore, since the neutrons interact with atomic

nuclei, this technique offers itself to the possibility of performing isotope sub-

stitutions. By substituting e.g. hydrogen with deuterium, which have very

different total cross sections, it is possible to alter the contrast between atoms

depending on its isotope composition (see also section 4.1.3), without altering

the structural and dynamical properties of the material substantially.

A typical neutron scattering experiment starts by irradiation of a sample

with a beam of neutrons. The neutrons are either produced in a reactor – where

the fast neutrons are the by-product of radioactive decay from uranium (235U)

– or by a spallation source, in which high energetic protons are collided with a

block of tungsten which then eject ("spall") neutrons in every direction. From a

spallation source the neutrons are guided through e.g. moderators (decreasing

the kinetic energy of the neutrons), collimators, monochromators, or other
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Detector

Figure 3.1: Schematic of a neutron scattering event. Incident neutrons impinge
on the sample as a plane wave, with wave-vector k, and scatter radially with a
wave-vector k’.

devices designed to select the desired properties of the neutrons destined to

hit the sample. Some of the neutrons that hit the sample scatter and are

subsequently detected, and data are collected for further analysis.

There are many types of different neutron scattering techniques, which detect

or focus on different properties of the scattered neutrons. In the present work,

neutron diffraction experiments, and quasi-elastic neutron scattering (QENS)

have been used. Neutron diffraction methods mainly yield information about

the structure of the investigated materials, and QENS yields information about

atomic dynamics for certain time-intervals.

3.1.1 Neutron Diffraction

Neutron diffraction is an experimental technique where one focus on the elastic

coherent part of the scattering. The scattered neutrons mainly contain infor-

mation about structural correlation lengths within the sample. In the case of

a neutron diffraction experiment, such as the one performed in this work (per-

formed on NIMROD, see section 4.1.1 for further details), the sample is hit by

a pulse of neutrons with wave-vectors k, with neutron wavelengths of λi (rang-

ing from 0.05 AA to 10 Å), and scatter with wave-vectors k′. In a neutron
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scattering experiment, the sample chamber is surrounded by detectors which

essentially counts the number of neutrons scattered at different angles, and also

at different arrival times. The scattered neutron wavelengths at a particular

angle is calculated from their times of flight. Thus, the raw data produced is

an intensity distribution function, I(2θ, λ), that relates the neutron intensity

to a specific angle and wavelength. Typically, I(2θ, λ), is written as a function

I(Q), where Q is the scattering vector defined as∗:

Q = k− k′ (3.1)

where the relationship between |Q| = Q and θ can be found by approximating

the scattering to only be elastic scattering, such that |k| = |k′| = 2π
λi
. From

that approximation and simple trigonometry one can obtain:

Q =
4π

λ
sin(θ) (3.2)

So how does this scattered intensity relates to the structure of the material?

Recall section 2.1.2 where the pair correlation function g(r) was introduced,

which is perhaps the simplest way to represent the structure of an amorphous

material. In the remaining part of this section a brief outline is given on how

to get from the measured diffracted neutron data to g(r).

First of all the obtained raw data from the diffraction experiment have

to be corrected for different background signals, neutron absorption events,

etc., which is given an overview of in section 4.1.2. From those corrections,

the double differential scattering cross section d2σ
dΩdE

(Q) is obtained, which is

the number of neutrons scattered into a solid angle element dΩ at an angle

corresponding to scattering vector Q, with an energy between E and E + dE.

When studying elastic scattering, the energy part is integrated out, according
∗The derivation of the formalism in this section can be found in multiple textbooks. For

more details the reader is referred to e.g. Ref. 112–115
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to equation 3.3, and the double differential scattering cross section can thus be

reduced to the differential scattering cross section dσ
dΩ

(Q).

dσ

dΩ
=

∫ ∞
−∞

d2σ

dΩdE
(Q)dE (3.3)

More about how to account for inelastic effects can be found in e.g. Ref. 116

or 117, however this integration is valid for the present discussion which will

focus on the static differential scattering cross section: dσ
dΩ

(Q).

So what is then the origin of this differential scattering cross section? Let

us consider the wave-formalism for neutrons for a while∗; the neutron beam

impinges on the sample as a plane wave (collimated beam) with wave-vector

k, and can be written as ψi = ψ0exp(ik · r) at position r. ψ0 is the amplitude

of the incident wave related to the flux of the beam. After interacting with a

single nucleus labeled j at position rj, the outgoing wave will propagate radially

outwards from the nucleus as:

ψf = −ψ0e
ik·rjbj

eik
′·(r−rj)

|r− rj|
(3.4)

where b is the so called scattering length of the nucleus, related to the cross

section (σ = 4π|b|2, measured in barns) of the nucleus, and is a measure of how

strong the interaction between the incident neutron and the nuclei is. Summing

up the contributions from all N atoms in the sample, one obtains the total wave

function:

ψf = −ψ0e
ik·r

N∑
j=1

bj
eiQ·rj

|r− rj|
(3.5)

where again, Q = k − k′. This wave function describes the amplitude of

the scattered wave at different positions. The position of each atom could in

principle be obtained through a Fourier transform of this function. However,

what is measured at the detector is not the wave itself, but the square modulus

∗For simplicity, the formalism described here applies for single component systems.
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of the wave function, |ψf |2.

|ψf |2 ≈
|ψ0|2

r2

N∑
i=1

bie
iQ·ri ·

N∑
j=1

b∗je
−iQ·rj (3.6)

In equation 3.6, it was assumed that the distance between the detector and

the sample is much greater than the distances between nuclei in the sample

(|r| >> |rj|), and thus |r−rj| ≈ r. This equation can furthermore be rewritten

in terms of the differential scattering cross section by noting that the fraction

of the incident neutrons which impinges on a small area, dA, is dσ =
|ψf |2
|ψ0|2 dA.

The differential scattering cross section can thereby be written as the fraction

of incident neutrons per solid angle dΩ:

dσ

dΩ
=
|ψf |2

|ψ0|2
dA

dΩ
=

{
dΩ =

dA

r2

}
=

N∑
i=1

bie
iQ·ri ·

N∑
j=1

b∗je
−iQ·rj (3.7)

Rewriting equation 3.7 and averaging the nuclear scattering length, b, over dif-

ferent spin orientations and isotopes the following equation can be obtained:115

dσ

dΩ
=

N∑
i,j

〈bib∗j〉eiQ·(ri−rj) (3.8)

It is useful to separate the term 〈bib∗j〉 into two different cases as well, either

i 6= j or i = j. If i 6= j then the average is taken over two different atoms which

do not have any correlation in their scattering lengths. Hence for i 6= j then

〈bib∗j〉 = 〈bi〉〈b∗j〉 = 〈b〉2. In the case when i = j however, the scattering refers

to the "self-scattering" of individual nuclei. The term 〈bib∗j〉 then becomes:

〈b2〉 = 〈b〉2 +
〈
(b − 〈b〉)2

〉
, i.e. a measure of how much the scattering length

deviates from the mean value.112

Using these scattering lengths and that for i = j then ri = rj, then equation



3.1 Neutron Scattering 41

3.8 can be written as:

dσ

dΩ
= 〈b〉2

N∑
i,j

eiQ·(ri−rj)︸ ︷︷ ︸
Coherent scattering

+N(〈b2〉 − 〈b〉)2)︸ ︷︷ ︸
Incoherent scattering

(3.9)

The incoherent scattering part is clearly not dependent on any structural pa-

rameters concerning the sample, and is thus merely added to the total scatter-

ing cross section as an (often unwanted) background in the case of a diffraction

study. The coherent part however is typically written as:

dσ

dΩ coh
= 〈b〉2NScoh(Q) (3.10)

Where Scoh(Q) = 1
N

∑N
i,j e

iQ·(ri−rj) is the coherent structure factor (from now

on just called the structure factor, or S(Q)), which is a function describing

the system that only depends on the investigated material. Using a general

property of the Dirac delta function that
∑

i e
iQ·ri =

∫
V
eiQ·ri

∑
i δ(r − ri),

S(Q) can be rewritten as:

S(Q) = 1 +
1

N

∫
e−iQ·r

N∑
i,j 6=i

δ(r− (ri − rj))dr (3.11)

The summation of Dirac delta functions in equation 3.11 is familiar from section

2.1.2. By recalling the definition of g(r) through equation 2.3 and inserting this

into equation 3.11, the following equation is obtained:118

S(Q) = 1 + ρ

∫
e−iQ·rg(r)dr (3.12)

which, for an isotropic liquid can be simplified to:

S(Q) = 1 + 4πρ

∫ ∞
0

r2g(r)
sin(Qr)

Qr
dr (3.13)
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It can thus be concluded that there exist a relationship between the obtained

neutron diffraction data and the pair correlation function.

Partial structure factors

The structure factor S(Q) describes the total coherent elastic scattering of the

sample. However, it is sometimes useful to divide S(Q) into a sum of contri-

butions arising from the correlations between different atom types. Similar to

what was done for the total pair correlation function into partial pair correla-

tion functions in section 2.1.2. The individual terms in S(Q) is called partial

structure factors and are usually written as Sαβ(Q), where α and β represent

different atoms. They are defined by:

S(Q) =

∑
αβ〈bα〉〈bβ〉(Sαβ(Q)− 1)∑

α cα〈bα〉2
+ 1 (3.14)

Where again, cα and cβ are the fractions of atoms α and β in the sample. The

partial structure factors in turn relate to the correlations between atom types

α and β via the partial pair correlation functions gαβ through:

Sαβ(Q) = cαδαβ + cαcβρ

∫
e−iQ·rgαβ(r)dr (3.15)

More details about how these partial pair correlation functions are found based

on the obtained S(Q) will be treated in section 3.2.

3.1.2 Quasielastic Neutron Scattering

In the previous section, elastic scattering was assumed. This means that the

magnitude of the neutron wave-vector remained the same before and after scat-

tering (|k| = |k′|), and from that equation 3.2 was derived. This is however not

the actual case for most samples; if atoms e.g. has some translational motion

during scattering, some of that translational energy is transferred to or from
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the neutron.∗ The resulting energy transfer ∆E is related to a frequency shift

of the neutron according to the de Broglie equation, ∆E = ~2
2m

(k2−k′2) = ~∆ω.

For the purpose of the diffraction experiments, these energy transfers could be

ignored (by performing some data corrections) and the atoms were assumed to

be static. However, for the purpose of studying the dynamical properties of

the investigated material these energy transfers could be measured, thus giving

direct information about certain atomic motions. In a QENS measurement

one is interested in such inelastic events, for relatively low energy transfers,†

corresponding to dynamics such as molecular rotations and translations.

The theory behind QENS can be derived much in the same way as in the elastic

case (explained in the above section), but by adding a time-dependency on the

positions of the atoms and allowing for energy transfer, the measured signal

now becomes a double differential scattering cross section d2σ
dΩdE

,‡ which turns

out similar to that of equation 3.8:

d2σ

dΩdE
=

1

~
d2σ

dΩdω
=
k′

k

1

2π

∫ ∞
0

e−iωt
N∑
i,j

〈bib∗j〉eiQ·(ri(0)−rj(t))dt (3.16)

Where, the term k′

k
is the ratio between the amplitude of the scattered and

the incident wave-vectors. Just like in the previous section for equation 3.8,

equation 3.16 can be divided into inter-atomic scattering, and self-scattering,

corresponding to the coherent and incoherent scattering respectively:

∗The following equation is instead used to calculate the scattering vector taken
energy transfer into account115: Q =

√
k2 + k′2 − 2kk′ cos(2θ) = 8π2

λ2 + 2mω
~ −

4π
λ

√
4π2

λ2 + 2mω
~ cos(2θ)

†Relatively low energies corresponds to relatively slow atomic motions, i.e. "almost"
static, hence the term "quasi" in quasielastic neutron scattering

‡Fraction of incident neutrons per solid angle dΩ with final energies of E and E+dE



44 Chapter 3 Experimental and Computational Methods

d2σ

dΩdE
=
k′

k

1

2π
〈b〉2

∫ ∞
0

e−iωt
N∑

i,j 6=j

eiQ·(ri(0)−rj(t))dt︸ ︷︷ ︸
Coherent scattering

+
k′

k

1

2π
(〈b2〉 − 〈b〉)2)

∫ ∞
0

e−iωt
N∑
i

eiQ·(ri(0)−ri(t))dt︸ ︷︷ ︸
Incoherent scattering

(3.17)

This can be rewritten in terms of the coherent and incoherent dynamic structure

factors, Scoh(Q, ω) and Sinc(Q, ω), defined as:

d2σcoh
dΩdE

=
k′

k

N

2π
〈b〉2Scoh(Q, ω) (3.18)

d2σinc
dΩdE

=
k′

k

N

2π
(〈b2〉 − 〈b〉)2) Sinc(Q, ω) (3.19)

Where Scoh(Q, ω) and Sinc(Q, ω) are properties that are only dependent on the

structure and dynamics of the sample. These two dynamic structure factors

can furthermore be rearranged using the general property of the Dirac delta

function as used for equation 3.11, and the van Hove equations 2.6 and 2.7:

Scoh(Q,ω) =

∫ ∞
0

N∑
i

ei(Q·(ri(0)−rj(t))−ωt)dt =

=

∫ ∞
0

∫ ∞
−∞

ei(Q·(ri(0)−rj(t))−ωt)GDistinct(r, t)drdt (3.20)

Sinc(Q,ω) =

∫ ∞
0

N∑
i

ei(Q·(ri(0)−ri(t))−ωt)dt =

=

∫ ∞
0

∫ ∞
−∞

ei(Q·(ri(0)−ri(t))−ωt)GSelf (r, t)drdt (3.21)

Or to put equations 3.20 and 3.21 differently: the coherent and incoherent
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dynamic structure factor (Scoh(Q, ω) and Sinc(Q, ω)) of a sample is related to

the dynamic pair-correlation function and the dynamic self-correlation function

respectively (GDistinct(r, t)) and GSelf (r, t)) via Fourier transformation. Thus,

incoherent inelastic scattering comes from the self-scattering of an atom at

different times, and coherent inelastic scattering comes from relative motions

of atoms over time.

QENS analysis

The signal from a typical QENS experiment is often represented as S(Q,ω),

as shown in figure 3.2a for Q = 1 Å−1. The midpoint (ω = 0eV), represents

the elastic scattering, and the broadening of that signal arises from inelastic

contributions where the neutrons have lost or gained energy. Thus, in principle,

the more the peak is broadened the more inelastic scattering is present in the

sample. However, for the most part of the work in this thesis, the QENS signal

has mainly been analyzed from the intermediate scattering signal (I(Q, t)), and

hence the discussion will focus on this representation. I(Q, t) is obtained by

Fourier transforming S(Q,ω) in the time domain, and the resulting I(Q, t)-

signal for Q ≈ 1Å−1 can be seen in figure 3.2b as a function of time. Analogous

to the interpretation about the broadening of S(Q,ω), inelastic contributions

to I(Q, t) can be seen as a decrease in the signal. Or in other words: an atom’s

position correlates less with its original position over time if it moves (in the

case of incoherent scattering). Thus, if the scattering only originated from

fixed atoms (as in a crystal structure), the atoms would fully correlate with

themselves and the signal would have a constant value of one.
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Figure 3.2: a) Dynamic scattering function and b) intermediate scattering func-
tion for Q = 1 Å−1 shown as black curves which is a sum of two different types
of dynamics: the red curves indicating a slower relaxation and the blue curves
showing a faster relaxation.

The dynamics of an atom type can be described by multiple different mod-

els, for example by the use of a stretched exponential function:

Ik(Q, t)|Q=Const. = Ak · exp(−
(
t

τk

)βk
) (3.22)

Where Ak is the scattering contribution from atom type k to the total scat-

tering, τk is the typical relaxation time of that atom type. βk is a stretching

parameter between 0 and 1 where 1 means no stretching, which implies that

all atoms of that type have exactly the same relaxation time, and lower values

of βk means that the atoms have a distribution of relaxation times with the

typical relaxation time τk.

One important method of extracting which relaxation times belong to a specific

atom type is isotope substitution of hydrogens to deuterium. Hydrogens have

a much larger total scattering cross section than deuterium (82 and 7.6 barns

respectively), and thus hydrogens contribute much more to the scattering sig-

nal. Thus, in a hydrated protein sample for example, it is possible to "extinct"

the contribution of the hydration water by the use of deuterated water, which
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means that the internally bound protein hydrogens will dominate the scattering

signal.

3.2 Empirical Potential Structure Refinement

Modeling

In this section, a couple of methods of obtaining partial pair correlation func-

tions from neutron diffraction data (see section 3.1.1) will be presented. In

principle, a full set of partial pair correlation functions of a material can be

obtained by isotopically labelling every unique atom type in the material, ex-

changing each atom type with a different isotope at the time. However, this

method would be very time consuming, and such accurate partial isotopical

marking is rarely available. Instead, several methods of computer modeling

have been developed in order to obtain a complete model of a sample from the

available diffraction data.

One such method, used in the work of this thesis, is the EPSR method. To

describe this method it is useful to start with a previous method which EPSR

is based on, namely the Reverse Monte Carlo (RMC) method.

3.2.1 RMC

In the RMC method (described in more detail in Ref. 119) the researchers

typically set up a system where the structure of the molecules is initially de-

fined, and then a hard-sphere model is applied for the interactions between

the molecules. A set of constraints are typically also set up, such as minimum

intermolecular distances, or specific bond angles, as determined from other

experimental methods (e.g. NMR, MD). Such constraints are necessary for

avoiding unreliable outcomes, by for example preventing atomic overlaps.

The RMC program then randomly moves around an atom or a molecule and

calculates e.g. the structure factors, and compare them with the experimental
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structure factors. If the move decreased the difference between the two corre-

sponding structure factors, the move is accepted. If it increased the difference,

the move is only accepted with a probability of:

exp
(
− (χ2

before move − χ2
after move)/2

)
(3.23)

where χ2 is a quantity of the difference between the simulated and experimental

data, and defined as:

χ2 =
∑
i=1

[Scalc(Qi)− Sexp(Qi)]
2/σ2(Qi) (3.24)

where σ(Q) is the standard deviation of experimental error for any measured

value of Q.

RMC modeling is a widely used method which has been used for decades,

and has helped to elucidate the molecular structures of a significant number

of disordered materials.120 However, RMC fails to take into account several

physical aspects of a material when just searching for a structure which fits

the experimental data, such as the fact that the obtained structure could in

principle have a molecular potential which is energetically unfavorable.119

3.2.2 EPSR

The EPSR method used in this work is derived from the RMC method, and

just like RMC, EPSR seeks to obtain a minimum difference between the derived

data and a set of experimental data. This is opposed to the Metropolis Monte

Carlo (MMC) method which is an efficient method of obtaining the minimum

intermolecular potential energy of a system. However, there are some important

differences: in EPSR, the goal is to obtain a correct intermolecular potential

which leads to convergence with the experimental data, rather than fitting the

simulated structure directly to the diffraction data.

The procedure works in principle according to the following scheme:121
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1. Create a simulation box with the correct density and intramolecular struc-

ture.

2. Assign a reference potential (RP) to the system, i.e. find Lennard-Jones-

and Coloumb-parameters for each atom type.

3. Run a MMC simulation on the system to minimize the potential energy.

This is done by randomly moving (translation, rotation, or bending) an

atom or molecule and subsequently measuring the potential difference

(∆U) due to that move. The move is always accepted if ∆U < 0, and

only accepted with a probability of exp[− ∆U
kBT

] if ∆U > 0.

4. From the energetically minimized structure, the pair correlation func-

tion is calculated. This is subsequently Fourier transformed to give the

simulated structure factor, Scalc(Q).

5. The difference, Scalc(Q)−Sexp(Q) is then calculated and used to calculate

the empirical potential (EP).

6. The empirical potential is then added to the reference potential.

7. Steps 3 - 6 are then iterated until the EP becomes stable, or until its

absolute energy exceeds a predefined value.

To start an EPSR simulation, first one needs to find a reference poten-

tial. This includes different Lennard-Jones- and Coloumb- parameters but also

intramolecular structures, intermolecular starting configurations and minimal

distances. Typically, one has a lot of knowledge about a material determined

through previous experiments which can be effectively included in the RP. The

Lennard-Jones (LJ) parameters sets up an often used potential (Lennard-Jones

potential) between two atoms and is the basis of the reference potential com-

bined with an added Coloumb potential:

ULJ
α,β = 4εαβ

[(
σαβ
r

)12

−
(
σαβ
r

)6]
+

qαqβ
4πε0r

(3.25)
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Where r is the distance between atom α and atom β, q is the electric

charge of a specific atom, σαβ is the distance where the potential is zero, and ε

is the depth of the potential well. σαβ and εαβ are calculated according to the

Lorentz-Berthelot mixing rules, based on the LJ parameters of the individual

atoms.

εαβ =
√
εαεβ σαβ =

σα + σβ
2

(3.26)

The individual LJ parameters in turn can be determined through various

force-field calculations such as the OPLS-AA (Optimized Potentials for Liquid

Simulations - All Atoms) force field which was used in papers I, II and IV.

Further additions to the reference potential are well described in the EPSR

manual (Ref. 121) and Ref. 120.

Below is given an overview of how the empirical potential (EP) is defined.

For a more detailed description about these steps, the reader is again referred

to Ref. 121 and Ref. 120. The empirical potential in real space is defined as a

sum of Poisson functions:

U(r)EP = kT
∑
i

Cipni(r, σ) (3.27)

where

pni(r, σ) =
1

4πσ3(n+ 2)

(
r

σ

)n
e−

r
σ (3.28)

and ni = ri
σ
− 3 (ri and σ are set by the user). Ci:s are weights which are fitted

through comparison with real data. pni(r, σ) can be Fourier-transformed to:

Pn(Q, σ) =
1√

1 +Q2σ2
(n+4)

(n+ 2)

[
2 cos(nα) +

(1−Q2σ2)

Qσ
sin(nα)

]
(3.29)

where α = arctan(Qσ). The empirical potential can then be written in
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Q-space accordingly:

U(Q)EP =
∑
i

CiPni(r, σQ) (3.30)

The Ci-weights are determined by fitting U(Q)EP to the difference between

Sexp(Q) and Scalc(Q). Once these go to small values (ideally to zero), the EP

converges and thus a final total potential is obtained. From this stage it is

possible to start analyzing the obtained model and extract useful structural

information.

3.3 Molecular Dynamic Simulations

Simulation methods such as RMC and EPSR are excellent when attempting to

find a structure corresponding to a particular structural measurement. How-

ever, the actual atomic moves these methods produce are stochastic and say

little about the true dynamics of the sample. On the other hand, the forces

between all atom pairs in a simulation box could however be calculated to a

high degree of precision (by e.g. ab initio methods). Thus, a theoretical model

containing extensive information about both the structure and dynamics of a

molecular system can be obtained. This is however not always an appropriate

method. Such a thorough calculation over a sufficient number of atoms, and

over a satisfyingly long time span demands vast computation power. For this

reason, a number of methods assume certain approximations to shorten compu-

tational demands. One such powerful method is classical molecular dynamics

(MD) simulations.∗A brief introduction of the basic principle of a classical MD

simulation will be presented in this section.

The first step of an MD simulation is to build a molecular simulation box.

This can in principle be a challenging task depending on the complexity of

∗MD simulations could refer to many different techniques, but for the purpose of this
section it will refer to all-atomic classical MD simulations as used in standard MD simulation
software, such as Gromacs122.
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the molecules of interest, and several different software packages have been

developed especially for this purpose (e.g. Packmol, CHARMM-GUI, etc.), but

for the present discussion this will not be discussed in more detail. To illustrate

one such simulation box (used in paper V), figure 3.3 shows a molecular box

containing 2000 water molecules and 104 trehalose molecules. Secondly, in a

Figure 3.3: Simulation box of trehalose in water. Trehalose is shown as black
molecules, and water as red and white molecules.

real sample, all molecules have a certain momentum which is directly related to

the temperature of the sample. The initial momentum of the different molecules

are randomly assigned such that the average energy of the sample corresponds

to the desired temperature of the sample.

Perhaps the most important step in this simulation is now to decide what

will happen to the positions of each atom as the simulation progresses over

time. This is determined for each specific atom (labelled i) by solving Newton’s

equation for that atom:

mi
d2ri
dt2

= Fi = −∇U (3.31)

where mi and ri are the weight and position of atom i and Fi is the force on
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atom i, which is determined by the derivative of the potential energy (U) at

position ri. For a given potential energy equation 3.31 can be solved numeri-

cally in different ways, such as the Verlet algorithm, or the leapfrog algorithm.

To run an MD simulation, one requires information about the potential energy

between pairs of atoms, or in other terms: the force field. There are many dif-

ferent force fields commonly used with different advantages and disadvantages

regarding accuracy and speed. Examples of such force fields which have been

used in the scope of this thesis include the CHARMM (Chemistry at HARvard

Molecular Mechanics) force field123, or the OPLS (Optimized Potential for Liq-

uid Simulations) force field124.

A common way of defining a force field is via the derivative of a sum of some

interatomic potentials. The total potential is a sum of the intramolecular poten-

tial (e.g. bond-length or bond-angle energy-contributions), and the intermolec-

ular potential (from e.g. van der Waal- or Coloumb-forces). An interatomic

potential was previously mentioned in the EPSR section as the reference po-

tential used in EPSR (equation 3.25). More explicitly, the total potential can

be written as:

Ui =
∑

kbondi (ri− r0)2 +
∑

kanglei (θi− θ0)2 +
∑

kdihedrali (1 + cos(niφi + δi))

+
∑
i

∑
j 6=i

4εi,j

[(
σi,j
ri,j

)12

−
(
σi,j
ri,j

)6]
+
∑
i

∑
j 6=i

qiqj
4πε0ri,j

(3.32)

Where the first three terms correspond to the potential energy of bonded atoms.

The first term gives the potential energy contribution stemming from the dis-

placement of an atom in relationship to its bonded neighboring atoms. It has an

equilibrium position (r0), and a specific bond-strength (kbondi ) describing how

much energy it takes to stretch atom i away from its equilibrium position. Sim-

ilarly for the second term, bonds have a preferred angle within a molecule (θ0),

with a corresponding strength (kanglei ). The third term applies for molecules

larger than four atoms, where torsions of different groups or planes of atoms
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are important. For a specific dihedral plane, φi is the dihedral angle, δi is the

phase, ni is the number of potential minima the dihedral angle can reside in,

and kdihedrali gives the strength of the potential-well for the dihedral conforma-

tion. The two last terms are from non-bonded interactions. The fourth term is

the so called Lennard-Jones potential, which is an approximation of the forces

due to a combination of the repulsive effect (the r−12-term) due to the Pauli

exclusion principle, and the attractive van der Waals force (the r−6-term). σi,j

is the equilibrium distance of two atoms i and j, and εi,j is the depth of the the

potential energy-well at that distance. The final term comes from Coloumb-

interactions between two atoms with charges qi and qj separated with a distance

of ri,j

Given the initial conditions and the force-field, the system is typically updated

with a time-step of typically around 1-2 fs, which is sufficiently fast to capture

the fastest dynamics of a typical system. From these time-steps every atomic

position and velocity can be updated accurately and saved to a file, called a

trajectory file, from which one can deduce a significant amount of information

regarding the investigated system.

3.4 Broadband Dielectric Spectroscopy

Broadband dielectric spectroscopy (BDS) is a technique in which a sample is

placed within an electric field oscillating at relatively low frequencies (∼10−2 –

1012 Hz), thus probing relatively slow atomic and molecular motions, such as

dipole reorientations or charge transport. Due to its broad range of low fre-

quencies it is also excellent at studying e.g. molecular dynamics below the glass

transition temperature, and to characterize the dynamics which determine the

glass transition itself.

In a BDS experiment, the sample is typically placed between two electrodes,

effectively producing a capacitor (as seen in figure 3.4), with the sample acting

as the dielectric material of that capacitor. By measuring the responding elec-
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trical field from an applied electric field of this equivalent circuit, it is possible

to measure the dielectric permittivity of the material as a function of the fre-

quency of the applied field. Based on these dielectric properties of the material

it is possible to draw conclusions about the molecular properties of the sample.

Figure 3.4: Simplified electric circuit of a BDS setup. The sample (red) is
placed as the dielectric material in between the electrodes (yellow). By applying
a known voltage (U) and measuring the current (I) the complex impedance (Z)
is indirectly measured.

This section provides a brief overview of dielectrics in electric fields, how

certain molecular dynamics effect the dielectric properties of the material, and

how this is taken advantage of in the BDS method.∗

3.4.1 Theory

When an electric field is applied to a sample, the charge density of the atoms

within that sample will shift in accordance with the electric field. The field

created by the material is typically called the polarization field (P), and will

be proportional to E such that:† P = χsε0E, where χs is the static electric

susceptibility and ε0 is the electric permittivity of vacuum (8.854·10−12 [As]
[V m]

).

The dielectric displacement vector D is the electric field after corrections by

∗The theory presented in this section is based on a combination of different sources, most
notably Refs. 125 and 126

†Given that the material of the sample is isotropic and homogenous
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the polarization, i.e.:

D = ε0E + P = ε0εsE (3.33)

Where εs is the static dielectric permittivity of the sample defined as 1 + χs.

The latter part of equation 3.33 holds since E and P both point in the same

direction. εs is a material property, and is a measure of how an electric field

changes due to the presence of the material. Within a material under an elec-

tric field, atoms and dipoles will tend to align in accordance to the electric field,

under multiple different circumstances, such as transport of charges (conduc-

tivity) or reorientation of permanent (or induced) dipoles.

When the electric field is time dependent, such that E∗(t) = E0e
i(ωt) (where ω

is the radial frequency, and E0 is the amplitude of the field), it is important

to take into account that the electric permittivity will no longer be static but

also depend on the oscillation of the field.125 Thus, describing the dielectric

displacement field as a function of frequency rather than time:

D(ω) = ε0ε
∗(ω)E(ω) (3.34)

where ε∗(ω) is the complex dielectric permittivity of the sample with a real

(ε′) and imaginary (ε′′ ) component (ε∗(ω) = ε′(ω) − iε′′(ω)). By measuring

a spectra of ε∗(ω) over a range of frequencies it is possible to deduce several

different material properties of your sample (as will be discussed more below).

But first, let us briefly mention how ε∗(ω) is obtained. From the simplified

circuit shown in figure 3.4, it can be seen that the complex impedance of the

sample (Z∗) can be obtained via Ohm’s law (Z∗ = U∗

I∗
), which, assuming the

impedance is purely due to capacitance, relates to the complex capacitance (C)

as: Z∗ = − i
ωC

. When the capacitor does not contain any dielectric material,

its capacitance is fairly straight-forward to calculate by C0 = Aε0
d
, where A is

the area of the capacitive plates, and d is the distance between the plates. With

the dielectric material in, the capacitance becomes C = ε∗(ω)C0, where ε∗(ω)
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is the complex frequency dependent permittivity, which we then can relate to

the measured impedance by the relationship:

ε∗(ω) = − i

Z∗(ω)ωC0

(3.35)

However not all materials exhibit perfect insulating capacitance behaviour;

charge-transfer could also occur inside the sample, which gives rise to a conduc-

tivity term to the total impedance, such that the total measured permittivity

(εtot) of the sample can be expressed as:

εtot(ω) = ε∗(ω)− i σ0

ε0ω
(3.36)

where σ0 is the DC-conductivity.

3.4.2 Material response functions

In the section above, it was explained how the measured complex electric

impedance can be related to the complex permittivity of the sample. Here

it will be shown how this quantity relates to certain properties of the material,

such as dipole relaxations.∗

As previously mentioned, when an electric field is applied to a material of

dipoles (permanent or induced), these dipoles will tend to align to the electric

field, creating a polarized field, related to the complex electric permittivity

as discussed above. If the electric field is suddenly switched off, the dipoles

will not respond instantaneously, but rather relax over time to their original

random orientations due to thermal fluctuations. The time of this relaxation

(τ) depends on the local environment of the individual dipoles. Applying an

oscillating field varying frequencies, the frequency dependence of the complex

permittivity becomes:

∗Virtually all material properties could in principle be encoded in ε∗, but here we will
focus on those accessible for BDS measurements.
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ε∗(ω) = ε∞ +
εs − ε∞
1 + iωτ

(3.37)

Where ε∞ is the permittivity when the frequency goes to infinity. The real (ε′)

and imaginary (ε′′) parts are:

ε′(ω) = ε∞ +
εs − ε∞

1 + (ωτ)2
(3.38)

and

ε′′(ω) =
(εs − ε∞)ωτ

1 + (ωτ)2
(3.39)

Equation 3.37 is called the Debye equation, and it expresses the characteristic

relaxation time (τ), and amplitude (∆ε = εs − ε∞) of a specific dipole relax-

ation, which can be measured by e.g. a BDS experiment. In most amorphous

materials however, molecular dipoles seldom have exactly the same character-

istic relaxation time; some dipoles may be slightly more or less bonded to a

co-solute than others for example. Instead of a Debye model a dipole relaxation

can often be advantageously described by multiple relaxations, statistically dis-

tributed around a certain average relaxation time. This is typically done by

either a symmetric broadening of the Debye equation, using the Cole-Cole

equation, or an asymmetric broadening of the Debye-function, using the Cole-

Davidsson equation. Mathematically, these two can both be written using the

so called Havriliak Negami (HN) function127:

ε∗(ω) = ε∞ +
∆ε

(1 + (iωτ)α)β
(3.40)

α, and β are shape-parameters, where if β is set to 1, but α varies between 0

and 1, one obtains a symmetrically broadened Cole-Cole equation, if α is set

to 1, but β varies between 0 and 1 one obtains the asymmetrically broadened

Cole-Davidsson equation, and if both α and β are set to 1, one obtains the

Debye equation again (illustrated in figure 3.5).
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Figure 3.5: Real (right) and imaginary (left) parts of the complex permittivity
function for different HN-functions. Blue lines represent a Debye function where
both α and β are 1, red dashed lines represent a symmetrically broadened
Cole-Cole equation, and the black dotted lines represent an asymmetrically
broadened Cole-Davidsson equation

3.4.3 Temperature dependence

For an isothermal BDS experiment, it is common to detect a couple of relax-

ation functions (and conductivity for higher temperatures, where ion diffusion

is possible) within the experimental frequency window. Based on the frame-

work presented above, the permittivity of the sample could then in theory be

fitted with a sum of relaxation functions, as described by the Havriliak Negami

(HN) function (equation 3.40), plus the conductivity term (as from equation

3.36):

εtot(ω) = i
σ0

ε0ω
+
∑
k

(
∆εk

(1 + (iωτk)αk)βk
+ εk∞

)
(3.41)

The resulting fit of an isothermal measurement is illustrated in figure 3.6.

By fitting all relaxation functions for a series of temperatures, it is possible

to deduce certain important properties of the different relaxation functions. In

figure 3.7, τ for a couple of relaxations in a sample is plotted as a function

of 1000
Temperature

. In figure 3.7 the process labelled "Dipole relaxation" is linear,
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Figure 3.6: Fit of a fictional BDS measurement (black dashed curve) with two
Cole-Cole-processes (green and red curve), one Cole-Davidsson process (blue
curve) and one conductivity term (magenta).

and is called an Arrhenius process∗. An Arrhenius process describes a sim-

ple relationship between the relaxation time of a molecular process with its

temperature, namely:

τ = τ0exp(−
Ea
kbT

) (3.42)

Where kb is Boltzmann’s constant, τ0 is the relaxation time when extrapolating

the temperature (T) to infinity, and Ea is the activation energy of the relax-

ation process. By fitting an Arrhenius process, it is thus possible of obtaining

information about the general rate of the relaxation through τ0, and about the

bond-energy which is required to be broken in order to e.g. rotate a molecule

(through Ea).

The two curved slopes in figure 3.7 labelled as "α-relaxations" are often

referred to as non-Arrhenius-, or α-processes. These processes are typically

cooperative molecular motions, related to the viscosity and the glass transition

of the material. When decreasing the temperature, these processes deviate

towards infinite relaxation times, and at the calorimetric Tg, the relaxation

time of these processes are around 100 s. These can be fitted using the so

∗This type of figure are actually typically referred to as Arrhenius plots
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Figure 3.7: Arrhenius plot of three different relaxations of a sample. Blue
curve is an Arrhenius process coming from a dipole relaxation. Yellow and red
curves are VFT curves originating from collective dynamics of solvent or solute
molecules respectively.

called "Vogel-Fulcher-Tammann" (VFT) equation:

τ = τ0exp(
DT0

T − T0

) (3.43)

Where T0 is the temperature where the relaxation time diverges towards infin-

ity, and D is the fragility parameter. D is a parameter often used to quantify

how "strong" a glass is; if it is low, the process deviates more from Arrhenius-

behaviour, and the glass that forms is classified as "fragile", and if it is more

Arrhenius-like it is classified as "strong".
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3.5 Differential Scanning Calorimetry

Differential Scanning Calorimetry (DSC) is a method for determining different

types of thermal events in a material. The principle behind this method is

to change the temperature of a sample and measuring the involved heat (en-

thalpy). This process enables the experimenter to detect e.g. glass transitions,

crystallization, denaturation, etc.

Inside the DSC cell there are two sample platforms; one for the sample and

one for a reference sample. The reference sample is typically an empty sample

holder, identical to the one holding the sample under investigation. When the

temperature is set to change a certain rate ∆T , the sensors on the sample and

on the reference sample registers the difference in heat flow to and from the

two samples ∆Q. The difference ∆Q corresponds to the amount of energy

required to change the temperature of the sample by ∆T . Another important

investigated property is the specific heat capacity, obtained after normalisation

with respect to e.g. sample mass and baseline. The heat flow to and from

a sample is typically constant when no physical or chemical changes occur.

However, when such events do occur, they show up in the signal in different

ways depending on the nature of the event. In Figure 3.8 some events are

pointed out that are relevant for the present thesis and will be briefly discussed

here.

1. Crystallization. When the sample crystallises it transforms from a

highly disordered state to a more ordered one, the entropy (S) decreases

and thus the process is exothermic, which shows up as a positive peak as

indicated in Figure 3.8.

2. Melting. Opposite of crystallization, the disorder of the sample is in-

creased more energy is required to break the crystal structure, which

shows up as an endothermic dip in the DSC curve.

3. Glass transition. The glass transition, is a second-order process (ex-
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plained in section 2.1), and it is thus associated with a change in the heat

capacity of the sample. It can be seen as a step in the baseline of the

heat flow.

4. Denaturation. During the denaturation process the hydrogen bonds

keeping the protein in its functional state are broken. When this happens

the protein can easily unfold and aggregate. This is an irreversible process

and shows up as an endothermal peak in the DSC scan.

Figure 3.8: Typical DSC scan of a sample containing protein, trehalose, and
water. (1) Sample partially crystallise during cooling. (2) During heating, the
crystalline part of the sample melts. (3) A part of the sample exhibits a glass
transition. (4) The protein denatures.
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4
Experimental Procedures

4.1 Neutron Diffraction Experiments

4.1.1 Diffractometer

The diffraction data presented in papers I, II, and IV were obtained using the

NIMROD (Near and InterMediate Range Order Diffractometer) diffractome-

ter128 at the spallation source ISIS, Rutherford Appleton Laboratory, UK. The

incident neutrons at NIMROD arrive to the sample in wavelengths between

0.05–10 Å, and it has a broad Q-range of 0.01–50 Å−1. This broad Q-range

makes NIMROD specialized in measuring a very wide range of length-scales,

from less than 1 Å, up to more than 300 Å. It is thus possible to combine struc-

tural data from short-range distances (through the large scattering angles) to

longer range distances (via the small scattering angles). This makes NIMROD

suitable for probing large-scale structures inside a disordered medium, such as

liquids or macromolecules in solutions.

4.1.2 Data Corrections

To obtain useful structure factors from the raw neutron diffraction data, the

GUDRUN data correction software has been used in the work presented in this

65
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thesis. More details about the discussed corrections can be found in Ref. 11.

Neutron diffraction data is typically normalised using a vanadium plate

since it exhibits almost only incoherent scattering. Therefore, the scattering

from the vanadium plate does not depend on Q, and thus show up as a uniform

background signal for a given incident neutron flux. This background signal

is used to give the data an absolute scale, since the theoretical scattering of

the vanadium plate is relatively easy to calculate. The number of detected

neutrons at each detector can thus be divided by the number of theoretically

detected neutrons to give the normalisation factor for that particular detector.

Measurements are normally also made on an empty sample holder, in order

to subtract the signal from the sample holder from the measured data.

• Multiple scattering corrections.

In the theory presented about neutron scattering above, it is assumed

that a scattered neutron travels directly from the sample to the detector.

This is however merely an approximation; multiple scattering events are

possible, and sometimes this has to be taken into account. The proba-

bility that a neutron is scattered multiple times can be calculated from

the atomic composition of the sample and the sample geometry. From

these parameters, a background signal can be calculated and subsequently

removed from the final structure factor.

• Absorption corrections. Another approximation in the theory pre-

sented in section 3.1.1 is that there is no absorption of neutrons in the

sample. The cross section of a sample was presented as a scattering cross

section. However in reality, the total cross section should include the

absorption cross section (σtot = σscattering + σabsorption). For the ener-

gies of the incident neutrons in the present experiments, the absorption

cross section is assumed to have a linear dependency to the wavelength

of the incident neutrons, which is a good approximation.11 Similar to the
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situation with the multiple scattering corrections, the absorption is es-

timated from the atomic composition of the sample plus sample holder,

and their combined geometry. The atoms are furthermore approximated

to be isotropically distributed within the sample (as well as in the sample

holder).11

• Deadtime corrections.

Deadtime corrections are necessary due to the "deadtime" of the detec-

tors. When a detector is hit by a neutron, it requires some time before

it is able to count the next one. Thus, they may count multiple hits as

just one if they are unable to resolve these in time. GUDRUN takes this

into account and compensates for such effects.

4.1.3 Isotope substitution

As previously discussed in section 3.1, the structure factor, S(Q), can be ex-

pressed as a linear combination of the different partial structure factors, Sαβ(Q),

as in equation 3.14. In theory, this equation can be inverted, with the help of

substitution of isotopes. Given that a molecular system has the same structure

for different isotopes, the only thing differing in the obtained structure fac-

tors is the scattering lengths. By choosing appropriate substitutions different

partial structure factors can therefore be emphasized or hidden, thus in total

yielding a full set of partial structure factors (which subsequently generates the

partial pair correlation functions through Fourier transformation). The number

of substitutions required to fully solve this in a sample of n different chemical

species is the same as the number of different partial structure factors that can

be generated, i.e. n(n+1)
2

.
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Figure 4.1: Sketch showing how isotope substitution gives contrast to particular
sets of atoms in a sample.

4.2 EPSR Modeling

4.2.1 Coordination numbers

The coordination number, nαβ(r1, r2), which gives the number of atoms of type

β surrounding a central atom type α within a radial distance between r1 and

r2, is calculated using the partial pair correlation functions gαβ(r):

nαβ(r1, r2) = 4πcβ

∫ r2

r1

gαβ(r)r2dr (4.1)

where cβ is the atomic number density of atom β, and gαβ(r) is defined through

equation 2.4.

This number is in general reported for different coordination shells (first,

second, etc.), where e.g. the first coordination shell is typically defined as the

coordination number between r1 = 0 and r2. r2 is the distance where the first

minima appear in gαβ(r) after the first obvious peak (in the O-O correlation

for water in Figure 2.4 for example, r2 would be approximately 3.4 Å).
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4.2.2 Clusters

In order to calculate the cluster size distribution in the molecular model, the

cluster-subroutine in EPSR was used. This subroutine counts the number of

molecules in each cluster, ranging from a non-clustered molecule with a cluster

size of 1, to a fully clustered system, where all specified molecules in the model

are connected to the same cluster. In papers I, II and IV, the definition for two

trehalose molecules to be considered clustered was that the minimum distance

between an oxygen and a hydrogen from different trehalose molecules was 2.5 Å.

If yet another trehalose bind to one of the already clustered trehalose molecules,

the cluster-size for this cluster grow with one unit.

4.2.3 Angle distributions

Another important EPSR subroutine used in this work is one that counts var-

ious angle distributions. Within this subroutine the user defines triplets of

atoms, and maximum distance criteria for these atoms. The program then

measures the angle between every triplet of atoms that satisfies the distance

criteria. This subroutine was used to investigate the geometric configuration

of the water structure in papers I and II (see Figure 4 and 5 in paper I and

Figure 4 in paper II).

4.2.4 Hydrogen bonding

The number of intermolecular hydrogen bonds between water and trehalose

were calculated for the structures obtained from the EPSR simulation. The

calculation was done using different sets of criteria for different definitions of

a hydrogen bond. Previous EPSR studies (such as Refs. 129 and 130) in

the literature have used a maximum distance criterion, i.e. a hydrogen bond

is defined by that the distance between a donor hydrogen and an acceptor

oxygen is less than 2.5 Å. However various MD-studies (e.g. Refs. 39 or 131)
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typically employ a distance criteria combined with an angular criterion. The

most common setup for these two criteria is that the minimum distance between

an acceptor oxygen and a donor oxygen is less than 3.4 Å and that the O - H -

- - O angle is maximum 120◦. Other criteria were also used in papers I and II

in order to compare with previous studies.

In papers I and II, the hydrogen bond calculations were done for a large set of

different configurations (∼1000 configurations) of the system after the system

exhibited the best fit to the experimental data. In paper I this was done with

the use of a homemade Matlab script, and in paper II all configurations were

converted into a pseudo-trajectory-file which could be analyzed with the help

of standard MD-analysis software, such as VMD132 or Gromacs.

4.2.5 EPSR Modeling of proteins

The aforementioned pseudo-trajectory-files were also created for the analysis of

the three-component systems presented in paper IV. This was mainly analyzed

using VMD, which simplified the calculation of e.g. partial correlation functions

of specific selections of atoms, such as protein-surface atoms to water oxygen

correlations.

4.3 QENS procedure and data analysis

4.3.1 Measurement

All QENS measurements were done on the time-of-flight spectrometer IRIS

(ISIS, Rutherford Appleton Laboratory, UK)133. The principle of a time-of-

flight spectrometer is (as the name implies) to measure the variation in the

time of arrival at the detectors. For elastic scattering the arrival time is known,

however if the neutron gain or lose energy during scattering, this time will differ
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and can be related to the energy-difference as:134

∆E = E1 − E2 =
1

2
mn

[(
L1

t− t2

2

− L2

t2

2)]
(4.2)

Where mn is the neutron mass, L1 is the known path-length between the neu-

tron source and the sample, L2 is the path-length between the sample and the

detector, t is the total time-of-flight, and t2 is the travel-time of a neutron from

the sample to the detector.

The samples were placed in annular aluminium alloy cans with 0.1 or 0.25

mm sample thickness; and the scattering contribution from these cans were

subtracted before data analysis.

4.3.2 Fitting procedure

Although basic theory about fitting QENS data was presented in section 3.1.2,

the fitting procedure used in paper V was a slightly modified version of this

procedure.

Instead of fitting each of the three isotope compositions (for three-component

sample) separately with a sum of stretched exponentials (as in equation 3.22),

the data from all three isotope compositions (denoted as I1(Q, t) I2(Q, t) and

I3(Q, t))were fitted simultaneously by solving the following non-linear equation

system:∗ 
A1
P A1

T A1
W

A2
P A2

T A2
W

A3
P A3

T A3
W

 ·

e−(t/τP )βP

e−(t/τT )βT

e−(t/τW )βW

 =


I1(Q, t)

I2(Q, t)

I3(Q, t)

 (4.3)

Where the subscripts P , T , and W stand for protein, trehalose, and water

and represent which molecular component each number refers to. The super-

scripts signifies which of the three isotope compositions (labeled 1, 2 and 3) it

represents. The A values refers to the relative scattering contribution of that

∗The solution was obtained using the built-in "lsqcurvefit"-function in MATLAB, which
implements a rrust-region-reflective least squares algorithm.
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component within its particular isotope composition, and are assumed to be

known values (see Table 1 in paper V). τ and β are the relaxation time and

stretching parameter respectively of a specific molecular component, which are

assumed to be independent on isotope composition.

4.4 BDS setup and fitting procedure

All BDS measurements were done using an Alpha-S High Resolution Dielectric

Analyzer (from Novocontrol) covering a frequency range of 10−3–107Hz. The

samples were placed, together with a small distance-spacer of teflon or silica

(with a typical thickness of 100µm), between two gold-plated electrodes with

a diameter of 20mm.

The samples were quenched within the sample chamber of the spectrometer

with a stream of cold nitrogen gas (∼120K, with a cooling rate of approxi-

mately 20K/min) and then, for the isothermal measurements, heated with 5-

10K between each frequency measurement sweep, up to about 300K. In certain

cases, where some relaxations were unclear, isochronal measurements were also

performed in which the samples were quenched to 120K and then heated con-

tinuously with 0.2K/minute, and the response were measured for eight different

frequency-points between 10−1 and 107Hz.

4.4.1 Fitting

In order to fit the dielectric data several approaches were used. The first

step was usually to determine which relaxation processes were present. This

was done at first by simply observing the data for different data representa-

tions, such as ε′(ω), ε′′(ω), or tan(δ) (defined as tan(δ)= ε′′(ω)
ε′(ω)

. The tan(δ)-

representation usually reveal relaxations which for example in ε′′(ω) could be

hidden by conductivity, however the actual fitting procedure of tan(δ) requires

more parameters and thus becomes tricky to fit directly. Another common
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method of detecting relaxation processes which are difficult to detect is to

study the Ohmic-conduction-free dielectric loss ε′′rel, which can approximately

be obtained by taking the logarithmic derivative of the real part of the dielectric

permittivity135:

ε′′rel ≈ −
π

2

δε′(ω)

δlnω
(4.4)

Additionally, it has been shown that additional isochronal measurements

are more sensitive to weak relaxations than isothermal measurements.136,137 For

this purpose, this measurements was occasionally made to ensure the existence

of certain unclear processes.

Once approximate frequencies for the different relaxation processes at different

temperatures were determined, the fitting procedure continued by fitting each

process with a HN-function∗ (mainly by the use of the Novocontrol’s fitting

software WinFit138).

4.5 DSC Experiments

All DSC experiments for this thesis were performed on a DSC Q1000 (TA In-

struments). For the measurements, each of the samples were placed in hermet-

ically sealed aluminum pans, which were placed on the sample podium within

the DSC-sample chamber. The DSC-sample chamber is coupled to a liquid

nitrogen cooling system, which allows for cooling to temperatures of -180◦C.

The DSC-sample chamber is also connected to a thermal element, which could

heat the samples up to 550◦C. The temperature and the heat flow to and from

the reference and the sample are measured independently.

Before the measurements, heat capacity calibration was performed using

two sapphire disks (one for the reference podium and one for the sample

podium). By scanning the heat flow and the heating rate for a large span

of temperatures it is possible to find the calibration constant, K, defined as

∗Typically a Cole-Cole, or a Cole-Davidsson function are used, to be more precise.
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Cp = K Heatflow
HeatingRate

,139 since the heat capacity of sapphire (Cp) is well-known

and stable. A temperature and enthalpy calibration was also performed by

heating three standard substances (indium, water, and mercury) over their

melting temperatures. The melting temperatures and heat of fusion for these

substances are well known, and thus any deviations in temperature or enthalpy

measurements can be corrected for by using these calibration constants.



5
Summary of Appended Papers

Paper I: Structure of aqueous trehalose solution

by neutron diffraction and structural modeling

In paper I, some of the fundamental properties of the structure of aqueous

trehalose were investigated. Many of the previous reported studies on these

properties have been done by e.g. MD simulations (see for example Ref. 39

and 43). Such studies are sometimes limited by the approximative force fields,

which do not necessarily produce correct structures. For the work in this study,

the structure was directly investigated by the use of neutron diffraction. The

data were collected on the NIMROD neutron diffractometer, and were there-

after analyzed using EPSR simulations. A similar study has previously been

performed,51 however with a different isotope substitution scheme than the

one performed in this study. In Ref. 51, the authors deuterated the exchange-

able trehalose hydrogens, which thereafter were dissolved in H2O. However,

the presence of H2O makes the deuterated hydrogen groups exchange back to

hydrogen, thus resulting in just varying degrees of deuteration of the exchange-

able hydrogens. In paper I, the exchangeable hydrogens of trehalose was first

exchanged to either be fully hydrogenated, fully deuterated, or with half hy-

75
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drogenated half deuterated, and subsequently dissolved in H2O, D2O, or HDO

respectively. Furthermore, in three (out of six) of the samples we used trehalose

which had their non-exchangeable hydrogen-groups deuterated. These deuter-

ated trehalose samples were also dissolved in either H2O, D2O, or HDO, with

their exchangeable hydrogens substituted to match their respective aqueous

environment.

Figure 5.1: Neutron diffraction data of different isotope compositions of tre-
halose in water

The EPSR modeling was performed by building a simulation box of 2000 wa-

ter molecules and 52 trehalose molecules. Analysis of the structure of water in

the presence of trehalose indicated that the water structure is significantly per-

turbed, most likely due to that trehalose exposes a large portion of its potential

hydrogen-bonding sites for the water molecules to bind to. This finding pre-

sumably also correlates with the low degree of clustering of trehalose molecules

that was found, which may play a large role in explaining the peculiarity of

trehalose.
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Paper II: Structural comparison between sucrose

and trehalose in aqueous solution

Paper II is a continuation on the work published in paper I, in which the

previously obtained trehalose neutron diffraction data is compared to neutron

diffraction data of aqueous sucrose samples, with the same water content and

isotope composition as in paper I. These two rather similar disaccharides ex-

hibit certain quite different properties, which is hypothesized to be important

to understand why trehalose display better stabilizing properties when pre-

serving biological materials. The two sets of data showed however surprisingly

small differences. These data-sets are compared to that of bulk water neutron

diffraction data, and the differences between the two disaccharides was, based

on this comparison, hypothesized to be due to a larger perturbation of the

water structure in the case of trehalose.

Figure 5.2: Molecular structure of sucrose (left) and trehalose (right)

The sucrose data was also modeled using EPSR much like in paper I. A twice

as large simulation box compared to paper I was created however, alongside

with a new revised EPSR model of trehalose, such that both models were cre-

ated with an equal setup. From these models the analysis of the diffraction data

could be supported: the two disaccharides exhibit similar water/disaccharide

interactions, but the water structure in trehalose is perturbed more than in the

sucrose sample (although slightly less than reported in paper I). Apart from

this we obtained similar results regarding e.g. hydrogen bonds and clustering

as for trehalose in paper I.
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Paper III: The Role of Trehalose for the Stabi-

lization of Proteins

In paper III, the role of trehalose during the stabilization process was investi-

gated by differential scanning calorimetry. The samples studied were composed

of mixtures of water, trehalose, and myoglobin, at a wide range of concentra-

tions, typically at a water concentration less than 75wt%. Particularly, the

glass transition temperatures and the denaturation temperatures were studied

to correlate the stability of the glassy matrix (as determined by Tg) with the

stability of the protein (determined by Tden). It was shown that more trehalose

was correlated with both an increment in Tg and in Tden.

Figure 5.3: Sketch of preferential hydration interpretation

Samples which did not form ice exhibited a positive correlation between

Tg and an increase in protein concentration, but a negative correlation if the

sample did form ice. This is explained by that the protein effectively dries

out the glassy trehalose–water matrix when there is no ice formation, which

thus raises Tg. If ice is formed however, the amorphous part of the sample

becomes freeze-concentrated by expelling any excess water molecules. In this
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freeze-concentrated part, Tg is determined by the protein:trehalose ratio, and

the protein has a lower Tg than trehalose.

By determining the maximum water concentration before the sample exhibit

crystallization, for different trehalose:protein ratios, it was found that water

preferentially adsorbs to the protein surface. Thus, the results indicate that the

preferential hydration model (as sketched in Figure 5.3 and explained in section

2.5.3) is more likely than the water replacement model, for the investigated

concentrations.

Paper IV: Structural Role of Trehalose for Pro-

tein Stabilization and Inhibiting Protein Aggre-

gation from Neutron Diffraction

Figure 5.4: Sketch of proteins (blue) preferentially hydrated with water
molecules. Trehalose molecules (black) are excluded from the protein surface.

The preferential hydration hypothesis was further tested in paper IV, how-

ever in a more diluted system of water, trehalose and myoglobin (50wt% water,

and 25wt% of both trehalose and myoglobin, based on a fully hydrogenated
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sample), than in paper III. In this paper the structure of this three-component

system was elucidated using neutron diffraction measurements on the NIMROD

diffractometer, and analyzed with the use of EPSR modeling. Six different

isotope compositions of this three-component system was made, and three iso-

tope compositions of a two-composition system containing myoglobin in water

(66wt% water, and 33wt% myoglobin, based on a fully hydrogenated sample).

By analyzing the small-angle scattering of both the three- and two-component

systems, it was concluded that the presence of trehalose had an inhibiting effect

on protein aggregation. This effect was coupled to the importance of trehalose

as a treatment against neurodegenerative diseases, such as Alzheimer’s and

Huntington’s disease, as reported in e.g. Refs. 102 and 103. The wide-angle

scattering part was fitted using EPSR modeling. In this model a single protein

in a water/trehalose solution (or just in water for the binary water/protein

case), corresponding to the same concentration as the samples, was simulated

and fitted to the experimental data. From the fitted model the structure of

water and trehalose around the protein could be quantified. This model was

compared to a hard-sphere model, where the water and trehalose molecules

were randomly oriented around the protein. It was concluded that the diffrac-

tion data was best fitted with a model in which the trehalose molecules were

preferentially excluded from interacting directly with the protein surface. This

result indicates that the protein is mainly not stabilized by a direct trehalose-

protein coupling, but rather via indirect interactions through the hydration

layer, supporting the theories surrounding the preferential hydration model as

discussed in section 2.5.3.
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Paper V: Mechanism of Trehalose Induced Pro-

tein Stabilization from Quasielastic Neutron Scat-

tering and Molecular Dynamics Simulations

In paper V, the dynamical properties of the same systems as studied in paper

I and IV were investigated using QENS and MD simulations. QENS measure-

ments on three of the isotope compositions used in paper IV for the three-

component system, and two isotope composition from either two-component

system, were performed using the IRIS spectrometer. These data were con-

verted into intermediate scattering functions and fitted with a sum of Kohlrausch-

Williams-Watts (KWW) stretched exponential functions.

Figure 5.5: QENS data of myoglobin in H2O and trehalose.

Each molecule type was assigned an individual KWW-function, and the

amplitude of this process was set to the relative incoherent scattering contri-

bution. All isotope compositions for a sample were fitted simultaneously with

the same relaxation times and stretch parameters. From the resulting fits, the
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local diffusion time of the individual molecules in the samples were calculated,

and it was concluded that the local diffusion of both the water and the protein

was retarded to a greater extent in the presence of trehalose. The diffusion

of trehalose however, was relatively unchanged in the three-component system

compared to the two-component system. This suggests that the trehalose is not

directly affected by the slower protein dynamics, and thus does do not directly

bind to the protein surface.

From the MD simulations, the relaxation times of individual molecules were

calculated. Using this method it was also found that the protein preferentially

excluded the trehalose molecules. Furthermore, in agreement with the QENS

results, the MD analysis showed that the presence of trehalose reduced the

dynamics of the protein residues, and that the water dynamics was retarded

by both the presence of trehalose and protein, but to a higher degree in the

three-component system. However, the MD data showed that trehalose did

slow down in the three-component system compared to in the two-component

system. This discrepancy between QENS and MD data is hypothesized to be

either due to the MD simulation yielding more trehalose-protein interactions

than what is observed experimentally, or that the presence of these protein-

bonded trehalose molecules are too few and/or too slow to be seen in the

QENS data.

Paper VI: Dielectric spectroscopy study of pro-

teins embedded in trehalose and water

Dynamical properties of myoglobin in relatively dry systems of water and tre-

halose were investigated in paper VI, by the use of broadband dielectric spec-

troscopy. The purpose of this study was to elucidate how trehalose altered

different relaxation processes of the solvent and the myoglobin. Protein sta-

bilization can be achieved by slowing down and decreasing the amplitude of
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different dynamical processes of the protein, and thus studying these processes

in trehalose solutions can help elucidate the role of trehalose for protein sta-

bility. In order to investigate these processes over a broad temperature range,

the water concentration was kept low (<35wt%) such that ice formation was

inhibited, and the solvent entered the super-cooled regime, and subsequently

into a vitrified state during cooling. The samples had either 7 or 11 waters per

trehalose molecule, and contained various concentrations of myoglobin.

Figure 5.6: tan(δ) for a sample of myoglobin in trehalose and water as a func-
tion of frequency and temperature. Red lines roughly indicate four different
relaxation processes.

The results showed that there were three different local Arrhenius processes

below Tg thought to be related to water, trehalose, and water coupled to local

protein surface motions. In the system with the most trehalose, the water pro-

cess was superimposed with the trehalose process. In the system with the most

protein, the trehalose process was shown to disappear, probably due to macro-

molecular crowding effects. The protein-water process was shown to exhibit an

Arrhenius to non-Arrhenius transition around the glass transition temperature,

where it merges with the solvent α-relaxation. At the offset of the glass tran-
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sition another, slower, non-Arrhenius process entered the frequency window,

which is believed to originate from large-scale protein conformation changes.

It is furthermore shown that this process exhibits a similar temperature depen-

dence as the cooperative solvent relaxation, and it is therefore postulated that

this slower protein process is slaved by the faster solvent relaxation. However,

it should be noted that the fitting of the temperature range at and above Tg

is not fully consistent with e.g. the calorimetric results. Therefore, the results

related to the processes above Tg, such as the observed slaving behavior, are

still preliminary and further investigation is needed.



6
Conclusions and Outlook

The particular conformation of a trehalose molecule causes the hydroxyl groups

of the trehalose molecule to prefer interacting with water molecules (hydrogen

bonding), rather than other trehalose hydroxyl groups (both internal and exter-

nal). This means that trehalose avoids clustering and folding, yielding plenty

of interactions with its environment (see e.g. Ref. 39 or paper I). However,

this is not a unique property of trehalose; many different molecules provide a

large amount of HB-sites. In paper II, for example, it was shown that sucrose

exhibits quite similar hydrogen bonding to water, although trehalose perturbs

the natural structure of water to a higher degree. However, it is unlikely that

this property can explain the superior protective effects of trehalose. There

ought to be some properties of trehalose beyond that, which have been exten-

sively discussed in this thesis.

Trehalose tends to not bind directly to protein surfaces, but rather traps a

layer of water at the protein surfaces instead (see e.g. Ref. 89 or papers III–

V). This means that trehalose does not enforce its own structure on to the

protein surface, which – if it occurred – could result in a destabilization of the

entire protein. It was also shown that the presence of trehalose reduces the

dynamics of the protein hydration water, and subsequently also reduce the dy-

namics of the protein, since certain protein motions, important for the function

85
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of the proteins, have been shown to be driven by the dynamics of the hydration

water.91

Another important property of trehalose is its ability to reduce protein-protein

interactions (see e.g. Refs. 102, 103, and paper IV). This could be important

for the role of trehalose as a stabilizing molecule, but possibly also impor-

tant for the use of trehalose as a treatment against certain neurodegenerative

diseases.102,103 The reason for why trehalose is good at preventing protein ag-

gregations is speculated to be due to that it surrounds the proteins homoge-

neously,39,41 thus effectively shielding the protein molecules from one another

via steric hindrance. However, the existence of such a trehalose layer, as pro-

posed by e.g. Ref. 90, could not be identified from the results in this paper.

Future work on the role of trehalose for the purpose of protein stabilization

will investigate the existence of such a trehalose layer, by the use of neutron

diffraction and EPSR modeling. Furthermore, the results in papers III – VI

only show how trehalose behaves in aqueous/hydrated protein solutions, and

thus, the results by themselves do not necessarily determine if there is any-

thing unique about trehalose. It would therefore be of interest to compare to

e.g. sucrose in order to determine if there truly is any special aspect regarding

the stabilizing role of trehalose.

A more complete picture of how trehalose acts in interaction with biological

materials, at preservation conditions, may result in a more general understand-

ing of biomolecular stabilization mechanisms. This can lead to improved cry-

opreservation and lyophilization procedures, which would be vastly beneficial

to a large number of fields.
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