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SILVER JÕEMETSA 

Department of Physics 

Chalmers University of Technology 

Abstract 

Lipids are integral to all forms of life. Both cells and the majority of particles involved with living systems are 

enveloped by a lipid membrane, which protects their content from the external environment while simultaneously 

controlling molecular transport using membrane-embedded proteins. A subset of these particles are known as 

biological nanoparticles (BNPs), including extracellular vesicles, exosomes and viruses. BNPs are known to 

transfer genetic material during cellular communication, but many aspects of the mechanisms regulating their 

various functions remain unknown. Progress within this scientific discipline is hampered by their small size 

(between 50 and 200 nm in diameter) and significant biomolecular heterogeneity, making both quantitative 

nanoparticle analytics and functional characterization, highly demanding tasks. 

To overcome the challenges of BNP characterization, we constructed an approach to identify the mechanism 

by which lipid vesicles are spontaneously converted into a planar supported lipid bilayer (SLB) on glass surfaces 

(Paper I). Total internal reflection fluorescence (TIRF) microscopy was used to track and temporally resolve the 

rate of vesicle adsorption, the onset of supported lipid bilayer (SLB) formation and the kinetics of their growth 

into a continuous SLB, through the use of a small fraction (1/100) of labelled lipid vesicles. It was found that the 

SLB formation processes was initiated by the merger of multiple small SLB patches at appreciably high vesicle 

coverage. In addition, the subsequent growth of SLB patches was, for the first time, shown to occur via a gradual 

increase in the average front velocity. Paper II focuses on quantifying both the size and molecular content of 

different types of BNPs. This was accomplished by tethering BNPs of varying complexity, to a fluid SLB formed 

on the floor of a microfluidic channel. By moving the BNPs with an applied hydrodynamic shear flow and by 

determining both the Brownian and directed motion using single particle tracking analysis, it was possible to 

determine the hydrodynamic radii for each BNP. Furthermore, imaging the BNPs using TIRF or epi-microscopy, 

made it possible to simultaneously determine the extent of fluorescent label attachment, which was specifically 

used to address how the incorporation efficiency of the membrane-staining dye spDIO depends on the size of the 

BNP. 

The insights gained on the SLB formation processes and BNP characterization are fundamental for the future 

development and advancement of novel techniques aimed at probing the molecular interaction between BNPs and 

cellular membranes. 

Keywords: supported lipid bilayer, TIRF microscopy, diffusion, size determination, lipophilic dyes, 

microfluidics 

 

  



IV 
 

  



V 
 

Appended Papers 

Paper I 

Spatiotemporal Kinetics of Supported Lipid Bilayer Formation on Glass via Vesicle 
Adsorption and Rupture 

Mokhtar Mapar, Silver Jõemetsa, Hudson Pace, Vladimir P. Zhdanov, Björn Agnarsson, and 
Fredrik Höök 

The Journal of Physical Chemistry Letters 2018 9 (17), 5143-5149  

My contribution: I planned and performed part of the experiments, prepared the figures. I was 
extensively involved in the data analysis and writing process.  

 

Paper II 

Membrane-Curvature Dependence of Self-inserted Dyes into Lipid Vesicles and 
Biological Nanoparticles 

Silver Jõemetsa, Quentin Lubart, Mokhtar Mapar, Paul Joyce, Stephan Block, Marta Bally, 
Gavin D.M. Jeffries, and Fredrik Höök 

In manuscript 

My contribution: I planned and performed the experiments, analyzed the data, prepared the 
figures, and wrote the main part of the manuscript. 

 

 

  



VI 
 

Abbreviations 

2DFN two-dimensional (2D) flow nanometry 

BNP biological nanoparticle 

DLS dynamic light scattering 

EM electron microscopy 

EV extracellular vesicle 

FCM flow cytometry 

HSV1 Herpes Simplex type 1 virus 

MSD mean squared displacement 

NMV native membrane vesicle 

NTA nanoparticle tracking analysis 

PDMS poly-(dimethylsiloxane) 

POPC 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine 

Rh-PE 
1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-   
(lissamine rhodamine B sulfonyl) (ammonium salt) 

SLB supported lipid bilayer 

spDIO 3,3’-Dioctadecyl-5,5’-Di(4-Sulfophenyl)Oxacarbocyanine 

SUV small unilamellar vesicle 

TIRF total internal reflection fluorescence 

  

  

  



VII 
 

Table of Contents 

Introduction ......................................................................................................................... 1 

1  Background ................................................................................................................. 5 

1.1  Phospholipids and self-assembly ......................................................................... 5 

1.2  Vesicles and supported lipid bilayers .................................................................. 7 

1.2.1  Formation techniques of SLBs ..................................................................... 8 

1.3  Biological Nanoparticles ...................................................................................... 9 

1.3.1  Viruses ........................................................................................................ 10 

1.3.2  Extracellular vesicles .................................................................................. 11 

1.3.3  Native membrane vesicles .......................................................................... 12 

2  Nanoparticle Analytics .............................................................................................. 13 

3  Experimental Methods .............................................................................................. 16 

3.1  Total Internal Reflection Fluorescence Microscopy .......................................... 16 

3.2  Microfluidics ...................................................................................................... 19 

3.3  Size Determination ............................................................................................. 19 

3.3.1  Nanoparticle Tracking Analysis ................................................................. 20 

3.3.2  2D Flow Nanometry ................................................................................... 22 

4  Results ....................................................................................................................... 29 

4.1  Paper I ................................................................................................................ 29 

4.2  Paper II ............................................................................................................... 31 

5  Future outlook ........................................................................................................... 33 

5.1  Size and intensity correlation of complex BNPs ............................................... 33 

5.2  High throughput device ...................................................................................... 34 

5.3  Concentration determination .............................................................................. 35 

5.4  Native drug-delivery vehicles ............................................................................ 38 

6  Acknowledgements ................................................................................................... 39 

References ......................................................................................................................... 41 



VIII 
 



 
 

Introduction 

 

“The oldest and strongest emotion of mankind is fear, and the oldest and strongest kind 

of fear is fear of the unknown.” – H. P. Lovecraft 

Life is a complex interplay of various physical and chemical processes that are integral to 

maintaining life, facilitating growth and preventing disease. Debilitating and fatal diseases that 

exist without a cure threaten this balance and consequently our well-being, be it cancer, viral 

infection or neurodegenerative disorders, such as Alzheimer’s disease (AD). AD is an 

increasingly common, fatal and incurable neurodegenerative disorder that causes impairments 

in memory and intellectual function of about approximately 50 million people worldwide [1]. 

Current treatment methods employed to treat AD are capable of suppressing symptoms and 

slowing the progression of the disease, but for such techniques to be effective, early 

identification and diagnosis is paramount. Since the biggest cost for AD comes from continued 

patient support and care once the disease has already progressed, there is an urgent need for the 

development of new technologies that are capable of detecting the disease prior to symptoms 

being prevalent. It is hypothesized that precise and sensitive BNP analysis techniques may 

contribute to improved detection for AD, since this will facilitate enhanced understanding of 

their role in the disease and direct the design of novel diagnostic tools.  

One of the common factors involved in these diseases are small, nano-sized objects of 

biological origin, called biological nanoparticles (BNPs). Many of these particles are enveloped 

by a lipid membrane, thus sharing similarities with the host cell’s plasma membrane. This 

membrane, containing various phospholipids, proteins and carbohydrates, protects the internal 

content from the external environment. BNPs are responsible for a multitude of functions in 

the body, ranging from the aforementioned pathological conditions such as viral infection [2] 

to intercellular communication [3]. Furthermore, these BNPs have been proven to be natural 

and effective carriers of bioactive molecules, such as miRNA, mRNA, DNA, lipids, and 

proteins. This combination of a biocompatible envelope with the ability to carry bioactive cargo 

makes them an attractive target as or inspiration for drug delivery carriers. 

Extracellular vesicles (EVs) constitute one example of such vessels, excreted from every 

cell type into body fluids such as plasma, urine and saliva [4]. They are highly heterogeneous 
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and believed to be involved in the progression and infection steps of a multitude of diseases, 

such as cancer [5] and different neurological conditions [4,6]. For instance, EVs may be 

involved in transferring proteins associated with AD between cells, thus causing accumulation 

and aggregation of protein in otherwise healthy cells [6]. There are also recent findings 

suggesting that various viruses are transmitted as viral cargo inside EVs [7,8]. Consequently, 

their abundance and involvement in various biological processes makes EVs relevant as 

diagnostic biomarkers. In order to gain insight on how they contribute to the development of 

disease, as well as cellular function, it is of relevance to investigate the huge compositional 

heterogeneity of BNPs, which would enable their future use both as diagnostic biomarkers or 

novel therapeutic delivery vehicles. However, the combination of nano-scale size (typically 50 

to 200 nm in diameter) and high molecular heterogeneity makes the characterization of these 

nanoparticles rather difficult [9]. 

This thesis work puts focus on the use and development of a new nanoparticle size 

determination tool that in addition to size of BNP, has been shown capable of determining both 

molecular content [10] and deformation [11] when propelled using a hydrodynamic force after 

being tethered to a mobile supported lipid bilayer (BNP). In order for the particles to move 

unobstructed, a defect-free highly reproducible supported lipid bilayer (SLB) is essential. To 

achieve this goal, total internal reflection fluorescence (TIRF) microscopy was used to monitor 

the kinetics of vesicle adsorption and subsequent rupture into individual lipid patches on planar 

surfaces with the objective to gain insight on the mechanism of SLB formation (Paper I). The 

types of SLBs investigated in Paper I, were in Paper II used as a two-dimensional fluid 

interface, to which BNPs of varying complexities were tethered, with the aim to address how 

the incorporation efficiency of dyes depends on the size of BNPs. More specifically, it has been 

the aim of this thesis work to compare artificial lipid vesicles, native-membrane vesicles and 

the enveloped virus HSV1; however, the majority of experiments that so far succeeded were 

designed to address how the incorporation efficiency of the membrane-staining dye spDIO 

compare with lipid-based dyes for synthetic vesicles.  

The objective of this thesis is to provide the foundation for the experimental and analytical 

work leading up to the results presented in the appended papers. Specifically, Chapter 1 

discusses lipid vesicles, SLBs and BNPs in more detail. Chapter 2 gives an overview of the 

most commonly used nanoparticle characterization tools for BNPs listing their unique strengths 

and limitations with an emphasis on size determination. Chapter 3 includes the principles for 

the methods used in this research with an emphasis on two-dimensional flow nanometry. 
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Chapter 4 summarizes and discusses the results of the appended papers. Finally, Chapter 5 

concludes this thesis with an outlook for future and ongoing research plans. 
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1 Background 

1.1 Phospholipids and self-assembly 

Lipids are amphiphilic molecules that are characterized by a unique molecular structure 

comprised of a hydrophilic (polar) head-group attached to hydrophobic (non-polar) alkyl 

chains or ‘tail-groups’[12]. Lipids are essential to all forms of life and the functional properties 

of each is controlled by the chemical nature of their head-group and the length, number and 

saturation of the tail groups [13]. 

Of significant interest are phospholipids (phosphoglycerides), which are the main 

constituents of biological cell membranes and are, thus, essential for regulating cellular 

processes, function and health [14,15]. The plasma membrane constitutes a two-dimensional 

medium made up of a phospholipid bilayer, in which many different biological molecules, such 

as for example transmembrane proteins, are dissolved in. Owing to its unique structure, the cell 

membrane acts as a protective vessel for cell organelles separating the intracellular and 

extracellular spaces, while its semi-permeable properties facilitate transport of specific 

nutrients and waste products into and out of the cell [16]. The latter function, which is crucial 

for cellular communication, depends critically on key proteins and lipids that are embedded 

within the phospholipid bilayer.  

Phospholipids are structurally comprised of two fatty acid groups linked to a glyceryl 

backbone [17]. Unlike other lipids such as triglycerides, the final glycerol hydroxyl group is 

replaced for a phosphate head-group, rather than a fatty acid chain (Figure 1). In biological 

membranes, hydrocarbon tails typically contain 10 to 18 carbons per chain, which are linked 

together by single bonds (saturated) or double bonds (unsaturated). 
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Figure 1. (a) Schematic representation of the phospholipid molecule POPC depicting the polar head-
group, non-polar tail-groups, fatty acid chain saturation and additional chemical units. (b) A simplified 
illustration of a phospholipid. 

To minimize the free energy when dispersed in an aqueous solution, the hydrophilic head 

of lipids screen the hydrophobic tails by spontaneously forming aggregates, referred to as the 

“hydrophobic effect” [18]. The spontaneous organization process of lipids (and other 

amphiphiles) from a disordered state to an ordered or semi-ordered arrangement is a 

thermodynamically driven process referred to as “self-assembly”. Exposure of water molecules 

to the non-polar component of lipid molecules contributes a reduction in H-bonding between 

water molecules [19]. If the hydrophobic molecule is small, water molecules salvage the lost 

H-bonds by forming cages that envelope the molecule without terminating any bonds, known 

as “hydrophobic solvation”. However, this interaction between water molecules near a 

hydrophobic interface is highly thermodynamically unfavorable, because the newly formed 

configurations have an increased degree of order, which in turn corresponds to a reduction in 

entropy. All systems strive towards increasing the entropy and thereby contributing to 

minimizing the Gibbs free energy (∆ܩ) of the system, given by: 

ܩ∆  ൌ ܪ∆ െ ܶ∆ܵ , 1.1.1

where ∆ܪ is the change in enthalpy and ܶ∆ܵ is the change in entropy. It should be noted that 

for a spontaneous process, such as self-assembly, to occur, the change in free 

energy	∆ܩ	must	be ൏ 	0. Despite the self-assembly of lipid molecules into an organized lipid 

membrane contributes to a lowering of the entropy, the overall entropy increases ሺ∆ܵ ൐ 0ሻ due 
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to release of ordered water around the hydrophobic tails, and accordingly the free energy is 

reduced. It should also be noted that the change in enthalpy (∆ܪ) is negligible compared to the 

ܶ∆ܵ term [20]. Hence, lipid molecules spontaneously self-assemble into various organized 

structures in aqueous media in order to ‘hide’ their hydrophobic tails. 

The type and geometries of colloidal structures formed by lipid molecules is determined 

by the effective head-group area, critical chain-length and hydrocarbon volume of the lipids 

[13]. This can be stipulated by relating the shape of the amphiphile to the critical packing 

parameter (CPP): 

 
ܲܲܥ ൌ

ܸ
ܮܣ

, 1.1.2

where ܸ is the volume taken by the hydrophobic (tail) part, ܣ is the effective surface area of 

the head-group and ܮ is the length of the tail-group. Single-chained lipids with bulky head-

groups, defined by ܲܲܥ ൏ 0.5, such as the common detergent sodium dodecyl sulfate (SDS), 

tend to form micelles; phospholipids with two tails and a fairly large head-group, defined by 

0.5 ൏ ܲܲܥ ൏ 1	tend to form bilayers and vesicles; and lipids with large hydrophobic tails, 

defined by	ܲܲܥ ൐ 1, prefer to form reverse crystal phases, such as inverted micelles [20]. Most 

phospholipids have a cylindrical shape i.e. CPP ~ 1, and therefore tend to form lipid bilayer 

structures. As the edge of such bilayer structures are energetically unfavorable, they tend to 

adopt a closed spherical shape that encapsulates an aqueous volume inside the membrane, often 

named lipid vesicles or liposomes. However, the CPP and consequently the geometry of the 

self-assembled lipid based structure depends on numerous parameters, such as electrolyte and 

lipid concentration, pH or temperature, as they will influence the interactions between the lipid 

aggregates and also the intermolecular forces within each aggregate.  

1.2 Vesicles and supported lipid bilayers  

Colloidal structures composed of lipids arranged within a lamellar or bilayer structure are 

commonly referred to as lipid vesicles or liposomes. Vesicles may be artificially created or 

naturally occurring and are typically classified according to their size and number of bilayers. 

That is, vesicles may be classified as small (10-100 nm), large (100-1000 nm) and giant vesicles 

(larger than 1 μm), and as either uni- or multi-lamellar. The hydrophobic interior of lipid 

bilayers is a relatively homogeneous region of hydrocarbon chains, whereas the exterior 

comprises of the hydrophilic head-groups, which orient towards the aqueous medium. The 
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bilayer sheets are held together by hydrophobic interactions, the unusually strong entropically 

driven attraction between non-polar molecules, or regions, in water [20,21].  

In order to gain insights into cellular processes and activities that are fundamental for cell 

survival, considerable research focus has, in recent decades, been directed towards analyzing 

the molecular interactions in and between lipid bilayer membranes. However, an overall lack 

of experimental techniques suitable for detailed investigations of such interactions has made 

progress relatively slow. One attractive approach to investigate key biophysical features of 

biological cell plasma membranes that meets the requirements of many high-end analytical 

tools is to use supported lipid bilayers (SLBs). Such SLBs are excellent model systems that 

retain two-dimensional fluidity, while providing reduced complexity and greater stability for 

the lipid membrane compared with cell membranes. This 2D membrane fluidity is believed to 

be maintained by a 10–20 Å layer of trapped water between the substrate and the bilayer [22–

24]. This is also one reason why SLBs can harness the power of surface-specific and sensitive 

analytical techniques to derive novel insights into cellular membranes e.g. atomic force 

microscopy [25], fluorescence microscopy [26], quartz crystal microbalance, surface plasmon 

resonance [27] among others [28]. However, owing to the reduced complexity, it is crucial to 

well-characterize these native membrane mimics to accurately represent the appropriate 

membrane function for a specific application. Thus, significant efforts have been invested to 

characterize the formation mechanism under various conditions [29–34]. In this thesis work, 

the SLB formation process on borosilicate glass was investigated in paper I. SLBs are also 

excellent environments to incorporate linker molecules such as cholesterol-DNA in order to 

study binding [35] or even use the same SLB-linker system to preserve and study the mobility 

of tethered NPs [36]. This system was used in Paper II with various BNPs tethered to a fluid 

SLB to gain insight on their properties.  

1.2.1 Formation techniques of SLBs 

Under certain conditions, it is possible to adsorb lipid vesicles onto surfaces, and thus convert 

them into SLBs with a typical thickness of 4 to 5 nanometers (Figure 2). The ability to do so is 

dependent on temperature, properties of the lipid vesicles, the ionic strength of the surrounding 

solution and the properties of the surface [32]. In order to form SLBs with low defect density 

and high mobility, the surface should be hydrophilic, smooth and clean [37]. 
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Figure 2. The cross-section of a vesicle (left). A supported lipid bilayer (right).  

The historically predominant methods for surface deposition of lipid bilayers were 

Langmuir–Blodgett (LB) and Langmuir-Schaefer (LS) [34,38], while more recent methods 

include solvent-assisted lipid deposition [39] and a method where freeze-thawing is used to 

induce vesicle rupture and subsequent SLB formation [40]. The most popular SLB formation 

method, which was also used in this thesis work, is the adsorption and fusion of vesicles [41,42] 

on silica-rich surfaces such as borosilicate glass. In this case, vesicles approach the surface via 

diffusion from the bulk and adsorb if the surface-vesicle interaction is favorable. Although 

vesicles can occasionally rupture into small bilayer patches at a relatively low vesicle coverage, 

the SLB formation is initiated when a fairly high vesicle coverage is reached, after which they 

start to rupture into small patches that initiate growth and the auto-catalytic SLB formation 

cascade [27]. In Paper I, the aforementioned observations were investigated in detail by 

following the growth kinetics of individual SLB patches from the adsorption and rupture of 

vesicles. 

1.3 Biological Nanoparticles 

Biological nanoparticles (BNPs), such as extracellular vesicles, exosomes and viruses are 

involved in a multitude of key biological processes, including cellular communication and viral 

infection; the detailed molecular mechanisms of which are not yet understood. Accordingly, 

the characterization of BNPs and their associated processes has recently emerged as a focus 

area for the improved understanding of fundamental processes that control cellular health. 

Furthermore, BNPs have been proven to be natural and effective carriers of various bioactive 
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molecules, such as mRNA, DNA and proteins within the membrane envelope. Therefore, 

insights derived from investigations directed towards BNPs can be harnessed for biomimetic 

development of novel therapeutic delivery vehicles. 

1.3.1 Viruses 

Viruses are complex molecular machines capable of infecting all cellular life. Virus particles 

vary considerably in size and shape, ranging from 20 nm to 400 nm in diameter. Genetic viral 

material, composed of either DNA or RNA, is encapsulated within a protein capsid, which 

protects the genome from the extracellular environment. The protein capsid is in many cases 

enclosed within a lipid membrane that is derived from the outer plasma membrane of host cells 

or from one of the inner cellular membranes. As viruses are small nano-machines that are 

incapable of self-replication, they ‘hijack’ the replication machinery of cells by attaching and 

penetrating the cellular membrane and mixing their genetic material with the host cells genome 

[43]. In doing so, replication of the viral genome is facilitated and consequently the host cell is 

turned into a virus factory. Some viruses can even lead to permanent genetic changes of 

infected cells, leading to the development of cancer and other debilitating diseases [44].  

In this thesis work, the membrane-enveloped herpes simplex virus type 1 (HSV1) was 

investigated with respect to the dependence on membrane staining as a function of virus size. 

Based on recent estimates, HSV1 has infected over 67% of the global population [45], and is 

believed to enter their host cells through fusion between its viral envelope and the plasma 

membrane, whereby the host cell is usually killed in the viral replication process [46]. Virus 

attachment is mediated by specific glycoproteins on the surface of the virus, which bind to 

receptors/sugar molecules on the cell surface [47], facilitating transmission of HSV1 between 

the host cells. Since the viral entry is mediated by membrane fusion through the binding of 

protein ligands to cell-surface receptors, this opens up a possibility to monitor virus binding to 

cell membrane mimics (see section 1.2) combined with advanced surface-based 

characterization techniques (see section 2) that can effectively monitor this process. As 

previously discussed, fluorescent microscopy techniques enables single-vesicle tracking of 

BNPs bound to supported cell-membrane mimics, given that HSV1 have been successfully 

labelled with suitable fluorophores, such as yellow-fluorescent protein (YFP) by genome 

modification [48]. However, this modification may affect the virus. Furthermore, the labelling 

efficiency and spatial distribution of YFP is only assumed to be constant and reproducible. 

Therefore, in this study, we have used an alternative labeling method, by directly targeting the 
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viral membrane using spDIO [49] and in Paper II the foundations for being able to investigate 

the labeling efficiency versus virus dimension.  

1.3.2 Extracellular vesicles 

Extracellular vesicles (EVs) are cell-secreted vesicles capable of carrying different cargo, such 

as lipids, proteins, DNA, mRNA and miRNA and are present in all body fluids [4,50]. These 

nanovesicles have been identified to play an important role in a variety of biological processes, 

including pathological conditions such as cancer and different neurological conditions, and 

have even been proposed to represent a common route for transport of neurodegenerative 

disease-related proteins and nucleic acids [6]. Specifically, transfer of proteins via exosomes 

from diseased cells to healthy cells frequently leads to accumulation and aggregation of the 

protein in the target cell, which is linked to the pathogenesis of many neurodegenerative 

diseases, such as Alzheimer’s [6].  

EVs are heterogeneous both in size and composition, with sizes ranging from 40 nm to 

1 µm [51]. EVs include distinct subtypes such as exosomes, microvesicles and oncosomes 

(released by cancer cells) [52]. Exosomes, containing miRNA and mRNA, have been shown 

to transfer the genetic content which upon delivery can be translated to proteins by the receiving 

cells [53]. There are also reports suggesting that EVs can in fact spread viral cargo such as 

HSV1 in their envelope, which can be taken up by healthy cells, leading to viral infection [7]. 

Furthermore, studies have demonstrated that EV release kinetics from cancer cells varies 

considerably compared with healthy cells [5]. Therefore, EVs serve as promising biomarkers 

for a multitude of debilitating diseases and may also guide the development of novel 

therapeutic delivery systems based on their mode of action.  

Consequently, in order to determine how these BNPs mediate biological processes and 

how EV malfunctioning contributes to the development of neurodegenerative and other 

diseases, there is a need to develop effective bioanalytical tools for improved analysis. Despite 

the existence of several bioanalytical tools for investigations of single nanoparticles, which will 

be introduced in the next chapter, precise determination of both size and content of each 

individual EV is rather difficult [9]. Preliminary measurements of EVs size distribution 

employing 2DFN (see section 3.3.2) and a high-throughput nanodevice [54] are ongoing, with 

more in-depth discussion provided in the Future Outlook section.  

 



12 
 

1.3.3 Native membrane vesicles 

Since exosomes vary in composition, based on the producer cell type [55], and exhibit complex 

structures that are difficult to characterize, simpler systems are helpful for the development of 

new single nanoparticle analytical tools. Native membrane vesicles (NMVs) are one such 

simplified BNP systems that can be produced in vitro from the plasma membrane of a cell, 

while retaining the membrane components of the parent cell: lipids, proteins, carbohydrates 

[56,57]. Hence, the membrane of NMVs mimics closely the membrane composition of 

exosomes, since it is also derived from the host cell in which it was released from [6,58]. 

However, unlike exosomes, NMVs are easy to harvest from host cells with several simple 

ultracentrifugation steps [56], while still acting as a more closely related exosome model 

compared to synthetic vesicles. These simpler, native BNP were in this thesis work utilized as 

a model system that acted as a precursor for exosome characterization. Specifically, it was the 

intention to compare the size determination of NMVs with that of HSV1 and synthetic vesicles. 
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2 Nanoparticle Analytics 

As mentioned in the previous chapter, a multitude of quantitative methods exist to characterize 

BNP properties, especially size. The predominant technique for the last few decades to gain 

insight on particle properties has been electron microscopy. However, certain limitations, 

especially with respect to cumbersome sample preparation, low throughput and high costs, 

have called for the development of complementary techniques. We will herein give an 

overview of these most commonly used BNP characterization methods (Table 1). 

The traditionally used standard for single particle analytical techniques is considered to be 

electron microscopy (EM), as it allows a direct read-out of the size and structural properties. 

Images in EM are created from accelerated electrons, that after being transmitted or scattered 

by a sample, hit an electron detector, which due to the short wavelengths of electrons enables 

sub nm resolution[59]. Since EM experiments are conventionally performed in high vacuum, 

and since liposomes, virus particles and other BNPs do not withstand dehydration, metal 

staining and fixation techniques are often required, which in turn changes the size and 

morphology of the sample [60]. This limitation can be overcome by using cryo-electron 

microscopy (cryoEM), which makes use of neither staining nor fixation protocols. Instead, a 

thin film of the NP suspension is spread on a EM support grid and thereafter submerged into 

liquid nitrogen, which rapidly freezes the water into amorphous ice without forming ice 

crystals[61]. This process both preserves the material in a native-like state and protects the 

sample from radiation damage. CryoEM has been employed successfully to characterize 

individual viruses [60] vesicles [62] and EVs [63–65] to gain insight on both their structural 

properties and size. In addition to direct structural information, labelling of EVs with antibody-

modified gold nanoparticles has been employed to identify sub-populations in the EV 

preparation [64]. However, the low throughput, complicated sample preparation protocols, 

long measurement times, and high cost are all limiting factors to make cryoEM a standard BNP 

analysis tool [66]. A major limitation is high variance due to low sample size, especially for 

heterogenous EV samples, as only a limited number of images can be taken in a reasonable 

amount of time [65].For example, different properties of nanoscale objects can be extracted by 

probing them with light. One such method is flow cytometry (FCM), which is used routinely 

to analyze single cells and smaller particles in the sub-micrometer range [67]. Most flow 

cytometers work in both scattering and fluorescence mode which combined with 

immunolabeling allows the structure to be correlated with biomolecular composition [68], 

although information on size requires that the dependence of the scattering signal on refractive 
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index and size is known. In FCM, cells or particles in a hydrodynamically-focused fluid stream 

are illuminated by a laser. Ideally, each cell or particle passes a laser beam one at a time, from 

where the scattering and fluorescence signals are measured. Since the measured optical signal 

is dependent on both the size of the particle and its refractive index, this poses one additional 

limitation, namely that smaller particles will not scatter sufficiently to be detectable during 

their transit through the illumination volume [69]. This is evident from the fact that the majority 

of conventional cytometers only detect individual polystyrene beads with a size larger than 

~300nm [59,65], while sub-200 nm BNPs, such as viruses and exosomes, remain at the 

detection limit of conventional flow cytometers due to their weak scattering and fluorescence 

signals [70]. 

In response to this shortcoming other methods have been developed, such as dynamic light 

scattering (DLS) [71], where the size distributions of NP ranging between a few nanometers to 

several microns can be determined [59], with an impressive limit of detection of down to about 

1 nm [72]. In DLS, a dilute suspension containing monodisperse NPs undergoing Brownian 

motion is illuminated with a focused laser beam [73]. The illuminated NPs scatter light in all 

directions, which due to their Brownian motion within the illuminated volume leads to 

temporal fluctuations that depend on particle size. Owing to its broad range of detectable sizes, 

DLS is used routinely as a high-throughput and sensitive method for accurate size 

determination [69]. However, for BNP which possess high molecular and dimensional 

heterogeneity, such as EVs, it remains difficult to accurately determine their size, which is 

basically because the intensity fluctuations become predominantly influenced by the presence 

of larger particles [59]. Due to the high heterogeneity and nano-scale size of BNPs, it is 

important to study these particles on the individual level. 

Nanoparticle tracking analysis (NTA) is today one of the most commonly used optical 

methods for nanoparticle size determination, especially for BNPs such as extracellular vesicles 

[67] and viruses [74], reaching down to the 50 nm size regime [75]. The underlying principle 

behind NTA is similar to that of DLS, where particles undergoing random motion in a 

suspension are illuminated by a focused laser beam. The scattered (or fluorescent) light induced 

by the particles is then temporally imaged using an objective fitted to a conventional optical 

microscope, being placed above the sample [76]. However, in contrast to DLS, the imaging 

mode of NTA makes it possible to analyze the nanoparticles individually, allowing their size 

to be extracted from their 3-dimensional movement. Unlike DLS, NTA copes better with 

polydisperse samples, however the quantitative determination of scattering and fluorescent 
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intensities remain difficult to quantify, since the particles are free to diffuse in and out of the 

focal plane [70]. NTA was in this work used routinely for BNP size determination, and is 

discussed in further detail in the Methods section. 

Since FCM, DLS nor NTA are best suited to determine scattering / fluorescence intensity 

or size and do not offer a possibility to unambiguously quantify multiple properties on the level 

of single nanoparticles, there exists a need for analytical concepts that enable multi-parametric 

analysis of BNPs. One such method is two-dimensional flow nanometry (2DFN) [10], which 

offers a detection limit in the sub-30 nm range while simultaneously offering the possibility 

quantify the scattering / fluorescence intensity by  confining them close to a liquid-solid 

interface in a microfluidic setup. This method was further developed and used in Paper II to 

quantify the efficiency by which BNPs can be labeled with membrane-specific dyes, and will 

be therefore discussed more thoroughly in the Experimental Methods section. 

 

Table 1 Comparison of the bioanalytical methods discussed in this chapter 

Method 
Limit of 

Detection 
Principle 

Mode of 

measurement 
Comments 

CryoEM <1 nm electron transmission direct, individual 
arduous sample 

preparation, low statistics 

FCM 200 nm light scattering indirect, individual multi-parametric 

DLS 1 nm  diffusion indirect, ensemble 
monodisperse samples, 

relative size  

NTA 50 nm diffusion indirect, individual polydisperse samples 

 

  



16 
 

3 Experimental Methods 

3.1 Total Internal Reflection Fluorescence Microscopy 

Biological nanoparticles, such as lipid vesicles and other similarly sized objects, cannot be 

visualized directly with conventional optical microscopy, due to the Abbe diffraction limit as 

the Airy peaks which arise from each molecule are not separated. Consequently, fluorescent 

microscopy has been a widely-used method to by-pass the aforementioned issue to visualize 

and study these nanometer-scale entities. Fluorescent microscopy employs fluorescent 

molecules, i.e. fluorophores1, for imaging. Importantly, fluorophores can be readily conjugated 

to molecules such as antibodies and lipids, allowing them to be visualized. A fluorophore is a 

molecule which has an energy gap usually in the visible range. When a fluorophore absorbs an 

incoming photon with an energy corresponding to the gap, an orbital electron is brought from 

the ground state S0 to the first excited singlet state S1. This excited state is unstable with a 

short lifetime, typically in the range of 10-7 to 10-9 s. In order to lower its energy, the electron 

will relax down to the ground state either radiatively or non-radiatively, each with a certain 

probability. The radiative process from S1-S0 with the re-emission of a photon is called 

fluorescence (Figure 3b) [77].The re-emitted photon has a longer wavelength (lower energy) 

than the absorbed, since a small portion of the absorbed energy is converted into vibrational 

energy, i.e. dissipated as heat. All of this is best illustrated on a Jablonski diagram (Figure 3a) 

[78]. This shift between the excitation wavelength and the emission wavelength of the 

fluorophore can be utilized for imaging purposes, which was a breakthrough in 1911 [79].   

Many different kinds of fluorescence microscopy exist, including confocal laser scanning 

microscopy [80,81], stimulated emission depletion microscopy [82], and total internal 

reflection fluorescence microscopy [83], which was the main tool used in this research. Total 

internal reflection fluorescence (TIRF) microscopy is an extension of conventional 

fluorescence microscopy, specialized to illuminate only a thin layer on a substrate surface. This 

technique has been a multifaceted/widely used tool since its invention by Axelrod et al during 

the 1980s [84] and is based on light travelling between two media with different optical 

densities (n) in the total internal reflection regime. When a beam of light travels from an 

optically denser medium and hits the sample interface at an incident angle Θ௜௡௖௜ௗ௘௡௧ larger than 

                                                 
1 For a molecule to fluoresce, certain conditions have to be met, such as high rigidity of the molecule, the 

presence of electron-donor species, and naturally the molecule has to absorb the excitatory light and favor radiative 
transitions.   
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the critical angle	Θ௖௥௜௧௜௖௔௟ , all light is reflected at the interface. This mechanism is governed 

by Snell’s law, in the case where the angle of refraction becomes 90°: 

Θ௜௡௖௜ௗ௘௡௧	 ൐ Θ௖௥௜௧௜௖௔௟ ൌ arcsin ቆ
݊௟௢௪
݊௛௜௚௛

ቇ , 3.1.1

 

where ݊௟௢௪	and  ݊௛௜௚௛	denote the lower and higher optical density materials respectively. 

However, a non-radiative electromagnetic field confined at the interface called the evanescent 

field still slightly penetrates a few hundred nanometers into the medium of lower refractive 

index and decays exponentially with distance from the surface. As the light is totally reflected 

for angles	Θ௜௡௖௜ௗ௘௡௧	 ൐ Θ௖௥௜௧௜௖௔௟, then the penetration depth of the evanescent wave can be 

adjusted by a few hundred nanometers [85]. Using this evanescent wave to excite fluorophores 

near the surface enables high contrast as the background signal of fluorophores from the bulk 

is significantly reduced.  

 

Figure 3. (a) A Jablonski diagram illustrating the concept of fluorescence on an energy plot. (b) 
Examples of two fluorophores used as lipid conjugated markers in this research – Rhodamine-PE and 
spDIO (only the fluorescing subunit is shown for clarity). Each fluorophore is overlaid with their typical 
excitation (left) and emission (right) wavelengths. 

In this thesis work, an inverted TIRF microscope was used to image the sample from 

below, through a transparent borosilicate glass substrate (as shown on Figure 4). Lipid vesicles 

and SLBs were imaged with this TIRF setup by incorporating two different types of 

fluorescently-labelled molecules. The vesicles used in the experiments to form SLBs 

incorporate a fraction of fluorophore-conjugated lipids (Rhodamine-PE), labeled at the 

hydrophilic head-group of the lipid. However, these lipid-dyes cannot be used with native 
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membranes without disturbing the membrane environment, as they need to be mixed in via 

sonication or similar. Therefore, of particular interest is how lipophilic membrane-staining 

dyes, such as DiO and DiI, which have been utilized routinely to label cell membranes without 

negatively affecting membrane fluidity [86,87], incorporate into complex BNPs, and how this 

incorporation depends on particle size, type and molecular composition. Consequently, in the 

work planned to summed up in Papers II, SUVs, NMVs and iHSV1 were labelled with the 

lipophilic membrane-staining dye SP-DiOC18(3)2 (hereafter spDIO) which is weakly 

fluorescent in water but highly fluorescent and quite photostable when incorporated into a lipid 

membrane. 

 

Figure 4. Working principle of TIRF microscopy, highlighting the main components. An off-axis light 
source is used to impact the sample at a large enough angle to fulfill the total internal reflection 
condition, resulting in the generation of an evanescent wave, exciting the fluorophores near the surface. 
A filter cube consisting of an excitation filter, dichroic mirror and an emission filter is present to select 
and direct the appropriate wavelengths for the fluorophore used, to isolate and image the fluorophore 
emission from the excitation source. 

                                                 
2 3,3’-Dioctadecyl-5,5’-Di(4-Sulfophenyl)Oxacarbocyanine 
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3.2 Microfluidics 

Microfluidics, as the name states, is the manipulation of fluids in channels with dimensions in 

the range of micrometers (1-100µm). In doing so, capabilities that are afforded through the use 

microfluidics which bulk chemistry cannot provide include, but are not limited to: (i) the ability 

to handle very small volumes of liquids (10-9 to 10-18 liters) and thus, reduce the consumption 

of samples, solvents and reagents, (ii) laminar flow (characterized by low Reynolds numbers), 

(iii) high resolution and sensitivity in separation and detection, and (iv) finely controlled flow 

rates. These unique characteristics can be utilized to promote hydrodynamic shear flow that 

induces movement of molecules attached to a SLB [88], as discussed in Paper II.  

A simple straight microfluidic channel was fabricated from the optically transparent soft 

elastomer poly-(dimethylsiloxane) (PDMS) using soft-lithography, which is a simple 

fabrication method based on a molded PDMS stamp [89]. This channel was used in Paper II to 

enable controlled fluid flows, whereas punched PDMS wells were used in Paper I. 

3.3 Size Determination 

A multitude of crucial interactions and functions of biological nanoparticles are based on their 

size. As a result, there is a need to develop sensitive and powerful particle size determination 

characterization techniques that are capable of detecting sub-200 nm particles and vesicles. 

Current state-of-the-art particle sizing technologies take advantage of the thermal motion of 

particles, known as Brownian motion. This random movement of particles was first identified 

by Robert Brown when he observed small particles ejected from pollen grains undergoing 

continuous, random motion when dispersed in water. This movement is characterized by 

rapidly changing velocities due to random collision between solvent molecules, which are in 

constant thermal motion with a thermal energy in the order of	݇஻ܶ. Collisions between 

dispersed NPs and solvent molecules occur in all directions and at all interfaces in a motion 

known as a random walk, first characterized by Albert Einstein in 1905 [90]. Einstein 

determined that the Brownian motion of particles relate to their diffusivity, ܦ, through their 

mean squared displacement (MSD), which is the measure of particle deviation from its 

reference position as a function of time [90–92]: 

ሻݐሺܦܵܯ ൌ 〈ሺ࢘ሺݐሻ െ 〈଴ሻଶሻ࢘ ൌ ݐܦ2݀ , 3.3.2

where ݀ is the number of dimensions (2 in our case), ࢘଴	is the reference position of the particle 

and ࢘ሺݐሻ the position at time t. It is important to note that the MSD scales linearly with the 
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diffusivity, hence allowing one to extract the diffusivity from a linear fit of the curve. The 

probability distribution of such a particle’s displacement follows a Gaussian shape [90].  

Most commonly the MSD of an individual particle can be estimated from its 

experimentally measured trajectory for a given duration ݊∆ݐ	(lag time) as follows [91,93,94]: 

ሻݐ∆ሺ݊ܦܵܯ ൌ
1

ܰ െ ݊
෍ሺ࢘௜ െ ௜ା௡ሻଶ࢘
ேି௡

௜ୀଵ

, ݊ ൌ 1, … , ܰ െ 1 , 3.3.3

where ܰ is the number of frames, ࢘௜ the particle position at frame ݅, whereas  ࢘௜ା௡ the particle 

position after ݊ frames and ∆ݐ	the time interval characterized by the frame rate 1/∆ݐ. 

Einstein also showed, among others [95,96], how the aforementioned diffusivity relates to 

the mobility of a particle [90], which is known as the Einstein relation: 

ܦ ൌ ஻ܶ݇ߤ , 3.3.4

The mobility, ߤ,	of a particle is the ratio between an applied drag force	ܨ inducing a drift 

velocity	ߤ) ݒ ൌ  ሻ and is inversely proportional to the friction (drag) coefficient, whichܨ/ݒ

characterizes the influence of the surrounding medium. In the case of spherical particles at low 

Reynolds numbers [97], Stokes’s law [98] states that the drag coefficient is proportional to the 

(dynamic) viscosity of the medium and the hydrodynamic radius of the particle. Thus, the 

Stokes-Einstein equation can be written: 

ܦ ൌ
k୆T
ݎߟߨ6

, 3.3.5

which shows that the diffusivity of a spherical particle depends (except for the thermal 

energy	݇஻ܶ), only on the viscosity of the solution and the hydrodynamic radius of the particle 

itself [90]. 

The aforementioned relation between the size and diffusivity of a particle (eq. 3.3.5) and 

the possibility to determine the diffusivity from the MSD of a particle’s trajectory (eq. 3.3.2) 

are fundamental for the subsequent methods, as they enable to determine the hydrodynamic 

size of NPs from their trajectories. 

3.3.1 Nanoparticle Tracking Analysis 

Nanoparticle tracking analysis (NTA) is one of the most commonly used optical methods for 

nanoparticle size determination, especially for BNPs such as extracellular vesicles [67]. 

Conventional NTA uses a focused laser beam to illuminate particles in a suspension. The 
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particles within the beam scatter light in every direction. This scattered  light by each particle 

in the field of view can then be collected by an objective placed above the sample, fitted to an 

otherwise conventional optical microscope [76]. The scattered light is captured by a high-speed 

camera, where the particles ongoing random walks in three dimensions will be visualized as 

bright/illuminated spots in the field of view. This facilitates individual identification and 

analysis of single particles by firstly calculating the diffusivity from its two-dimensional MSD 

(eq. 3.3.2). From this, the hydrodynamic radius of each particle is extracted using the Stokes-

Einstein equation (eq. 3.3.5): 

ܦ ൌ
݇஻ܶ
ݎߟߨ6

௬௜௘௟ௗ௦
ሳልልሰ ݎ ൌ

݇஻ܶ
ܦߟߨ6

 3.3.6

From this, it is evident that particle diffusivity is inversely proportional to the size of the 

particles; hence, smaller particles diffuse faster and the diffusivity increases as a function of 

increasing temperature and decreasing viscosity. 

Since conventional NTA operates in scattering mode, with few operating in both 

fluorescence and scattering mode [69], this size determination method is therefore highly 

dependent on the refractive index of the particle [99]. Subsequently, for high refractive index 

materials such as gold, the smallest detectable size is ~30nm, whereas the typical size 

detectable for low refractive index materials, such as lipid vesicles, typically ranges from 70 

nm to 1µm [59,70] with some examples of size determination down to 50 nm [75]. The upper 

size limit is due to the inherently slow diffusion of particles larger than ~1µm, which renders 

accurate size determination challenging.  

Furthermore, there are additional limitations associated with detecting and quantifying 

particle size distributions using NTA. The trajectory of particles within solution can only be 

observed as a two-dimensional projection. However, particles are free to move within solution 

in three-dimensions which causes particles to move in and out of the focal plane. This 3D 

movement of particles leads to significant errors in the position determination since off-focus 

particles scatter less than when they are confined within the focal plane. Such particles appear 

faint or are lost from the field of view altogether. The latter is even more dramatic for smaller 

NPs, which diffuse faster and have a lower intensity due to a smaller scattering cross-section. 

Furthermore, particles that are moving in and out of the focal plane, may be re-counted by the 

algorithm, thus leading to skewed size distributions towards smaller particles.    
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In principle, NTA can be utilized to estimate the size of a NP based on the fluorescence or 

scattering intensity. However, this is dependent on the NP remaining within the focal plane 

throughout the measurement. Since particles are not confined within two dimensions and 

therefore move in and out of focus, it is rendered difficult to accurately measure their intensity. 

The 3D movement of particles leads to significant variance in the intensity signals, thus 

creating unwanted artefacts when attempting to correlate intensity with NP size [100].  

 

3.3.2 2D Flow Nanometry 

The limitations associated with conventional NTA can be overcome by confining and 

restricting the movement of NPs within two dimensions. This was achieved recently by our 

group by coupling NPs to a fluidic interface, such as an SLB, and thereby enabling the particles 

to remain within the focal plane for longer residence times [10]. This technique, known as two-

dimensional flow nanometry (2DFN), improves the accuracy of intensity and diffusivity 

estimations substantially, compared to NTA, allowing for precise size determinations of NPs 

20-400 nm in diameter. 

In order to couple NPs to a fluidic interface, a linker, such as DNA, must be inserted within 

the membrane of lipid NPs to allow for tethering to a SLB containing mobile complementary 

DNA. Due to this tethering approach, the theoretical principles used in NTA cannot be applied 

directly for 2DFN, as the lateral diffusivity of the linker-NP system is controlled mainly by the 

linker molecule [35], which is significantly slower than a freely moving NP in solution. 

Specifically, the mobility of tethered particles is defined by the number of NP anchors that are 

coupled to the fluid interface. In 2DFN, this limitation is overcome by studying the motion of 

fluorescently-labelled BNPs tethered to a SLB when subjected to a shear flow using a 

microfluidic channel. In brief, by introducing hydrodynamic shear flow parallel to the SLB, 

the in-plane movements of BNPs can be monitored using total internal reflection (TIRF) 

microscopy. In doing so, the individual size of the SLB-tethered BNPs can be elucidated by 

analyzing their trajectories when subjected to a shear flow [10], the physical principle of which 

is summarized below. 

When a bulk flow of liquid is applied above a planar SLB, the lipid bilayer and its 

constituents move in the direction of the bulk flow [101] and different sized components move 

with markedly different velocities. The mobility, ߤ,	of a particle can be deduced from a laminar 
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bulk flow induced shear force ܨ௦௛௘௔௥,	which creates a directed movement of the particle in the 

flow direction [90]:   

μ ൌ
௫ݒ

௦௛௘௔௥ܨ
, 3.3.7

where 	ݒ௫	is the flow-directional velocity of the particle. Hence, it can be inferred that a larger 

force will cause an increase in the particle’s velocity. One should also note that the flow 

directional shear force is equal to the opposing drag force, when the particle is moving at a 

constant velocity. Furthermore, according to Einstein’s relation (eq. 3.3.4), the mobility is also 

directly related to the diffusivity [90]: 

ߤ ൌ
ܦ
݇஻ܶ

, 3.3.8

Thus, the movement of a NP tethered to an SLB under an applied shear force can be 

divided into two components: (i) directed, non-random NP movement in the flow direction 

induced by the shear force, and (ii) random movement perpendicular to the flow due to lipids 

diffusing and interacting with the linker in the membrane. Combining the previous equations 

3.3.7 and 3.3.8 yields: 

ܦ
݇஻ܶ

ൌ
௫ݒ

௦௛௘௔௥ܨ
, 3.3.9

By deducing the flow-directional velocity of the NP from the linear increase of the 

x-position and by measuring the individual trajectories, i.e. MSD of tethered NPs in the xy-

plane to extract the diffusion coefficient and (Figure 5), the hydrodynamic shear force acting 

on the NP can be estimated.  

Furthermore, the shear force is related to the hydrodynamic radius ݎ	of a small spherical 

particle moving in a viscous fluid under laminar flow via Stokes’s law [98]: 

where ߟ	is the dynamic viscosity of the surrounding medium, ݒ௫	the average velocity of the 

particle and ܨ௦௛௘௔௥	the shear force acting on the particle.  

௦௛௘௔௥ܨ ൌ ݎ௫ݒߟߨ6 , 3.3.10
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Figure 5. Characteristic track of a tethered BNP, showing the x-directional motion being dominated by 
a directed movement while the y-directional motion follows random Brownian motion. 

Although this equation is valid for a simple (non-tethered) system, some assumptions still 

need to be made to determine the size distribution of NPs tethered to an SLB. Firstly, the 

channel height is much larger than the hydrodynamic size of the particle, resulting in a lower 

flow velocity close to the surface. This is due to the fact, that bulk flow velocity will be larger 

in the center of the channel than at the walls, floor or ceiling [102]. For laminar flows, the fluid 

motion is assumed to be a uniform linear shear flow [103–105], hence the macroscopic fluid 

velocity can be approximated to increase linearly away from the surface (Figure 6a) [101]. 

Secondly, it is usually assumed that the flow velocity of a viscous fluid close to a surface must 

be zero, as mass cannot penetrate the solid surface and the cohesive forces between the 

molecules of the fluid are overcome by their adhesion to the surface [102]. However, there are 

several reports claiming that this so-called “no-slip” boundary condition is not strictly valid in 

all scenarios [106–109], thus a slip length must be introduced. The slip length	ߣ	can be 

described as an imaginary distance below the surface where the no-slip boundary condition 

would otherwise be satisfied (Figure 6a) [109] and can also include the length of the linker 

molecule. Taking these two assumptions into account, the flow-directional velocity ݒ௫	at the 

center of the tethered NP can be presented as: 

௫ݒ ൌ ݎ଴ሺݒ ൅ ሻߣ ,   3.3.11

where ݒ଴	is the laminar flow velocity away from the surface and	ݎ	the hydrodynamic radius of 

the NP. Consequently, by combining equations 3.3.10 and 3.3.11, the shear force ܨ௦௛௘௔௥	acting 

on a particle in a 2DFN experiment can be determined via: 
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௦௛௘௔௥ܨ ൌ ݎሺݎ଴ݒߟܣ ൅ ሻ 3.3.12ߣ

where A is a constant that accounts for the channel geometry and possible inhomogeneous flow 

profile around the NP. It should be noted that neither ܣ	nor ߣ	depend on the shape or size of 

the NP and can be determined via calibration with NPs of known size for a specific channel 

geometry. 

Thus, by measuring the individual trajectories of BNPs, the flow-directional velocity of a 

nanoparticle (ݒ௫ሻ and the average diffusivity of the NP-linker system (ܦሻ can be found. 

Consequently, if the latter two are known, the hydrodynamic shear force acting on each tracked 

NP can be directly determined via eq. 3.3.9. The shear force, along with the determined 

calibration parameters, can subsequently be used to determine the hydrodynamic size of the 

bound nanoparticles without directly probing a signal proportional to their size (Figure 6b). 

 

 

Figure 6. (a) A BNP tethered to a SLB via DNA linkers, experiencing a laminar shear flow, inducing 
a shear force causing the particle to move in the flow direction. ߣ indicates the slip length. 	(b) NMV 
size distribution acquired with 2DFN. 

2DFN offers several key advantages as a size determinant technique, compared to 

conventional NTA. One clear advantage of 2DFN is the ability to accurately quantify the 

fluorescence intensity of BNPs. This is done by confining BNPs onto a surface in a TIRF 

microscopy setup, which allows the probing of only those fluorescently labeled BNPs that are 

coupled close to the surface. Furthermore, for BNPs with a homogenous surface dye 

concentration such as vesicles containing lipid-conjugated dyes, the TIRF intensity is expected 

to be proportional to their size [110]. Therefore, it is possible to correlate the fluorescence 

intensity of BNPs to their independently determined size. Despite this, it is speculated that dye 

distribution is commonly inhomogeneous in more complex biological systems, such as viruses 
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and exosomes, where lipid-conjugated dyes cannot be used. Thus in Paper II, it was the 

intention to use the aforementioned technique combined with TIRF microscopy to determine 

the size, independent of fluorescent intensity, of the following BNP systems: artificial lipid 

vesicles, NMVs and enveloped herpes simplex virus type 1 (HSV1). Due to problems to tether 

NMVs and HSV1 to the membrane, results for these systems remains to be included.  

3.3.2.1 Data analysis 

The data analysis of 2DFN is very sensitive to several parameters, which will be discussed 

more thoroughly below.   

One such parameter is distance cutoff, determining whether it is a unique particle that is 

followed, i.e. if it belongs to a unique track, which is defined by a maximum distance between 

two ‘particles’ in two consecutive frames. This value is dependent on the surface coverage of 

the particles, since in order to avoid linking of two different particles in close proximity it must 

be lowered when the density is high. This value is selected by using a large distance cutoff and 

plotting all mean squared displacements. By linearly fitting the initial data points, it is possible 

to evaluate where the true tracks meet the noise (the false linking events). This intersection 

(Figure 7) then defines the cutoff value that is used in the analysis.  

 

Figure 7.  Logarithmic representation of the normalized count as a function of MSD. The cutoff value 
is evaluated at the intersection where the linear fit (red line) crosses the average noise, which in this 
case is 50.   
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For accurate intensity determination, several parameters which help mitigating the 

influence of potential bleaching and other factors have to be chosen very carefully, since the 

resulting intensity distribution can be affected by several factors, such as uneven illumination, 

tracking errors, dye transfer to the SLB and mode of illumination (TIRF vs. EPI). Due to the 

aforementioned factors, the intensity of an individual particle can fluctuate quite significantly 

along the particle trajectory as it moves across the field-of-view. Typically, the average 

intensity throughout the whole trajectory is measured, but this would result in unnecessary 

fluctuations. Therefore, to lower the fluctuations, the intensity was determined in the middle 

100px of the field-of-view, where the TIR light hits the sample and consequently results in the 

highest signal-to-noise. Furthermore, to remove any potential tracking errors, which cannot be 

excluded with the distance cutoff, e.g. the linkage of two particles which are in close proximity, 

tracks with unreasonably large fluctuations around their average intensity value were removed. 

This was done by first measuring the intensity over time for a few immobile particles per 

movie. The particle with the highest standard deviation relative to its mean value was used as 

an upper limit, to include everything below that value in the intensity versus size graph. 

Specifically, this relative standard deviation of the intensity ranged between 10-25%. Last, only 

particles which were present in the beginning 1/3 of the field-of-view, were included in the 

analysis to exclude particles which are lost during tracking and may later be found again, thus 

resulting in double-counting. However, this condition will often only marginally affect the 

result, as the other conditions are sufficient to remove any tracking errors.  
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4 Results 

The findings addressed in this thesis are captured in two papers, which are summarized and 

detailed below. 

4.1 Paper I 

Supported lipid bilayers (SLBs) mimic several key features of cellular membranes, such as 

planar geometry and fluidic freedom. In all studies concerning SLBs, the quality of the SLB is 

a critical factor that influences its function and utility. Therefore, significant efforts have been 

invested to gain an in-depth understanding of the SLB formation process [26,27,111–116]. 

Further, utilizing SLB’s as a core of our measurement approach (Paper II), places specific 

weight upon highly reproducible SLBs. Therefore, in Paper I, we employed TIRF microscopy 

to study the SLB formation process and kinetics on borosilicate glass. In comparison to how 

fluorescence microscopy was previously employed to study SLB formation [117,118], we 

labelled only a small fraction (1%) of the vesicles, allowing the individual adsorbed vesicles 

and SLB patches to be monitored simultaneously, by simultaneously increasing the optical 

contrast between SLB patches and their surrounding regions [56]. Resolving individual 

vesicles allowed the entire SLB formation process to be observed, from individual vesicles to 

small SLB patches, and finally coalescence to a full SLB. To quantify the individual SLB patch 

evolution and variances in patch-growth scenarios, the boundary of each patch was measured 

for each analyzed time point and subsequently used to calculate the average front velocity. It 

was concluded from our analysis that the average front velocity increases dramatically, up to 

one order of magnitude, despite the fact that the surface density of adsorbed vesicles increases 

only marginally by about 8% (Figure 8). This finding is considered significant as typically the 

front velocity of a spreading lipid mono-or bi-layer front on hydrophobic and hydrophilic 

surfaces, respectively, is either decreasing or stagnant over time [119–121]. 
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Figure 8. Typical patterns observed during the SLB patch growth and the corresponding dependence 
of the average front velocity with time: (a) single patch formation and expansion (snapshot interval 
60 s), (b) small patches merging into a bigger patch (snapshot interval 24 sec), and (c) propagating SLB 
front (snapshot interval 30 sec). Scale bars represent 20 µm. The color of the perimeter lines used in the 
images, indicates the local front velocity of the SLB patch. 

To theoretically address the rate of SLB growth, two different scenarios regarding the 

incorporation of lipids into the SLB patch after the rupture were examined: local relaxation 

and global relaxation. In the local relaxation scenario, the lipids belonging to a ruptured vesicle 

are assumed to form a circular SLB, where the growth is restricted to the immediate vicinity of 

each ruptured vesicle. In this scheme, no significant lipid rearrangement in newly-formed 

patches occurs, implying that the overlap with the existing SLB patches can be interpreted as 

either a double bilayer or material loss. In the global relaxation scenario, all lipids from 

ruptured vesicles will instead rapidly diffuse along the substrate and merge with the patch 

inducing their rupture, resulting in a circular SLB. The majority of the experimental 

observations followed the global relaxation model, manifesting in increasing front velocities 

(Figure 8). The global model also describes the observed cases, where the local coverage of 

vesicles was low. In these cases, the growth halted until more material for sustainable growth 

was introduced.  
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4.2 Paper II 

The development and advancement of novel nanoparticle size determination and 

characterization techniques is integral for improved understanding of cellular processes 

involving biological nanoparticles (BNPs), such as cellular communication and viral infections 

[2,50,53,122]. Since BNPs are usually highly heterogeneous in nature, there is a demand for 

techniques that provide simultaneous information of multiple parameters, such as size and 

concentration, preferably with single BNP resolution. In an attempt to achieve this, TIRF 

microscopy was combined with microfluidics, in Paper II, to study a BNP model system 

consisting of fluorescently-labelled liposomes tethered to a supported lipid bilayer (SLB). 

Two-dimensional flow nanometry (2DFN) was utilized in this approach by applying shear 

force to the liposomes, allowing for the Brownian motion of tethered liposomes to be decoupled 

from their directed motion. In doing so, the hydrodynamic size and fluorescent emission could 

be determined independently for each tracked liposome [10].  

In previous work, it was verified that fluorescence intensity could be correlated to 

liposome size for a fluorescent lipid-dye (Rh-POPE), which was incorporated during vesicle 

fabrication/generation [10]. However, dye-labeled lipids cannot be incorporated into native 

membranes without severely disturbing the lipid organization, since they need to be combined 

by lysing the membrane through sonication or similar. Subsequently, the objective of Paper II 

was to utilize 2DFN to independently derive the size and fluorescence intensity of model BNPs 

with varying complexities, ranging from artificial liposomes to viruses, using the lipophilic-

staining dyes, spDIO and PKH, which have been routinely utilized to label cell membranes 

without negatively affecting membrane fluidity [86,87]. Despite the extensive use of lipophilic 

dyes, it still remains unclear how they are incorporated into complex BNPs, and how this 

incorporation depends on particle size, type and molecular composition. Subsequently, specific 

emphasis was placed on investigating the correlation between the dye incorporation efficiency 

and BNP size.  

 To address this, a model system consisting of liposomes containing either lipophilic dye, 

spDIO or PKH, was used to measure the incorporation efficiency of the dye in the liposome. 

This was achieved by quantifying and relating the fluorescence intensity emitted by the 

liposomes to their sizes on an individual level. For all of dyes used, the fluorescent intensity of 

the liposomes scaled with their surface area, making the approach highly feasible for qualitative 

determination of incorporation efficiencies of fluorescent dyes. Figure 9 shows how the size 
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and intensity of spDIO-labelled POPC indeed follows the expected dependency. We also 

addressed the issue of nonspecific binding on lipid vesicles to the SLB, and discuss the 

appropriateness of the inclusion of these nanoparticles into the analysis. It can thus be 

anticipated that other lipophilic dyes, with a similar molecular composition, will behave in a 

comparable manner. For more complex, real BNPs, labelled with lipophilic dyes, this scaling 

is however not obvious, as also indicated from results obtained using spDIO and NMVs. 

 

Figure 9. a) Size distribution determined using 2DFN (blue) of spDIO-labelled DNA-tethered vesicles 
fitted to a log-normal distribution (red). b) Fluorescence intensity versus hydrodynamic radius (blue 
dots) for spDIO-labelled DNA-tethered liposomes 
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5 Future outlook 

In addition to paper I and II included in the licentiate thesis, there are several other ongoing 

and prospective projects furthering nanoparticle characterization, which will be discussed 

below. 

5.1 Size and intensity correlation of complex BNPs 

Several BNPs were studied in the context of this thesis – Rhodamine, PKH and spDIO labelled 

POPC vesicles, as well as spDIO labelled NMVs, EVs and iHSV1s. However, the experiments 

were always not as straightforward as one would hope. Since the 2DFN approach typically 

requires a tethering chemistry, such as cholesterol DNA, it is necessary to know the 

concentration of the stock BNP. However, the concentration of complex BNPs samples is 

typically unknown and can differ from sample-to-sample. Nonetheless, NTA was used in these 

cases to estimate the number concentration of EVs and iHSV1. Moreover, in a typical 2DFN 

experiment approximately 3-10 tethers per BNP should be used depending on the size of the 

particles, to ensure linker-dominated diffusivity while still retaining sufficient mobility 

[10,123]. To illustrate a common challenge, we aimed at taking these two factors into account 

when EVs were incubated with cholesterol-DNA to achieve 6, 12, 30, and 60 DNAs per 

particle. Subsequently, EVs with increasing tether concentrations were introduced to the flow 

channel containing a complementary cholesterol-DNA incubated SLB. However, no binding 

was observed in any of these cases, although the particles were clearly visible in bulk. One of 

the reasons for the absence of binding could be insufficient amount of tethers per particle, since 

the stock and consequently incubation concentration of EVs determined from NTA compared 

to POPC was over 50 times lower. If the true EV concentration is significantly higher (NTA 

does not detect vesicles below a certain size), the concentration of cholesterol-DNA used to 

modify the EVs might have been too low. This is however quite unlikely, since cholesterol-

DNA should have enough time to diffuse and incorporate into EVs within the incubation time 

and since one cholesterol-DNA per vesicle should be enough to observe at least transient 

binding. However, the reasoning is based on the reasonable assumption that self-insertion of 

cholesterol-DNA into phospholipid membranes is efficient in EVs. In fact, self-insertion of 

amphiphilic compounds like cholesterol-DNA may very well be hindered by the already high 

membrane cholesterol content of these native BNPs, making them effectively highly rigid 

particles. In fact, after EVs were incubated with spDIO, a visual red-shift (from yellow to pink) 

in the color of the sample was observed. The latter could be caused by a high amount (~30%) 

of cholesterol in the membrane of the EV, also obstructing the subsequent cholesterol-DNA 
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incorporation into the membrane. In turn, the free cholesterol DNA in the EV solution 

potentially covered most of the available binding sites on the SLB. Interestingly, the post-

labelled EVs were exceptionally bright compared to POPC vesicles, ensuring the applicability 

of these lipophilic dyes for complex BNP labelling. In future work, we will put focus on 

alternative tethering schemes, such as cholesterol-modified PEG with a biotin anchor for 

binding to streptavidin on an SLB or only electrostatic attraction (see Paper II). These issues, 

which were also observed for HSV1 and NMVs, stimulated the use of the high throughput 

device described in the next section, in which case there is no need for a tethering chemistry. 

 

5.2 High throughput device 

Another ongoing project is the characterization of exosomes and other BNPs in a high-

throughput device. Contrarily, with this method, individual particles are confined in high-

aspect ratio nanochannels of 300 nm in both width and height, but several millimeters in length. 

As the particles are of similar size-scale to the channel cross-section, they will be unable to 

diffuse perpendicularly along the flow and will experience hindered diffusion [124] However, 

the size of BNPs can be still estimated from their flow-directional diffusivity by taking the 

aforementioned corrections into account. Furthermore, as these NPs stay within the focal plane, 

the intensity determination will be similar to the 2DFN case. This will enable the determination 

of size and intensity distributions of different BNPs in a high-throughput manner. Figure 10 

shows a dataset with Rhodamine-labelled vesicles, depicting a correlation between the size and 

concentration of these particles. Furthermore, the size distribution in this case does not need 

adjustment or calibration, as the size of each BNP is calculated directly from their diffusivity 

according to equation 3.3.6 by taking into account the effect of the walls [124], illustrating the 

applicability of this method for non-tethered nanometer-scale biological systems 
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Figure 10. Analysis of Rhodamine-labelled vesicle (a) size distribution with a log-normal fit (line) and 
(b) intensity versus hydrodynamic radius dependence determined using the hindered diffusion model. 
The fit demonstrates an r2 dependence, with an R-square value of 0.45.  

5.3 Concentration determination 

In addition to size, molecular content and structure, one would also like to acquire information 

about the concentration of BNPs, since it is believed that the concentration of specific EVs, 

e.g. exosomes, is altered for patients affected with disease compared to healthy subjects [125]. 

Recently, Rupert et al. used surface plasmon resonance spectroscopy to determine exosome 

concentration in solution from the rate of exosome binding under diffusion limited conditions 

[126]. We planned to further this research by measuring both the rate binding of individual 

vesicles to an SLB combined with the 2DFN approach described in section 3.3.2 and Paper II. 

The adsorption kinetics of vesicles can be investigated by either directly measuring the rate of 

binding to a surface or to an SLB via tethering-chemistry. The rate of adsorption to the surface 

can follow two pathways: (i) reaction-limited binding, where the binding kinetics is determined 

by the actual binding to the surface or (ii) diffusion-limited binding, where the binding to the 

surface is so fast that the rate of binding is controlled by diffusion across a depletion zone near 

the surface. For rectangular flow geometry, the mass transfer to the surface can be characterized 

by the mass-transport coefficient [127,128]: 
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where ܦ௜	is the diffusion coefficient of the vesicle population with size ݅, ܳ 	the volumetric flow 

rate , and h, w, l	are the height, width, and length of the channel, respectively. The rate of 

binding is then proportional to the analyte concentration according to [111,129]:  
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where Γ௜/∆ݐ	is the rate of binding per surface area of vesicle subpopulation with size ݅	and ܥ௜	is 

the concentration of the corresponding subpopulation. However, the adsorption rate to the 

surface under flow conditions may differ at various points on the surface, depending on the 

distance from the inlet to the measurement area [111]. Therefore, we designed a PDMS chip 

(Figure 11a) to minimize effects from depletion and buildup of a depletion layer, which can be 

caused due to liquid passage between the measurement area and the sample container. In order 

to test the PDMS chip design, we measured several time series of Rhodamine-labelled POPC 

vesicles binding to the glass floor of a microfluidic chip. Figure 11b shows two binding 

experiments with the same flow rate, but in different regions of the PDMS chip. The higher 

rate of binding was observed in the second region of the channel, which consequently lead to 

differences in the calculated concentrations. The concentration was calculated according to eq. 

5.3.2 and compared to the concentration value estimated from the molar concentration of 

vesicles in the prepared solution. The latter was estimated by using the mode size from NTA 

to calculate the amount of lipids per vesicle. While comparing these two values an average of 

92% (out of >10 experiments) of the prepared concentration was achieved in the second region 

of the channel. In principle, this result suggested that the chip design was suitable for further 

experiments. However, 30% of the cases were outliers, being off by a factor of 2. The 

discrepancy between the prepared concentration and the concentration calculated using eq. 

5.3.2 can be attributed to several factors. First, some material may be lost through sample 

preparation e.g. extrusion and subsequent dilution steps. However, a more probable reason to 

the discrepancy is the assumption of using the mode value from NTA to estimate the prepared 

vesicle concentration. This could be overcome by taking into account the whole NTA size 

distribution in the calculation of the initial vesicle concentration from the dry lipid 

concentration.  
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Figure 11. Microfluidic flow chamber specifics (a) Schematic of the channel geometry. Two equal 
flows of the sample from inlet 1, and buffer from inlet 2, are introduced simultaneously. During this 
introduction, a fluorescent time series of images is taken in the 1st region. Following this, outlet 3 is 
closed, and inlet 2 is opened. Another time series is taken in the 2nd region. (b) Number of detected 
vesicles within the 1st (black dots) and 2nd (red squares) regions of the channel plotted versus time, for 
a 100 × 100 μm2 surface area. 

This approach can in principle be extended to BNP binding to an SLB. However, it 

remains difficult to combine both the size and concentration determination in one experiment, 

to in that way determine both the concentration of differently sized particle sub-populations 

and molecular content. In order to ensure mass-transport limited conditions, a high-affinity 

binding chemistry such as neutravidin-biotin is needed. However, particles tethered in this way 

are not easy to shear with a hydrodynamic flow. Another option is to continue with DNA-

tethering, with mobile vesicles as was done in 2DFN. This might switch the rate of binding to 

the reaction-limited regime, but it may increase the possibility of elucidating the concentration 

by determining the rate for the reaction limited binding process. Alternatively, as the 2DFN 

method can be used to determine if a specific BNP-dye combination incorporates 

proportionally to particle size (Paper II), this approach could be combined with the 

concentration determination of BNPs obtained from the rate by which they bind to the surface. 

In this way, one could thus determine both the concentration and individual size of complex 

BNP sub-populations. In either case, this would enable for the method to become truly multi-

parametric, by enabling one to determine the size, concentration and molecular content – all in 

one experiment.  
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5.4 Native drug-delivery vehicles 

Since drug delivery vehicles made of synthetic lipid encounter a multitude of limitations for in 

vivo applications, much interest has been focused on harnessing BNPs for drug-delivery 

applications [130]. For example, limitations such as poor uptake and non-specific drug release 

can potentially be overcome by using NMVs (more thoroughly discussed in section 1.3.3), 

which are obtained via mechanical cell lysis [56], or exosomes [131]. Compared to synthetic 

vesicles, NMVs have high biocompatibility, long retention time in vivo and efficient cellular 

uptake [132]. Further, NMVs can be combined with mesoporous silica nanoparticles (MSNs) 

which have several beneficial properties – tunable size, high stability, high biocompatibility, 

high drug loading, and controlled drug release [133]. In future work, we will explore this 

possibility by sonicating NMVs together with MSNs, similarly to how synthetic vesicles were 

previously used for the same purpose [134]. To validate if the MSNs are lipid coated, both 

membrane dyes and TEM will be used (having uncoated bare particles as the control) [135]. If 

protocols can be found to ensure the encapsulation of MSNs was effective, we plan to 

determine if cellular uptake of native MSNs is increased in vivo, compared to non-native 

protocells. 
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