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THE 3G INEQUALITY FOR A UNIFORMLY JOHN DOMAIN

HIROAKI AIKAWA AND TORBJ ORN LUNDH

Dedicated to the memory of Professor Nobuyuki Suita

AsstrAcT. LetG be the Green function for a domainc RY with d > 3. The Martin boundary of
D and the 3G inequality:

G(x.Y)G(y: 2)

G(x,2)
are studied. We give the 3G inequality for a bounded unifgrddhn domairD, although the
Martin boundary ofD need not coincide with the Euclidean boundary. On the otaedhwe

construct a bounded domain such that the Martin boundangcim#s with the Euclidean boundary
and yet the 3G inequality does not hold.

<A(x-y?9+ly-2%9 forxy,zeD

1. INTRODUCTION

For a bounded Lipschitz domaid c RY with d > 3, Cranston, Fabes and Zhao [13] proved
the following 3G inequality:

G(x, Y)G(Y, 2)

@) G(%,2)

< A(Ix-y* % +y-2*% forxy,zeD,

whereG is the Green function foD and A is a positive constant depending only Bn They
used (1) for the conditional gauge theorem and the @tihger equation. Their proof is based
on the boundary Harnack principle, a comparison principh®m@g positive harmonic functions
vanishing on a portion of the boundary ([6, 15, 18]). The ltary Harnack principle also yields
the coincidence of the Martin boundary Bfand the Euclidean boundary ([16]). So, one might
think that there is a relationship between the 3G inequalitgt the coincidence of the Martin
and the Euclidean boundaries. We shall however see tha ih@o direct connection between
them. We shall prove the 3G inequality for a uniformly Johmain, whose Martin boundary
need not coincide with the Euclidean boundary (Theorem h)th@ other hand, we shall provide
an example of a bounded domainRA with d > 3, whose Martin boundary coincides with the
Euclidean boundary and for which the 3G inequality fails ¢dd(Proposition 2).

2000Mathematics Subject ClassificatioB1B05, 31B25.

Key words and phrases.Green function, 3G inequality, boundary Harnack pringipieiformly John domain,
inner uniform domain.
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2 HIROAKI AIKAWA AND TORBJ ORN LUNDH

Throughout the paper, |& be a bounded domain iR?, d > 3, and letsp(X) = dist(x, D).
Forx,y € D, we define thenternal metricor theinner diameter distancey(x, y) by

Pp(xy) = inf{diam(y)},

where the infimum is taken over all curvggonnectingx andy in D and diamf) stands for the
diameter ofy. Theinner length distancelp(x,y) is defined similarly byip(x,y) = inf{£(y)},
where the infimum is taken over all curvgesconnectingx andy in D and ¢(y) stands for the
length ofy. Obviously|x —y| < Pp(X,y) < Ap(X,Y). If X =y < maxXdp(X),op(y)}, then|x —y| =
Pp(X,y) = Ap(X,y). We say thaD is auniformly John domairf there exists a constary; > 1
such that each pair of pointsy € D can be connected by a curye- D for which

min{{x—12,|z-y|} < Ai6p(2) forallzey,

) di
lam@) < AiPp(X.Y)

(Balogh and Volberg [7, 8]). We say thBtis aninner uniform domainf there exists a constant
A; > 1 such that each pair of pointsy € D can be connected by a curye- D for which

min{£(y(x,2), t(y(zy))} < Axp(2) forallze vy,
t(y) < AoAp(X,Y),

wherey(Xx, 2) is the subarc of connectingk andz (Bonk, Heinonen and Koskela [11]). In view of
Vaisala [17], the family of uniformly John domains and that of inm@rform domains coincide.

Under some additional assumptions, such as the the unifemeqginess of the boundary
or the existence of a strong barrier, Balogh-Volberg and Bdekionen-Koskela studied the
boundary Harnack principle and the Martin boundary for éh@smains. In [4] Mizutani and the
authors gave the boundary Harnack principle and identiiedMartin boundary of a bounded
uniformly John domain without any other additional assuong. The Martin boundary is the
ideal boundary with respect to the internal meftigx, y); it need not be homeomorphic to the
Euclidean boundary. In this note we show the following.

Theorem 1. Let D be a bounded uniformly John domairRifiwith d > 3. Then the 3G inequality
(1) holds.

In Section 3 we shall construct a bounded domai®irwith d > 3, such that the Martin
boundary coincides with the Euclidean boundary and yet @@é&quality does not hold.

Remarkl. There is a significant éfierence between the planar case and the das&. For the
planar case Bass and Burdzy [10] established the 3G ineq(altty suitable modification of the
right hand side) for an arbitrary bounded domain.
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2. ProoF oF THEOREM 1

We shall use the following notation as in [4]. By the symBolve denote a positive constant
depending only on the dimensidnwhose value is unimportant and may change even in the same
line. We shall say that two positive functiorisand f, are comparable, writtefy, ~ f,, if and
only if there exists a constaAt> 1 such thalA~f; < f, < Af,. The constan will be called the
constant of comparison. B§(x, r) we denote the open ball with centenednd radius.

Let D* be the completion oD with respect to the internal metric. That 3; is the equiva-
lence class of al#p-Cauchy sequences with equivalence relatiet) Where we sayx;} ~ {y;} if
{x;}uly;} is aPp-Cauchy sequence. The completidhis a compact space. L&D = D*\ D, the
boundary with respect #,. Take&* € D*. Suppos&™ is represented by@,-Cauchy sequence
{X;}. Since{x;} is also a usual Cauchy sequence, it follows thatonverges to some poitite D.
The point¢ is independent of the representative sequérgend uniquely determined ky. We
say that* lies overé € D. If £ € D, theng andé* coincide. Define the projection: D* — D
by n(¢*) = €. Let B,(¢7,r) be the open connected componentDof B(n(¢*), r) which can be
connected t@* in itself, i.e. for everyx € B,(¢,r) there is an arg c B,(¢*,r) starting fromx
and converging tg*. By definitionPp(¢*, X) < 2r for x € B,(¢*,r); in other words

3) if Pp(¢7,X) > 2r, thenx e D\ B,(¢",1).
Let&* € 9*D. Observe from (2) that
(4)  ifthere existy € D with Pp(£7,y) > 2r, then there existg € B, (£, r) with 6p(X) ~ T.

In [4] Mizutani and the authors proved the following.

Theorem A. Let D be a bounded uniformly John domain. Then the Martin @atification of
D is homeomorphic to Dand each boundary poigt € 9*D is minimal.

This theorem was deduced as a corollary to a uniform boundamack principle, whose
proof is based on the following estimate of the Green fumc{ad. [3, Lemma 3] and [4, Lemma
3.2)).

LemmaA. Leté* € 9*D. Then
G(xy) _ GxY)
G(x.y) G(x.y)

with constant comparison depending only on D.

for x,x € By(¢*,r)and yy € D\ B,(¢%, 6r)

In [4, Lemma 3.2], the above estimate was given actually ier Green function for the
intersection oD andB,(¢*, Ar) with A large enough. However, for the cade> 3, we see that
the same estimate holds for the Green functiorfatself.

We also need the following lemma whose proof is easy anddeftd reader.
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Lemma 1. Let xy € D. Then Gx,y) < A%(x Y)> 9. Moreover, ifép(X) > APp(x,y) and
So(y) = A Pp(x,y), then Gx,y) > APp(x, y)? ¢,

Proof of Theorem 1We have observefk — y| < Pp(X,y). So, let us prove the following slightly
stronger form of the 3G inequality.

G(x y)G(y. 2
©®) G(x, 2
We will prove (5) according to the line of Bass’ proof of the 3t&quality. See [9, Theorem 3.6]
and its correction. Let; = 3i9 andc, = liscl. By symmetry we may assume that

< APo(%,Y)> % +Pp(y, 2>%) for x,y,ze D.

(6) Po(X,Y) < Pp(Y. D).

Case 1. Pp(X,y) > CiFPp(X,2). Letr = Pp(X,2). If 6p(X) > cor, then we letx; = x. If
0p(X) < cor, then we takeq as follows: Letx’ € 9D with |[x — X'| = 6p(X). Since the line segment
xX is included inD N B(X, c,r), we findx* € *D lying overx’ such thatx € B,(x, cr). Then

Pp(X',Y) = Po(X,Y) — Po(X, X) > (C1 — C)r = 12¢,r,
Pp(X',2) > Pp(X,2) —Pp(X, X) > (1 —co)r > 12c,r.
By (4) we can takex; € B, (X", cor) with 6p(x1) = Cor. Thenx,x; € B,(x*,cor) andy,z €
D \ B,(x", 6¢c,r) by (3), so that by Lemma A yields
G(xy)  G(x2
G(x1,Y) ; G(x1,2)
Similarly, if 6p(2) > c,r, thenwe lez; = z. If 6p(2) < c,r, then we take € 9D with |z-Z| = 6p(2)
andz' € "D lying overZ such thatz € B,(z', c,r). By (6)
Po(Z,y) =2 Po(zy) —Po(zZ) = (c1 — ¢)r = 12¢sr,
Po(Z', X1) = Pp(X,2) — Pp(X, X1) — Pp(z Z°) > (1 — 2Co)r > 12c,r.

Hence we findz, € B,(Z, cor) such thabp(z) ~ cor by (4). Thenz z; € B,(Z', cor) andy, X, €
D\ B,(z, 6¢c,r), so that Lemma A yields

Gy.2) _ Glv.2)
G(x1,2  G(x1,z1)

Hence
G(x.Y)G(.2) _ G(x, Y)G(y, z1)
G(x,2) - G(x1,z)

Now observe thadp(x;) ~ dp(z1) ~ Pp(X1,21) =~ I, SO thatG(x;, z;) ~ r>% by Lemma 1. Also,
Pp(X1,Y) ~ Pp(X,y) > ¢cir andPp(y, z1) = Pp(Y, 2) > Pp(X,Y) by (6). Hence Lemma 1 yields
G(x.Y)G(y.2) _ ,Po(xy)**?
G(x,2) r2-d
Thus (5) holds in this case.

< AOp(x, y)> .
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Case 2. Pp(X,y) < CiPp(X, 2). Lets = Pp(x,y). By connectedness thereus € D with
Pp(X, W) = s/c;. Then

@) Poly.W) = Po(x W) — Ap(x.y) = (C—ll 1)s> S=Pp(XY) = Cp(xW).

so that Case 1 applies to the triplet, w. Hence
G(x, y)G(y,w,
We are now going to replace with z
Subcase 2a. s = Fp(X,y) > %6D(y). Lety € dD with |y — y'| = 6p(y). Since the line segment
yy is included inD N B(y’, 2s), we findy* € 9*D lying overy’ such thaPp(y,y*) = dp(y) < 2s.
Thenx,y € B,(y", 3s). Observe from (7) that

< ApD(Xay Z_d'

Poly' W) > Loy W) — Poly. ") > (C—ll _3)s=36s

Poly',2) = Po(X.2) — Po(%Y) — Po(,Y") > (C—ll _3)s= 368,

so thatw,ze D \ B,(y", 18s) by (3). Lemma A implies

G(y,w) _G(y.2)
G(x,w) = G(x,2)’

which together with (8) yields

G(X%Y)G(Y.2) _ G(x Y)G(y, W)
G(x,2)  G(xw)

Subcase 2b. s = Pp(x,y) < 26p(y). ThenG(x,y) ~ [x - y*® = Pp(x,y)** by Lemma 1.
If furthermorely — 7 > ;3’16D(y), thenG(., 2) is positive and harmonic iB(y, ﬁéD(y)), so that the
Harnack inequality showS(x, 2) ~ G(y, 2) and hence
G(x Y)G(y. 2)
G(x, 2

If ly—2 < 36o(y), thenly—2 = Pp(y. 2) = Pp(x.y) = X—Y by (6), so thafx— 27 < [x—y|+|y—2 <
2ly — 2. Moreover,G(Y, 2) ~ ly — 2%°% andG(x, 2) ~ |x — Z>™9; and hence,

G(xY)G(Y.2) _ Ix—yPly-7**

< APp(x, y)* ™.

~ G(X, ) ~ Pp(x, y)>d.

< Alx -y = Alp(x,y)*

G(x,2 X — z2-d
Thus (5) also holds in Case 2. The proof is complete. O
3. AN ExaMPLE

Let us begin with an application of the 3G inequality.

Proposition 1. Let D be a domain of finite volume &f' with d > 3. Suppose the 3G inequality
() holds. Then the following Cranston-McConnell inequality

1
©) sup- f G(x y)u(y)dy < dV-ZIDP/AA,

xeD
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holds for every nonnegative superharmonic function u in Dere/hy; stands for the volume of a
unit ball in R,

Proof. Let B(0, R) be the open ball with the same volumelas Supposau is a Green potential
fD G(-,2du(2) of a measurg in D. Then (1) and Fubini’'s theorem yield

fD G(x. y)u(y)dy = f du(2) f G(x.y)G(y. 2dy
_ y2-d _ 2-d
< A fD G(x. 2du(2) fD (X =y + Iy - 22-%dy

< 2Aqu(X) V2 %dy = AodV4RRU(X) = AodV; 2D/ %u(x).

B(O,R)
Thus (9) holds for a Green potential. Since every nonnegaiperharmonic function is ap-
proximated from below by Green potentials, the monotoneemence theorem completes the
proof. |

For an arbitrary planar domai of finite area, Cranston and McConnell [14] proved (9) with
Ao bounded by the area @ up to an absolute multiplicative constant. See [12] for aps&m
proof and [1, 5, 2] for an analytic proof and some generabnast Cranston and McConnell [14]
provided also an example of bounded domaii#failing to satisfy (9). We shall modify their
example to construct a bounded domain whose Martin boundzncides with the Euclidean
boundary and which fails to satisfy the Cranston-McConnelfjurality (9). In view of Proposition
1, this domain also fails to satisfy the 3G inequality (1).

Construction. LetR, | 0 andN, 7T « be a decreasing sequence of positive numbers and an
increasing sequence of positive integers such that

(i) Ryt + Rut R, — &,
&) 2

(ii) Z(%) N1
n=1 n

Nn+1 Nn
1 . -
For exampleR, = 7 andN, = 8n satisfy the above condition. In fact,
n

Rn_&_(le Rn+1)>i— L1 = : R
Ny Npi1 \/_ \/m 4n\/_ \/_\/F(\/_+ M) 4n\/ﬁ
1 1 2n-(n+1)
2(n + 1)\/_ 4n \/_ 4n(n + 1)\/_
and

(&)zNg—l ( 1 )2(8n)d1 gd-30-4 5 g3
N, 8n vn

Let 0 < < 1/4 be a constant depending only on the dimension such that welaaeNd-*
many mutually disjoint open balls of radius = nR,/N, with centers on the sphef&, = {x €
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RY : |x| = R,}. Order these balls and call theBl, k = 1,..., N¢-1. In view of (i), we may assume
that the family of the doubles @ (n = 1,...,c andk = 1,...,N%1) is mutually disjoint. Fix

n and connect each ba} to the nextBy,, for k = 1,...,N3* — 1, in order, by a cylindrical
tube lying inB(0, R, + 2r,). Then connect the last b with k = N to the first ballB! , of
the (h + 1)-th level by a cylindrical tube lying ilB(0, R, + 2r,). Moreover, each tube intersects
its ball in circular caps subtending solid angle: 7/6 and the two caps in each ball (except the
first) are antipodal. We may assume that the tubes are mytligjbint and the connection is so
smooth that the resultant domdnis locally Lipschitz apart from the origin. Hence, we obgerv
that the Martin boundary dd is homeomorphic to the Euclidean boundary except for thgrari

We shall show that there is a unique minimal functiocorresponding to the origin.

Proposition 2. Let D be as above. Then there is a uniqgue minimal function responding to
the origin. Moreover,

fD G(x. y)h(y)dy = oo.

Hence, the Martin boundary of D coincides with the Euclideanrimary and yet the Cranston-
McConnell inequality9) and the 3G inequalityl) fail to hold.

We prepare the proof of Proposition 2 by stating the follapooundary Harnack principle
for a specific Lipschitz domain. Since we consider near a $imooundary portion, the boundary
Harnack principle can be proved easily. See Figure 1.

Lemma 2. LetQ = {X = (Xs,..., %) ! 5 <X < 1,—% <X <O, H={xeQ:x=-3

and x = (-3,0,...,0). If uand v are positive harmonic functions énsuch that u= v = 0on
{X=(Xe,...,Xq) : IX = 1,—? < X1 < 0}, then

U V) el

W) S W) T sy X
-
Q
(),
A
H
~—

Ficure 1. Boundary Harnack Principle for the shaded donfain
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Proof of Proposition 2.Let By = B(Xo,00), By = B(X1,p1),...be the enumeration ¢BK},x in
order and lefl; be the tube connecting; and Bj,;. Our domainD looks like a long wiggling
string of beads. Takg> 1. We may assume by rotation tHtandT; intersect in a circular cap
with center at{p;, 0, ..., 0)+Xx;. Translate and dilat@ in Lemma 2 so that; and (p;, 0, ...,0)+
X;j correspond to the origin anet{, 0, ..., 0), respectively. LeH; andx; correspond t¢1 andx’,
respectively. Observe th&; \ H; consists of two connected components. Bywe denote the
component containing;. LetLj = BpUToU---UTj_; UB;jandletUj = D\ (L; U H)). See
Figure 2

Ficure 2. Counter example to the Cranston-McConnell inequality: @ hig-
gling string of beads.

Fix x such thatx — x;| = p;/4. Apply Lemma 2 tau = G(X, -) andv = G(Xo, -). Then
Glxy) _ Glx0y)

G(x, X)) G(Xo, X))

by the maximum principle. Sind8(x, x}) ~ pj?‘d, it follows that

Gxy) A"

G(%.y) ~ G(x, X)
Let K(X,y) = G(X,Y)/G(Xo,Y) for x e D andy € D \ {xg}. The Matrtin kernel is given as the limit
of K(x,y) wheny tends to a boundary point. Latandv be Martin kernels at O with respect xg.
Then the above estimate implies

fory e Hj and hence foy € U;

fory e U;.

2-d
p.
(10) u(x) ~ v(x) =~ G(xjo, x].“) for X — xj| = pj/4 and hence fojx - X;| < pj/4
by the maximum principle. By the Harnack inequality
2-d
u(xj) ~ V(X)) ~ m,
so that the boundary Harnack principle (Lemma 2) gives ateoh8; > 1 such that
(11) AZtu(x) < V(X) < Asu(X)

for x € H; and hence fok € L by the maximum principle. Sincgis arbitrary, we have (11) for
all xe D.
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Now, a standard technique ([3, Theorem 3]) shows that thastsea unique minimal Martin
kernel at 0. For the reader’s convenience we give a proof.Hgebe the family of all positive
harmonic functionss on D vanishing ondD \ {0}, bounded orD \ B(0,r) for eachr > 0 and
taking valueu(xy) = 1. Obviously, a Martin kernel at 0 belongs#®,. Since every € H, can
be represented as an integral over Martin kernels at 0, wihae€l1) extends ta,v € Hy. Let
(12) C= sup — u(x)

u,veHo V(X)
xeD

Then 1< ¢ < A3 < oo by (11). Let us show that = 1. Suppose to the contracy> 1. Take
arbitraryu, v e Hy. Thenvy; = (cv—u)/(c— 1) € Hy, so thatu < cv; = c(cv—u)/(c-1) by (12).
Hence (2 — 1)u < c?von D, which would imply

C= Sup — () ¢
UVG‘SIO v(X) ~ 20 1 ’

a contradiction. Thus = 1 andH, is a singleton consisting of the Martin kern€(-, 0) at 0.
Moreover, the Martin kernek(-, 0) is minimal since there is at least one minimal Martin kérne
at 0.

Leth = K(:, 0) be the Martin kernel at 0. Then (10) and the Harnack inetyugive
2 d

G(Xo, Y(Y)dy ~ G(Xo, X)) =——pf ~ 0
fB(ijj/4) G(Xo,xJ bonr

In view of Construction (ii), we obtain

[[etommmay=) [ clenndy=e
b j

B(Xj.0j/4)
By the Harnack inequality the above integral diverges forgwe= D in place ofxy as well. The
proof is complete. O
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