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THE 3G INEQUALITY FOR A UNIFORMLY JOHN DOMAIN

HIROAKI AIKAWA AND TORBJ ÖRN LUNDH

Dedicated to the memory of Professor Nobuyuki Suita

A. Let G be the Green function for a domainD ⊂ Rd with d ≥ 3. The Martin boundary of
D and the 3G inequality:

G(x, y)G(y, z)
G(x, z)

≤ A(|x− y|2−d + |y− z|2−d) for x, y, z ∈ D

are studied. We give the 3G inequality for a bounded uniformly John domainD, although the
Martin boundary ofD need not coincide with the Euclidean boundary. On the other hand, we
construct a bounded domain such that the Martin boundary coincides with the Euclidean boundary
and yet the 3G inequality does not hold.

1. I

For a bounded Lipschitz domainD ⊂ Rd with d ≥ 3, Cranston, Fabes and Zhao [13] proved

the following 3G inequality:

(1)
G(x, y)G(y, z)

G(x, z)
≤ A0(|x− y|2−d + |y− z|2−d) for x, y, z ∈ D,

whereG is the Green function forD andA0 is a positive constant depending only onD. They

used (1) for the conditional gauge theorem and the Schrödinger equation. Their proof is based

on the boundary Harnack principle, a comparison principle among positive harmonic functions

vanishing on a portion of the boundary ([6, 15, 18]). The boundary Harnack principle also yields

the coincidence of the Martin boundary ofD and the Euclidean boundary ([16]). So, one might

think that there is a relationship between the 3G inequalityand the coincidence of the Martin

and the Euclidean boundaries. We shall however see that there is no direct connection between

them. We shall prove the 3G inequality for a uniformly John domain, whose Martin boundary

need not coincide with the Euclidean boundary (Theorem 1). On the other hand, we shall provide

an example of a bounded domain inRd with d ≥ 3, whose Martin boundary coincides with the

Euclidean boundary and for which the 3G inequality fails to hold (Proposition 2).
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Throughout the paper, letD be a bounded domain inRd, d ≥ 3, and letδD(x) = dist(x, ∂D).

For x, y ∈ D, we define theinternal metricor theinner diameter distanceρD(x, y) by

ρ
D(x, y) = inf {diam(γ)},

where the infimum is taken over all curvesγ connectingx andy in D and diam(γ) stands for the

diameter ofγ. The inner length distanceλD(x, y) is defined similarly byλD(x, y) = inf {`(γ)},
where the infimum is taken over all curvesγ connectingx andy in D and`(γ) stands for the

length ofγ. Obviously|x− y| ≤ ρD(x, y) ≤ λD(x, y). If |x− y| ≤ max{δD(x), δD(y)}, then|x− y| =
ρ

D(x, y) = λD(x, y). We say thatD is auniformly John domainif there exists a constantA1 ≥ 1

such that each pair of pointsx, y ∈ D can be connected by a curveγ ⊂ D for which

min{|x− z|, |z− y|} ≤ A1δD(z) for all z ∈ γ,
diam(γ) ≤ A1

ρ
D(x, y)

(2)

(Balogh and Volberg [7, 8]). We say thatD is aninner uniform domainif there exists a constant

A2 ≥ 1 such that each pair of pointsx, y ∈ D can be connected by a curveγ ⊂ D for which

min{`(γ(x, z)), `(γ(z, y))} ≤ A2δD(z) for all z ∈ γ,
`(γ) ≤ A2λD(x, y),

whereγ(x, z) is the subarc ofγ connectingx andz (Bonk, Heinonen and Koskela [11]). In view of

Väis̈alä [17], the family of uniformly John domains and that of inneruniform domains coincide.

Under some additional assumptions, such as the the uniform perfectness of the boundary

or the existence of a strong barrier, Balogh-Volberg and Bonk-Heinonen-Koskela studied the

boundary Harnack principle and the Martin boundary for these domains. In [4] Mizutani and the

authors gave the boundary Harnack principle and identified the Martin boundary of a bounded

uniformly John domain without any other additional assumptions. The Martin boundary is the

ideal boundary with respect to the internal metricρD(x, y); it need not be homeomorphic to the

Euclidean boundary. In this note we show the following.

Theorem 1. Let D be a bounded uniformly John domain inRd with d ≥ 3. Then the 3G inequality

(1) holds.

In Section 3 we shall construct a bounded domain inRd with d ≥ 3, such that the Martin

boundary coincides with the Euclidean boundary and yet the 3G inequality does not hold.

Remark1. There is a significant difference between the planar case and the cased ≥ 3. For the

planar case Bass and Burdzy [10] established the 3G inequality(with suitable modification of the

right hand side) for an arbitrary bounded domain.
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2. P  T 1

We shall use the following notation as in [4]. By the symbolA we denote a positive constant

depending only on the dimensiond, whose value is unimportant and may change even in the same

line. We shall say that two positive functionsf1 and f2 are comparable, writtenf1 ≈ f2, if and

only if there exists a constantA ≥ 1 such thatA−1 f1 ≤ f2 ≤ A f1. The constantA will be called the

constant of comparison. ByB(x, r) we denote the open ball with center atx and radiusr.

Let D∗ be the completion ofD with respect to the internal metric. That is,D∗ is the equiva-

lence class of allρD-Cauchy sequences with equivalence relation “∼”, where we say{xj} ∼ {yj} if
{xj}∪{yj} is aρD-Cauchy sequence. The completionD∗ is a compact space. Let∂∗D = D∗ \D, the

boundary with respect toρD. Takeξ∗ ∈ D∗. Supposeξ∗ is represented by aρD-Cauchy sequence

{xj}. Since{xj} is also a usual Cauchy sequence, it follows thatxj converges to some pointξ ∈ D.

The pointξ is independent of the representative sequence{xj} and uniquely determined byξ∗. We

say thatξ∗ lies overξ ∈ D. If ξ ∈ D, thenξ andξ∗ coincide. Define the projectionπ : D∗ → D

by π(ξ∗) = ξ. Let Bρ(ξ∗, r) be the open connected component ofD ∩ B(π(ξ∗), r) which can be

connected toξ∗ in itself, i.e. for everyx ∈ Bρ(ξ∗, r) there is an arcγ ⊂ Bρ(ξ∗, r) starting fromx

and converging toξ∗. By definitionρD(ξ∗, x) < 2r for x ∈ Bρ(ξ∗, r); in other words

(3) if ρD(ξ∗, x) ≥ 2r, thenx ∈ D \ Bρ(ξ
∗, r).

Let ξ∗ ∈ ∂∗D. Observe from (2) that

(4) if there existsy ∈ D with ρD(ξ∗, y) ≥ 2r, then there existsx ∈ Bρ(ξ
∗, r) with δD(x) ≈ r.

In [4] Mizutani and the authors proved the following.

Theorem A. Let D be a bounded uniformly John domain. Then the Martin compactification of

D is homeomorphic to D∗ and each boundary pointξ∗ ∈ ∂∗D is minimal.

This theorem was deduced as a corollary to a uniform boundaryHarnack principle, whose

proof is based on the following estimate of the Green function (cf. [3, Lemma 3] and [4, Lemma

3.2]).

Lemma A. Let ξ∗ ∈ ∂∗D. Then

G(x, y)
G(x′, y)

≈ G(x, y′)
G(x′, y′)

for x, x′ ∈ Bρ(ξ
∗, r) and y, y′ ∈ D \ Bρ(ξ

∗,6r)

with constant comparison depending only on D.

In [4, Lemma 3.2], the above estimate was given actually for the Green function for the

intersection ofD andBρ(ξ∗,Ar) with A large enough. However, for the cased ≥ 3, we see that

the same estimate holds for the Green function forD itself.

We also need the following lemma whose proof is easy and left to the reader.
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Lemma 1. Let x, y ∈ D. Then G(x, y) ≤ AρD(x, y)2−d. Moreover, ifδD(x) ≥ A−1ρ
D(x, y) and

δD(y) ≥ A−1ρ
D(x, y), then G(x, y) ≥ A−1ρ

D(x, y)2−d.

Proof of Theorem 1.We have observed|x− y| ≤ ρD(x, y). So, let us prove the following slightly

stronger form of the 3G inequality.

(5)
G(x, y)G(y, z)

G(x, z)
≤ A(ρD(x, y)2−d + ρD(y, z)2−d) for x, y, z ∈ D.

We will prove (5) according to the line of Bass’ proof of the 3G inequality. See [9, Theorem 3.6]

and its correction. Letc1 =
1
39 andc2 =

1
13c1. By symmetry we may assume that

(6) ρ
D(x, y) ≤ ρD(y, z).

Case 1. ρD(x, y) ≥ c1
ρ

D(x, z). Let r = ρD(x, z). If δD(x) ≥ c2r, then we letx1 = x. If

δD(x) < c2r, then we takex1 as follows: Letx′ ∈ ∂D with |x− x′| = δD(x). Since the line segment

xx′ is included inD ∩ B(x′, c2r), we findx∗ ∈ ∂∗D lying overx′ such thatx ∈ Bρ(x∗, c2r). Then

ρ
D(x∗, y) ≥ ρD(x, y) − ρD(x, x∗) ≥ (c1 − c2)r = 12c2r,

ρ
D(x∗, z) ≥ ρD(x, z) − ρD(x, x∗) ≥ (1− c2)r > 12c2r.

By (4) we can takex1 ∈ Bρ(x∗, c2r) with δD(x1) ≈ c2r. Then x, x1 ∈ Bρ(x∗, c2r) and y, z ∈
D \ Bρ(x∗,6c2r) by (3), so that by Lemma A yields

G(x, y)
G(x1, y)

≈ G(x, z)
G(x1, z)

.

Similarly, if δD(z) ≥ c2r, then we letz1 = z. If δD(z) < c2r, then we takez′ ∈ ∂D with |z−z′| = δD(z)

andz∗ ∈ ∂∗D lying overz′ such thatz ∈ Bρ(z∗, c2r). By (6)

ρ
D(z∗, y) ≥ ρD(z, y) − ρD(z, z∗) ≥ (c1 − c2)r = 12c2r,

ρ
D(z∗, x1) ≥ ρD(x, z) − ρD(x, x1) − ρD(z, z∗) ≥ (1− 2c2)r > 12c2r.

Hence we findz1 ∈ Bρ(z∗, c2r) such thatδD(z1) ≈ c2r by (4). Thenz, z1 ∈ Bρ(z∗, c2r) andy, x1 ∈
D \ Bρ(z∗,6c2r), so that Lemma A yields

G(y, z)
G(x1, z)

≈ G(y, z1)
G(x1, z1)

.

Hence
G(x, y)G(y, z)

G(x, z)
≈ G(x1, y)G(y, z1)

G(x1, z1)
.

Now observe thatδD(x1) ≈ δD(z1) ≈ ρD(x1, z1) ≈ r, so thatG(x1, z1) ≈ r2−d by Lemma 1. Also,
ρ

D(x1, y) ≈ ρD(x, y) ≥ c1r andρD(y, z1) ≈ ρD(y, z) ≥ ρD(x, y) by (6). Hence Lemma 1 yields

G(x, y)G(y, z)
G(x, z)

≤ A
ρ

D(x, y)2(2−d)

r2−d
≤ AρD(x, y)2−d.

Thus (5) holds in this case.
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Case 2. ρD(x, y) < c1
ρ

D(x, z). Let s = ρD(x, y). By connectedness there isw ∈ D with
ρ

D(x,w) = s/c1. Then

(7) ρ
D(y,w) ≥ ρD(x,w) − ρD(x, y) = (

1
c1
− 1)s> s= ρD(x, y) = c1

ρ
D(x,w),

so that Case 1 applies to the tripletx, y,w. Hence

(8)
G(x, y)G(y,w)

G(x,w)
≤ AρD(x, y)2−d.

We are now going to replacew with z.

Subcase 2a. s= ρD(x, y) > 1
2δD(y). Let y′ ∈ ∂D with |y− y′| = δD(y). Since the line segment

yy′ is included inD ∩ B(y′,2s), we findy∗ ∈ ∂∗D lying overy′ such thatρD(y, y∗) = δD(y) < 2s.

Thenx, y ∈ Bρ(y∗,3s). Observe from (7) that

ρ
D(y∗,w) ≥ ρD(y,w) − ρD(y, y∗) ≥ (

1
c1
− 3)s= 36s,

ρ
D(y∗, z) ≥ ρD(x, z) − ρD(x, y) − ρD(y, y∗) ≥ (

1
c1
− 3)s= 36s,

so thatw, z ∈ D \ Bρ(y∗,18s) by (3). Lemma A implies

G(y,w)
G(x,w)

≈ G(y, z)
G(x, z)

,

which together with (8) yields

G(x, y)G(y, z)
G(x, z)

≈ G(x, y)G(y,w)
G(x,w)

≤ AρD(x, y)2−d.

Subcase 2b. s = ρD(x, y) ≤ 1
2δD(y). ThenG(x, y) ≈ |x − y|2−d = ρD(x, y)2−d by Lemma 1.

If furthermore|y − z| > 3
4δD(y), thenG(·, z) is positive and harmonic inB(y, 3

4δD(y)), so that the

Harnack inequality showsG(x, z) ≈ G(y, z) and hence

G(x, y)G(y, z)
G(x, z)

≈ G(x, y) ≈ ρD(x, y)2−d.

If |y−z| ≤ 3
4δD(y), then|y−z| = ρD(y, z) ≥ ρD(x, y) = |x−y| by (6), so that|x−z| ≤ |x−y|+ |y−z| ≤

2|y− z|. Moreover,G(y, z) ≈ |y− z|2−d andG(x, z) ≈ |x− z|2−d; and hence,

G(x, y)G(y, z)
G(x, z)

≈ |x− y|2−d|y− z|2−d

|x− z|2−d
≤ A|x− y|2−d = AρD(x, y)2−d.

Thus (5) also holds in Case 2. The proof is complete. �

3. A E

Let us begin with an application of the 3G inequality.

Proposition 1. Let D be a domain of finite volume inRd with d ≥ 3. Suppose the 3G inequality

(1) holds. Then the following Cranston-McConnell inequality

(9) sup
x∈D

1
u(x)

∫

D
G(x, y)u(y)dy≤ dV1−2/d

d |D|2/dA0
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holds for every nonnegative superharmonic function u in D, where Vd stands for the volume of a

unit ball inRd.

Proof. Let B(0,R) be the open ball with the same volume asD. Supposeu is a Green potential
∫

D
G(·, z)dµ(z) of a measureµ in D. Then (1) and Fubini’s theorem yield

∫

D
G(x, y)u(y)dy=

∫

D
dµ(z)

∫

D
G(x, y)G(y, z)dy

≤ A0

∫

D
G(x, z)dµ(z)

∫

D
(|x− y|2−d + |y− z|2−d)dy

≤ 2A0u(x)
∫

B(0,R)
|y|2−ddy= A0dVdR

2u(x) = A0dV1−2/d
d |D|2/du(x).

Thus (9) holds for a Green potential. Since every nonnegative superharmonic function is ap-

proximated from below by Green potentials, the monotone convergence theorem completes the

proof. �

For an arbitrary planar domainD of finite area, Cranston and McConnell [14] proved (9) with

A0 bounded by the area ofD up to an absolute multiplicative constant. See [12] for a simple

proof and [1, 5, 2] for an analytic proof and some generalizations. Cranston and McConnell [14]

provided also an example of bounded domain inR3, failing to satisfy (9). We shall modify their

example to construct a bounded domain whose Martin boundarycoincides with the Euclidean

boundary and which fails to satisfy the Cranston-McConnell inequality (9). In view of Proposition

1, this domain also fails to satisfy the 3G inequality (1).

Construction. Let Rn ↓ 0 andNn ↑ ∞ be a decreasing sequence of positive numbers and an

increasing sequence of positive integers such that

(i) Rn+1 +
Rn+1

Nn+1
≤ Rn −

Rn

Nn
,

(ii)
∞
∑

n=1

(

Rn

Nn

)2

Nd−1
n = ∞.

For example,Rn =
1
√

n
andNn = 8n satisfy the above condition. In fact,

Rn −
Rn

Nn
− (Rn+1 +

Rn+1

Nn+1
) ≥ 1
√

n
− 1
√

n+ 1
− 1

4n
√

n
=

1
√

n
√

n+ 1(
√

n+
√

n+ 1)
− 1

4n
√

n

≥ 1

2(n+ 1)
√

n
− 1

4n
√

n
=

2n− (n+ 1)

4n(n+ 1)
√

n
> 0;

and
(

Rn

Nn

)2

Nd−1
n =

(

1

8n
√

n

)2

(8n)d−1 = 8d−3nd−4 ≥ 8d−3n−1.

Let 0 < η < 1/4 be a constant depending only on the dimension such that we can placeNd−1
n

many mutually disjoint open balls of radiusrn = ηRn/Nn with centers on the sphereSn = {x ∈
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R
d : |x| = Rn}. Order these balls and call themBk

n, k = 1, . . . ,Nd−1
n . In view of (i), we may assume

that the family of the doubles ofBk
n (n = 1, . . . ,∞ andk = 1, . . . ,Nd−1

n ) is mutually disjoint. Fix

n and connect each ballBn
k to the nextBn

k+1 for k = 1, . . . ,Nd−1
n − 1, in order, by a cylindrical

tube lying inB(0,Rn + 2rn). Then connect the last ballBk
n with k = Nd−1

n to the first ballB1
n+1 of

the (n + 1)-th level by a cylindrical tube lying inB(0,Rn + 2rn). Moreover, each tube intersects

its ball in circular caps subtending solid angleε < π/6 and the two caps in each ball (except the

first) are antipodal. We may assume that the tubes are mutually disjoint and the connection is so

smooth that the resultant domainD is locally Lipschitz apart from the origin. Hence, we observe

that the Martin boundary ofD is homeomorphic to the Euclidean boundary except for the origin.

We shall show that there is a unique minimal functionh corresponding to the origin.

Proposition 2. Let D be as above. Then there is a unique minimal function h corresponding to

the origin. Moreover,
∫

D
G(x, y)h(y)dy= ∞.

Hence, the Martin boundary of D coincides with the Euclidean boundary and yet the Cranston-

McConnell inequality(9) and the 3G inequality(1) fail to hold.

We prepare the proof of Proposition 2 by stating the following boundary Harnack principle

for a specific Lipschitz domain. Since we consider near a smooth boundary portion, the boundary

Harnack principle can be proved easily. See Figure 1.

Lemma 2. LetΩ = {x = (x1, . . . , xd) : 1
4 < |x| < 1,−

√
3

2 < x1 < 0}, H = {x ∈ Ω : x1 = −1
2}

and x∗ = (−1
2,0, . . . ,0). If u and v are positive harmonic functions onΩ such that u= v = 0 on

{x = (x1, . . . , xd) : |x| = 1,−
√

3
2 < x1 < 0}, then

u(x)
u(x∗)

≈ v(x)
v(x∗)

≈ δΩ(x)
δΩ(x∗)

for x ∈ H.

1
4x∗

H

Ω

−1 1

F 1. Boundary Harnack Principle for the shaded domainΩ.
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Proof of Proposition 2.Let B0 = B(x0, ρ0), B1 = B(x1, ρ1),. . . be the enumeration of{Bk
n}n,k in

order and letT j be the tube connectingBj andBj+1. Our domainD looks like a long wiggling

string of beads. Takej ≥ 1. We may assume by rotation thatBj andT j intersect in a circular cap

with center at (−ρ j ,0, . . . ,0)+xj. Translate and dilateΩ in Lemma 2 so thatxj and (−ρ j ,0, . . . ,0)+

xj correspond to the origin and (−1,0, . . . ,0), respectively. LetH j andx∗j correspond toH andx∗,

respectively. Observe thatBj \ H j consists of two connected components. ByB′j we denote the

component containingxj. Let L j = B0 ∪ T0 ∪ · · · ∪ T j−1 ∪ B′j and letU j = D \ (L j ∪ H j). See

Figure 2

x∗j

H j

L jU j

T j−1T j T0

B′j
B0

x0xj

x

F 2. Counter example to the Cranston-McConnell inequality: a long wig-
gling string of beads.

Fix x such that|x− xj | = ρ j/4. Apply Lemma 2 tou = G(x, ·) andv = G(x0, ·). Then

G(x, y)
G(x, x∗j )

≈ G(x0, y)
G(x0, x∗j )

for y ∈ H j and hence fory ∈ U j

by the maximum principle. SinceG(x, x∗j ) ≈ ρ2−d
j , it follows that

G(x, y)
G(x0, y)

≈
ρ2−d

j

G(x0, x∗j )
for y ∈ U j .

Let K(x, y) = G(x, y)/G(x0, y) for x ∈ D andy ∈ D \ {x0}. The Martin kernel is given as the limit

of K(x, y) wheny tends to a boundary point. Letu andv be Martin kernels at 0 with respect tox0.

Then the above estimate implies

(10) u(x) ≈ v(x) ≈
ρ2−d

j

G(x0, x∗j )
for |x− xj | = ρ j/4 and hence for|x− xj | ≤ ρ j/4

by the maximum principle. By the Harnack inequality

u(x∗j ) ≈ v(x∗j ) ≈
ρ2−d

j

G(x0, x∗j )
,

so that the boundary Harnack principle (Lemma 2) gives a constantA3 > 1 such that

(11) A−1
3 u(x) ≤ v(x) ≤ A3u(x)

for x ∈ H j and hence forx ∈ L j by the maximum principle. Sincej is arbitrary, we have (11) for

all x ∈ D.
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Now, a standard technique ([3, Theorem 3]) shows that there exists a unique minimal Martin

kernel at 0. For the reader’s convenience we give a proof. LetH0 be the family of all positive

harmonic functionsu on D vanishing on∂D \ {0}, bounded onD \ B(0, r) for eachr > 0 and

taking valueu(x0) = 1. Obviously, a Martin kernel at 0 belongs toH0. Since everyu ∈ H0 can

be represented as an integral over Martin kernels at 0, we seethat (11) extends tou, v ∈ H0. Let

(12) c = sup
u,v∈H0

x∈D

u(x)
v(x)
.

Then 1≤ c ≤ A2
3 < ∞ by (11). Let us show thatc = 1. Suppose to the contraryc > 1. Take

arbitraryu, v ∈ H0. Thenv1 = (cv− u)/(c− 1) ∈ H0, so thatu ≤ cv1 = c(cv− u)/(c− 1) by (12).

Hence (2c− 1)u ≤ c2v on D, which would imply

c = sup
u,v∈H0

x∈D

u(x)
v(x)

≤ c2

2c− 1
< c,

a contradiction. Thusc = 1 andH0 is a singleton consisting of the Martin kernelK(·,0) at 0.

Moreover, the Martin kernelK(·,0) is minimal since there is at least one minimal Martin kernel

at 0.

Let h = K(·,0) be the Martin kernel at 0. Then (10) and the Harnack inequality give
∫

B(x j ,ρ j/4)
G(x0, y)h(y)dy≈ G(x0, x

∗
j )
ρ2−d

j

G(x0, x∗j )
ρd

j ≈ ρ2
j .

In view of Construction (ii), we obtain
∫

D
G(x0, y)h(y)dy≥

∞
∑

j=1

∫

B(x j ,ρ j/4)
G(x0, y)h(y)dy= ∞.

By the Harnack inequality the above integral diverges for every x ∈ D in place ofx0 as well. The

proof is complete. �
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