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Modeling gene-regulatory networks to describe cell fate
transitions and predict master regulators

Pierre-Etienne Cholley'?, Julien Moehlin', Alexia Rohmer', Vincent Zilliox', Samuel Nicaise', Hinrich Gronemeyer' and

Marco Antonio Mendoza-Parra'?

Complex organisms originate from and are maintained by the information encoded in the genome. A major challenge of systems
biology is to develop algorithms that describe the dynamic regulation of genome functions from large omics datasets. Here, we
describe TETRAMER, which reconstructs gene-regulatory networks from temporal transcriptome data during cell fate transitions to
predict “master” regulators by simulating cascades of temporal transcription-regulatory events.

npj Systems Biology and Applications (2018)4:29; doi:10.1038/541540-018-0066-z

While previous efforts described cell fate transitions by the
reconstruction of transcription factor (TFs)-driven gene-regulatory
networks (GRNs) from the analysis of publicly available data (e.g.,
microarray transcriptomes;’”> Cap Analysis of Gene Expression
(CAGE) data;® enriched TF-DNA binding motif analysis*®), none of
them considers the inherent temporal dimension of this process.
Also, neither provided a modular strategy for reconstructing
specific GRNs by incorporating novel information as it becomes
available in public databases.

Here, we present TETRAMER (TEmporal TRAnscription regulation
ModellER); a Cytoscape App that (i) reconstructs cell fate
transition-specific GRNs by integrating user-provided temporal
transcriptomes with a variety of pre-established TF-target gene
(TG) relationships issued from different types of public informa-
tion; (ii) predicts master regulator TFs by modeling temporal
transcriptional regulation propagation; and (iii) reveals the
temporal transcription-regulatory relationships between the TFs
participating in cell fate transition (Fig. 1). TETRAMER generates a
GRN that includes the temporal evolution of global transcription
by using information derived from three sources: GRNs con-
structed from a plethora of transcriptomes (CellNet'), the genome-
wide mapping of human promoters and enhancers in multiple cell
types/tissues by CAGE of the FANTOM5 consortium (regulatory
circuits®), and the systematic analysis of ChIP-seq information in
the NGS-QC database® (http://ngs-qc.org) (Fig.1a).

While informative, the large size of the reconstructed networks
(several thousands of nodes and edges) restricts visual tracing of
the temporal evolution of the transcription regulatory cascades
driving the various types of cell fate transitions. TETRAMER
addresses this issue by simulating the propagation of the
temporal flux of transcriptional regulation from any TF through
the reconstructed network by applying a set of logical rules
aiming to avoid the integration of information about TF-TG
relationships from heterologous cell/tissue systems, which may be
irrelevant for the particular cell fate transition (Fig. 1b, c and
Supplementary Fig. 1). Subsequently, TETRAMER evaluates the

fraction of regulated genes—relative to a defined population (e.g.,
defining the terminal state of the cell fate transition)—by any
given TF. This fraction; herein referred to as the master regulator
index (“MRI"); is further supported by the evaluation of its
confidence relative to an MRI issued from the randomization of
the GRN connectivity. For this, TETRAMER generates multiple
randomly connected GRNs, on the basis of the same nodes and
number of edges (up to 100 times), from which a randomized MRI
distribution is computed (Supplementary Note). Finally, TETRAMER
ranks TFs according to their MRI and depicts the temporally
emerging transcription-regulatory landscape in Cytoscape (Fig. 1d
and Supplementary Fig. 1).

We have previously used this concept to define a temporal GRN
during retinoic acid-induced neuronal differentiation of embryonic
stem cells (ESCs).” We reconstructed a GRN (>1900 nodes; >11,600
edges) from six subsequent transcriptomes and queried the
temporal evolution of transcription-regulatory cascades emanat-
ing from each TF. A subset of ~30 nodes presented MRIs higher
than 40% (p < 1 x 107'%; Supplementary Fig. 2). These nodes not
only comprised well-known neurogenic TFs, but also others poorly
characterized as major players in neurogenesis. Among them, the
early induced factors TAL2, GBX2, DMRT1, or LHX2 were
subsequently validated to drive neurogenesis in CRISPR-dCas9
gene activation assays.”

To illustrate its versatility, we used TETRAMER to reconstruct
dynamic GRNs implicated in iPS cell reprogramming (Supplemen-
tary Fig. 3), tumorigenic cell fate transformation (Supplementary
Fig. 4), and trans-differentiation of B-cell lymphomas to primary
macrophages (Fig. 2). Specifically, re-analysis of temporal tran-
scriptomes generated by Koga and colleagues® for the repro-
gramming of MEFs to iPSCs identified 21 TFs with MRIs > 25% (p <
1x107'%. Among them, several factors implicated in the
maintenance of pluripotency and self-renewal of ESCs (SALL4,
SOX2, NANOG, NROB1, or POU5F1) were shown to be activated at
late reprogramming stages (Supplementary Fig. 3). TETRAMER
predicted in addition several other factors that were previously
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Fig. 1 TETRAMER workflow to reconstruct TF regulatory networks by the integrating publicly available GRN information into temporal
transcriptomes. a TETRAMER reconstructs first a temporal GRN for a cell fate transition by integrating publicly available GRN sources in the
temporal transcriptomes established for this transition. b Then the temporal propagation of the flux of transcription regulatory information is
simulated across the entire GRN, thus establishing a comprehensive connectivity map between all nodes, which represent essentially TFs. For
computation, the transcriptional state of each node is discretized (0, 1, -1), as shown. ¢ Propagation of the transcription regulatory information
applies three logical rules: (i) any connectivity to unresponsive nodes is eliminated, as the signal propagation is terminated; (ii) the flux of
information should be coherent between the type of transcription regulation (positive or negative) and the discretized expression level of the
interconnected nodes; (iii) the directionality of the transcriptional regulation should comply with the temporal signal flux. Nodes/edges that
do not comply with these rules are excluded from the GRN map, as they are not considered specific for the cell fate transition event.
Furthermore, nodes/edges downstream of the excluded events are neither considered (herein depicted in gray). d Within the reconstituted
GRN all nodes are ranked by their master regulator index (MRI), corresponding to the fraction of nodes that are regulated by a given TF upon
its activation and signal propagation. The relevance of this ranking is challenged by performing the same procedure in a GRN with
randomized connectivities. Thus, TETRAMER identifies master regulator TFs among several thousand differentially expressed genes during cell
fate transitions
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Fig. 2 Reconstructing the TF regulatory network involved in B-lymphoma to macrophage trans-differentiation with TETRAMER. a TETRAMER
was used to model the TF regulatory network implicated in trans-differentiation of B-lymphoma cells to primary macrophages by over-
expression of CEBPA.'® b The information on temporal transcriptional regulation obtained from transcriptomes assessed during the first 168 h
after CEBPA over-expression (GSE44700) was combined with the connectivity information obtained from three publicly available GRN sources
[CellNet; regulatory circuits established by the FANTOM consortium (regulatorycircuits.org) and systematic reanalysis of all publicly available
ChlP-seq datasets (ngs-qc.org)] to predict TFs that acted as master regulators of the trans-differentiation. Heat-maps of TFs identified by
integrating each of the three GRN sources were ranked according to their MRI for comparison. ¢ C/EBPa cistrome predicted from (b). d
Verification of three predicted C/EBPa targets in (c) by ChIP-sequencing readouts available in the public domain (ngs-gc.org). Note that these
three cases were predicted by the various publicly available GRN sources, as indicated by the arrow color-code (displayed in (e)). e The action
of TFs (nodes are color-coded according to gene induction, as indicated at the top) in a GRN generated with TETRAMER, highlighting their
temporal regulation during B-lymphoma to macrophage trans-differentiation. The origin of the integrated edges is color-coded to reveal the
corresponding connectivity data sources

reported to be involved in, or enhance reprogramming, like the this system the induction of an immediate early gene program
KLF4-interacting SWI/SNF catalytic subunit SMARCA2/BRM,’ the involving proto-oncogenes (JUN, JUNB, MYC), suggested not only
DNA demethylase TET1, which can replace OCT4 in some  tumor suppressors (EGR,'* KLF6'®), but also broad-spectrum
reprogramming cocktails,'® or the PRC2 subunit JARID2.""'? inflammatory regulators, like the ubiquitin-editing enzyme

We previously reported that tumorigenesis of pre-transformed TNFAIP3.'® The early program drives the temporal induction of
human fibroblasts is induced by conditioned medium from downstream NF-kB-mediated programs known to link inflamma-
senescent cells.'®> TETRAMER (Supplementary Fig. 4) revealed in tion and cancer (REL, RELB, NFKB, NFKB2),'” and the cytokine-
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3
mediated programs triggered by IRF1, also regarded as tumor secretome of senescent cells activates a plethora of gene
suppressor, as is the late induced TP53. The last observed regulators that apparently substitute for the oncogene-mediated
programming phase involves TFs like CEBPG,'® known to suppress activities in the stepwise model of human primary cell

oncogene-induced senescence and inflammatory gene expres- transformation.
sion, MXD1, a regulatory component in the MYC-MAX-MAD As final example, we used TETRAMER to reconstitute TF wiring
network and heat shock factors (DNAJC2, HSF2). Thus, the implicated in the trans-differentiation of B-lymphoma cells to
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Fig.3 TETRAMER reveals the differential TF networks in hundreds of cell types, predicts candidates of master regulators required for cell fate
conversions and identifies TF networks operative during organoid differentiation. a TF GRN similarity matrix computed from transcriptomes of
~300 cell/tissue types representing 14 different anatomical systems in the human body. TETRAMER-predicted master regulator GRNs were
clustered by their similarity (Tanimoto Index; “GRNs sim(%);” Average Dot Product distance metrics). b Using the predicted master regulators
over this large number of cell/tissue types TETRAMER can predict the GRN and TF changes needed for the interconversion between any two
cell types, as schematically deplcted for the (trans-) differentiation to macrophages. The solid arrow reveals the trans-differentiation that has
been experimentally confirmed.'® ¢ TETRAMER-based ranking of TFs according to their master regulator capacity (MR index) to trans-
differentiate any of the cell types into M2 macrophages. d TETRAMER-predicted master regulators for trans-differentiation of ES, ﬁbroblast orB
cells to macrophages (ranked bg MRIs, rainbow heatmap) were compared with the one inferred from the temporal transcriptomes'® and those
predicted by other methods.'™ Color-coded names of TFs reveal common predictions (“prediction frequency”) by different methods. e, f
Master regulators predicted from transcriptomes assessed during 60 days of H9 hES-derived cerebral organoid cultures (EB, embryoid bodies).
In (f), the relevance of major TFs predicted in (e) is highlighted through their association to cells/tissues (blue boxes). The identification of a
few TFs assoaated with non-neuroectodermal tissues reveals the previously noted presence of undesired cell fate processes in cerebral

organoid cultures.?®

«

primary macrophages by over-expressing CEBPA'® (Fig. 2a). In fact,
GRN reconstruction revealed the downstream TF regulatory
cascade initiated by C/EBPa, thus providing a comprehensive
view of the master regulators implicated in this process. This TF
regulatory wiring was reconstituted by integrating TF-TGs
relationships from three GRN databases (CellNet', CAGE>,
qcChiP-seq®; Fig. 2b). Note both the redundancy (CellNet vs.
qcChlP-seq, TFs depicted at top right; CellNet vs. CAGE, TFs
specified on left) and the unique retrieval of some TFs (e.g., HIF1A,
MAFF) from different databases, illustrating the advantage of
incorporating multiple sources of TF-TG relationships. Indeed,
albeit in the predicted C/EBPa cistrome (Fig. 2c), FOSLT was only
retrieved from CAGE, SPIT only from CellNet, and JUNB only from
the qcChlIP-seq database, independent ChiIP-seq assays demon-
strated C/EBPa binding proximal to each gene, but beyond the
proximity criterion of the qcChlP-seq collection (enhancer regions
< 10 kb distance to TSS), thus explaining why FOSL1 and SPI1 are
not predicted as C/EBPa targets by this collection (Fig. 2d). The
final temporally organized TF network (Fig. 2e) comprises 70 TFs
and 222 relationships, revealing also activation of the endogenous
CEBPA, which may support maintenance of the trans-differentiated
cell state, as it is the case for pluripotency factors in MEF-iPSC
reprogramming (Supplementary Fig. 3).

Given that, in principle, TETRAMER predicts master regulators
for any cell fate transition by evaluating their impact on
transcription regulation throughout the reconstructed network,
we applied this approach to predict master regulators to each
hypothetically possible cell fate transition within a collection of
more than 3000 transcriptomes from ~300 cell/tissue types
representing 14 different anatomical systems in the human body.?
We generated GRNs that corresponded to the transitions
predicted to interconvert any cell/tissue type into any other, and
predicted the TF networks expected to drive these cell fate
transitions (Supplementary Note and Supplementary Fig. 7a).
Finally, the degree of similarity among all inferred TF networks per
cell/tissue types was evaluated (Tanimoto Index; Supplementary
Note) and clustered to reveal the common anatomical origin of
the compared cell/tissue systems (Fig. 3a). As a validation step we
focused on the transition towards M2 macrophages from a variety
of different cell types (~300 cell/tissue types as source; Fig. 3b) and
ranked the transition-implicated TFs according to their capacity to
act as master regulators (“MRI;” Fig. 3¢; Supplementary Fig. 5a). In
this manner, we aimed at identifying a consensus TFs for driving
cell fate transition towards macrophage, in despite of the cell
type/tissue in use as source, as well as to overwhelm potential
technical aspects implicated on their prediction. TETRAMER
identified major players in the transitions from naive B cells or
primary skin fibroblasts to M2 macrophages (Supplementary Fig.
5b), presenting overlapping but non-identical sets of 11 to 19
master regulators—six of which are common to all three
transitions—depending on whether the transition to M2 macro-
phages was initiated from B cells, fibroblasts, or ES cells (Fig. 3d).
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Comparing the predictions of TETRAMER with previous efforts to
define master regulators (Mogrify,® CellNet', D'Alessio et al?
Supplementary Fig. 6a), revealed a core of TFs commonly
predicted in most approaches (Fig. 3d; Supplementary Fig. 6b),
top ranked on the consensus strategy assessed over ~300 cell/
tissue types (Fig. 3c). Of note, CEBPA was identified by all but one
approach, clearly suggesting that even the most evident master
regulators can also be missed under defined algorithmic/ cell/
tissue types, thus supporting the consensus strategy.

To assess the versatility of TETRAMER we used it to monitor cell
fate transitions in the context of developing cerebral organoids.?’
Specifically, we used temporal transcriptome data generated from
brain organoid cultures during 60 days.>> TETRAMER predicted
134 TFs with MRI>25% (p<10~7) (Fig. 3e). Considering the
complexity of organoids, we expected that the inferred master
regulators would correspond to distinct cell types generated
during this process. Indeed, by comparing the list of top ranked
master regulators with those retrieved on the reconstructed GRNs
associated to the ~300 cell/tissue types discussed above (Fig. 3a
and Supplementary Fig. 7) several predicted TFs were associated
with GRNs operative in a variety of neuronal cell types albeit some
were also associated with non-neuroectodermal cell types (Fig. 3f).
This last aspect was also observed in immunofluorescence assays
with cultured cerebral organoids.”® Taken altogether, this effort
illustrates the potential of TETRAMER to study cell fate transitions
even in complex heterogeneous systems, such as developing
organs.

While in the last years approaches for predicting master
regulators, as molecular targets of pharmacologically relevant
compounds, were developed on the basis of static or dynamic
inferred gene-regulatory maps (DeMAND,>* PROTINA%), their
accessibility by the scientific community is restricted by the
requirements of using numerical computing environments
(including in some cases the necessity of having a commercial
license). In contrast, TETRAMER is freely available through the
Cytoscape App Store (http://apps.cytoscape.org/apps/tetramer),
and from a dedicated website providing access to the various
networks described in this study (http://igbmc.fr/Gronemeyer/
gcgenomics/TETRAMER). Through this platform, users have the
possibility to query predicted MRs for (i) a given cell transforma-
tion; (ii) the transformation of a given cell towards any other cell
type; and (iii) the transformation of a given cell into any other cell.
Moreover, users can compare the outputs generated by the
Cystoscape app with the collection of GRNs reconstructed for
~300 human cell/tissue types.
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