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Abstract

This report gives an account of the work performed by the Division of Sub-
atomic and Plasma Physics (formerly, Division of Nuclear Engineering), Chalmers,
in the frame of a research collaboration with Ringhals, Vattenfall AB, contract No.
663628-054. The contract constitutes a 1-year co-operative research work concerning
diagnostics and monitoring of the BWR and PWR units. The work in the contract
has been performed between July 1st 2016, and December 31st, 2017. During this
period, we have worked with six main items as follows:

1. Further development and improvement of the coupled coarse-fine mesh CORE
SIM-based model;

2. Further investigation of the point-kinetic component of the noise induced by
fuel assembly vibrations;

3. Analysis of new ex-core measurements, taken in R-4 after power increase;

4. Further development and test of the mode separation model as applied to 3-D
“wobbling” type or “tilting” type core-barrel vibrations;

5. A basic study in neutron noise theory which could provide some indirect sup-
port for the determination of the void fraction from neutron noise measure-
ments;

6. A pilot study of the possibility of using fission chambers for zero power noise
experiments.

The work was performed at the Division of Subatomic and Plasma Physics,
Chalmers University of Technology by Imre Pázsit (project co-ordinator), Cristina
Montalvo (visitor from the Technical University of Madrid), Hoai-Nam Tran (re-
search collaborator from Duy Tan University, Vietnam), Omar Alejandro Olvera
Guerrero (visitor, PhD student at UAM/Autonomus Metropolitan University, Mex-
ico City, Mexico) and Henrik Nylén, the contact person at Ringhals. The mea-
surements reported in Chapter 6 were designed and executed by our collaborating
partners in EPFL/PSI, Mathieu Hursin, Oskari Pakari and Vincent Lamirand.
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1. INTRODUCTION

This report gives an account of the work performed by the Nuclear Engineering
Group of the Division of Subatomic and Plasma Physics (former Division of Nuclear
Engineering), Chalmers, in the frame of a research collaboration with Ringhals,
Vattenfall AB, contract No. 663628-054. The contract constitutes a 1-year co-
operative research work concerning diagnostics and monitoring of the BWR and
PWR units. The work in the contract has been performed between July 1st 2016,
and December 31st, 2017. During this period, we have worked with six main items
as follows:

1. Further development and improvement of the coupled coarse-fine mesh CORE
SIM-based model;

2. Further investigation of the point-kinetic component of the noise induced by
fuel assembly vibrations;

3. Analysis of new ex-core measurements, taken in R-4 after power increase;

4. Further development and test of the mode separation model as applied to 3-D
“wobbling” type or “tilting” type core-barrel vibrations;

5. A basic study in neutron noise theory which could provide some indirect sup-
port for the determination of the void fraction from neutron noise measure-
ments;

6. A pilot study of the possibility of using fission chambers for zero power noise
experiments.

This work was performed at the Division of Subatomic and Plasma Physics,
Chalmers University of Technology by Imre Pázsit (project co-ordinator), Cristina
Montalvo (visitor from the Technical University of Madrid), Hoai-Nam Tran (re-
search collaborator from Duy Tan University), Omar Alejandro Olvera Guerrero
(visitor, PhD student at UAM/Autonomus Metropolitan University, Mexico City,
Mexico) and Henrik Nylén, who was also the contact person at Ringhals. The
measurements reported in Chapter 6 were designed and executed by our collaborat-
ing partners in EPFL Lausanne/PSI, Mathieu Hursin, Oskari Pakari and Vincent
Lamirand.
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2. FURTHER DEVELOPMENT AND IMPROVEMENT OF THE
COUPLED COARSE-FINE MESH CORE SIM-BASED MODEL

The goal in this stage was the further development and improvement of the
coupled coarse-fine mesh CORE SIM-based model presented in the previous Stage
(Etapp 2015, [1]) and used for simulating the noise induced by three dimensional
fuel assembly vibrations. As reported in the previous stages, the vibrations of the
individual fuel assemblies contribute significantly to the ex-core detector noise, which
is used for diagnosing the core barrel vibrations. A good knowledge of the ex-core
noise induced by fuel assembly vibrations is therefore essential in order to interpret
and diagnose the core-barrel vibrations correctly.

Such calculations have been already performed and analysed with the use of
the noise simulator CORE SIM [2]. However, one limitation was that with the
general mesh size used in CORE SIM, the vibration amplitude could not be chosen
sufficiently small. The main objective in this stage was thus to develop a better
model of the realistic displacement (in the sub-millimetre range) of the fuel assembly
during vibrations at the fine mesh scale. This required using more advanced and
faster numerical techniques for solving the governing CORE SIM equations. An
overall decreasing of the mesh size would have led to unacceptably long running
times and memory requirements. Hence, a model was developed with non-uniform
mesh size. Around the vibrating fuel assembly, in a layer several times thicker than
the vibration amplitude, a fine mesh was used, whereas in the rest of the core the
same coarse mesh was used as before.

This extension of the method and the computational models of a previous work
has been applied to two different PWR cores. Both the performance of the model,
as well as the effect of cycle burnup on the properties of the ex-core detector noise
could be investigated. The final goal was to further examine the hypothesis that
the amplitude of the peak in the auto power spectral density (APSD), induced by
fuel assembly vibrations, increases during the cycle. Stochastic vibrations along a
random two-dimensional trajectory of individual fuel assemblies were assumed to
occur at different locations in the cores. Two models regarding the displacement
amplitude of the vibrating assembly have been considered to determine the noise
source. Then, the APSD of the ex-core detector noise was evaluated at three burnup
steps.

Similarly to the findings of the previous work, the results show that there is no
monotonic trend of the change of the APSD of the ex-core detector, induced by a
single vibrating assembly, at a random position. However, the increase of APSD
occurs predominantly for peripheral assemblies. When assuming simultaneous vi-
brations of a number of fuel assemblies uniformly distributed over the core, the effect
of the peripheral assemblies dominate the ex-core neutron noise. This behaviour was
found similarly in both cores, thereby further corroborating our previous hypothesis.

The work reported in this Chapter was performed by a group led by our collab-
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orating partner Hoai Nam Tran. The work was published in Nuclear Science and
Technology [3], and the description below largely follows that article.

2.1 The neutron noise equations in two group theory

The noise equation in two-group diffusion theory is derived from the time-
dependent diffusion equation by splitting the time-dependent quantities into mean
values and fluctuations,

X(r , t) = X(r) + δX(r , t), (2.1)

removing the static parts, performing a Fourier transform, eliminating the delayed
neutron precursors, and neglecting the second-order terms (linear theory). The first
order noise equation is written as follows [4, 5]:[

∇.D(r)∇+ Σdyn(r , ω)
]
×
[
δφ1(r , ω)
δφ2(r , ω)

]
=

[
S1(r , ω)
S2(r , ω)

]
(2.2)

where
D(r) =

[
D1(r) 0

0 D2(r)

]
, (2.3)

Σdyn(r , ω) =

[
−Σ1(r , ω) νΣf2(r , ω)
Σrem(r) −Σa2(r , ω)

]
, (2.4)

Σ1(r , ω) = Σa1(r , ω) + Σrem(r)− νΣf1(r , ω), (2.5)

νΣf1,2(r , ω) =
νΣf1,2(r)

keff

(
1− iωβeff

iω + λ

)
, (2.6)

Σa1,2(r , ω) = Σa1,2(r , ω) +
iω

υ1,2
. (2.7)

In the above equations,

δφg is the neutron noise in group g with g = 1, 2 representing the fast and thermal
energy groups, respectively;

Dg is the diffusion coefficient in group g;

Σa,g is the macroscopic absorption cross section in group g;

νΣf,g is the macroscopic production cross section in group g;

Σrem is the macroscopic scattering cross section from the fast group to the ther-
mal group (removal cross section);

keff is the effective multiplication factor;

βeff is the total delayed neutron fraction;

λ is the delayed neutron decay constant;

υg is the neutron velocity in group g;
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ω is the angular frequency.

The right hand side vector in Eq. (2.2) represents the noise source in the fast
and thermal groups. The noise source can be modelled through the fluctuations of
macroscopic cross-sections as a result of mechanical or thermal processes in the core,
such as absorption perturbation, core barrel vibrations, fuel assembly vibrations,
core inlet coolant temperature fluctuations etc., and is written as follows:[

S1(r , ω)
S2(r , ω)

]
= φrem(r)δΣrem(r) + φa(r)

[
δΣa1(r , ω)
δΣa2(r , ω)

]
+ φf (r)

[
δνΣf1(r , ω)
δνΣf2(r , ω)

]
(2.8)

where the terms δXi, i = {rem, a1, a2, f1, f2} stand for the fluctuations of the
macroscopic cross sections, corresponding to the actual perturbation (in this case to
the fuel assembly movement), and

φrem(r) =

[
φ1(r)
−φ1(r)

]
, (2.9)

φa(r) =

[
φ1(r) 0

0 φ2(r)

]
, (2.10)

and
φf (r) =

[
−φ1(r) −φ2(r)

0 0

]
. (2.11)

with φg being the neutron flux in group g.

In order to solve the neutron noise equation, the noise source in Eq. (2.8) must
be determined via the fluctuations of the macroscopic cross sections of a specific
scenario (in this case, the displacement of vibrating fuel assemblies). For pendular
vibrations of a fuel assembly, the displacement function is a two-component vector
(εx, εy), whose components represent the displacement of the vibrating component
around the equilibrium position in the x- and y-directions, respectively, according
to the (x, y)-coordinates as displayed in Fig. 2.1.

For the vibrations in both the x- and y-directions, the displacements of a fuel
assembly can be described by the two displacement functions εx and εy as identically
distributed, independent random processes in a coordinate system which coincides
with the principal axes of the most and least preferred directions [6]. The normalized
total thermal noise itself is given as a linear combination of the noise induced by the
vibrations in x- and y-directions as

δ̃φ2 = δφ2/φ2 = Axεx(ω) + Ayεy(ω), (2.12)

where |Ax| and |Ay| refer to the scaling factors of the ex-core noise with the fuel
assembly vibration in x- or y-direction, respectively. The scaling factor and the
phase of the noise are parameters which can be calculated using the noise simulator.
In noise analysis, the gain and phase of APSD and cross power spectral density
(CPSD) are used rather than the absolute values and the phase of the detector
signals.

APSDδφ2 = |Ax|2APSDεx + |Ay|2APSDεy + 2AxAyRe{CPSDεxεy}. (2.13)
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In the case of random 2D vibrations, following a model of random force acting on
the assembly surface suggested by [6], one obtains that for the case of isotropic
vibrations (|εx| = |εy|), CPSDεxεy = 0, and the APSD of the ex-core noise can be
simply calculated by

APSDδφ2 = |Ax|2 + |Ay|2. (2.14)

2.2 PWR cores and modelling of fuel assembly vibration

Numerical calculations for investigating the effect of fuel burnup on the APSD
of the ex-core detector noise induced by the vibrations of fuel assemblies have been
performed based on two PWR core models. These correspond to the Ringhals-3 and
the Ringhals-4 reactors at cycle 15, and will be referred to as Core 1 and Core 2,
respectively. The two PWR cores have a similar configuration as illustrated in Fig.
2.1. Four ex-core detectors are assumed to be located at the outer periphery of the
reflector to investigate the ex-core noise. In reality, the ex-core detectors are placed
far outside from the core barrel. However, due to the limitation of the neutron noise
simulator CORE SIM which does not allow simulating further than the reflector
region, it is assumed that the neutron noise at the reflector region could represent
the behaviour of the noise at the actual ex-core detector locations.

To investigate the burnup effect, calculations were performed at three burnup
steps: the beginning of cycle (BOC), middle of cycle (MOC) and end of cycle (EOC).
The cross section data and the kinetic parameters for the 2D models of the two
PWR cores are taken from previous works [2, 7]. The kinetics parameters of the two
cores are given in Table 2.1. The difference of fuel arrangement of the two cores is
illustrated by the difference of the neutron flux distribution and its evolution with
burnup in the two cores. Figs. 2.2 and 2.3 display the fast and thermal neutron flux
distributions along the core diameter at the three burnup steps.

Table 2.1: Kinetic parameters of the two PWR cores.
Core 1

Burnup keff βeff (pcm) λ (s−1) v1 (cm/s) v2 (cm/s)
BOC 1.00103 596.7 0.084356 1.78631× 107 4.17195× 105

MOC 1.00170 551.1 0.087121 1.81783× 107 4.13994× 105

EOC 1.00062 520.2 0.089139 1.81658× 107 4.04119× 105

Core 2
BOC 1.00036 595.7 0.084499 1.78631× 107 4.15325× 105

MOC 1.00104 554.3 0.086985 1.81434× 107 4.15859× 105

EOC 1.01043 523.9 0.089071 1.81459× 107 4.03678× 105

In the present work, a similar assumption on the fuel assembly vibrations and on
the 2D simulation model will be made as the one used in the previous work [2]. One
of the limitations of the 2D model is that the vibration of fuel assembly is equivalent
with a pendular vibration in a 3D model but not a second bending mode of the fuel
assembly. Since in the present work we aim at investigating only the neutron noise
at ex-core detectors located on the same axial plane, the 2D model can be considered
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Figure 2.1: Core configuration of the PWR core with four ex-core detectors N1, N2,
N3 and N4.

Figure 2.2: Neutron fluxes in fast (left) and thermal (right) groups across the diam-
eter of Core 1.
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Figure 2.3: Neutron fluxes in fast (left) and thermal (right) groups across the diam-
eter of Core 2.

as adequate. Further improvement of the simulation of second bending mode with
a more realistic 3D model is planned in future work.

Acutally, there is not much information available regarding the characteristics
of the displacements of the fuel assembly. According to Ref. [8], the displacement
of a vibrating assembly is in the sub-millimetre range. However, in the numerical
calculations, the mesh size of about 2.5 cm is used, which is too large compared
to the displacement of a realistic vibration. In order to simulate the vibration
with a flexible small displacement, the spatial discretisation was re-organised for the
vibrating assembly by adding a very fine mesh around its border while keeping the
original mesh size for all other assemblies. The size of the additional meshes could
be defined as small as the amplitude of the displacement. Such an approach can
be applied in a 2D simulation, where a very small displacement from vibrations can
be simulated while the total number of meshes does not increase appreciably and
therefore no significant numerical difficulty arises from the increase of different mesh
sizes. Thus, the 2D version of CORE SIM was modified to handle additional fine
meshes around the vibrating assembly for the purpose of this work.

The displacement of a fuel assembly is modelled by shifting materials for a very
fine mesh around its equilibrium location. It means that the fluctuations in all types
of cross-sections are taken into account in the noise source. If the displacement of
a vibrating assembly is within the sub-millimetre range, the fluctuation of the cross
sections is associated with the vibrating assembly only. However, if the amplitude
of the displacement increases up to about 4 mm or more, a portion of the vibrating
assembly will extend to the location of the neighbouring one, which hence also
needs to be displaced. In this case the cross section fluctuations are associated with
the displacement of two or more neighbouring assemblies. Therefore, two possible
vibration models can be considered, regarding the amplitude of the displacement of
the vibrating assembly as follows:

• Model 1 (large displacement): The displacement of the vibrating assembly

–7–
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overlaps with the location of the neighbouring assemblies. Therefore, the real
parts of the macroscopic cross section fluctuations in the meshes describing
the displacement of the vibrating assembly around its equilibrium location are
assumed to be the deviations of the cross sections of the vibrating assembly
and its neighbouring one. In reality, this model assumes the collective vi-
brations of neighbouring fuel assemblies, to ensure that no space is occupied
simultaneously by more than one fuel assembly.

• Model 2 (small displacement): The displacement of the vibrating assembly is
within its own location, i.e. the vibration of fuel material does not overlap
with the neighbouring assemblies. The real parts of the macroscopic cross
section fluctuations in the meshes describing the displacement of the vibrating
assembly are assumed to be the deviations of the cross sections of fuel material
and water. In this case no collective motion of the neighbouring assemblies is
required.

Regarding the vibration model, the previous work performed a systematic survey
with both the directional trajectory and the stochastic trajectory vibration models
[2], in which various directional vibrations in x−, y− or both x− and y− directions
have been considered. However, since the signals obtained in a measurement provide
no information about the directional vibration, it is rather a random process of
the vibration. This means that the stochastic trajectory vibration model can be
considered as a more realistic model. Therefore, in this work we focus only on the
stochastic trajectory vibration model and compare the results obtained with the two
reactor cores.

2.3 Calculation of the neutron noise induced by fuel assembly vibrations

Calculations were performed at three burnup steps based on a full core model
for investigating the dependence of cycle burnup on the APSD of the ex-core noise.
In all calculations, the frequency of 8 Hz was selected since it corresponds to the
frequency of fuel assembly vibrations in the core [9, 10]. To evaluate the hypothesis
that the APSD of the ex-core noise increases throughout the cycle, the calculations of
the ex-core scaling factors and the phases have been performed for various locations
of the vibrating assemblies in the core using CORE SIM. From this the APSD of
the noise can be obtained as in Eq. (2.14). Due to the symmetrical properties of
the core, it is not necessary to perform the calculation for the vibrations of every
single assembly in the core. The detailed calculations were performed only for the
individual vibrations of fuel assemblies located in 1/8th of the core close to detector
N2 as shown in Fig. 2.1. This is because of the fact that the noise induced by
vibrations of a fuel assembly in any given octant of the core, one can find the similar
noise induced by another fuel assembly in the corresponding position of another
octant by a rotation transformation. Hence, for individual assembly vibration it is
sufficient to consider vibrating assemblies located in one octant to map the possible
tendencies as functions of the fuel assembly position. In the technical discussion
we focus only on the behaviour of the neutron noise at the detector close to the
vibrating assembly. However, to evaluate the contribution of vibrating assemblies

–8–
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Figure 2.4: APSD of detector N2 induced by vibration of assembly J9 in Core 1
(left) and Core 2 (right), respectively.

at different locations on the ex-core APSD, calculations were also performed with
the assumption of a group of assemblies distributed evenly throughout the core
vibrating simultaneously and independently.

It is assumed that the core can be classified into three fuel regions from the
center to the periphery: the central region, the middle region and the outer region.
Fig. 2.4 displays the change of the APSD of detector N2 during burnup with the
stochastic vibrations of assembly J9 located in the central fuel region. One can see
that the variation trends of the APSDs in the two models regarding the displace-
ment amplitude are different. The APSD decreases with burnup in Model 1 (large
displacement) but increases in Model 2 (small displacement). The same behaviour
was found in both PWR cores, as shown in Fig. 2.4. Figs. 2.5 and 2.6 show the
same quantities as in Fig. 2.4, but for the stochastic vibrations of assemblies K11
and L14 located in the middle fuel region and the outer periphery, respectively. In
the vibration of assembly K11, except the APSD in Model 1 in Core 1 which has a
peak at MOC, the APSD of detector N2 increases with burnup monotonically. For
the vibration of assembly L14, which is located in the periphery of the fuel region,
Fig. 2.6 illustrates the increase of the APSD of detector N2 in both of the two
models of the noise source, except that of N2 in Model 1 on Core 1 which has a dip
at MOC. The vibrations of the three assemblies located in the three different fuel
regions in the core show different behaviour of the APSDs of the ex-core noise, i.e.
no general monotonic variation of the APSD of the ex-core detector noise can be no-
ticeable. However, for the three assemblies the tendency of the monotonic increase
in APSD occurred with Model 2 (small displacement) in both cores, which was also
considered as a more realistic model of in-core fuel assembly vibration. In order to
reach a conclusion, further survey has been conducted with various locations of fuel
in the cores.

–9–
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Figure 2.5: APSD of detector N2 induced by vibration of assembly K11 in Core 1
(left) and Core 2 (right), respectively. The values in Model 2 of Core 2 in the lower
right figure are multiplied by a factor of 30 for the sake of clarity.

Figure 2.6: APSD of detector N2 induced by vibration of assembly L14 in Core 1
(left) and Core 2 (right), respectively.
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Figure 2.7: APSD of detector N2 induced by simultaneous vibrations of assemblies
J9, K11 and L14 in Core 1.

Figure 2.8: APSD of detector N2 induced by simultaneous vibrations of assemblies
J9, K11 and L14 in Core 2. The values of assembly J9 in the left figure are multiplied
by a factor of 20 for the sake of clarity.

–11–
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Tables 2.2 and 2.3 show the APSDs of the ex-core detector N2 induced by indi-
vidual stochastic vibrations of all fuel assemblies located in the 1/8th of the two core
models, respectively. One can see that no general monotonic change in the APSDs
during burnup cycle was found. Again, the two models regarding the displacement
of vibrations result in different behaviour of the APSD of the ex-core noise. In Model
1, the constant decrease in APSD is found in the vibrations of assemblies located
around the centre of the core, e.g. assemblies H8 to H12 and assemblies J9 to J11.
Whereas, in Model 2 the effect of the central assemblies is not monotonic. The
APSDs were found both to increase and decrease. Similarly, no general monotonic
variation of the APSD was found with the vibrations of fuel assemblies located in
the middle of the core in both PWR cores as shown in Table 2.2 and Table 2.3.

Comparing the effect of different assemblies, the contribution of the peripheral
assemblies to the APSD of the ex-core noise is larger than that of the central assem-
blies, as shown in Table 2.2 and Table 2.3. This means that the ex-core detectors are
more sensitive to the vibrations of the fuel assemblies in the periphery. In order to
evaluate the contribution of vibrating assemblies at different locations in the core on
the ex-core APSD, calculations were performed with the assumption of a group of
assemblies vibrating simultaneously and independently. Fig. 2.7 and Fig. 2.8 display
the APSD of detector N2 induced by simultaneous vibrations of the three assemblies
J9, K11 and L14 in Core 1 and Core 2, respectively. The three assemblies are located
in the octant core close to detector N2. One can see that the total APSD of detector
N2 is dominated by the vibration of assembly L14, which is located at the periphery
close to detector N2. The APSD of detector N2 increases monotonically with bur-
nup in both cores and in both Model 1 and Model 2 of the displacement amplitude.
Fig. 2.9 illustrates the APSDs of detectors N1 and N2 induced by simultaneous vi-
brations of assemblies B5, E9, K6 and L14 in Core 1. Fig. 2.10 displays the same
quantities as in Fig. 2.9 but for the Core 2. It is noted that the two detectors N1
and N2 have diagonally opposite positions across the core diameter, while B5 and
L14 are located in the peripheries close to N1 and N2, respectively (see Fig. 2.1).
The assemblies E9 and K6 are located in the middle fuel region. Again, it is found
that the total APSD of N1 is dominated by the vibration of the closest assembly
B5, while the contribution of the other assemblies located far from N1 is small, as
shown in Fig. 2.9. Conversely, the APSD of N2 is dominated by the vibration of the
closest assembly L14. This behaviour is similar in both Core 1 and Core 2.

Thus, we will focus on the effect of some fuel assemblies located at the outer
periphery, e.g. assemblies H15, J15, K14, L14 and M13. In Core 1, Table 2.2 shows
that out of the five assemblies the vibrations of three assemblies H15, J15 and K14
result in the increase of the APSD of detector N2 in Model 1. In Model 2, the trend
of the increase of the APSD was found at four of the five peripheral assemblies
(H15, J15, L14 and M13). In Core 2, the increase of the APSD of detector N2 was
found at 3 peripheral assemblies in Model 1 (J15, K14 and L14) and two in Model
2 (J15 and L14) as shown in Table 2.3. This means that the trend of increase in the
APSD with burnup is predominantly with the peripheral assemblies. However, this
tendency is also not monotonic with every peripheral assembly.
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Figure 2.9: APSD of detector N2 induced by simultaneous vibrations of assemblies
B5, E9, K6 and L14 in Core 1. The values of some assemblies are multiplied by a
factor for the sake of clarity.
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Figure 2.10: APSD of detector N2 induced by simultaneous vibrations of assemblies
B5, E9, K6 and L14 in Core 2. The values of some assemblies are multiplied by a
factor for the sake of clarity.

–14–



Ringhals diagnostics CTH-NT-333/RR-21

Table 2.2: APSD (×10−9) (a.u) of detector N2 induced by stochastic fuel vibrations
in Core 1 at BOC, MOC and EOC, respectively.

Model 1 Model 2
Assembly BOC MOC EOC BOC MOC EOC

H8 166 69.7 44.3 0.4 12.8 29.9
H9 1290 433 261 646 324 321
H10 149 66.4 46.8 151 184 238
H11 108 60.2 43.3 334 339 447
H12 2420 1820 1530 293 406 539
H13 73.1 247 245 37 53.2 99.2
H14 2460 2610 2210 4390 3840 3490
H15 979 1650 1750 671 1590 2980
J9 2550 1330 930 272 406 434
J10 201 259 195 53.2 253 378
J11 1580 1270 1010 185 575 864
J12 944 2190 2210 256 466 807
J13 897 1190 1250 120 131 258
J14 339 71.2 137 8700 7760 7610
J15 1160 1930 2650 373 996 2300
K10 1740 2000 1610 759 1770 2110
K11 4490 7490 7410 377 634 1260
K12 1370 1570 1360 2430 3090 4260
K13 1080 1020 1060 183 170 194
K14 2870 3600 5070 19600 14300 13700
L11 151 217 322 4770 4680 6290
L12 5470 1750 1670 358 507 987
L13 997 767 636 4640 3580 3460
L14 13300 12700 13300 1160 2310 4730
M12 289 94.4 97.1 1370 691 374
M13 18700 13800 10300 981 1510 2330

2.4 Conclusions

Extension of the calculation model and method used in a previous work [2]
has been conducted for investigating the effect of the vibrations of individual fuel
assemblies on the ex-core detector noise as a function of burnup and for confirming
the results obtained with Ringhals-3 PWR core. The calculations were based on the
2D models of the two PWR cores which have different fuel arrangements represented
by the different neutron flux distribution and its evolution with burnup. Stochastic
vibrations of individual assemblies were assumed with the two models regarding the
displacement amplitude of the vibrating assemblies. Analysis of the results shows
that no general monotonic variation of the APSD of the ex-core detector noise with
burnup was found in both cores. In the case of simultaneous vibrations of several
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Table 2.3: APSD (×10−9) (a.u) of detector N2 induced by stochastic fuel vibrations
in Core 2 at BOC, MOC and EOC, respectively.

Model 1 Model 2
Assembly BOC MOC EOC BOC MOC EOC

H8 12.5 6.5 4.5 15.5 8.7 12.0
H9 420.7 224.3 146.4 4.2 1.7 1.3
H10 108.9 53.5 31.9 157 61.2 86.6
H11 90.6 57.1 44.4 48.7 22.5 45.4
H12 622.2 488.9 436.7 413.3 211.1 241.0
H13 305.3 358.8 251.1 10.4 19.1 17.7
H14 464.5 518.6 262.4 1575.9 952.1 781.6
H15 1438.1 2406.8 2342.7 18.0 16.2 1.3
J9 99.9 81.9 62.9 18.3 42.6 61.1
J10 86.5 44.7 8.9 32.2 18.1 44.5
J11 1783.4 1581.6 1320.7 51.3 265.9 350.5
J12 581.8 1557.6 2208.2 15.7 4.3 9.3
J13 1305.3 1635.0 1966.8 36.6 86.9 126.1
J14 117.8 32.9 171.6 1945.9 1043.8 1278.9
J15 982.6 1560.3 2414.1 23.4 61.4 162.7
K10 1407.6 1635.1 1302.9 421.5 627.9 660.4
K11 4218.1 5981.6 8241.7 3.4 64 72.6
K12 738.7 820.8 761.9 752.5 687.0 1031.0
K13 1047.3 1071.3 1175.9 51.4 23.6 22.1
K14 3082.9 3716.3 5739.4 4019.1 1590.5 1058.2
L11 167.5 166.6 339.2 1672.2 979.6 1648.8
L12 6718.8 3405.8 2362.6 581.6 147.6 16.4
L13 1131.0 920.6 812.7 1487.2 904.4 939.6
L14 11860.9 12312.6 12916.0 361.9 447.8 510.5
M12 274 175 180 90 97 84
M13 17831 13849 9912 2148 2335 2254

assemblies distributed throughout the core, the noise induced by the peripheral
assemblies dominates the ex-core detector signals. This behaviour is similar in both
cores. The trend of the noise amplitude increase with burnup is predominant for
fuel assemblies located at the periphery of the two cores. The result is supportive
of the conclusions based on Ringhals-3 core in the previous work.

Since there are still a number of limitations of the simulation models used in
the present works, further improvements and investigations should be conducted
in order to arrive to more concrete conclusion regarding the questions on the fuel
assembly vibration.
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3. FURTHER INVESTIGATION OF THE POINT KINETIC
COMPONENT OF THE NOISE INDUCED BY FUEL ASSEMBLY

VIBRATIONS

No dedicated simulation work was made specifically for this subject. This is
because, in order to do a more detailed and conclusive analysis than in the previous
Stages, first the improvement of the coupled coarse-fine mesh CORE SIM-based
model had to be performed. This has been made in the present Stage, and reported
in the previous Chapter.

The performance and the reliability of the improved method was shown by sim-
ulating two different cores. The results were in agreement with the previous investi-
gations, in that the vibrations of a collection of peripherally situated fuel assemblies
leads to an increase of the corresponding peak in the ex-core detector signals during
the fuel cycle. With the improved model, it will be possible to perform dedicated
studies to confirm further whether the peak of the ex-core detector spectra, due to
such collective vibrations, is dominated by the reactivity component, as it was seen
in previous studies with the course-mesh CORE SIM model. Such a dedicated study
may be performed in the later stages of the project.
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4. ANALYSIS OF NEW EX-CORE MEASUREMENTS, TAKEN IN
R-4 AFTER POWER INCREASE

4.1 Introduction and background

The analysis of core-barrel vibration properties (often abbreviated to CBM, core
barrel motion) have been the subject of study both in Sweden and internationally
It has also been the subject of the collaboration between Chalmers and Ringhals
from the beginning, as it was reported in several previous Stages in the Ringhals
diagnostic project [11, 12, 13, 14, 15, 16, 17, 18, 19, 1],

Within the last decade, a series of studies dedicated to core barrel vibrations have
been performed in order to analyse and find a suitable explanation for the recent
observations of wear at both the lower and upper core-barrel-support structures, i.e.
the lower radial key and the reactor vessel alignment pins in the Ringhals PWRs.
In the last few years the main focus in this area was put on the investigation of
a double peak observed in the Auto Power Spectrum in the frequency region of
the beam mode component. A hypothesis was formulated about the nature of this
peak, where it was suggested that the lower frequency peak is due to the beam
mode vibrations and the upper peak is due to fuel assembly vibrations. A test of
this hypothesis was one the main target of the analysis. A key factor of the analysis
was to assume that the lower frequency peak is due to the (coherent) vibrations of
the whole core barrel, hence the symmetries between the ex-core detectors could be
used to enhance the effect, as well as to condense the quantification to one single
parameter by taking combinations of the detector signals. However, the higher
frequency mode was assumed to be due to the effect of the independent (incoherent)
vibrations of the individual fuel assemblies, hence no symmetries could be utilised,
and the results could not be condensed into one single parameter.

In 2014 a further, new assumption was made, in that the main effect of the
individual vibrations manifests itself through the combined reactivity effect of all
the individually vibrating fuel assemblies. This assumption, through the associated
symmetries of the reactivity component, allowed to condense the analysis of the
different detector signals into one single parameter even for the higher frequency
peak. This hypothesis was tested with a fruitful outcome on the measurements taken
at Ringhals-4. Thus, finally, it became possible to distinguish between the beam
mode component due to core barrel vibrations and reactivity component associated
to the single fuel assembly vibrations. In addition, it was also possible to confirm
the constant amplitude within one fuel cycle for the beam mode component, and
the varying amplitude (within one cycle) of the reactivity component (individual
fuel assembly vibrations), which were in very good agreement with the original
hypothesis.

The work in the continuation was therefore not concentrated any longer on the
test and proof of the hypothesis, and the associated trend analysis of the evolution
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of the peak amplitudes during the cycle, rather on checking whether there is any
major change in the amplitude and frequency of the beam mode peaks, as compared
to the previous measurements, which could indicate an increased play in the lower
radial key support. A special circumstance in this aspect is that in 2015, the total
power of Ringhals-4 was increased by 18.6 %. Therefore, it was natural to perform
a routine analysis on a new set of measurements in order to investigate the effect
of power increase on the measured neutron noise, in particular core barrel and
fuel assembly vibrations and associated vibrations components (beam, shell, and
reactivity modes).

Another aspect, which is worth mentioning since it affects the vibration proper-
ties, and hence the analysis and interpretation of the measurements, is that some
structural changes took place in R4 relatively recently. The hold-down springs were
replaced during the outage in 2013, and the interior parts were lifted out during the
outage in 2014 for an inspection. These modifications, including the moving of the
internal parts, affect the vibration properties, in particular the separation of the 7
and 8 Hz peaks, as will be seen in the forthcoming.

Last but not least, as it was described in the previous stage [1], a new type of
pivotal vibration mode, which we named as “tilting” or “wobbling” mode, was dis-
covered. The separation of the tilting mode from the other components is made with
methods similar to the other mode separation methods with adding and subtracting
the signals in various combinations. The only difference is that for the separation
of the tilting mode from the other components, all 8 detectors (the four ex-core de-
tectors at two axial elevations) need to be used. Hence in the routine analysis, the
separation of all four components (beam, shell, reactivity and tilting modes) were
made, and this is included into this Section. In connection with the tilting mode,
some method development took also place, which is described in the next Section,
and the Appendix.

4.2 Details of the measurements in R4

Three sets of measurements were analysed. The measurements were performed
in R4 in cycle C34, on 22 November 2016, as well as 7 March and 20 June 2017,
and for simplicity will be referred to a Measurement 1, 2 and 3 respectively. The
sampling frequency was 62.5 Hz for all three sets of measurements. The measurement
points are shown in Table 2. More detailed data regarding settings and general
parameters can be found in the measurement protocols from previous measurements,
which were performed in an identical manner [20, 21, 22]. Some sample spectra,
showing the APSD for each of the 8 individual ex-core detectors, calculated from
the corresponding measurement will be presented in the next section.

4.3 Analysis of the measurements made on 2016-11-22 (Measurement 1)

4.3.1 Individual spectra of all detectors

The APSDs of all eight individual detector signals are shown in Fig. 4.1. All
signals show the two familiar peaks around 8 and 20 Hz for the beam and shell
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Table 4.1: The measurement data of the three measurements in Ringhals 4 during
2016-17

Channel Measurement point

0 Time

1 N41U DC

2 N42U DC

3 N43U DC

4 N44U DC

5 N41L DC

6 N42L DC

7 N43L DC

8 N44L DC

9 N41U AC

10 N42U AC

11 N43U AC

12 N44U AC

13 N41L AC

14 N42L AC

15 N43L AC

16 N44L AC
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modes, respectively. The structure of the double peak at 8 Hz looks different from
those in the previous cycles. The lower frequency peak is at 6 Hz, i.e. much more
separated from the 8 Hz pesk in frequency, is smaller in amplitude and is wider.
The APSD of the total signals, without mode separation, resembles to the structure
of the spectra of the tilting modes in the previous stage [1]. On the other hand,
the two peaks that can be identified with the beam mode and the reactivity mode
(corresponding to the noise induced by the individual fuel assembly vibrations)
cannot be visibly separated. This will be reflected in the detailed analysis below.
As mentioned before, this change in the character of the spectra, as compared to
the previous measurements, may be due to the change of the hold-down spring and
that the structural conditions for the internal components might be changed after
the lifting out and putting back them into the pressure vessel.

Figure 4.1: APSD of all 8 ex-core detector signals from Measurement 1
.

4.3.2 Results of the mode separation

The beam mode, shell mode, reactivity component and the tilting modes were
separated according to the detector signal combination principles as in the previous
work. The results are shown for the upper detectors in Fig. 4.2, and for the lower
detectors Fig. 4.3. The result of the separation is rather similar for the two cases.
It is seen that the amplitude of the beam mode is larger for the lower detectors,
as expected, whereas the amplitude of the other components is very similar for the
upper and lower detectors. The frequency of the reactivity mode is somewhat higher
than that of the beam mode, confirming that they can be identified as Mode 2 and
Mode 1 in the previous terminology. Hence the results are in agreement with the
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results from the previous stages.

It is worth to note a small peak around 16 Hz in both the upper and the lower
detector signals. According to the mode separation technique, this peak is due to
a reactivity effect. It is interesting to observe that its frequency is twice that of
the pendular fuel vibration frequency at 8 Hz, itself also identified as a reactivity
effect. Hence the peak at 16 Hz can be attributed to the higher harmonics of the
fuel assembly vibrations at the fundamental frequency 8 Hz.

Figure 4.2: APSDs of the beam mode, shell mode, reactivity component and the
tilting mode for the upper detectors, extracted from Measurement 1.

4.3.3 Phase and coherence relationships between the upper and lower
detectors

An analysis of the coherence and the phase relationships between detectors at
the same and different axial levels was performed, similarly to that in the previous
stage. The coherence and phase between the diagonally opposite detectors N41 and
N42, for both the same and different axial levels, is shown in Fig. 4.4, and the same
for detectors N43 and N44 in Fig. 4.5. The coherence and phase between the upper
and lower detectors at the same radial position, for all four detectors, is shown in
Fig. 4.6.

As it can be seen, apart from some minor differences, the structure of all these
plots is similar to that of the previous stages, indicating that no major changes took
place in the behaviour of the cores. The coherence is high at 8 Hz and 20 Hz, i.e. at
the frequencies of the beam mode, the reactivity componponent and the shell mode,
and it is lower, but still showing a peak also at 16 Hz, the reactivity component
due to the first harmonic of the fuel assembly vibrations around 8 Hz. On the other
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Figure 4.3: APSDs of the beam mode, shell mode, reactivity component and the
tilting mode for the lower detectors, extracted from Measurement 1

Figure 4.4: The coherence and the phase of the CPSD calculated for the N41U-
N42U, N41L-N42L, N41U-N42L and N42U-N41L detector pairs in Measurement 1.
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Figure 4.5: The coherence and the phase of the CPSD calculated for the N41U-N41L,
N42U-N42L, N43U-N43L and N44U-N44L detector pairs in Measurement 1.

Figure 4.6: The coherence and the phase of the CPSD calculated for the N41U-
N42U, N41L-N42L, N41U-N42L and N42U-N41L detector pairs in Measurement 1.
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hand, there is a dip at around 6 Hz (except for the pair N41U - N42U), which is the
domain where the tilting mode and the beam modes overlap. This dip is the most
conspicuous in the coherence between the detector pairs situated above each other,
i.e. at the same radial but different axial position.The phase is uniformly zero at
20 Hz for any detector combinations, as expected, and it is 180◦ at the beam mode.
The dip in the phase at 6 Hz though is somewhat different in structure from that
in the previous stage [1].

4.4 Analysis of the measurements made on 2017-03-07 (Measurement 2)

4.4.1 Individual spectra of all detectors

The APSDs of all eight individual detector signals are shown in Fig. 4.7. These
look very similar to those in Measurement 1. A moderate increase of the amplitude
of the 8Hz peak is seen, whereas the peak at 6 Hz is nearly absent.

Figure 4.7: APSD of all 8 ex-core detector signals from Measurement 2
.

4.4.2 Results of the mode separation

The results for the separation of the beam mode, shell mode, reactivity compo-
nent and the tilting modes are shown for the upper detectors in Fig. 4.8, and for the
lower detectors in Fig. 4.9. These results are very similar to those of Measurement
1. Like in the prevoius case, the amplitude of the beam mode is larger for the lower
detectors, and the frequency of the reactivity mode is somewhat higher than that
of the beam mode, as expected.
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Figure 4.8: APSDs of the beam mode, shell mode, reactivity component and the
tilting mode for the upper detectors, extracted from Measurement 2.

Figure 4.9: APSDs of the beam mode, shell mode, reactivity component and the
tilting mode for the lower detectors, extracted from Measurement 2
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4.4.3 Phase and coherence relationships between the upper and lower
detectors

The coherence and phase between the diagonally opposite detectors N41 and
N42, for both the same and different axial levels, is shown in Fig. 4.10, and the
same for detectors N43 and N44 in Fig. 4.11. The coherence and phase between
the upper and lower detectors at the same radial position, for all four detectors, is
shown in Fig. 4.12.

Figure 4.10: The coherence and the phase of the CPSD calculated for the N41U-
N42U, N41L-N42L, N41U-N42L and N42U-N41L detector pairs in Measurement 2.

These plots again show a full resemblance to those in Measurement 2. One
difference is that in the beam mode, the dip is now missing not only for the pair
N41U - N42U, but also for N43U - N44U. Also the behaviour of the phase at 6 Hz
for the axial pairs at the same radial position has changed somewhat. For the rest
there are no noticeable differences.

4.5 Analysis of the measurements made on 2017-06-20 (Measurement 3)

4.5.1 Individual spectra of all detectors

The APSDs of all eight individual detector signals are shown in Fig. 4.13. These
look very similar to those the previous two measurement, somehow being a little
‘ìn between”. On one hand, the amplitude of the 8Hz peak has increased further,
whereas the peak at 6 Hz is larger than in Measurement 2, but smaller than in
Measurement 1.
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Figure 4.11: The coherence and the phase of the CPSD calculated for the N41U-
N41L, N42U-N42L, N43U-N43L and N44U-N44L detector pairs in Measurement 2.

Figure 4.12: The coherence and the phase of the CPSD calculated for the N41U-
N42U, N41L-N42L, N41U-N42L and N42U-N41L detector pairs in Measurement 2.
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Figure 4.13: APSD of all 8 ex-core detector sigals from Measurement 3
.

4.5.2 Results of the mode separation

The results for the separation of the beam mode, shell mode, reactivity com-
ponent and the tilting modes are shown for the upper detectors in Fig. 4.14, and
for the lower detectors in Fig. 4.15. One difference as compared to the previous
measurements is that the double peak structure of the beam and the tilting modes,
which could be seen in those, is much less visible in this last measurement.

4.5.3 Phase and coherence relationships between the upper and lower
detectors

The coherence and phase between the diagonally opposite detectors N41 and
N42, for both the same and different axial levels, is shown in Fig. 4.16, and the
same for detectors N43 and N44 in Fig. 4.17. The coherence and phase between
the upper and lower detectors at the same radial position, for all four detectors, is
shown in Fig. 4.18.

Again, apart from some minor differences, the structure of all these plots is
similar to the previous two measurements.

4.6 Trend analysis

Since there were three measurements made during the cycle which is the subject
of the investigations the present stage, a trend analysis for the three measurements
could be made. However, only the fitting for the beam mode component gave reliable
results; this is illustrated in Fig. 4.19 for both the upper and the lower detectors
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Figure 4.14: APSDs of the beam mode, shell mode, reactivity component and the
tilting mode for the upper detectors, extracted from Measurement 3.

Figure 4.15: APSDs of the beam mode, shell mode, reactivity component and the
tilting mode for the lower detectors, extracted from Measurement 3
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Figure 4.16: The coherence and the phase of the CPSD calculated for the N41U-
N42U, N41L-N42L, N41U-N42L and N42U-N41L detector pairs in Measurement 3.

Figure 4.17: The coherence and the phase of the CPSD calculated for the N41U-
N41L, N42U-N42L, N43U-N43L and N44U-N44L detector pairs in Measurement 3.
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Figure 4.18: The coherence and the phase of the CPSD calculated for the N41U-
N42U, N41L-N42L, N41U-N42L and N42U-N41L detector pairs in Measurement 3.

from Measurement 1. The fitting procedure for the reactivity component, which
since 2014 we have associated with Mode 2, became unstable, and did not yield
reliable results. The most likely reason is that during this cycle, the frequencies of
the two modes Mode 1 and Mode 2 lie too close to each other, and the behaviour
of the spectra was dominated by Mode 1 which had much larger amplitude than
Mode 2. The reason why the frequency structure of the modes was changed was
already motivated by the mechanical changes and rearrangements in 2013 and 2014,
as described earlier.

Figure 4.19: Results of the curve fitting to the peak at 8 Hz (beam mode) for
Measurement 1 for the upper (left figure) and the lower (right figure) detectors.

Therefore, a trend analysis was made only for the beam mode component, and
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the result is shown in Fig. 4.20.

Figure 4.20: Trend analysis of the amplitude of the beam mode at 8 Hz for the three
measurements made during the cycle.

It is seen that the amplitude of the beam mode has increased appreciably during
the cycle. This is the behaviour that we expect, and have seen earlier, from Mode 2,
i.e. the reactivity component, and not from the beam mode component, which was
assumed to be more or less constant. However, as mentioned, in this cycle the mode
separation method was not reliable, and hence what we identify as the beam mode,
is presumably “contaminated” with the noise from the vibration of the individual
fuel assemblies, manifested by the reactivity effect. In summary, the trend analysis
did not give unambiguous results in the present cycle.
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5. FURTHER DEVELOPMENT AND TEST OF THE MODE
SEPARATION MODEL AS APPLIED TO 3-D “WOBBLING”
TYPE OR “TILTING” TYPE CORE-BARREL VIBRATIONS

The development and test of the mode separation model to detect and confirm
the existence of tilting mode vibrations was performed in several stages. As a test
of the algorithm, already developed in the previous stage and applied to the R4
measurements, another measurement, made in R2 in 2014, was evaluated, in order
to detect and quantify tilting mode vibrations. The result of the analysis was that
there was no evidence of tilting mode vibrations seen in the measurements. Since
it was only a singular measurement, it does not necessarily mean that tilting mode
vibrations do not exist in R2. However, it would not be surprising if there were no
tilting mode vibrations of the core barrel in R2, due to the different constructional
properties of R2 as compared to R3 and R4.

Another development line was to try to apply a new type of mode separation
method, based on the so-called “Variational Mode Decomposition (VMD) Method”.
This method was brought to us through our visitor, Omar Alejandro Olvera-Guerrero,
currently PhD student at the UAM/Autonomus Metropolitan University, Mexico
City, Mexico. His advisers, Alfonso Prieto Guerrero and Gilberto Espinosa Paredes,
are internationally known experts in non-linear analysis of BWR stability, and in the
corresponding analysis methods of resonance peaks, which has some methodologi-
cal resemblances to the mode separation method we use for separating the various
vibration components in the ex-core neutron detector spectra.

Omar Alejandro Olvera-Guerrero stayed at our department between 11 January
- 10 July 2017, and worked on the development of the method and its test to the
analysis of the current measurements in R4. As it turns out, the VMD method
is a rather powerful and effective method, with a high sensitivity and resolution.
This incurs that it will identify a large number of modes and separate many spec-
tral peaks, but it requires familiarity with the concrete case and expertise to filter
out non-physical peaks, identified by the algorithm. The short time, and lack of
experience with the method at Chalmers did not allow to draw concrete conclusions
from the analysis. However, in order to archive the effort, as well as for information
about the principles and details of the VMD method, a draft report, written by
Omar Alejandro Olvera-Guerrero is enclosed at the end of this research report, in
Appendix.

Finally, based on the previous development and analysis, a journal publication is
prepared about the first evidence of the tilting mode in the Ringhals measurements.
A first, incomplete draft of this coming journal publication is enclosed here below,
completing this Chapter.
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Draft of the planned publication
“SEARCHING FOR EVIDENCE OF THE “TILTING MODE” OF THE

CORE BARREL IN THE RINGHALS-4 PWR”
by C. Montalvo, I. Pázsit, H. Nylén and V. Dykin

Abstract

The Nuclear Engineering Group of the Division of Subatomic Physics and Plasma
Physics (formerly Division of Nuclear Engineering) in Chalmers, Göteborg, and the
Ringhals Nuclear Plant have investigated the core barrel vibrations in the Ringhals
PWRs over the last 20 years. Based on the different symmetry properties of the
vibration modes, a mode separation technique was developed to enhance the con-
tributions from the different modes. Recent observations of wear at both the lower
and upper core-barrel-support structures in the Ringhals PWRs indicated that vi-
bration modes of the core barrel other than pendular (beam mode) and shell mode
are likely to occur. A beam mode type movement alone is not able to explain such
a wear, and therefore, it is fair to assume that the vibration mode in question is a
small amplitude periodic tilting movement of the core barrel around a horizontal,
diagonal pivot at the half height of the core. In this work, ex-core data taken in
the Ringhals-4 PWR were analysed in order to find evidence of such a tilting move-
ment. First, cross spectra between various ex-core detectors were calculated and
analysed to locate the frequency range of the new vibrational mode. Then, a model
based on symmetry considerations was derived in order to extract the sought mode
from the spectra. The measurements were evaluated by the new mode enhancement
technique. The results show that it is possible to enhance such a mode and find it
in the spectra by properly combining the signals in the time domain.

Key Words: Beam mode, tilting, ex-core detector, APSD, CPSD

5.1 Introduction

Diagnostics of core barrel vibrations of a PWR can be performed by ex-core
neutron detector signals [23]. The signals of these detectors can be analyzed and
once the Auto Power Spectral Density (APSD) is obtained, a frequency analysis
can be made. In the late 1990’s, a method was developed for the separation of the
effects of the beam mode (around 8 Hz), shell mode (around 20 Hz), and reactivity
terms in the detector signals by making the analysis on three different averaged
combinations of the four ex-core detectors at one axial level [24]. The corresponding
auto power spectra were calculated on the averaged signal, and the diagnostics of
the beam mode vibrations was made on the signal combination corresponding to
the symmetry properties of the beam mode with the so-called k-α method [24]. The
advantage of the k-α method is that it gives an objective measure of the vibration
amplitude, irrespective of the isotropy or anisotropy of the 2D vibration pattern. It
was found that the beam mode amplitude increases monotonically during each cycle,
and then after refuelling, it starts from the same low level as in the previous cycle.
The trend behaviour of the beam mode amplitudes for some past measurements
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(spring and autumn 2005 and 2006, spring 2007 and winter 2007/2008) are shown
in Fig. 5.1 for Ringhals units 3 and 4.

Figure 5.1: Evolution of the peak amplitude of the beam mode for some previous
cycles in Ringhals 3 and 4, taken from [10]

.

However, for the trend analysis, the amplitude of the vibration peak was read
out manually from the APSD, and hence it was not fully accurate and objective.
For this reason, a new development started with applying a curve fitting procedure
based on the Breit-Wigner formula by which the amplitude of the vibration peak
could be determined more automatically and with better precision. One novelty
of the method was a more sophisticated curve fitting procedure, by which strongly
overlapping peaks could still be separated. The method came very handy, because,
as it has been observed already in the past, in the ex-core detector APSDs, the 8 Hz
beam mode peak consists actually of a double peak in the data taken in Ringhals 3
and 4.

By performing both in-core and ex-core measurements, and by studying the de-
velopment of the amplitudes of the two peaks around 8 Hz separately, a hypothesis
was formulated that the double peak corresponds to two vibration modes with differ-
ent physical origins. According to the hypothesis, the lower frequency peak, called
“Mode 1”, around 7 Hz, is related to the core barrel motion itself, whereas the higher
frequency peak, called Mode 2, around 8 Hz, corresponds to flow induced vibrations
of single fuel assemblies.

From previous measurements [16]-[25], out of the two modes, the amplitude of
Mode 1 was essentially constant during the cycle, whereas the amplitude of Mode
2 was increasing during the cycle. The increase of the corresponding peak of the
detector APSD can be due either to the amplitude increase of the fuel assembly
vibrations (which might be due to changed mechanical properties of the fuel pins
due to burn-up), or to the change of the conversion factor between mechanical
vibrations of fuel assemblies and the induced neutron noise, as measured by ex-
core detectors. This latter possibility was suggested by Sweeney et al [7], and its
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feasibility was investigated through core physics calculations in Chalmers [26]. The
results obtained indicate that the scaling factor between the amplitude of the fuel
assembly vibrations and the ex-core neutron noise can indeed increase during the
cycle for certain assembly positions and vibration patterns. However, this is not
a general trend, and for some other fuel assembly positions and vibration patterns
the trend is different. The question of why the vibration peak representing the fuel
assembly vibrations increases during the cycle remains unsolved, but is outside of
the present project.

5.2 State of the art in beam mode vibrations: Breit-Wigner and enhanc-
ing technique in the time domain

The Beam Mode component has been widely researched in many different reac-
tors. It is considered to be related to pendular type motion of the core barrel since
the CPSD of opposite detectors present high coherence and out-of-phase relation-
ship [23]-[24]. It is located in the 8 Hz region as it can be seen in the ex-core APSD
shown Fig. 5.3

Figure 5.2: NAPSD of an ex-core detector signal

There are other peaks and resonances in the ex-core spectra that can be fitted
through a Breit -Wigner formula [27]-[28]:

APSD (ω) =
∑
λ

{
µλAλ + (ω − νλ)Bλ

µ2
λ + (ω − νλ)2

+
µλAλ − (ω − νλ)Bλ

µ2
λ + (ω + νλ)

2

}
(5.1)
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Being A the pole strength, µ the damping, ν the frequency, B the skewness and
λ is the index used to refer to the number of resonances. This formula has proved
to be very effective in fitting different spectra from 0 to 20 Hz even if there are
overlapping resonances [27], [26]-[29]. Among the different peaks found, the Beam
Mode and the Shell Mode are the most relevant mechanical vibrations present in
the ex-core neutron spectra. This is why some models have taken into account these
two main noise sources and others to reconstructs the ex-core data signals [23]:

δφ1 (t) = δr1 (t) + δP (t) + µx (t) +D (t)
δφ2 (t) = δr2 (t) + δP (t)− µx (t) +D (t)
δφ3 (t) = δr3(t)1 + δP (t) + µy (t)−D (t)
δφ4 (t) = δr4(t)1 + δP (t)− µy (t)−D (t)

(5.2)

Here φ1, φ2, φ3 and φ4 stand for the neutron noise from detectors N41, N42,
N43 and N44 of a PWR Westinghouse type reactor. Being δri the uncorrelated
background noise component, δP the point kinetic or reactivity component, D is
the shell mode component and the beam mode vibrations are supposed to happen
in two directions x and y with a certain scaling factor µ between neutron noise
and mechanical vibrations. By properly combining the equations above in the time
domain, it is possible to reinforce certain components as shown in the example that
follows for the beam mode:

µx (t) = 1
2

(δφ1 (t)− δφ2 (t))
µy (t) = 1

2
(δφ3 (t)− δφ4 (t))

(5.3)

The uncorrelated background noise components are supposed to be small com-
pared to the beam mode components, and the shell and point kinetic components
are cancelled out with this combination. Depending on the component that needs
to be enhanced, the combination will be different. The spectra of the different com-
binations are shown in Fig. 5.3 where it can be seen how the searched peaks are
enhanced with this technique. By using this methodology and the Breit-Wigner fit-
ting it was possible to demonstrate that the beam mode component in the Ringhals
PWRs are composed of two different resonances; one related to the core barrel pen-
dular motion, and the other related to the flow induced fuel vibrations. A complete
explanation of this can be found in the recent reference [30].

5.3 Another type of vibration: the tilting mode

Recent observations of wear at both the lower and upper core-barrel-support
structures in the Ringhals PWRs indicated that vibration modes of the core barrel
other than pendular (beam mode) and shell mode are likely to occur. A beam mode
type movement alone is not able to explain such a wear, and therefore, it is fair
to assume that the vibration mode in question is a small amplitude periodic tilting
movement of the core barrel around a horizontal, diagonal pivot at the half height
of the core. In Fig. 5.4 there is an illustration of the type of movement. The ex-core
detectors are in grey scale so that the same color in two of them means an in phase
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Figure 5.3: APSDs of the different noise sources of an ex-core detector.

relationship.

In order to prove the existence of this movement, ex-core detectors at different
axial levels need to be considered in the analysis. A total of four different measure-
ments are used, three within the same cycle and the other one in another cycle.
CPSDs between N43U and N44L are calculated so that high coherence and in phase
relationship are expected in the frequency region close to beam mode.

As it can be seen in Fig. 5.5, there is a region showing in-phase behavior just
above 8 Hz. According to [30], this region is related to flow induced fuel vibrations.
The CBM vibration can be seen with an out-of-phase relationship and high coher-
ence. Another region with zero phase is 15-22.5 Hz, but this is widely known as the
shell mode region. So, in principle, it is not easy to find traces of tilting movement
in the spectra. It is probably due to the fact that the beam mode is a very domi-
nant and preferred vibration. At this point it is necessary to reinforce the searched
movement so that it can be enhanced by following the methodology described in the
next sections.

5.4 Proposed model and mode enhancement technique

Let us take the model described in the previous section and add to it a new source
of noise: the tilting movement vibration. Since this movement implies opposite
detectors at different axial levels to be in-phase, the model needs to include both
upper and lower detectors. In the equations the model is considering the diagonal
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Figure 5.4: Illustration of the tilting mode vibration of the core barrel and the
symmetries of the detector signals.

Figure 5.5: Coherence and phase of the CPSD between the ex-core detectors N43U
and N44L.
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N41-N42:

δφN41U = δr1 (t) + P (t) +D (t) − µx (t) + λx (t) (5.4)

δφN42U = δr2 (t) + P (t) +D (t) + µx (t) − λx (t) (5.5)

δφN41L = δr5 (t) + P (t) +D (t) − µ (1 + α)x (t) − λx (t) (5.6)

δφN42L = δr6 (t) + P (t) +D (t) + µ (1 + α)x (t) + λx (t) a (5.7)

Besides the components already explained in Section 2, the tilting mode is ex-
pressed with the term λx(t). The sign expresses the in-phase behaviour between
diagonally opposite detectors at different levels, such as N41U-N42L and N42U-
N41L. Since now detectors from both axial levels are involved, one must take into
account the fact that the amplitude of the beam mode vibrations is larger for the
lower detectors than for the upper detectors. Hence, the amplitude of the beam
mode vibrations for the lower detectors is multiplied by the factor (1 + α).

The next step is applying an enhancement technique so that the tilting movement
mode could be reinforced. This is achieved as shown below:

δφN41U (t) + δφN42L (t)

2
− δφN42U (t) + δφN41L (t)

2
= µαx (t) + 2λx (t) (5.8)

As it can been in equation (5.8), a beam mode component µαx(t) is still present
in the expression above, although with a small weight, whereas the second term on
the right hand side will be the enhanced tilting mode. In Fig. 5.5, the spectrum of
such combination of signals is plotted for different sets of measurements from the
same cycle.

Although the beam mode is still present after the enhancement, a new peak is
found at around 6 Hz which is not clearly seen either in the individual detector
spectra, or that of the other separated mode components (reactivity, beam and shell
modes). Since the beam mode is dominating the signal around 8 Hz, just taking the
cross-spectra between two diagonally placed upper and lower detectors, as in Fig.
5.4, will show neither a peak, nor an in-phase behaviour at 6 Hz.

5.5 Joint influence of in-phase and out-of-phase noise sources

Basically the ex-core spectra are composed of different components; some of them
being in-phase and others out-of-phase, as it can be seen in the CPSD spectra in
Fig. 5.4. According to Mayo [31], also referenced to in the review by Kosály [32], low
measured coherence may also be the result of partial cancellation between in-phase
and out-of-phase components. In fact, at 6 Hz the coherence shown in Figure 4
reaches zero and the phase has a small shift from 180◦.

Between diagonally opposite detectors placed at different axial levels, the tilting
movement is an in-phase process, whereas the beam mode is an out-of-phase one.
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Figure 5.6: Enhanced tilting mode APSD for Ringhals R4 Unit.

Let us assume that in the 5-10 Hz region a certain detector signal is the sum of
either in-phase or out-of-phase contributions as:

S1 (t) = X (t) + Y (t) + s1 (t)
S2 (t) = X (t)− Y (t) + s2 (t)

(5.9)

Here, S1(t) and S2(t) representing the respective ex-core signals, X(t) and Y (t)
are uncorrelated noise components which contribute to the signals of both detectors,
and s1(t) and s2(t) influence only one of the ex-core chambers each. By usual
techniques, one can obtain the coherence of the CPSD between both detectors as:

coh12 (ω) =
|APSDX (ω)− APSDY (ω)|

APSDX (ω) + APSDY (ω) + APSDs (ω)
(5.10)

As (5.10) shows, the coherence can be zero if the APSD of each process is equal to
each other, and the phase is zero if the X process dominates over the Y process.
Out-of-phase relationship would exist in the opposite case. This can be appreciated
in Fig. 5.4 where the coherence goes to zero at around 8 Hz and the phase changes
from 180◦ to 0◦. In this case the two processes involved are the core barrel pendular
motion and the flow induced fuel vibrations.

It is also possible to derive expressions for the in-phase process and out-of-phase
process spectra, APSDx and APSDy respectively:

–42–



Ringhals diagnostics CTH-NT-333/RR-21

APSDX (ω) =
{

1±coh12(ω)
2coh12(ω)

|CPSD12 (ω)|

APSDY (ω) =
{

1∓coh12(ω)
2coh12(ω)

|CPSD12 (ω)|
(5.11)

The above expressions serve to make a difference between the in-phase and-out-of
phase noise sources. In the present work, the methodology is applied to two ex-core
detectors placed diagonally opposite to each other and at different axial levels of a
Ringhals PWR. The in-phase process is the tilting movement and the out-of-phase
one is the beam mode pendular core barrel motion. The results and discussion are
presented in the next section.

5.6 Results on the separation of the tilting and beam mode components

The in-phase and out-of-phase spectra for the pair N43U-N43L is shown in Fig.
5.7.

Figure 5.7: In-phase and out-of-phase APSDs for the pair of ex-core detectors N43U-
N44L.

The tilting mode at 6 Hz appears as an in-phase process, but its amplitude is
lower than that of the beam mode at 8 Hz in the out-of-phase spectra. This is
probably the reason why it is not clearly seen in the spectra of individual detectors
because the beam mode turns out to be the dominant vibration in this frequency
region. It is also possible to see another peak at around 8-9 Hz in the in-phase
curve that is probably related to the flow induced fuel vibrations, the second type
of vibration part of the beam mode broad peak [30]. The shell mode is clearly an
in-phase process, and it is indeed for a pair of detectors located diagonally opposite.
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Figure 5.8: In-phase and out-of-phase APSDs for the pair of ex-core detectors N44U-
N43L.

Considering another pair of detectors in Fig. 5.8, the results are consistent
with the tilting mode hypothesis, since it is also present as in-phase process but its
amplitude is very low compared to the out-of-phase spectra. Again, the shell mode
is present as an in-phase process and the beam mode is divided into two peaks, one
belonging to the out-of-phase profile (core barrel pendular motion) and the other
one to the in-phase spectra (flow induced fuel vibrations).

For a pair of detectors at the same radial position and different axial levels,
the in-phase process will dominate, but the tilting movement should be present in
the out-of-phase spectra. This can be appreciated in Fig. 5.9. The CBM is an
out-of-phase process, the fuel vibrations and the shell mode result as an in-phase
process.

5.7 Conclusions

The results presented in this section show the existence of a core barrel vibration
mode different from the beam and the shell modes. The observations of wear which
prompted the investigation as well as the analysis performed in this work support
the idea of a small amplitude periodic tilting movement of the core barrel around a
horizontal, diagonal pivot at the half height of the core.

The analysis was made based on a model where the detector signals are com-
posed of different sources, one of them being the vibration resulting from the tilting
movement. By properly combining the signals of the ex-core detectors in the time
domain, such mode is enhanced and it is possible to appreciate as a 6 Hz peak in
the spectra of the combined signals.
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Figure 5.9: In-phase and out-of-phase APSDs for the pair of ex-core detectors N43U-
N43L.

In order to validate this procedure, another methodology based on a technique
for separating in-phase and out phase processes was used. This method is able to
separate the tilting mode from the beam mode and also works to identify other
known modes of vibration such as the shell mode or the fuel assemblies vibrations.
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6. A BASIC STUDY IN NEUTRON NOISE THEORY WHICH
COULD PROVIDE SOME INDIRECT SUPPORT FOR THE

DETERMINATION OF THE VOID FRACTION FROM
NEUTRON NOISE MEASUREMENTS

A basic study in neutron noise was outlined in the final report of the previous
Stage [1]. It showed how the modulation of a moderating or scattering medium,
without the presence of fissile material, will induce non-trivial (correlated) fluctua-
tions both in pulse count and current mode of the detectors. It was suggested that an
experimental verification of the theoretical predictions be made during the present
Stage. As mentioned also in the last report, in addition to its own research value,
this study could also give some indirect support to our efforts in the determination
of the void fraction from neutron noise measurements.

The idea is that neutrons emitted independently from each other by a source
with simple Poisson statistics (Am-Be or Pu-Be source), slowing down and diffusing
in a non-multiplying medium, which are hence originally uncorrelated, and would
remain uncorrelated in a steady medium, become correlated if the medium in which
the slowing down and diffusion takes place is fluctuating (e.g as a result of a per-
turbation, such as the presence of two-phase flow). A suitable experiment requires
a neutron source in a water tank, and at least two neutron detectors. Bubbles in-
troduced in the water between the source and the detectors would act as a suitable
perturbation.

At the time when the original idea arose, it appeared possible to construct an
experimental setup, and to perform such experiments in Chalmers. Irradiation ex-
periments with much higher complexity were performed during the decades when
the reactor and neutron physics activities were performed in a separate building,
which housed the department (then called Department of Reactor Physics). For
instance, in the frame of the FlowAct project a complex water loop was built for
developing a method for high accuracy measurement of the mass flow of water in a
pipe with pulsed neutron activation of the water and measuring the gamma-decay
of the produced 16N nuclides [33, 34].

However, by moving from our previous building to another place in Chalmers,
we lost most of our experimental facilities and possibilities. This, combined with
shrinking of technical support and personnel resources in general, lead to the loss of
the possibility to build a facility and perform the experiments in Chalmers. Luckily,
both interest and practical possibilities exists at our collaboration partners at EPFL
Lausanne, in collaboration with PSI. In particular, the CARROUSEL facility is
available, which is suitable to perform the planned experiments [35] The work has
already started, and preliminary results are available, which will be reported in this
Chapter. The material below is largely taken from the corresponding draft report
by Oskari Pakari [36].
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6.1 Introduction

The considerations regarding the experimental proof of how the effect of the
perturbartion will induce correlations between the detector counts with originally
independently injected netutrons into a non-multiplying medium were described in
the previous report [1]. However, they were formulated in terms of the statistics
of the number of neutrons in the system, whereas for the interpretation of the
experiments, one needs them to be reformulated in terms of the number of detections,
which will be done first.

Basically, there are two straightforward options to prove the influence of the per-
turbations of the non-multiplying medium on the statistics of the neutron number
through the detection statistics. One or them is to use one detector. With inde-
pendently emitted and detected neutrons, in a stationary case (constant source and
system), the number of neutrons N in the system follows a Poisson distribution

P (N) =
e−〈N〉 〈N〉N

N !
(6.1)

For such a case, the number of detection counts Z(t) during a measurement interval
t will also follow Poisson statistics::

P (Z, t) =
e−〈Z(t)〉 〈Z(t)〉Z

Z!
(6.2)

For a Poisson distribution, the variance is equal to the mean, i.e. one has

σ2
N

〈N〉
=

σ2
Z(t)

〈Z(t)〉
= 1 (6.3)

However, as described in the previous report, based on the results in [37, 38], in
a randomly varying medium, since the fluctuations of the medium influence the
number of the neutrons simultaneously, inducing positive correlations, the variance
to mean of the neutron number will exceed that of the Poisson distribution, i.e. it
will be larger than unity:

σ2
N

〈N〉
= 1 + Y (6.4)

where Y is a positive number. For the number of detections Z(t) during time t, one
expects that it can be written as

σ2
Z(t)

〈Z(t)〉
= 1 + Y (t) (6.5)

Formally, (6.5) looks very similar to the expression for the Feynman-alpha formula
of reactivity measurement in subcritical source-driven systems, where a concrete
functional relationship is known for Y (t). However, it has to be kept in mind that
the time-dependence of the Feynman Y (t) function is related to the die-away of the
prompt neutron chain, whereas in the present case, there are no chains generated.
The time dependence of the Y (t) for the case of non-multiplying, randomly varying
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medium is not known. Based on the considerations in [37, 38], it is most likely
related to the temporal auto-correlation of the fluctuations of the randomly varying
medium, if the modulation is uniform in space. In particular, a similar functional
form can be expected for the Y (t) as for the Feynman-method, but the parameter
α will correspond to the temporal die-away of the correlations of the state changes
of the medium. Performing the modulation of the medium by blowing bubbles into
water, the random modulation of the medium becomes space-dependent, and no
simple theoretical form of the function Y (t) can be predicted. However, it will be
interesting to perform measurements, and see if the time-dependence of Y (t) will
show a form similar to the traditional Feynman-alpha formula, and if so, what decay
parameter α can be extracted from it.

The second possibility is to use two detectors, and measure the covariance be-
tween the counts of the two detectors, i.e. to measure

Cov(Z1, Z2) = 〈Z1Z2〉 − 〈Z1〉 〈Z2〉 (6.6)

For a non-perturbed non-multiplying medium, the covariance should be zero. For
the case of a medium with a perturbation, the covariance should be larger than zero.

This second option is somewhat less simple to apply in practice than the first.
This is because in an experiment, the estimate of the covariance will result in a
non-zero value even for uncorrelated events, due to finite measurement time, mea-
surement errors etc. Since, due to low count rate (as compared to measurements in
a reactor core), the deviations from the Poisson statistics are expected to be low,
it may be difficult to judge whether the deviation of the covariance from zero is
sufficiently consistent and significant so that it can be regarded as a proof of the
existence of the correlations. Nevertheless, both options will be investigated in the
measurements.

This experiment originally involved a simple detection setup to measure the tem-
poral correlation between two detectors with and without a bubbly flow in between
the source and the detectors. Due to induced electronic noise with the initial ac-
quisition, the experiment was re-arranged and the results were re-evaluated. Data
from three setups are discussed:

• I) The original detection setup, with the amplifier that randomly caused ad-
ditional counts

• II) Setup I with exchanged amplifiers.

• III) Setup II with an aluminium plate set between the bubble flow and the
detectors to minimize possible mechanical influences.

6.2 Experimental setup

The CARROUSEL facility consists of a cylindrical aluminium water tank with a
diameter of 1.5 meters with a height of 1.6 meters, see Figure 6.1. In the middle at
around 78 cm height a Pu-Be source (∼ 5 · 106 n/s) can be inserted into a thin PVC
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tube. On a rail above the tank detector tubes can be attached at various distances
to the source.

Figure 6.1: Left: Wire mesh model of the CARROUSEL facility. Right:
Picture from above on the CARROUSEL tank with internals of the ex-
periment visible.

The experimental setup used is depicted in Figure 6.2, with the associated detec-
tors and electronics sketched in Figure 6.3. Two Helium-3 detectors were installed
horizontally at 25 cm from the source tilted into a specifically designed holder that
allows for variable horizontal and vertical shift of detector locations. Both detectors
were connected to 1100V high voltage and standard gamma spectroscopy preampli-
fication and amplification hardware, giving an analogue signal to the MCS cards of
the noise acquisition PC [39]. A standard aquarium bubble diffuser with a length
of around 30 cm and width of 2 cm was installed at the bottom between detectors
and source at 10 cm from the source (see Figures 6.1 and 6.2).

The diffuser was connected to the pressurized air access facilities with a manome-
ter in between. This allowed for variable air flow to the diffuser, characterized by
litres of air per minute, or “lpm”. Fig. 6.4 shows the setup at 0 lpm, i.e. with no
bubbles. Figure 6.5 and 6.6 show the setup at 10 and 20 lpm, respectively.

Note: 1 The manometer used to set the flow rate is not calibrated and thus
might not accurately reflect a linear increase. Additionally, the flow rate could only
be set within 2 lpm uncertainty of reading accuracy.

Note 2: The average bubble velocity at the height of the detectors was estimated
using a camera filming the bubbles at 30 fps in front of a ruler. 30 tracks were
measured and averaged to find the average velocity

vBubble = (0.6± 0.1)m/s (6.7)
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Figure 6.2: Schematics of the experimental setup in the CARROUSEL
facility. A diffuser was installed at the bottom of the tank that allowed
for variable bubble output (green).
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Figure 6.3: Detection scheme regarding the neutron detectors used and
the associated electronics.
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Figure 6.4: Picture of the experi-
mental setup at 0 lpm.

Figure 6.5: Picture of the experi-
mental setup at 5 lpm.

Figure 6.6: Picture of the experimental setup at 20 lpm.
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6.3 Results and discussion

6.3.1 Setup I

The amplifier used with He-3 yellow was found to randomly add correlated noise.
This noise would triple the count rate for up to 30 min and thus cause the previously
measured high variance over mean curves (Var/Mean > 100, see Figure 6.7 below).
The noise was found to be caused by the output connector of the amplifier and could
be reproduced at 0 lpm by wiggling the input cable. This would cause echoes or
even cut the signal off completely. For this reason the amplifier was exchanged and
all connections were checked for faulty contacts.

Figure 6.7: Measured Y-curves for detector 1 (He-3 yellow) in case of 20
lpm air flow and 0 lpm (i.e. no bubbles). The individual sweep data
showed that the first 4 sweeps had a tripled count rate compared to the
rest of the data.

6.3.2 Setup II & III

Conduct of experiments

For different flow rates of 0, 5, 12, 20 and 25 lpm the count rates of both detectors
were registered over 4 hours with a dwell time of 5ms per bin. The discriminator
threshold was set to a relatively high value of 2V (usually 0.5V) to avoid induced
noise by the electronics.

During the experiments the hypothesis arose, that the induced correlation could
be due to mechanical vibrations induced by the bubbles on the detector cables or
connectors. For this purpose an aluminium plate was set between the detectors and
bubbles to minimize the effect and to allow for comparison (see Figure 6.8). The
experiments with a plate were carried out at 0, 5, 10, 15, 20 and 25 lpm. It has
though to be noted that the plate was attached to the detector setup. This means
that the possible vibrations of the aluminium plate could be transferred to the
detectors, and hence the shielding effect of the plate against flow-induced vibrations
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Figure 6.8: Picture of the experimental setup III at 10 lpm with added
aluminium plate with the aim to reduce vibrations induced by the bub-
bles.

of the detectors is not perfect.

Comments on uncertainty. The statistical uncertainties for the covariances
are below 1%, assuming a standard Poisson distribution. Nonetheless, systematic
uncertainties inducing noise appear to have a strong effect on the results. This was
shown in the previous measurements to be caused by the amplification stage. Now in
the revised experiments, the influence of mechanical vibrations can still not be ruled
out as cause for the increased covariance. Further improvements would include more
sophisticated mechanically isolated channels for both the bubbles and the detectors.

6.3.3 Results for the covariance

The results for the measurements with and without plate for the covariance
between the two detectors are shown in Table 6.1. Furthermore, the data is shown
in semilog scale in Figure 6.9.

Table 6.1: Covariances between the two He-3 detectors at different flow
rates, with and without plate in-between.

lpm 0 5 10 12 15 20 25
Cov1,2 with plate 2.0e-5 0.014 0.004 0.010 0.012 11.779

Cov1,2 without plate 6.6e-4 0.012 0.003 1.702 0.011
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Figure 6.9: Semilog plot of covariances between the detectors at varying
flow rates.

6.3.4 Discussion

Effect of bubbles A general first observation is that the covariance deviates
from (close to) zero for a non-zero flow rate, irrespective of the presence of the plate.
In Figure 6.9 a general linearly increasing covariance with flow rate can be observed.

Plate versus no plate The plate and no plate cases appear to agree for low
flow rates below 15 lpm. Above 20 lpm we observe two orders of magnitude and
more difference. This indicates that the plate might not help in reducing mechani-
cally induced noise, as noise appears to perturb the measurement above 20 lpm in
both cases. As mentioned before, this may be due to the fact that the plate is in
mechanical contact with the detector setup.

Hypothetical fits Examples of hypothetical linear and quadratic dependences
for the two cases of with or without the aluminium plate, for the data in Fig. 6.9
are shown in Fig. 6.10. The question marks denote points which were found to be
outliers to the data fitting procedure.

An obvious linear relationship does not appear to apply due to the outlier values
at 5 lpm and 20/25 lpm. One could assume, that these values are systematically to
be excluded due to noise. In this case a linear relationship for the values for 0, 10
and 12/15 lpm can be seen for both cases.

On the contrary, the values for 5 to 15 lpm appear to agree in both cases within
reading accuracy for the flow rate. This raises another possibility: The values above
around 20 lpm are unreliable due to induced mechanical noise and a linear depen-
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Figure 6.10: Semilog plot of covariances between the detectors at varying
flow rates. Potential trend lines have been added for discussion purposes.

dence up to that point is found.

6.3.5 PSD estimates

Finally, as a alternative way to visualize the data, the auto and cross power
spectra of the measurements were estimated. This was accomplished by the Welch
PSD method using a sufficiently long rectangular window to estimate the PSD down
to 10−2 Hz. The APSDs of He3-yellow for the different flow rates are shown in Figure
6.11 without the plate and in Figure 6.12 with the plate. The CPSDs for the different
flow rates are shown in Figure 6.13 without the plate and in Figure 6.14 with the
plate.

Discussion Without the plate the APSD and CPSD estimates agree in terms
of shape. With increasing flow until 20 lpm a low frequency plateau rises with a
cut-off frequency around 0.5 Hz.

With the plate, at 10 and 15 lpm, a peak at around 0.15 Hz can be seen, with
a slightly higher value for 15 lpm compared to 10 lpm. This shows an oscillation of
unknown origin.

With the plate the estimates also agree in terms of shape. An immediate remark
is that the 25 lpm PSDs show a sink structure. The source of this behaviour is
believed to be an error on the PSD estimation, e.g. due to the rectangular window
being incompatible with the data.

In conclusion, further investigatons are need on the PSD shapes.
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Figure 6.11: Auto power spectral density of He3-yellow at varying flow
rates without the plate. At higher flow rates a cut off frequency at ∼0.5 Hz
becomes visible.

Figure 6.12: Auto power spectral density of He3-yellow at varying flow
rates with the plate. At 10 and 15 lpm a peak at 0.05 Hz is visible.

6.4 Summary

The bubble experiment in the CARROUSEL facility in its revised form has been
conducted. Using a (Poisson) PuBe source in a water tank, a bubble diffuser and
two He-3 detectors, the effect of induced correlation due to a stochastic medium was
investigated. The analysis methods include covariance and PSD estimation. Results
indicate an effect on correlation of neutrons due to the bubbles in dependence of
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Figure 6.13: Cross power spectral density at varying flow rates without the
plate. The shapes are consistent with the APSD shapes without the plate.

Figure 6.14: Cross power spectral density at varying flow rates with the
plate. The shapes are consistent with the APSD shapes without the
plate.

flow rate. The behaviour of said dependence is not clearly quantifiable from the
data.
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7. A PILOT STUDY OF THE POSSIBILITY OF USING FISSION
CHAMBERS FOR ZERO POWER NOISE EXPERIMENTS

In zero power noise experiments, the subcritical reactivity of a core is determined
from the statistics of the individual detector counts: either from the time correlations
between two consecutive counts (Rossi-alpha method) or from the relative variance
of the number of detections as a function of the measurement time (variance to mean
or Feynman-alpha method). These methods have been elaborated a long time ago,
and have been used routinely for monitoring subcritical reactivity during start-up,
or during the operation of an accelerator-driven system (ADS).

However, there are incentives for seeking alternative methods for supplying the
same information. One reason is that pulse counting methods encounter difficulties
at higher neutron fluxes (high count rates), due to dead-time problems. Whereas
it is easy to correct for the dead-time what regards the mean count rate (the first
statistical moment), such corrections are incomparably more complicated for the
higher moments, such as the variance.

The second incentive arises from the fact that the archetype of detectors for pulse
counting is the He-3 detector. There is a global shortage of He-3 worldwide, making
replacement of old detectors and acquiring new detectors difficult.

One possible alternative, which would remedy both problems, is to use fission
chambers. They do not suffer from the shortage of detector material; further, by
operating them at high count rates in the so-called Campbell mode, or in the current
mode, they are insensitive to dead time problems. However, since in the current
mode the individual counts are not distinguishable, the statistics of the number of
pulses cannot be extracted from the signals, only the statistics of the continuous
detector current (its mean, variance and higher moments) at a time point can be
measured (and also calculated from suitable models). Therefore, a substantial theory
development has to be made in order to extract the same information from the
statistics of the continuous current of the fission chambers as from the pulse counting
methods.

Very recently we succeeded in developing a powerful formalism for the statistical
theory of fission chamber currents in reactor measurements, based on the master
equation formalism [40, 41]. This opens up the possibility to investigate whether
the prompt neutron decay constant α = (ρ−β)/Λ can be extracted from the statis-
tics of the continuous current signals of fission chambers. This is the subject of this
Chapter. It will be shown that the temporal covariance of the detector signal (an
analogue of the Rossi-alpha function of the traditional discrete pulse counting) con-
tains, among others, the prompt neutron decay constant in form of an exponential
function of the time difference, similarly to the traditional Rossi-alpha measure-
ment. Hence, there is a possibility, at least in principle, to determine the prompt
neutron decay constant. However, the covariance function is much more involved
than a Rossi-alpha curve, and contains other time-dependences, such as that of the
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detector pulse shape. Therefore extraction of the prompt neutron decay constant
is less straightforward. On the other hand, as mentioned before, the method is free
from dead time problems.

The derivation of the covariance function of the detector signal is considerably
more complicated than the derivation of the Rossi-alpha method. Hence, in the
continuation, the principles of the model, the main steps of the derivation, and the
final result will be given. All details can be found in the journal publications [40]
and [41].

7.1 The principles of the model

7.1.1 Signal statistics for a single source event

The goal is to determine the probability distribution of the random process η(t),
represented by the detector signal (detector current). To this end we will use an
extended version of the formalism applied in [40] to account for the statistics of the
incoming particles.

Although the signal of the detector at any given time is the sum of the signals
of all previous random detections, the starting point is, just as in [40], to specify
the properties of the detector signal after the detection of one neutron. In [40],
from these, it was immediately possible to write down a backward master equation
for the probability distribution of the detector signals, due to the independence of
the detection events. In the present case, it will not be possible to directly specify
the probability of the arrival of the neutrons at the detector; we can only specify
the probability (intensity) of the source neutron emission and hence write down a
master equation for the probability distribution of the detector signal for one source
neutron. After that, as is usual in the backward theory of branching processes,
another master equation needs to be written down to connect the detector signal
distribution due to one single starting neutron, with that induced by a continuous
source of neutrons, which induces the stationary neutron distribution in the system
(and hence the stationary distribution of the detection events).

Let ϕ(ξ, t) denote the detector signal which exists in the detector at time t ≥ 0
after the arrival of one neutron at t = 0. It will be assumed that this signal depends
also on random parameters, which is indicated by the random variable ξ as the
argument of ϕ1.

Keeping the general notation ϕ(ξ, t), we will assume that the probability distri-
bution W (x) of the random variable ξ is known:

P {ξ ≤ x} =

∫ x

−∞
w(x′) dx′ = W (x). (7.1)

Further, we will need the probability H(y, t) of the event that for any possible
1In our previous work [40] it was assumed that ϕ(ξ, t) = ξ f(t), where f(t) was a deterministic,

decreasing function of its argument, whereas ξ was the random amplitude of the signal. The same
assumption will be used in this paper in the concrete examples, but with a deterministic (constant)
amplitude.
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realisation {ξ = x} of the random variable ξ, the random function ϕ(ξ, t) is not
larger than y. This can be expressed by

H(y, t) =

∫ +∞

−∞
∆[y − ϕ(x, t)]w(x) dx. (7.2)

where ∆(x) stands for the unit step function. The probability density of H(y, t) is
given by the generalised function h(y, t) as

h(y, t) =

∫ +∞

−∞
δ [y − ϕ(x, t)] w(x) dx. (7.3)

The extension we need to make compared to [40] is to specify the quantities
needed to describe the neutron multiplication. We assume an infinite multiplying
medium with an infinite fission chamber embedded into it. It is assumed that there
are only two possible neutron reactions. Either the neutron is absorbed in the
detector, in which case it induces a signal but no new neutrons are generated, or
it is absorbed in the material, in which case new neutrons can be generated by
fission, but no detector signal is generated. Obviously, the condition that there are
no new neutrons generated in the detection process can be abandoned easily. At any
rate, since as usual it is assumed that only a small fraction of all reactions in the
system takes place in the detector, this simplification has no practical consequences
to the results. Delayed neutrons will not be taken account, all fission neutrons will
be assumed to be prompt. This simplification was made to make the treatment
more transparent, and can also be abandoned. Some of the consequences of this
simplification will be touched upon when discussing the results.

Hence, the parameters used will be the intensity of the detection, λd, and the
intensity of reaction in the material, λm = λc + λf . The reaction in the material
(absorption included with intensity λc) will lead to k new neutrons with probability
f(k) which is different from the probability p(k) of the number of neutrons from a
fission event, since in this latter the pure absorption events are not included. The
total intensity of neutron reaction (either detection or reaction in the material) is

λd + λm = λr.

First, we will be dealing with the probability density function of the detector
signal, existing in the detector at time t, assuming one single source neutron in the
system at t = 0. From the above, the probability that no neutron reaction occurs
in the time interval [0, t] is given by e−λrt. We will seek the probability of the event
that the detector signal η(t) ≥ 0 is less than or equal to y, if its value was zero at
t = 0 and that the number of neutrons n(t) in the multiplying system is equal to n,
if its value at t = 0 was one:

P {η(t) ≤ y,n(t) = n|η(0) = 0,n(0) = 1} = P1(y, n, t |0, 1) =

∫ y

−∞
p1(y

′, n, t |0, 1) dy′.

(7.4)
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For the density p1(y, n, t|0, 1) the following integral backward equation can be writ-
ten down2

p1(y, n, t |0, 1) = e−λrt δ(y) δn,1 + δn,0λd

∫ t

0

e−λr(t−t
′)h(y, t′) dt′+

λm
∑
k

f(k)

∫ t

0

e−λr(t−t
′) dt′

∫
· · ·
∫

y1+y2···+yk=y

∑
n1+···+nk=n

k∏
`=1

p1(y`, n`, t
′ |0, 1) dy`. (7.5)

Introducing the characteristic functions

p̃1(ω, n, t |0, 1) =

∫ +∞

−∞
eı ω y p1(y, n, t |0, 1) dy, (7.6)

and

χ(ω, t) =

∫ +∞

−∞
eı ω y h(y, t) dy =∫ +∞

−∞

∫ +∞

−∞
eıωy δ [y − ϕ(x, t)] dy w(x) dx =

∫ +∞

−∞
eıωϕ(x, t)w(x) dx, (7.7)

one obtains from (7.5) the following equation:

p̃1(ω, n, t |0, 1) = e−λrt δn,1 + λd

∫ t

0

e−λr(t−t
′)χ(ω, t′) dt′ δn,0+

λm
∑
k

f(k)

∫ t

0

e−λr(t−t
′) dt′

∑
n1+···+nk=n

k∏
`=1

p̃1(ω, n`, t
′ |0, 1). (7.8)

Defining the generating function

g1(ω, z, t |0, 1) =
∞∑
n=0

p̃1(ω, n, t |0, 1) zn, (7.9)

one arrives at the equation

g1(ω, z, t | 0, 1) = z e−λrt + λd

∫ t

0

e−λr(t−t
′) χ(ω, t′) dt′+

λm

∫ t

0

e−λr(t−t
′) q[g1(ω, z, t

′ | 0, 1] dt′, (7.10)

where

q(z) =
∞∑
k=0

f(k) zk. (7.11)

2The subscript “1” here refers to the fact that p1(y, n, t|0, 1) is a “one-point” density, concerning
the distribution or density of the random variables at one given time point. This is to distinguish
from the case of two-point densities, which will be later needed to treat the covariance function,
and which will be denoted by a subscript “2”.
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Since we are only interested in the probability distribution of the detector signal
whereas the number of the neutrons in the system is uninteresting, we introduce the
characteristic function3

π1(ω, t|0, 1) = g1(ω, 1, t | 0, 1) =

∫ +∞

−∞
eıωy p1(y, t | 0, 1) dy, (7.12)

where

p1(y, t | 0, 1) ≡
∞∑
n=0

p1(y, n, t | 0, 1)

for which one obtains

π1(ω, t | 0, 1) = e−λrt + λd

∫ t

0

e−λr(t−t
′) χ(ω, t′) dt′+

λm

∫ t

0

e−λr(t−t
′) q[π1(ω, t

′ | 0, 1)] dt′. (7.13)

It is worth noting that (7.13) could have been derived in a simpler way, by starting
directly with a backward-type master equation for p1(y, t | 0, 1). This would have
simplified both the formalism and the derivation. However, the more general equa-
tion for p1(y, n, t | 0, 1) was derived to show the full potentials of the formalism. From
the density p1(y, n, t | 0, 1), also the mixed moments, such as the covariance between
the neutron number in the system and the detector current, can be calculated.

From the integral equation (7.13) one can also derive a full differential equation
by derivation. Relationships between the various moments of the density function
p1(y, t |0, 1) with respect to y can be calculated by taking the derivatives of (7.13)
w.r.t. ω at ω = 0. However, we will need the relationships for the case when the neu-
tron distribution in the system is maintained by a stationary neutron source, hence
we have to connect the above, single-particle induced distributions, to the source-
induced distribution, and then deriving the equations for the first two moments and
for the auto-covariance of the stationary detector current.

7.1.2 Subcritical system driven by a stationary source

We assume a subcritical system in the point model description, i.e. the detector
and the source homogeneously embedded into the system. The source has a homo-
geneous Poisson distribution and intensity s0. In the previous Section we derived
an equation for the characteristic function π1(ω, t | 0, 1) of the detector signal η(t)
at time t ≥ 0 which is induced by emitting one single neutron to the system at time
t = 0. Let us now determine the one-point density P1(y, t | 0) of the event that,
assuming a continuous neutron source, the value of the detector signal η(t) at t ≥ 0
will lie in the interval (y, y + dy), on the condition that at t = 0 the value of the
signal was zero.

3In the continuation we will use the convention that the single-particle induced densities will
be denoted by p and their characteristic functions by π, whereas the source-induced densities by
P and their characteristic function by Π.
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It is easy to confirm that P1(y, t | 0) obeys the equation

P1(y, t | 0) = e−s0t δ(y)+

s0

t∫
0

e−s0(t−t
′)

y∫
0

p1(y − y′, t′ | 0, 1)P1(y
′, t′ | 0) dy′ dt′. (7.14)

From this one obtains for the characteristic function

Π1(ω, t | 0) =

∫ +∞

−∞
eı y ω P1(y, t | 0) dy (7.15)

the equation

Π1(ω, t | 0) = e−s0t + s0

∫ t

0

e−s0(t−t
′) π1(ω, t

′ |0, 1) Π1(ω, t
′ | 0) dt′. (7.16)

With differentiation one obtains the equation

dΠ1(ω, t | 0)

dt
= −s0 Π1(ω, t | 0) + s0 π1(ω, t |0, 1) Π1(ω, t | 0) (7.17)

whose solution, accounting for the initial condition

Π1(ω, 0 | 0) = 1

reads as

Π1(ω, t | 0) = exp

{
−s0

∫ t

0

[1− π1(ω, t′ | 0, 1)] dt′
}
. (7.18)

It is practical to introduce the logarithmic characteristic function

K(ω, t) = ln Π1(ω, t | 0) = s0

∫ t

0

[π1(ω, t
′ | 0, 1)− 1] dt′, (7.19)

from which the cumulants of the detector signal η(t) can be derived as

κn(t | 0) =
1

ın

[
∂nK(ω, t)

∂ωn

]
ω=0

=
1

ın
s0

∫ t

0

[
∂nπ1(ω, t

′ |0, 1)

∂ωn

]
ω=0

dt′. (7.20)

In a subcritical system with a stationary source, we need the stationary values
of these quantities, which is given by the asymptotic formula

lim
t→∞

Π1(ω, t | 0) = Π
(st)
1 (ω) = exp

{
−s0

∫ ∞
0

[1− π1(ω, t | 0, 1)] dt

}
. (7.21)

From (7.21) and (7.13), the various moments of the detector current can be
calculated by expressing the source induced moments as integrals over the single-
particle induced moments, and deriving equations for the latter by differentiating
(7.13) w.r.t. ω. Since our goal is to calculate the temporal covariance function, these
derivations will not be given here. Instead, for the details the reader is referred to
[41].
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7.2 Auto-covariance of the stationary detector current

In order to explore the temporal correlations between the incoming events, we
need to determine the auto-covariance of the stationary detector signal,

lim
t→∞

Cov {η(t− θ)η(t)} = Cov(θ),

which is expected to carry information on the multiplying medium. Hence, it is
clearly of interest to derive it, despite an involved formalism and complicated deriva-
tion. For the calculation of the auto-covariance, one has to determine the two-point
probability4

P2 (y1, y2, n1, n2, t1, t2 |0) dy1 dy2 (7.22)

of the event that at time t1 = t−θ the detector current is in the interval (y1, y1 + dy1)
and the number of the neutrons is n1; and that at t2 = t the detector current is in the
interval (y2, y2 + dy2) while the number of neutrons is n2, for the case that the system
was driven by a stationary source which was switched on at time t = 0 when there
were no neutrons in the system and the detector current was equal to zero. To write
down an equation for P2, one will also need the probability p2 (y1, y2, n1, n2, t− θ, t |1)
which is the same as above, but for the case that the process was generated by one
single neutron, emitted into the system at time t = 0. With the help of Fig. 7.1,

-

0 t′ t− θ t

t′

Figure 7.1: Arrangement of the time points t′, t1 = t − θ, and t2 = t, for two possible values
of t′: one lying in [0, t− θ], shown in black, and one lying in [t− θ, t], shown in red in the on-line
version. These two alternatives correspond to two different terms in Eq. (7.23).

the following master equation can be written down:

P2 (y1, y2, n1, n2, t− θ, t |0) = e−s0t δ(y1) δ(y2) δn1,0 δn2,0 +

s0

∫ t

0

e−s0t
′

∆(t− θ − t′)
y1∫
0

y2∫
0

n1∑
n′
1=0

n2∑
n′
2=0

p2 (y′1, y
′
2, n

′
1, n

′
2, t− θ − t′, t− t′ |1)×

P2 (y1 − y′1, y2 − y′2, n1 − n′1, n2 − n′2, t− θ − t′, t− t′ |0) dy′1 dy
′
2 +

+∆(t′ − t+ θ) δ(y1)δn1,0 × (7.23)
y2∫
0

n2∑
n′
2=0

p1 (y′2, n
′
2, t− t′ |1) P1 (y2 − y′2, n2 − n′2, t− t′ |0) dy′2

 dt′,

4As mentioned previously, the subscript “2” here stands to indicate that we are dealing with a
two-point distribution or density, whereas the use of capital P indicates that the distribution was
induced by a stationary source.
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which, after the change of variables t′ → t− t′ and t− t′ → t′ takes the form

P2 (y1, y2, n1, n2, t− θ, t |0) = e−s0t δ(y1) δ(y2) δn1,0 δn2,0 +

s0

∫ t

0

e−s0(t−t
′)

∆(t′ − θ)
y1∫
0

y2∫
0

n1∑
n′
1=0

n2∑
n′
2=0

p2 (y′1, y
′
2, n

′
1, n

′
2, t
′ − θ, t′ |1)×

P2 (y1 − y′1, y2 − y′2, n1 − n′1, n2 − n′2, t′ − θ, t′ |0) dy′1 dy
′
2 +

∆(θ − t′) δ(y1) δn1,0 × (7.24)
y2∫
0

n2∑
n′
2=0

p1 (y′2, n
′
2, t
′ |1) P1 (y2 − y′2, n2 − n′2, t′ |0) dy′2

 dt′.

For the two-point, single particle induced density p2 (y1, y2, n1, n2, t− θ, t |1) appear-
ing in (7.24) one can write, similarly to (7.5) the equation

p2 (y1, y2, n1, n2, t− θ, t |1) = e−λrt δ(y1) δ(y2) δn1,1 δn2,1 +

λd

∫ t

0

e−λr(t−t
′) [∆(t′ − θ)h(y1, t

′ − θ)h(y2, t
′) +

∆(θ − t′) δ(y1)h(y2, t
′)] δn1,0 δn2,0 dt

′+

λm

∫ t

0

e−λr(t−t
′)

∆(t′ − θ)
∞∑
k=0

f(k)

∫
· · ·
∫

y1,1+···+y1,k=y1

∫
· · ·
∫

y2,1+···+y2,k=y2

×

∑
n1,1+···+n1,k=n1

∑
n2,1+···+n2,k=n2

k∏
`=1

p2 (y1,`, y2,`, n1,`, n2,`, t
′ − θ, t′ |1) dy1,` dy2,` +

∆(θ − t′) δ(y1) δn1,0 × (7.25)

∞∑
k=0

f(k)

∫
· · ·
∫

y2,1+···+y2,k=y2

∑
n2,1+···+n2,k=n2

k∏
`=1

p1 (y2,`, n2,`, t
′ |1) dy2,`

 dt′.

The one-point, source-induced density P1 (y2, n2, t
′ |0) appearing in (7.24) is defined

by the equation
P1 (y, n, t |0) = e−s0tδ(y) δn,0 +

s0

∫ t

0

e−s0(t−t
′)

y∫
0

n∑
n′=0

p1(y
′, n′, t′ |0, 1)P1 (y − y′, n− n′, t; |0) dt′, (7.26)

in which the single-particle induced one-point density p1(y1, n1, t
′ |0, 1) is given by

the equation, derived from (7.5) as

p1(y, n, t |0, 1) = e−s0t δ(y)δn,1 + λd δn,0

∫ t

0

e−s0(t−t
′) h(y, t′) dt′ +
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λm
∑
k

f(k)

∫ t

0

e−s0(t−t
′)

∫
· · ·
∫

y1+···+yk=y

∑
n1+···+nk=n

k∏
`=1

p1(y`, n`, t
′ |0, 1) dy` dt

′. (7.27)

Introducing the characteristic function

P̃1(ω, n, t|0) =

∫ +∞

−∞
eıωy P1(y, n, t|0) dy

and its generating function

G1(ω, z, t |0) =
∞∑
n=0

P̃1(ω, n, t|0) zn, (7.28)

by employing the procedure of Sect. 7.1.2, one can write

G1(ω, z, t | 0) = e−s0t + s0

∫ t

0

e−s0(t−t
′) g1(ω, z, t

′ |1)G1(ω, z, t
′ | 0) dt′ (7.29)

whose solution is obtained as

G1(ω, z, t |0) = exp

{
−s0

∫ t

0

[1− g1(ω, z, t′ |0, 1) dy]

}
. (7.30)

Here, following from (7.10), g1(ω, z, t|0, 1) is given as

g1(ω, z, t|0, 1) = z e−λrt+

λd

∫ t

0

e−λr(t−t
′) χ(ω, t′) dt′ + λm

∫ t

0

e−λr(t−t
′) q[g1(ω, z, t

′ | 0, 1)] dt′. (7.31)

It is worth noting that by the substitutions

g1(ω, 1, t
′ |0, 1) = π1(ω, t

′ |0, 1) and G1(ω, 1, t |0) = Π1(ω, t | 0)

Eq. (7.30) reverts to (7.18), as is expected.

7.2.1 Derivation of the generating function

To derive the auto-covariance of the detector signal we will use the generating
function

G2(ω1, ω2, z1, z2, t− θ, t |0) =∫ +∞

−∞

∫ +∞

−∞
eıω1y1 eıω2y2

∞∑
n1=0

∞∑
n2=0

P2 (y1, y2, n1, n2, t− θ, t |0) zn1
1 zn2

2 dy1 dy2 (7.32)

which obeys the integral equation

G2(ω1, ω2, z1, z2, t− θ, t |0) = e−s0t+

s0

∫ t

0

e−s0(t−t
′) [∆(t′ − θ) g2(ω1, ω2, z1, z2, t

′ − θ, t′ |1)G2(ω1, ω2, z1, z2, t
′ − θ, t′ |0)+
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∆(θ − t′) g1(ω2, z2, t
′ |1)G1(ω2, z2, t

′ |0)] dt′. (7.33)

From (7.25) it is seen that g2 obeys the equation

g2(ω1, ω2, z1, z2, t− θ, t |1) = e−λrt z1 z2+

λd

∫ t

0

e−λr(t−t
′) [∆(t′ − θ)χ(ω1, t

′ − θ)χ(ω2, t
′) + ∆(θ − t′)χ(ω2, t

′)] dt′+ (7.34)

λm

∫ t

0

e−λr(t−t
′) {∆(t′ − θ) q [g2(ω1, ω2, z1, z2, t

′ − θ, t′ |1)] + ∆(θ − t′) q [g1(ω2, z2, t
′ |1)] } dt′,

whereas the one-point generating functions g1 and G1 are given by (7.31) and (7.30).

Since we are only interested in the covariance of the detector current irrespective
of the neutron number, we need the generation functions only for the cases z1 =
z2 = 1. Introduce the notations

g1(ω, 1, t |1) = π1(ω, t |1), (7.35)
g2(ω1, ω2, 1, 1, t− θ, t |1) = π2(ω1, ω2, t− θ, t |1), (7.36)

G1(ω, 1, t | 0) = Π1(ω, t | 0), (7.37)
G2(ω1, ω2, 1, 1, t− θ, t |0) = Π2(ω1, ω2, t− θ, t |0). (7.38)

For the derivation of the auto-covariance, the following generator function equations
will be used:

π1(ω, z, t|0, 1) = e−λrt+

λd

∫ t

0

e−λr(t−t
′) χ(ω, t′) dt′ + λm

∫ t

0

e−λr(t−t
′) q[π1(ω, t

′ | 0, 1)] dt′, (7.39)

π2(ω1, ω2, t− θ, t |1) = e−λrt+

λd

∫ t

0

e−λr(t−t
′) [∆(t′ − θ)χ(ω1, t

′ − θ)χ(ω2, t
′) + ∆(θ − t′)χ(ω2, t

′)] dt′+ (7.40)

λm

∫ t

0

e−λr(t−t
′) {∆(t′ − θ) q [π2(ω1, ω2, t

′ − θ, t′ |1)] + ∆(θ − t′) q [π1(ω2, t
′ |1)] } dt′,

Π1(ω, t | 0) = e−s0t + s0

∫ t

0

e−s0(t−t
′) π1(ω, t

′ |1) Π1(ω, t
′ | 0) dt′, (7.41)

Π2(ω1, ω2, t− θ, t |0) = e−s0t+

s0

∫ t

0

e−s0(t−t
′) [∆(t′ − θ) π2(ω1, ω2, t

′ − θ, t′ |1) Π2(ω1, ω2, t
′ − θ, t′ |0)+

∆(θ − t′) π1(ω2, t
′ |1) Π1(ω2, t

′ |0)] dt′. (7.42)

From these, together with the substitutions ω1 = ω2 = 0 as well as accounting for
the elementary relations

s0

∫ t

0

e−s0(t−t
′) ∆(θ − t′) dt′ = −e−s0t + e−s0(t−θ)
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and

(λd + λm)

∫ t

0

e−λr(t−t
′) ∆(θ − t′) dt′ = −e−λrt + e−λr(t−θ),

we obtain
π2(0, ω2, t− θ, t |1) = π1(ω2, t |1), (7.43)

π2(ω1, 0, t− θ, t |1) = π1(ω1, t− θ |1), (7.44)

Π2(0, ω2, t− θ, t |0) = Π1(ω2, t |0), (7.45)

Π2(ω1, 0, t− θ, t |0) = Π1(ω1, t− θ |0). (7.46)

Our goal is the calculation of the auto-covariance function of the stationary detector
signal,

Cov(θ) = lim
t→∞

{
1

ı2

[
∂2Π2(ω1, ω2, t− θ, t |0)

∂ω1∂ω2

]
ω1=0
ω2=0

}
−

lim
t→∞

{[
1

ı

∂Π1(ω1, t− θ |0)

∂ω1

]
ω1=0

[
1

ı

∂Π1(ω2, t |0)

∂ω2

]
ω2=0

}
. (7.47)

One immediately obtains

lim
t→∞

{[
1

ı

∂Π1(ω1, t− θ |0)

∂ω1

]
ω1=0

[
1

ı

∂Π1(ω2, t |0)

∂ω2

]
ω2=0

}
=
[
I
(st)
1

]2
, (7.48)

since one has that

lim
t→∞

[
1

ı

∂Π1(ω, t |0)

∂ω

]
ω=0

= s0

∫ ∞
0

i1(t) dt = s0
λd
α
φ̃(0) = I

(st)
1 ,

where φ̃(0) is defined as

φ̃(0) =

∫ ∞
0

φ(t) dt.

To simplify the formalism, introduce the notations

M(t, θ) =
1

ı2

[
∂2Π2(ω1, ω2, t− θ, t |0)

∂ω1∂ω2

]
ω1=ω2=0

(7.49)

and

m(t, θ) =
1

ı2

[
∂2π2(ω1, ω2, t− θ, t |0)

∂ω1∂ω2

]
ω1=ω2=0

. (7.50)

Accounting for (7.43) - (7.46), from the integral equation (7.42) one obtains

M(t, θ) = s0

∫ t

0

∆(t′−θ)

{
m(t′, θ) +

1

ı

[
∂π1(ω1, t

′ − θ |1)

∂ω1

]
ω1=0

1

ı

[
∂Π1(ω2, t

′ |0)

∂ω2

]
ω2=0

+

1

ı

[
∂π1(ω2, t

′ |1)

∂ω2

]
ω2=0

1

ı

[
∂Π1(ω1, t

′ − θ |0)

∂ω1

]
ω1=0

+ M(t′, θ)

}
dt′. (7.51)
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From the definitions in Sect. 7.1.2 it follows that
1

ı

[
∂π1(ω, t |1)

∂ω

]
ω=0

= i1(t) and
1

ı

[
∂Π1(ω, t |1)

∂ω

]
ω=0

= I1(t), (7.52)

with which (7.51) can be brought to the simpler form

M(t, θ) = s0

∫ t

θ

[m(t′, θ) + i1(t
′ − θ) I1(t′) + i1(t

′) I1(t
′ − θ) + M(t′, θ)] dt′, (7.53)

from which it is seen that
M(θ, θ) ≡ 0. (7.54)

Differentiation of the integral equation (7.53) w.r.t. t yields

dM(t, θ)

dt
= s0 [m(t, θ) + i1(t− θ) I1(t) + i1(t) I1(t− θ)] , (7.55)

which can easily be solved by quadrature. One can immediately write

M(∞, θ) = s0

∫ ∞
θ

m(t, θ) dt+
[
I
(st)
1

]2
, (7.56)

since∫ ∞
θ

[i1(t− θ) I1(t) + I1(t− θ) i1(t)] dt =

∫ ∞
θ

d

dt
[I1(t− θ) I1(t)] dt =

[
I
(st)
1

]2
.

From (7.47) then it follows that

Cov(θ) = s0

∫ ∞
θ

m(t, θ) dt. (7.57)

It remains to calculate the mixed moment m(t, θ). From the definition (7.50) and
accounting for the relations (7.43) one obtains

m(t, θ) = λd

∫ t

θ

e−λr(t−t
′) φ(t′ − θ)φ(t′) dt′+

λm

∫ t

θ

e−λr(t−t
′) [q1m(t′, θ) + q2 i1(t

′) i1(t
′ − θ)] dt′, (7.58)

in which the function φ(t) is defined by the second relationship of (??). It is seen
that

m(θ, θ) ≡ 0, (7.59)

as expected. Differentiating Eq. (7.58), which is valid for t ≥ θ, w.r.t. t leads to the
simple differential equation

dm(t, θ)

dt
= −(λr − q1 λm)m(t, θ) + λm q2 i1(t− θ) i1(t) + λd φ(t− θ)φ(t), (7.60)

in which
λr − q1 λm = λd + (1− q1)λm = α (7.61)

is the inverse of the average lifetime of the neutrons. It is practical to solve Eq. (7.60)
for a concrete case of the fundamental signal function φ(t). Such an illustration will
be given in the next subsection.
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Illustration via a concrete case

We will calculate the stationary value of the auto-covariance function of the de-
tector signal again for the concrete case treated in the foregoing, i.e. when assuming
that one fission in the ionisation chamber induces a current

φ(t) = Qα2
e t e

−αet. (7.62)

In this case one has

i1(t) = λdQ

[
αe

α− αe

]2 {
e−αt − [1− (α− αe) t] e−αet

}
, (7.63)

hence all necessary information is available to write down the solution of the dif-
ferential equation (7.60), satisfying the initial condition m(θ, θ) = 0, from which
the auto-covariance Cov(θ) can be calculated. Performing the calculations with
Mathematica [42] one obtains the result

Cov(θ) =
1

4

s0 λd αeQ
2

α
(
α2
e − α2

)2 {2q2 α
3
e λd λm
α

e−αθ+

[
(α2

e − α2)2 (1 + αeθ) + q2
(
α2 (1 + αeθ)− α2

e (3 + αeθ)
)
λd λm

]
e−αeθ

}
. (7.64)

Eq. (7.64) shows that the auto-covariance of the detector signal exhibits a partial
resemblance to the traditional Rossi-alpha formula in that it contains an exponen-
tially decaying term with the prompt neutron decay constant α being the exponent.
Further, this term is proportional to the second factorial moment q2 of the num-
ber of neutrons generated in the fission process. At the same time, unlike in the
Rossi-alpha formula, there is another exponential term, in which the exponent is
related to the pulse shape of the detector response. The coefficient of this term
is not constant, rather it contains terms linear in the time lag θ. This indicates
that extraction of the parameter α is in principle possible, but is more complicated
than in the pulse counting-based Rossi-alpha measurement. The covariance of the
Campbelling technique depends on the detector pulse shape, its time constant, and
most likely also on the amplitude distribution of the individual pulses (which is not
considered in (7.64)).

However, some qualitative and quantitative considerations may be made at this
point. The values of α and αe can be taken from realistic cases. In a measurement
of subcritical reactivity, with some representative data of a research reactor, for the
deep subcritical reactivity of ρ = −2.72 $, the value of α was found to be about
600 s−1, and for the lower subcriticality of ρ = −0.65 $, one had about α = 250 s−1

[37, 43]. On the other hand, with a detector response time between 1 msec to
1µsec, αe is in the range of 1000 - 106. This is valid even if the fluctuations in the
charge collection time due to the fluctuations in the fission fragment mass etc. are
taken into account. That is, usually one has αe >> α. Hence the system decay
constant is sufficiently separated from the detector decay constant, and they should
be distinguishable.
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The possibility of extracting the sought parameter α depends of course on the
relative weight of the corresponding exponential term in Eq. (7.64). This, in turn,
depends on the actual values of α, αe, λd and λm. However, it is seen from (7.64)
that, due to the occurrence of α in the denominator of the first term, when approach-
ing criticality (α = 0), this term, from which the prompt neutron time constant can
be determined, becomes dominating. This dominance is hence due to the divergence
of the first term, whose reason has already been discussed in Sec. ??. In other words,
in the important case of approaching criticality, the influence of the properties of
the detector response function in the detector auto-covariance become negligible.

It is also worth noting that, similarly to the case of the conventional Campbell
theorems, the auto-covariance formula (7.64) is also valid whether the pulses are
separated or overlapping. Hence the current results may also be said to create a
bridge between the pulse and current mode of reactivity determination from the
statistical characteristics of the branching process (out of which the current mode
was first introduced in this paper). It would be an interesting exercise to evaluate
and compare the performance and domain of validity of pulse counting based vs
Campbell-like current-mode based reactivity determination methods both by simu-
lations and experiment.
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Figure 7.2: The auto-covariance function of the stationary detector signal for three different
values of the detector parameter αe, for the case α = 0.11.
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Figure 7.3: The auto-covariance function of the stationary detector signal for three different
values of the system parameter α, for the case αe = 1.

For some illustration via model cases, the dependence of the auto-covariance on
the time lag θ between two consecutive registrations is shown in Figs 7.2 and 7.3.
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Fig. 7.2 shows the effect of the variation of the detector time constant αe in a
medium with fixed system property α, whereas Fig. 7.3 shows three cases with the
same αe, but different system properties α. It is remarkable to note the sensitive
dependence of the results on the value of the detector constant αe, indicating the
need for stable detector performance during the measurements. On the other hand,
this dependence also gives a possibility to use it to monitor the “healthy” status of the
detector from its own signal (“smart detector”) in that a change of the shape of the
detector autocorrelation signal, or its Fourier transform, the auto power spectral
density, can be used to detect deterioration of the detector performance. It has
though to be noted that the cases above do not correspond to the approach of
criticality, where one of the exponential terms (belonging to the system parameter)
becomes dominating.

7.3 Conclusions

The purpose of this study was to investigate the possibility of extracting pa-
rameters of interest of the multiplying medium, in particular the prompt neutron
decay constant of subcritical cores, from current mode measurements with a fis-
sion chamber, similar to that of the pulse counting methods (Rossi-alpha method).
It was found that the prompt neutron decay constant can be extracted from the
auto-covariance of the detector signal since, similarly to the Rossi-alpha method, it
appears as an exponential term in the expression. However, the auto-covariance also
contains another exponential that depends on the detector time constant, the pulse
shape, and probably also on the amplitude distribution of the individual pulses.
Hence, the extraction of the prompt neutron decay constant is not trivial, and re-
quires that the detector pulse shape and time constant are known.

It was also seen, however, that for systems close to critical, the auto-covariance
is dominated by the term depending on the prompt neutron time constant, hence
knowledge of the detector signal properties is not essential for such measurements. In
addition, for all subcriticalities, in principle, the method is applicable for separated
and overlapping pulses alike, hence it can be used from low to high fluxes.

In order to be able to apply the method in practice, further theoretical studies
and numerical simulations are needed, which is suggested to be performed in the
next stage. Inclusion of the delayed neutrons into the model is a logical next step, as
well as the exploration of the possibility of deriving formulas that are analogue to the
Feynman-alpha measurement. Possibly some experimental studies, or verification
of the method, can also be included in later stages, either in Ringhals, or at some
of our collaborating partners (such as the Technical University of Budapest, the
University of Florida, or CEA).
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8. PROPOSAL FOR 2018

1. Investigation of possible baffle jetting in R3 with noise analysis of in-core and
ex-core detector signals. The goal is to identify and elaborate suitable methods
for detection of incipient baffle jetting, and its localisation inside the core, as
well as to monitor its development once its presence is identified.

2. Analysis of vibrations of thimble tubes with axially dependent in-core mea-
surements in various radial positions.

3. Development of a method to use the Eigenvalue Separation in noise analysis
for characterising of regional power oscillations and understanding the role of
loosely coupled cores in the development of regional instabilities.

4. Further investigations of the possibilities of using fission chamber signals for
measurement of subcritical reactivity, such as elaboration of the equivalent
of the Feynman-alpha method of pulse counting, and accounting for delayed
neutrons.

5. Evaluation of new ex-core measurements for beam mode and tilting mode
vibrations in R3 or R4.
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1. INTRODUCTION 
 
Core-barrel motion monitoring is an area of study related to the observation of stochastic processes 
in nuclear reactors, and primarily that of the neutron noise, for the purposes of reactor diagnostics. 
Our main activity in this field is strongly connected with the Ringhals nuclear power plant. Ringhals 
is the largest nuclear facility in Sweden, with one boiling water reactor (Ringhals-1 or R1), and 3 
PWRs (R2-R4). Since 1995 a collaboration project started between Ringhals and the Subatomic and 
Plasma Physics (earlier: Division of Nuclear Engineering). The long-term goal of this project is to 
develop, test and apply reactor diagnostic methods by using the measurements from the power 
plant. This co-operation resulted in the development of methods to solve concrete problems in 
Ringhals on the one hand, and in publications, conference contributions and PhD exams on the oth-
er. A large amount of experience was collected on the various properties of the Ringhals reactors, as 
well as a large experimental data base is available at our disposal, which was collected during the 
years. These results have been reported annually. The goal of this work is to study the core-barrel 
vibrations, and in particular the properties of the pendular (beam mode) vibrations have been per-
formed by Chalmers during a long period, starting in the mid-90's. Currently, the works developed 
in Chalmers surpasses the performance of previously existing methods significantly by introducing 
combinations of the time signals of the various ex-core detectors that take into account the symme-
tries of the various vibration modes, and curve fitting methods to extract the amplitude of the vibra-
tion peaks with the highest accuracy. Long term (several cycles) and short-term (during one cycle) 
behavior of the amplitudes, as well as the influence of the change of the hold-down springs in two 
units have been monitored for several cycles.  
 
The goal of this internship is to observe new measurements through a Core-Barrel motion method-
ology (CBM) based on the Variational Mode Decomposition (VMD, a method to decompose a sig-
nal into band limited, narrow band intrinsic mode functions (IMFs or simply modes)), in order to 
investigate the effects of the recent power upgrade by 18.6%, which was achieved in R4 in 2015. A 
comparison with the results from last year could give the first step in a starting trend analysis. The 
studied CBM-VMD methodology splits the signal of interest into short segments of 15 minutes, 
these segments are decomposed via the VMD into IMFs, the two IMFs modes related to the beam 
mode are selected for further processing (whereas the remaining extracted modes are ignored), a 
peak detection method is used to detect the local maxima of these selected IMFs, to later infer the 
amplitude of the maximum peak and the central frequency of the two modes of interest (trend anal-
ysis). Which from now on are labeled as MODE 1 and MODE 2.   
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2. Preliminaries  
 
2.1 The Empirical Mode Decomposition (EMD) and its limitations 
 
In 1998, Huang et al., introduced the Hilbert Huang Transform (HHT), also known as the Empirical Mode 
Decomposition (EMD) [1]. A method to decompose non-stationary signals that stem from non-linear sys-
tems. The EMD recursively decomposes a signal into different modes known as Intrinsic Mode Functions 
(IMFs), which are unknown beforehand. The HHT/EMD is a widely used algorithm today. However, there is 
no exact mathematical model corresponding to this algorithm, and, consequently, the exact properties and 
limitations of the EMD are unknown. A few limitations of this technique can be highlighted: 
 

i. It has been observed that the EMD is highly sensitive to noise and sampling frequency of the target-
ed signal.  

ii. The EMD has difficulties separating tones of similar frequencies.  
iii. The EMD suffers from a serious problem that is known as mode mixing [2] and its presence might 

spoil IMF acquisition. 
iv. As mentioned before, a lack of rigorous mathematical theory hinders the properties and limitations of 

the EMD.  
 
The EMD decomposes a signal into principal modes, which are signals with compact support Fourier spec-
trum. This algorithm is given by the next steps, but first, let x be the signal of interest to decompose into 
IMFs: 

Step 1. Set 0k = and find all extrema of or x= . 

Step 2. Interpolate between minima (maxima) of kr  to obtain the lower (upper) envelope min max( )e e . 

Step 3. Compute the mean envelope min max( ) / 2m e e= + . 

Step 4. Compute the IMF candidate 1k kd r m+ = − .  

Step 5. Is 1kd +  an IMF? 

• Yes. Save 1kd + , compute the residue 1 1

k
k ii

r x d+ =
= −∑ , do 1k k= + , and treat kr  as input data in 

step 2.  

• No. Treat 1kd +  as input data in step 2. 

Step 6. Continue until the final residue kr  satisfies some predefined stopping criterion.   

The refinement process (steps 2 to 5) needed to extract every mode, requires a certain number of iterations 
named as siftings. The extracted modes kd , 1, 2,...j N=  decompose x  and are in theory, nearly orthogonal 
to each other. Nonetheless, the resulting decomposition is highly dependent on methods of extremal point 
finding, interpolation of extremal points into carrier envelopes, and the stopping criteria imposed. The lack of 
mathematical theory and the aforementioned degrees of freedom reducing the EMD's robustness, leave room 
for theoretical development and improvement on the robustness of the decomposition [3], [4]. Besides, in 
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some experiments it has been shown that the EMD shares similarities with wavelets and adaptive filter banks 
[5].  
Despite the limited mathematical understanding and some obvious shortcomings, the EMD method, has had 
tremendous impact and is widely used in a broad variety of time-frequency signal analysis applications. Such 
as: Audio engineering analysis [6], Climate signal analysis [7], Boiling Water Reactor stability analysis [8], 
among many others.   
 
2.2 Intrinsic Mode Functions (IMFs) 
 
With EMD, the core assumption on the individual extracted modes is that they have compact Fourier support. 
In the original description, in such IMFs or modes, the number of local extrema and zero-crossings must 
differ at most by one [1]. The Intrinsic Mode Functions are amplitude-modulated-frequency-modulated (AM-
FM) signals, written as: 

( ) ( ) cos( ( ))k k kd t A t tφ=  (1) 
 
Where the phase ( )k tφ is a non-decreasing function, ' ( ) 0k tφ ≥ , the envelope is non-negative ( ) 0kA t ≥ , and, 
very importantly, both the envelope ( )kA t  and the instantaneous frequency ( ) ' ( )k kt tω φ=  vary much slow-
er than the phase ( )k tφ  [9,10]. On a sufficiently long interval [ , ]t tδ δ− +  , 2 ' ( )k tδ π φ≈  the mode ( )kd t  
can be considered to be a pure harmonic signal with amplitude ( )kA t  and instantaneous frequency ' ( )k tφ  
[9] . This definition of IMF is slightly more restrictive than that related to the EMD. The immediate conse-
quence of this IMF assumption is limited bandwidth.  
 
if kω  is the mean frequency of a mode, then its practical bandwidth increases both, with the maximum devia-

tion of the instantaneous frequency, max( ( ) )k kf tω ω∆ − , and with the rate of change of the instantane-

ous frequency, '( )FMf tω , according to Carson's rule: 2( )FMBW f f= ∆ +  [11]. In addition to this comes 
the bandwidth of the envelope modulating the amplitude of the FM signal, given by its highest frequency 

AMf . Hence, the total bandwidth of an IMF is given by:  
 

2( )FM AMBW f f f= ∆ + +  (2) 
 
Depending on the actual IMF, either of these terms may be dominant, as illustrated in Figure 1. To address 
the handicaps of the EMD method, Dragomiretskiy and Zosso [12] developed and entirely new, fully intrin-
sic and adaptive, Variational Mode Decomposition (VMD) method, the minimization leads to a decomposi-
tion of a signal into its principal IMFs or modes. The variational model they proposed, determines the rele-
vant bands adaptively, and estimates the corresponding modes concurrently, thus properly balancing errors 
between them. Motivated by the narrow-band properties corresponding to the previously defined IMF defini-
tion, the variational model looks for an ensemble of modes that reconstruct the given input signal optimally 
(either exactly or in a least-squares sense), while each being band-limited about a center frequency estimated 
on-line. The variational model can address the presence of noise in the input signal. The close relationship 
between the VMD optimization scheme and the Wiener filter suggests that this variational model has opti-
mality in dealing with noise.  
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Figure 1. AM-FM signals with limited bandwidth. Here, the signal that was used is 

( ) (1 0.5cos(2 ))cos(2 ( )cos(2 ))AM c FM FMf t f t f t f f f tπ π π= + + ∆ . a) Pure AM signal. b) Pure FM signal 
with little but rapid frequency deviations. c) Pure FM signal with slow but important frequency oscillations. 
d) Combined AM-FM signal. The band limits can be estimated as 2cf BW±  based on equation 
(2). 100cf = Hz in all four examples, and only the upper band limit ( 2cf BW+ ) is shown in the Power 
Spectral Density (PSD) estimates.   
 
The VMD assesses the bandwidth of the modes as H1-norm, after shifting the Hilbert-complemented, analyt-
ic signal down into baseband by complex harmonic mixing. Each mode is iteratively updated directly in Fou-
rier domain, as the narrow-band Wiener filter corresponding to the current estimate of the mode's center-
frequency being applied to the signal estimation residual of all other modes: then the center frequency is re-
estimated as the center-of-gravity of the mode's power spectrum. Before introducing the steps of the VMD 
algorithm, lets introduce the notions of the Wiener filter, the Hilbert transform and analytic signal. Also, the 
concept of frequency shifting through harmonic mixing is also reviewed. Such concepts are the very building 
blocks of the VMD.  
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2.3 Tools from signal processing  
 
In this subsection, some key VMD concepts are reviewed. First, a Wiener filter case for image denoising is 
given. Next, the Hilbert transform and its use in the construction of single-sided band analytic signals is giv-
en. Finally, multiplications with pure complex harmonics for signal frequency shifting are also given.  
 
2.3.1 Gaussian regularizer and Wiener filtering 
 
Consider the next simple denoising problem. Let 0 ( )f t be the estimate of the original signal ( )f t  affected 
by an additive zero-mean Gaussian noise :  
  

0 ( ) ( ) ( )f t f t tη= +  (3) 
 
Recovering the unknown signal ( )f t  is a typical ill-posed inverse problem. If the original signal is known to 
vary smoothly, one would use the following Tikhonov regularized minimization problem in order to estimate 
a noise free signal [13]:   
 


{ }2 2

2 2
min ( ) ( ) ( )o t

f
f t f t f tα− + ∂  (4) 

 
This is a standard, Gaussian regularized minimum mean squares, i.e., L2-H1 problem, of which the Euler-
Lagrange (EL) equations are easily obtained as:  
 

2
0( ) ( ) ( )tf t f t f tα− = ∂  (5) 

 
These EL equations are typically solved in Fourier domain: 
 

0
2

ˆˆ ( )
1

ff ω
αω

=
+

 
 
(6) 

 
where ˆ ( )f ω , is the Fourier transform of the signal ( )f t . Clearly, the recovered signal ( )f t is a low pass 
narrow-band selection of the input signal 0 ( )f t  around 0ω = . This solution corresponds to a convolution 

with a Wiener filter, where α represents the variance of the white noise, and the signal has a lowpass 21 ω  
power spectrum prior [14]-[15].  
 
2.3.2 Hilbert transform and analytic signal  
 
The 1-D Hilbert transform [16] is the linear, shift-invariant operator H that maps all 1-D cosine functions 
into their corresponding sine functions. It is an all-pass filter that is characterized by the transfer function 
ˆ( ) sgn( ) /h j jω ω ω ω= − = − . Thus, the Hilbert transform is a multiplier operator in the spectral domain. Its 

impulse response is ( ) 1/ ( )h t tπ= . Because ( )h t is not integrable the integrals defining the convolution do 
not converge. Thus, the Hilbert transform ( )Hf t of a signal ( )f t  is therefore obtained as the Cauchy princi-
pal value (p.v.) , given by: 
 
 
 

 
 

 



 

1 ( )( ) p.v. f vHf t dv
t vπ

=
−∫



 
 
(7) 

 
The inverse Hilbert transform is given by its negative, 1H H− = − , thus: 
 

2 ( ) ( )H f t f t= −  (8) 
 
The most prominent use of the Hilbert transform is in the construction of an analytic signal from a purely real 
signal. Let ( )f t be a purely real signal. The complex analytic signal is now defined as:  
 

( )( ) ( ) ( ) ( ) j t
Af t f t jHf t A t e φ= + =  (9) 

  
This analytic signal has the following important properties. The complex exponential term ( )j te φ  is a phasor 
describing the rotation of the complex signal in time, ( )tφ being the phase, while the amplitude is governed 
by the real envelope ( )A t . This representation is particularly useful in the analysis of time-varying amplitude 
and instantaneous frequency, defined as ( ) ( )t d t dtω φ= . The second property is the unilateral spectrum of 
the analytic signal, that consists only of non-negative frequencies, hence its use in single-sideband modula-
tion. The original signal is easily retrieved as the real part of ( )Af t . 
 
2.3.3 Frequency mixing and heterodyne demodulation  
 
The last concept that must be recalled before introducing the proposed VMD,  is the concept of frequency 
mixing. Mixing is the process of combining two signals non-linearly, thus introducing cross-frequency terms 
in the output. The simplest mixer is multiplication. Multiplying two real signals with frequencies 1f  and 2f , 
respectively, creates mixed frequencies in the output at 1 2f f− and 1 2f f+ , which is easily illustrated by the 
next identity: 
 

1 2 1 2 1 22cos(2 )cos(2 ) cos(2 ( ) ) cos(2 ( ) )f t f t f f t f f tπ π π π= + + −  (10) 
 
Typical applications are the heterodyne downmixing of the modulated high-frequency carrier signal with a 
local (heterodyne) oscillator in a radio receiver. In such devices, the selection of either of the two output 
terms is achieved by filtering. However, in this case, instead of filtering the output, two analytic signals are 
mixed:  
 

1 2 1 22 2 2 ( )j f t f t j f f te e eπ π π +=  (11) 
 
i.e., the mixed signal is automatically "mono-tone" (constituted of a single frequency only). In the Fourier 
domain, this is known by the next transforming pair: 
 

0
0 0

ˆ ˆ( ) ( ) ( ) ( )j t
A A Af t e f fω ω δ ω ω ω ω− ↔ ∗ + = +  (12) 

 
where δ is the Dirac distribution and ∗  denotes convolution. Thus, multiplying an analytic signal with a 
pure exponential results in simple frequency shifting.  
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2.4 The Variational Mode Decomposition (VMD) principle  
 
The VMD method is essentially based on the three concepts discussed in the previous section. The VMD 
decomposes any input signal into a discrete number of sub-signals (IMFs or simply modes), that have 
sparsity properties while reproducing the input. The sparsity prior of each mode is chosen to be its bandwidth 
in spectral domain. Each mode k to be mostly compact around a center pulsation kω  , which is to be deter-
mined along with the decomposition. To assess the bandwidth of a mode, in [12] the following scheme is 
proposed:  
 

1. For each mode ku , compute its analytic signal via the Hilbert transform in order to obtain a unilat-
eral frequency spectrum.  

2. For each mode, shift the mode's frequency spectrum to baseband, by mixing with an exponential 
tuned to the respective estimated center frequency.  

3. The bandwidth is now estimated through the 1H  Gaussian smoothness of the demodulated signal, 
i.e., the squared 2L  -norm of the gradient. The resulting constrained variational problem is the fol-
lowing:  

 



2

, 2

min ( ) ( ) k

k k

j t
t k

u k

jt u t e
t

ω

ω

δ
π

−
    ∂ + ∗       
∑  

(13) 

 
. . k

k
s t u f=∑   

The reconstruction constraint can be addressed in many different ways. But, in [12] a quadratic penalty term 
and Lagrangian multipliers were used in order to render the problem in equation (13) unconstrained. There-
fore, the next augmented Lagrangian L was proposed: 

 
2

2

2
2

( , , ) ( ) ( ) ,kj t
k k t k k k

k

jL u t u t e f u f u
t

ωω λ α δ λ
π

−  = ∂ + ∗ + − + −    
∑ ∑ ∑  

 
(14) 

 
Where α  is a parameter balancing variational minimization term and constrain term. λ  is the Lagrange 
multiplier. Minimization of (14) can be solved with an ADMM ( Alternating Direction Method of Multipli-
ers) method. The initial value of kω  can be set uniformly or randomly. The ADMM method is given by the 
next steps:   
 
 
 
 
 
 

 
 

 



 

 
 
Algorithm 1 ADMM optimization concept for VMD  
 
Input: Initialize 1

ku , 1
kω  , 1λ , 0u ←  

1. repeat  
2.    n= n + 1 
3.    for 1:k K=  do 
4.       Update ku : 

 
 

( )( )1 1arg min { },{ },{ },
k

n n n n n
k i k i k i

u
u L u u ω λ+ +

< ≥=  (15) 

 
 

5.    end for 
6.    for 1:k K= do 
7.       Update kω  :  

 

{ } { } { }( )1 1 1arg min , , ,
k

n n n n n
k i i k i ku

ω
ω ω ω λ+ + +

< ≥=  (16) 

 
8.    end for 
9.    Dual ascent : 

 
1 1n n n

k
k

f uλ λ τ+ + = + − 
 

∑  
 
(17) 

 

10. Until convergence : 
221

2 2

n n n
k k kk

u u u ε+ − <∑  

Output : Decomposed IMFs or modes. 
 
 
Where equation (15) is first written as:  
 

2
21

2
2

( )arg min ( ) ( ) ( )
2

k

k

j xn
k x k i

u X i

xu u x e f x u xω λα −+

∈
 = ∂ + − +  ∑  

 
(18) 

 
 Equation (18) can be solved in the Fourier domain and there exists an explicit solution:  
    

( )
1

2
2

ˆ( )ˆ ˆ( ) ( )
2( )

1
2

ii kn
k

f u
u

λ ωω ω
ω α ω ω

≠+
− +

=
+ −

∑
 

 
 
(19) 
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Minimization (16) can be written as:  

21

2
arg min ( ) k

k

j xn
k x ku x e ω

ω
ω −+  = ∂    

 
(20) 

 
 
And also solved in the Fourier domain as:  

2

1
2

ˆ( )

ˆ ( )
n
k

k

u d

u d

ω ω ω
ω

ω ω

∞

+ −∞
∞

−∞

= ∫
∫

 

 
 
(21) 

 
In practice, the VMD scheme outperforms the EMD [12] with regards to tone detection, tone separation, and 
noise robustness. However, the most important limitation of the VMD model lies with its boundary effects 
and sudden signal onset in general. Another inconvenient is the required explicit selection of the number of 
active modes in the decomposition.  
 

3. Results: Methodologies performances and discussion  
 
Before introducing the Core barrel monitoring methodology based on VMD (CBM-VMD). The VMD algo-
rithm is first tested with an artificial signal (the sum of two harmonics, whose frequencies dwell very close to 
each other), with the goal of highlighting the strengths of the VMD for tone separation over those of the clas-
sic Empirical mode decomposition (EMD) method for this task.  
 
3.1 Assessment of the VMD for harmonic separation 
 
As a first example, the next synthetic signal is used: 
 

1 2( ) cos(2 ) cos(2 ) ( )f t f t f t tπ π η= + +  (22) 

 
The signal is the sum of two harmonics of 1f = 6.8 Hz and 2f = 7.9 (the frequencies 1f  and 2f lie very close 
to each other) Hz plus a zero mean additive white Gaussian noise ( )tη  of standard deviation 0.1σ = (to 

attain a signal to noise ratio (SNR) of 20 dBs) . The time series consists of a total of 640 points (the sampling 
frequency is 128sF =  Hz).This composite signal is shown in Figure 2 and its Power Spectral Density is 

shown in figure 3. This signal is decomposed into 3K =  modes via the VMD for the next parameters : 
2000α =  the kω  are initialized uniformly, the tolerance of the VMD method ε  (step 10 of algorithm 1)   is 

 
 

 
 

 



 

fixed at 710ε −= . The VMD of this signal is shown in Figure 4, in which the 3 extracted modes are shown, 
the first IMF 1 is related to the recovered harmonic of 6.8 Hz, the second one (IMF 2) is the recovered 
harmonic of 7.9 Hz and the last mode (IMF 3) is related to the additive white Gaussian noise ( )tη . From 
visual inspection, the recovered harmonics where properly extracted from the signal ( )f t , except near the 

boundaries, where the VMD had difficulties to recover the harmonics of interest, see Figures 5 and 6.    
 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
Composite signal f(t)

Time [s]  
Figure 2. Original synthetic composite signal 1 2( ) cos(2 ) cos(2 ) ( )f t f t f t tπ π η= + + .  
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Figure 3. PSD estimate of the signal ( )f t  shown in Figure 2.  
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Figure 4. VMD decomposition of the composite signal ( )f t .  
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Figure 5. Recovered harmonic of 6.8 Hz (IMF 1). The dotted orange box highlights the time interval, where 
the VMD has slight difficulties to fully recover the harmonic of interest.  
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Figure 6. Recovered harmonic of 7.9 Hz (IMF 2). The dotted orange box highlights the time interval, where 
the VMD has slight difficulties to fully recover the harmonic of interest.  
 
Figure 7 shows the PSD estimate of the 3 extracted intrinsic mode functions IMFs via the VMD model to 
highlight in the Fourier domain the accuracy of the decomposition to recover the two harmonics of interest. 
The mean square error (MSE) between the original harmonics and their respective IMFs (reconstruction error 

) is given below, in Table 1. The MSE errors are small (smaller than 1%< ) , an indication of the potential of 
the variational mode decomposition (VMD) for separating composite signals that have frequencies lying very 
close to each other.  
 

VMD - Intrinsic Mode Functions 
(IMFs) of interest related to the 
harmonics of interest.  

MSE between the original har-
monic 1cos(2 )f tπ  of 6.8 Hz and 

the extracted IMF 1. 

MSE between the original har-
monic 2cos(2 )f tπ  of 7.9 Hz and 

the extracted IMF 2. 

IMF 1 0.1742 % n/a 

IMF 2 n/a 0.1330 % 

 
Table 1. Mean squared error (MSE) comparison between the original harmonics and their corresponding 
extracted IMFs via the VMD model.  
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Figure 7. PSD of the VMD - IMFs of the extracted modes of the composite signal given in equation (22) . 

 
 

 
 

 



 

Now, the same signal given in equation (22) and depicted in Figure 2 is decomposed via the classic EMD [1]. 
Figure 8 shows its EMD decomposition into IMFs. Only the first 3 IMFs are shown from a total of 7 IMFs 
obtained adaptatively (in a data driven way). Nonetheless, the popular EMD method failed to extract the two 
harmonics of interest (one of 6.8 Hz and the other of 7.9 Hz) that lie very close to each other and the IMFs do 
not resemble harmonics signals. Figure 9 shows the PSD estimate of the three IMFs shown in Figure 8, most 
of the spectral content of the signal ( )f t  is kept in IMF 2, the PSD of IMF 2 shows that the EMD separation 

wasn't accurate. Thus, another method must be used to separate harmonics that lie close to each other, and 
the method that thus far can accomplish that, is the VMD model. Thus, the VMD is the method of choice to 
analyze the Core Barrel motion signals of PWR facilities for its unparalleled frequency resolution.  
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Figure 8. EMD decomposition of the signal ( )f t  given in equation (22) . Only 3 IMFs are shown out of a 

total of 8 IMFs, all of them were extracted in a data driven way (in the EMD method, the user has no control 
of the amount of IMFs that will be extracted). However, the EMD decomposition failed to recover the two 
harmonics of interest. IMF 2 resembles the original signal ( )f t . An indication of an unsuccesful separation 

of data. 
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Figure 9. PSD of the EMD - IMFs of the extracted modes of the composite signal given in equation (22). 
Only 5 IMFs are shown out of a total of 7 IMFs plus a residue signal ( )r t .  

 
 

 
 

 



 

3.2 Core-Barrel Motion monitoring methodology based on the VMD model (CBM - VMD) 
 
The proposed methodology for Core-Barrel monitoring analysis based on the Variational Mode 
Decomposition (VMD) is tested with Ringhals CMB measurements of the years 2016 and 2017 from upper 
detectors N41U-N44U and from lower detectors N41L-N44L. The CBM-VMD methodology is given by the 
next steps: 
 

Methodology 1 : CMB -VMD  
 

1. The considered signal ( ( )x tµ or ( )y tµ ) obtained from, for instance, from the Upper detectors (or 

Lower detectors) is segmented in windows of 15 minutes of duration.  

2. The studied segment is decomposed via the VMD into 15K =  modes for the next parameters : 
2000α = , the kω  are initialized uniformly and the tolerance ε  (step 10 of algorithm 1) remains 

fixed as before at 710ε −=  

3. The PSD is estimated for each extracted mode via the the Welch method [17] . A method for the 
estimation of power spectra based on time averages over short modified periodograms. Later, a peak 

detection method is used to locate the local maxima of the PSD of all of the extracted K  modes (all 
of the modes are expressed in dB for this step) with the goal of finding the central frequency of each 
individual mode. This frequency matches the position of the global maxima of the PSD estimates.    

4. When tracking these frequencies, it is possible to get the two modes associated to the beam mode 
(one mode located around 6.8 Hz and the second one, located around 7.9 Hz and labeled from now 
on as MODE 1 and MODE 2, respectively). In this way, only the modes (IMFs) linked to the 
physical processes of interest are selected for further processing whereas the remaining modes are 
discarded.  

5. The central frequencies (  and ) and the Amplitudes ( 1A  and 2A ) of the two chosen IMFs are 

stored. The amplitude estimate 1A   (or 2A ) is calculated with the next formula (to make this estimate 

less arbitrary):  

 
 
(23) 
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Where ( )lρ  is the function that denotes the detected peaks of the PSD estimates of the chosen 

modes (linked to the beam mode) and the index l  denotes their location along time. τ  is the value 

of the global maxima (the value of the highest peak), lτ , is its location and J is a number of peaks 

around τ that are taken to make the estimate of 1A  (or of 2A ) less arbitrary (an average operation). 

6. Finally,  these stored values are averaged along time (and the variance of these estimates is also 
computed) for all of the studied segments of 15 minutes each. The output variables of this Core-
Barrel Motion analysis methodology are: 

i. Averaged center frequency of MODE 1 along time.  

ii. Average amplitude (The estimated global maxima) of MODE 1 along time. 

iii. 2̂ :f  Averaged center frequency of MODE 2 along time.  

iv. 1
ˆ :A Averaged amplitude (The estimated global maxima) of MODE 2 along time. 

 
3.3 CBM-VMD monitoring test on an artificial Neutronic noise signal 
 
The CBM-VMD monitoring methodology described above is first tested with a synthetic noise signal that 
was generated by filtering Gaussian Noise in specific spectral regions to emulate the dynamics of a real 
neutronic noise signal. A total of three different butterworth [18] filters were used: 
 

1. A low pass filter (LPF) of order 10 of passband in the interval 0 to 2.5 Hz, a stop band corner 
frequency of 5 Hz, with no more than 3dB of ripple and at least 60 dB of attenuation in the stop 
band.  

2. A pass band filter (BPF 1) of order 6 of passband in the interval 7.5 to 8.5 Hz, with stopbands of 1.5 
Hz wide on both sides of the passband, with at most 3 dB of passband ripple and at least 60 dB of 
attenuation in the stopbands.  

 
 

 
 

 



 

3. Another pass band filter (BPF 2) of order 7 of passband in the interval 19 to 21 Hz, with stopbands 
of 2 Hz wide on both sides of the passband, with at most 3 dB of passband ripple and at least 60 dB 
of attenuation in the stopbands.  

A single realization of white Gaussian noise is filtered with the Butterworth filters decribed above as follows:  

 

 

 

 

 

 
Figure 10. Block diagram used to emulate the Fourier spectral dynamics of neutronic noise from the starting 
Gaussian noise signal ( )tη . The coefficients a, b and c are arbitrary constants that are used to control the gain 

of the filters, their values are a=1, b=1/16 and c=1/128.   
 
The artificial neutronic noise signal is shown in Figure 11. The samling rate used is 64sF = Hz. The Welch 

Power Spectral Density (PSD) estimate of this neutronic noise is shown in Figure 12. This PSD estimate 
imitates the Fourier dynamics of a real neutronic noise signal. The CBM survey methodolgy discussed in 
section 3.2 is applied to the signal shown in Figure 11. A total of 15 IMFs were extracted through VMD (with 
the same parameter values given previously) and only the first 5 of them are shown in Figure 13. Figure 14 
shows the Welch PSD estimates of the extracted IMFs, also a zoom in to our region of interest related to the 
beam mode (which is around 8 Hz) is also provided. It is infered that  this 8 Hz peak was separated into two 
different IMFs that are renamed from now on as MODE 1 (which is the IMF 4) and MODE 2 (which is the 
IMF 5). MODE 1 is centered around 7 Hz whereas MODE 2 is centered around 8 Hz. Later a peak detection 

method is used to infer the value of the center frequency 1f  and the amplitude 1A  of the peak (estimated with 

equation (23) for a neighborhood of J=3 peaks around the global maxima of the lobe). This same procedure 
is applied to MODE 2. All amplitude estimated values are given in decibels (dB) and are presented in Table 2 
along with the estimated central frequencies of boths MODEs.  

     LPF  

   BPF 1 

   BPF 2 
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( )f t  ( )tη
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Figure 11. Artificial neutronic noise signal generated with the block diagram of figure 10. 
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Figure 12. PSD estimate of the synthetic neutronic noise signal shown in Figure 11.  
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Figure 13. VMD decomposition of the signal shown in Figure 11 into IMFs. Only the first 5 IMFs are shown 
in this plot from a total of 15K = . The parameters for the VMD model are 2000α = , the kω   of the 

optimization method are initialized uniformly and the tolerance ε  (step 10 of algorithm 1) remains fixed as 

before at 710ε −= . 
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Figure 14. PSD estimate of the extracted IMFs through VMD, the black line is the PSD estimate of the 

original signal (shown in Figure 12). The remaining IMFs are ignored.  

 
 

 
 

 



 

Modes Related to the Beam mode Central Frequency Hz  Amplitude in dB 

MODE 1 (mode 4) 1f = 7.5566 1A = -79.0265 

MODE 2 (mode 5) 2f = 8.2754 2A = -77.9179 

 
Table 2. Estimated central Frequency and Amplitude of the MODEs (IMFs 4 and 5) related to the beam mode 
(step 5 of the Methodology 1 described in subsection 3.2).  
 
This methodology was capable of separating the two peaks of interest that lie very close to each other into 
two IMFs, from these individual IMFs (MODE 1 and MODE 2), it is possible to estimate their Amplitudes 
and their center frequecies to assess the Core-Barrel motion.  However, the most important limitations of the 
VMD lie with boundary effects, sudden signal onset. Another point critics might have is the required explicit 
(manual) selection of the number of active modes in the decomposition. But, in this analysis, our main 
concern is to isolate the two peaks around our region of interest related to the beam mode. All other extracted 
modes are discarded.  
 
3.4 CBM-VMD monitoring test on real neutronic signals 
 
3.4.1 General Principles and Background 
 
The signals that are used for  analysis stem from four detectors that are placed around the core and are 
numbered as: detectors N41, N42, N43 and N44. These detectors are placed diagonally opposite to each 
other, as shown in Figure 15. These two diagonals define the x  and y  components of the beam-mode 

vibrations. The neutron noise induced by the beam-mode vibrations is proportional to the dosplacement 
components, scaled with an (unknown) displacement to-detector current factor µ . The total signals of the 

four detectors, accounting for all noise components, can be obtained as follows. One assumes that the 
individual signals of each ex-core detector consist of four components, i.e., uncorrelated background noise 

( )ir tδ , a reactivity of point-kinetic components, ( )P tδ , beam-mode vibrations of the core barrel ( )r tµδ  
[containing two directional components ( )x t  and ( )y t  ], and shell-mode vibrations of the core barrel ( )D t . 

Based on symmetry considerations, the four detectors can be written as: 
 

1 1( ) ( ) ( ) ( ) ( )t r t P t x t D tδφ δ δ µ= + + +  (24) 
  

2 2( ) ( ) ( ) ( ) ( )t r t P t x t D tδφ δ δ µ= + − +  
(25) 

 

3 3( ) ( ) ( ) ( ) ( )t r t P t y t D tδφ δ δ µ= + + −  (26) 
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4 4( ) ( ) ( ) ( ) ( )t r t P t y t D tδφ δ δ µ= + − −  (27) 

 
 

N43

N41
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Figure 15. Layout of the ex-core neutron detectors placed around the core.  

 
Where iδφ  , 1,..., 4i =  stands for the neutron noise from detectors N41, N42, N43, and N44, respectively 
(either Upper or Lower); µ  is the (unknown) scaling factor between the neutron noise and the meachanical 
vibrations; ( )x t  and ( )y t  are the components of the beam-mode vibrations, the x -direction being the 

diagonal between the detectors N41 and N42. The last two terms in each expression correspond to the CBM 
modes (beam and shell), and their respective signs express the corresponding symmetry of the vibration 
modes. The uncorrelated background is due to other processes than the CBM and is, hence, statistically 
independent from it; moreover, it is uncorrelated between the four different detectors. The reactivity term 
may be induced either by independent processes or by the CBM itself, or a combination of the two. The 
separation of the beam-mode and the reactivity components is based on different combinations of the 
detector signals. The enhancement of the beam-mode component goes as follows. Based on equations (24) to 
equation (27), the four detectors at one axial level are used in the following combination to determine the 

 
 

 
 

 



 

beam-mode displacement components:  
 

( )41 42
1( )
2

x tµ δφ δφ= −  
(28) 

and  

( )43 44
1( )
2

y tµ δφ δφ= −  
(29) 

 
 This signal combination eliminates the reactivity component, and it is assumed that it diminishes the back-
ground noise, which is assumed to be small in anyway compared to the peak (in this case mode is different 
from our previous definition of mode (IMF)).   
 
3.4.2 Analyis of the CBM measurements of the year 2016 through VMD (Upper detectors) 
 
Figure 16 shows the upper beam mode displacement component ( )x tµ  between detectors  41δφ  and 42δφ  

(detectors N41 and N42). A 15 minute segment is shown in this figure, this segment is analyzed through the 
CBM analysis methodology previously described in subsection 3.2. Figure 17 shows its Welch power 
spectral density (PSD) estimate, from now on, our goal is to separate this studied 15 minute segment into 
IMFs, to later isolate the IMFs related to the beam mode information spectral content. This signal is 
decomposed via the VMD into 15K =  different independent modes, their PSD estimates are shown in Figure 
18, where a zoom is made in the region of 0 Hz to 10 Hz. It is inferred that the information of the 8 Hz peak 
was separated into 2 independent IMFs, located at the 7-th and 8-th (MODE 1 and MODE 2 respectively) 
level of the VMD decomposition.  A peak detection algorithm (a local maxima detector) is used to infer the 
central frequencies and the amplitudes (the PSDs are expressed in dBs) of their peaks. Figure 20 shows the 
detected peaks that are used to infer the center frequencies 1f  and 2f  and the amplitudes of the peaks 1A  
and 2A . To estimate 1A  (or 2A ) equation (23) was used for 5J = . Table 3 shows these estimates for the upper 

studied segment shown in Figure 16. Figure 21 shows the estimated values of the center frequencies and 
amplitudes (with 5J =  ) along time for each 15 minute segment, a total of 12 segments were analized, the 
entire time span of the signal is of 3 hours for a sampling frequency 62.5sF =  Hz. Average values for the 

estimated parameters with their respective standard deviations are shown in Table 4. The extracted modes (in 
the time domain) are not shown in the plots, becuase the information of interest lies in the Fourier domain.  
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Figure 16. Real studied Upper displacement component ( )x tµ . 
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Figure 17. PSD estimate of the signal shown in Figure 16. 
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Figure 18. Welch PSD estimates of the IMFs extracted through VMD.  
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Figure 19. PSD estimates of the IMFs of interest related to the beam mode (MODE 1 and MODE 2). 
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Figure 20. Detected Peaks of MODE 1 and MODE 2 that are used to infer the peak amplitudes ( 1A  and 2A  ) 
and center frequencies ( 1f  and 2f  ) of the extracted modes.  

 

Modes Related to the Beam mode Central Frequency Hz  Amplitude in dB 

MODE 1 (mode 7) 1f = 6.3843 1A = -72.3652 

MODE 2 (mode 8) 2f = 8.0149 2A = -68.2828 

 
Table 3. Estimated central Frequencies and Amplitudes of the MODEs (IMFs 7 and 8) related to the beam 
mode (step 5 of the Methodology 1 described in subsection 3.2). 
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Figure 21. Estimated values of the central frequencies and amplitudes ( ( )x tµ ) for MODE 1 and MODE 2. 
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Estimates for MODE 1  Mean value  Standard deviation 
Center Frequency 1f  [Hz] 6.8229 0.5497 

Amplitude of the Peak 1A  [dB] -71.2813 1.6069 

 

Estimates for MODE 2  Mean value  Standard deviation 
Center Frequency 2f   [Hz] 8.0343   0.0473 

Amplitude of the Peak 2A  [dB] -67.2730 1.0333 

 
Table 4. Average value of the central frequencies and peak Amplitudes of the Upper displacement component 

( )x tµ estimated via a CBM-VMD analysis methodology.   

 
Figure 22 shows the beam mode displacement component ( )y tµ  between detectors 43δφ  and 44δφ  (detectors 

N43 and N44) . Again, a 15 minutes segment is shown in this Figure. It's power spectral density estimate 
(PSD) is shown in Figure 23. This neutronic noise signal is separated via VMD into 15 different independent 
modes, the PSD estimates of this modes are shown in Figure 24 (with a zoom in to our region of interest near 
the beam mode, the black line is the PSD estimate of ( )y tµ  (the targeted signal to be decomposed)). The two 

modes (MODE 1 and MODE 2) closer to the beam mode region of interest are isolated for further processing 
and the remaining IMFs are ignored. MODE 1 and MODE 2 are shown in Figure 25 and their detected peaks 
(local maxima) are shown in Figure 26. Table 5 shows the estimated center frequencies and peak amplitudes 
of the studied segment. Figure 27 shows the estimated values of the center frequencies and amplitudes (with 

5J =  ) along time for each 15 minute segment, a total of 12 segments were analized, the entire time span of 
the signal is of 3. Average values for the estimated parameters with their respective standard deviations are 
shown in Table 7. 
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Figure 22. Real studied displacement component ( )y tµ . 
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Figure 23. PSD estimate of the signal shown in Figure 22.  
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Figure 24. Welch PSD estimate of the IMFs extracted through VMD. 
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Figure 25. PSD estimates of the IMFs of interest related to the beam mode (MODE 1 and MODE 2). 
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Figure 26. Detected Peaks of MODE 1 and MODE 2 that are used to infer the peak amplitudes ( 1A  and 2A  ) 
and center frequencies ( 1f  and 2f  ) of the extracted modes. 

 

Modes Related to the Beam mode Central Frequency Hz  Amplitude in dB 

MODE 1 (mode 7) 1f = 6.9076 1A = -76.6799 

MODE 2 (mode 8) 2f = 7.8643 2A = -62.9447 

 
Table 5. Estimated central Frequencies and Amplitudes of the MODEs (IMFs 7 and 8) related to the beam 
mode (step 5 of the Methodology 1 described in subsection 3.2). 
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Figure 27. Estimated values of the central frequencies and amplitudes ( ( )y tµ ) for MODE 1 and MODE 2. 

 

 
 

 
 

 



 

   

Estimates for MODE 1  Mean value  Standard deviation 
Center Frequency 1f  [Hz] 7.0312 0.0923 

Amplitude of the Peak 1A  [dB] -74.8531 1.5673 

 

Estimates for MODE 2  Mean value  Standard deviation 
Center Frequency 2f   [Hz] 7.9897 0.1474   

Amplitude of the Peak 2A  [dB] -63.8221 2.5493 

 
Table 6. Average value of the central frequencies and peak Amplitudes of the Upper displacement component 

( )y tµ estimated via a CBM-VMD analysis methodology.   

 
For reasons of space, only the analysis of the Upper detectors (the analysis of the Upper displacement com-
ponents ( )x tµ  and ( )y tµ ) was presented in full detail, the center frequencies and peak amplitudes of all the 

detectors (Upper and Lower) are shown in Table 7.  
 
Estimates for MODE 1 Mean( 1f ) Hz Std( 1f ) Hz Mean( 1A ) in dB Std( 1A ) in dB 

UPPER     

( ) ( 41 42 ) 2x t N U N Uµ = −  6.8229 0.5497 -71.2813 1.6069 

( ) ( 43 44 ) 2y t N U N Uµ = −  7.0312 0.0923 -74.8531 1.5673 

LOWER     

( ) ( 41 42 ) 2x t N L N Lµ = −  7.4300 0.0798 -65.4356 1.3552 

( ) ( 43 44 ) 2y t N L N Lµ = −  7.4728 0.3751 -64.8035 3.1152 

 
Estimates for MODE 2 Mean( 2f ) Hz Std( 2f ) Hz Mean( 2A ) in dB Std( 2A ) in dB 

UPPER     

( ) ( 41 42 ) 2x t N U N Uµ = −  8.0343 0.0473 -67.2730 1.0333 

( ) ( 43 44 ) 2y t N U N Uµ = −  7.9897 0.1474 -63.8221 2.5493 

LOWER     

( ) ( 41 42 ) 2x t N L N Lµ = −  7.9452 0.0401 -59.9722 1.1980 

( ) ( 43 44 ) 2y t N L N Lµ = −  8.0481 0.0505 -56.8539 1.5138 

 
 Table 7. Average center frequencies 1f   and 2f  (with their respective standard deviations (std)) and average 
peak amplitudes 1A   and 2A (with their respective standard deviations (std)) for the 2016 year Core-Barrel 

Motion measurements. 
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3.4.3 Analyis of the CBM measurements of the year 2017 through VMD (Upper detectors) 
 
Now, the CBM analysis of the measurements of this year are presented, starting with the analysis of the dis-
placement component ( )x tµ  (between detectors N41U and N42U). Figure 28 shows the signal that will be 

decomposed by VMD into 15 different IMFs. Figure 29 shows its Welch PSD estimate. Figure 30 shows the 
PSD estimate of the extracted IMFs, Figure 31 shows the PSD of the isolated IMFs of interest (MODE 1 and 
MODE 2) , Figure 32 shows the detected peaks of  the isolated Intrinsic Mode Functions (IMFs) of interest, 
their peak amplitudes and center frequencies (of all the segments) are shown in Figure 33. Table 8 shows the 
average output parameters ( 1f  and 2f for the center frequencies of the studied MODEs and amplitude peaks 

1A  and 2A ) along time for all of the 12 studied segments. And Table 9 shows  the average estimated values 

for the 2017 CBM detector measurements.         
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Figure 28. Real studied displacement component ( )x tµ . 
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Figure 29. PSD estimate of the signal shown in Figure 28. 
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Figure 30. Welch PSD estimate of the IMFs extracted through VMD. 
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Figure 31. Detected Peaks of MODE 1 and MODE 2 that are used to infer the peak amplitudes ( 1A  and 2A  ) 
and center frequencies ( 1f  and 2f  ) of the extracted modes.  
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Figure 32. Estimated values of the central frequencies and amplitudes ( ( )x tµ ) for MODE 1 and MODE 2. 

 

Estimates for MODE 1  Mean value  Standard deviation 
Center Frequency 1f  [Hz] 6.7940 0.1002 

Amplitude of the Peak 1A  [dB] -75.9353 0.9563 

 

Estimates for MODE 2  Mean value  Standard deviation 
Center Frequency 2f   [Hz] 8.1276 0.0909   

Amplitude of the Peak 2A  [dB] -70.2712 0.7848 

 
Table 8. Average value of the central frequencies and peak Amplitudes of the Upper displacement component 

( )x tµ estimated via a CBM-VMD analysis methodology.   
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For reasons of space to make the analysis less repetitive, only the analysis of the Upper detectors (the analy-
sis of the Upper displacement components ( )x tµ ) was presented in full detail, the center frequencies and 

peak amplitudes of all the detectors of the year 2017 (Upper and Lower) are shown in Table 9.  
 
Estimates for MODE 1 Mean( 1f ) Hz Std( 1f ) Hz Mean( 1A ) in dB Std( 1A ) in dB 

UPPER     

( ) ( 41 42 ) 2x t N U N Uµ = −  6.7940 0.1002 -75.9353 0.9563 

( ) ( 43 44 ) 2y t N U N Uµ = −  6.6768 0.1241 -76.0505 0.7566 

LOWER     

( ) ( 41 42 ) 2x t N L N Lµ = −  7.5501 0.0801 -63.8572 1.9697 

( ) ( 43 44 ) 2y t N L N Lµ = −  7.2593 0.0474 -67.8523 7.4194 

 
Estimates for MODE 2 Mean( 2f ) Hz Std( 2f ) Hz Mean( 2A ) in dB Std( 2A ) in dB 

UPPER     

( ) ( 41 42 ) 2x t N U N Uµ = −  8.1276 0.0909 -70.2712 0.7848 

( ) ( 43 44 ) 2y t N U N Uµ = −  8.0890 0.1561 -68.3178 1.3746 

LOWER     

( ) ( 41 42 ) 2x t N L N Lµ = −  8.0186 0.0486 -60.6234 0.8639 

( ) ( 43 44 ) 2y t N L N Lµ = −  8.0313 0.0524 -57.2062 0.6868 

 
Table 9. Average center frequencies 1f   and 2f  (with their respective standard deviations (std)) and average 
peak amplitudes 1A   and 2A (with their respective standard deviations (std)) for the 2017 year Core-Barrel 

Motion measurements. 
 

To complete this study, Figure 33 shows the center frequency 1f  and 1A  (for MODE 1) for the Upper Detec-

tor to contrast the 2016 year estimate versus the 2017 year estimate. Figure 34 shows the Center frequency 

1f  and 1A  (for MODE 1) for the Lower Detector. Figure 35 shows the Center frequency 2f  and 2A  (for 
MODE 2) for the Upper Detector and finally, Figure 36 shows the center frequency 2f  and 2A  (for MODE 

2) for the Lower Detector. 
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Figure 33. Center frequency 1f  and 1A  (for MODE 1) for the Upper Detector. 
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Figure 34. Center frequency 1f  and 1A  (for MODE 1) for the Lower Detector.  

 

 
 

 
 

 



 

1 1.2 1.4 1.6 1.8 2
7.98

8

8.02

8.04

8.06

8.08

8.1

8.12

8.14

8.16
MODE 2 (UPPER DETECTOR)

2016                                                                                                    2017

f 2 H
z

 

 
µx

µy

 
 

1 1.2 1.4 1.6 1.8 2
-71

-70

-69

-68

-67

-66

-65

-64

-63
MODE 2 (UPPER DETECTOR)

2016                                                                                                    2017

A 2 in
 d

B

 

 
µx

µy

 
Figure 35. Center frequency 2f  and 2A  (for MODE 2) for the Upper Detector. 
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Figure 36. Center frequency 2f  and 2A  (for MODE 2) for the Lower Detector. 

 
 

 
 

 



 

CONCLUSIONS 
 
In this work, an entirely new Core Barrel motion (CBM) analysis methodology to study the beam mode was 
proposed based on the non-recursive Variational mode decomposition (VMD) model, which is an entirely 
recent non-recursive minimization method to decompose a signal into band-limited Intrinsic Mode Functions 
(IMFs) or simply modes. The model looks for an a priori given number of modes and their respective center 
frequencies, such that the modes reproduce the input signal, while being smooth after demodulation into 
baseband. This technique is related to Wiener filter denoising, in fact, this method is a generalization of the 
classic Wiener filter into adaptive, multiple bands. This method, excels the frequency resolution of the de-
fault Empirical Mode Decomposition (EMD) model and is suited to accurately separate harmonics whose 
frequency content lies very close to each other, even in noisy scenarios. Thus, this method is suited to isolate 
the beam mode of real neutronic CBM signals, our goal is to be able to detect the peaks of interest, the first 
one, a peak very close to 6.8 Hz (labeled as MODE 1) and the second one, another peak close to 7.9 Hz (la-
beled as MODE 2), later on, our goal is to infer the central frequency of the IMF and the amplitude of the 
peak (the global maxima) to provide information about the wear of the CMB. The methodology that was 
proposed splits the displacement components of interest ( ( )x tµ  or ( )y tµ ) signal into segments of 15 minutes 

(this signal splitting into various segments was performed due to computational resource constraints), then 
this 15 minute signal segment was decomposed via the VMD into 15 different independent modes (this num-
ber of IMFs to extract was chosen arbitrarily based on empirical experiments). Then, two modes are selected, 
the modes of interest around the beam mode area (MODE 1 and MODE 2), Via a simple peak detection 
method, the local maxima are detected, from the inferred global maxima : the central frequency of the 
MODE is computed, later to estimate the amplitude, a neighborhood of points J   ( 5J =  was the rule of 
thumb value that was chosen for the analysis) around the global maxima was selected to make the peak esti-
mation of MODE 1 (and MODE 2) less arbitrary. The 2016 and 2017 Core-Barrel motion measurements 
where studied through this CBM-VMD new methodology.    
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