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Abstract

Stochastic nonlinear systems are a specific class of nonlinear systems where
unknown disturbances affect the system’s output through a nonlinear trans-
formation. In general, the identification of parametric models for this kind
of systems can be very challenging. A main statistical inference technique
for parameter estimation is the Maximum Likelihood estimator. The central
object of this technique is the likelihood function, i.e. a mathematical expres-
sion describing the probability of obtaining certain observations for given
values of the parameter. For many stochastic nonlinear systems, however,
the likelihood function is not available in closed-form. Several methods have
been developed to obtain approximate solutions to the Maximum Likelihood
problem, mainly based on the Monte Carlo method. However, one of the
main difficulties of these methods is that they can be computationally ex-
pensive, especially when they are combined with numerical optimization
techniques for likelihood maximisation.

This thesis can be divided in three parts. In the first part, a background
on the main statistical techniques for parameter estimation is presented.
In particular, two iterative methods for finding the Maximum Likelihood
estimator are introduced. They are the gradient-based and the Expectation-
Maximisation algorithms.

In the second part, the main Monte Carlo methods for approximating
the Maximum Likelihood problem are analysed. Their combination with
gradient-based and Expectation-Maximisation algorithms is considered. For
ensuring convergence, these algorithms require the use of enormous Monte
Carlo effort, i.e. the number of random samples used to build the Monte
Carlo estimates. In order to reduce this effort and make the algorithms
usable in practice, iterative solutions alternating local Monte Carlo estimates
and maximisation steps are derived. In particular, a procedure implementing
an efficient samples simulation across the steps of a Newton’s method is
developed. The procedure is based on the sensitivity of the parameter search
with respect to the Monte Carlo samples and it results into an accurate and
fast algorithm for solving the MLE problem.

The considered Maximum Likelihood estimation methods proceed through
local explorations of the parameter space. Hence, they have guaranteed
convergence only to a local optimizer of the likelihood function. In the third
part of the thesis, this issue is addressed by deriving initialization algorithms.
The purpose is to generate initial guesses that increase the chances of con-
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verging to the global maximum. In particular, initialization algorithms are
derived for the Wiener-Hammerstein model, i.e. a nonlinear model where
a static nonlinearity is sandwiched between two linear dynamical systems.
For this type of model, it can be proved that the best linear approximation
of the system provides a consistent estimate of the concatenation of the
linear dynamics. Based on this result, two main initialization algorithms
are derived. The first one is the Ezhaustive Search approach, where all the
combinations of the dynamics, expressed in terms of poles and zeros, of
the best linear approximation are tested as initial guesses of a Maximum
Likelihood estimation problem in the parameters of the nonlinearity. The
main drawback of this approach resides in its combinatorial complexity in
the number of poles and zeros of the linear approximation. The second one
is the Fxpanded Fractional Approach, i.e. an improvement of the original
Fractional Approach. In the original approach, the estimated dynamics
are parametrized in a fractional way and only one optimization problem
retrieves the initial guess for the linear dynamics. However, ill-conditioning
problems can arise from specific configurations of the dynamics of the linear
parts. With the Expanded Fractional Approach, the ill-conditioning issue is
addressed and solved via series expansion of the fractional parametrization.
Furthermore, a [lifted formulation of the optimization problem resulting from
the Expanded Fraction Approach allows for a faster convergence when using
Newton-type methods.

Keywords: system identification, Maximum Likelihood, nonlinear stochas-
tic models, Monte Carlo, Newton’s method, initialization algorithm, Wiener-
Hammerstein
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Chapter 1

Introduction

Observations, measurements, and experiments are at the basis of the sci-
entific method formally introduced by Galileo Galilei in 1638, with his
publication Discorsi e Dimostrazioni Matematiche Intorno a Due Nuove
Scienze (Discourses and Mathematical Demonstrations Relating to Two
New Sciences) [1]. In his work, Galileo argued the importance of using
observations to formulate hypotheses and, subsequently, testing them via
experiments. The subject of system identification strictly follows the same
basic scientific methodology: it attempts to formulate hypotheses, the models,
based on observed data from a phenomenon, the system.

Finding accurate and reliable models of complex systems is one of the
main challenges of modern science and engineering, since they are needed,
for example, to predict and control the outcome of events and phenomena
of interest. These models are often expressed in a mathematical form. The
simulation analysis carried out using mathematical models may avoid the con-
struction of expensive experiments or prototypes. Moreover, mathematical
models are at the basis of most modern control techniques.

A system is a real-world’s object producing signals depending on the
internal interaction of variables of different kinds [2]. The produced signals
are called outputs. In many cases, an observer can affect the behaviour of the
system by applying external signals, which are called inputs. Other external
signals that cannot be manipulated by the observer are called disturbances.
They are mainly of two kinds: disturbances that can be directly measured
and disturbances that can only be indirectly observed through the system
outputs. In this context, the system identification task can be described as
the following: given observed signals of a system, find a mathematical model
that explains the observations as accurately as possible.

A mathematical model is an abstract representation of the system’s
behaviour. It mathematically relates the inputs, the outputs, and the
disturbances. Most of the physical phenomena and engineering applications
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around us are of dynamical nature: the output of the system at a certain
time does not only depend on the inputs and disturbances at the same time,
but also on their history. Hence, a dynamical system can be modelled by
a set of differential or difference equations. This set of equations, defining
the model structure, is then indexed by a parameter . A common subset of
models is the set of linear time-invariant models. These models assume linear
relationships between the input, the disturbances, and the outputs. Linear
models are widely used since the identification and the control theory for
this class of models is extensively developed [2|. However, when the actual
behaviour of the system cannot be captured by linear models, nonlinear
models have to be selected. Once a model structure has been selected, the
system identification task consists of finding a value for the parameter ¢ that
allows the model to explain the observations of the system. This is the scope
of the parameter estimation method. Since, in many cases, the observations
are affected by disturbance signals that cannot be measured directly, the
estimation method has to take into account the concept of uncertainty: the
model should describe the behaviour of the system as it was not affected
by disturbances. In order to achieve this result, a characterization of the
uncertainty is required.

A common approach to the uncertainty characterization is the stochastic
approach: the uncertainty is assumed to be of random nature and it is
characterized by probability distributions. Hence, with this approach, the es-
timation method is an application of classical statistical inference techniques.
These techniques deal with the problem of extracting information from ob-
servations affected by disturbances, making them unreliable. Depending on
the assumptions on the nature of @, the stochastic approach can be further
divided into two main frameworks: the frequentist framework [3]| and the
Bayesian framework. The first one assumes a deterministic nature, i.e. no
probability is attached to the unknown parameter. The inference method,
in this case, analyses what would happen if several experiments were to
be repeated. In this way, a point estimate of the parameter with some
sort of accuracy measure, e.g. confidence regions, is provided. The second
framework, instead, assumes a random nature of the parameter itself: some
prior information, expressed in terms of probability distribution, is attached
to the parameter and the inference method transforms the prior information
to posterior information by making use of the observations and the Bayes’
theorem. Hence, in this case, the outcome of the estimation method is the
posterior probability distribution of the parameter. In this thesis, the main
focus will be on estimation methods belonging to the frequentist framework.

In the area of statistical inference, the most commonly used estimation

method is the Maximum Likelihood (ML) method [2], [4], [5], [6]. As



mentioned before, given the presence of the disturbances, the observations
are described as realization of stochastic variables. This description can be
mathematically expressed with the joint Probability Density Function (PDF)
of the observations. The likelihood function is then defined as this joint
PDF evaluated at the available observations and seen as a function of the
parameter . The ML method provides a point estimate for the parameter
by maximizing the likelihood function over 6.

The ML method is commonly used because of its desirable statistical
properties. In general, the search for a good model should be driven by
criteria based on its usefulness rather than its similarity to the real /physical
system. Some aspects of the system can be compared with its mathematical
description, but an exact connection between them can never be establish.
Nevertheless, statistical properties of estimation methods can be discussed
by assuming that a true system, defined in terms of a mathematical de-
scription, exists. Hence, it is assumed that a true parameter 6, exists and
the observations are a realization of the model output with § = 6,. This
is never true in practice, but the fiction of a true system is very useful for
the theoretical analysis of the estimation methods and the assessment of
the quality of the model. In this way, it is also possible to classify systems
by using the mathematical models classification: with nonlinear system, for
example, it is intended that the fictitious true system is a nonlinear model.
This is also why the terms model and system are often interchangeable.

At least two basic properties need to be considered when assessing the
quality of an estimator: consistency and efficiency. Consistency means
that the estimates of 6 get closer to the true parameter as the observations
length increases. Since they are affected by disturbances, the estimates are of
random nature. Hence, the convergence to the true parameter is considered in
the probabilistic sense, see [4]. Efficiency is a property that relates the errors
of consistent estimates. A consistent estimator is asymptotically efficient if
the normalized error between the estimates results into a covariance matrix
no larger than the covariance matrix of any other consistent estimator.

It is proven that, under weak assumptions, the Maximum Likelihood
Estimator (MLE) is consistent and asymptotically efficient. Thanks to its
statistical properties, the MLE is often preferred as parameter estimation
method. However, it is not always possible to derive the likelihood function in
analytic form. This is, for example, the case of systems containing nonlinear
relationships between disturbances and outputs. Often, these systems are
called stochastic nonlinear system. Hence, in these cases, some approximate
solutions to the problem need to be adopted. Furthermore, the Maximum
Likelihood estimation problem is often a non-convex optimization problem.
Thus, numerical optimization algorithms based on local explorations are
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used. These methods, however, only guarantee the convergence to a local
maximizer of the non-convex cost function.

The central object of this thesis is to address these two main issues:
finding the MLE when the likelihood function is not available in analytic
form and providing initialization algorithms for MLE in order to increase
the chances of finding a global maximizer. These issues are addressed, in
particular, for a specific class of nonlinear systems: the Wiener-Hammerstein
system. In the following sections, a detailed description of the research
problems and of the contribution of the thesis is presented.

1.1 Research Motivation

In this thesis, we are concerned with the problem of deriving a Maximum
Likelihood estimate for general nonlinear models. When a disturbance or a
unobserved (or latent) process is affecting the output of the model through
a nonlinear transformation, it is not always possible to derive an analytic
expression of the likelihood function. With latent process, we mean a set
of signals within our system that cannot be directly measured. This issue
is further explained by discussing the following two cases. In the first one,
we discuss the case when the disturbances affects the outputs of the system
only in an additive form. In these cases, the likelihood can be derived in
closed-form. The second case, instead, deals with the stochastic nonlinear
model. A disturbance enters the system through a nonlinear transformation.
Deriving the likelihood function in this case is very challenging.

1. Additive noise on the outputs. The output of the nonlinear model
is only affected by additive disturbances,

v = flup0)+e t=1,...,N (1.1)

where f(-,0) : R — R is a nonlinear static function parametrized in 6,
u; and y; are, respectively, scalar inputs and outputs, and e; represents
the stochastic disturbance, modelled as i.i.d. random variables for
each t, with a known PDF, e; ~ p.(e;). This is the typical case of
measurement noise: the true system’s output is usually observed by
sensors that introduce additive measurement noise. By defining the
vector of the observations y = [y, ..., yn], it is possible to construct
the joint PDF of the model outputs. Given the independence of the
disturbance e; for each t, the output ¥, is also independent over t,
hence the joint PDF can be written as

p(y;0) = [ [ pwi:0) = [ ples; 0) = [ [ pwe = f(uis0)).  (1.2)
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The ML estimate of 6§ can be therefore defined as

N
Orr = argmeaXHp(yt — flu;0)), (1.3)
t=1

and computed by solving an optimization problem. The complexity
of the PDF p(e;) and of the nonlinear function f(-,6) will determine
the complexity of the optimization problem, and whether numerical
techniques will be required. For example, if the disturbances are
normally distributed with zero mean and variance o2, e, ~ N (0, 02),
solving the optimization problem (1.3) is equivalent to

N
min —logp(y; ) = min ;(yt — fluy;0))?, (1.4)

which is a nonlinear least-squares problem. If f(uy;6) is defined as the
predictor of the model, see [2], then (1.4) is also the Prediction Error
Method (PEM) estimator [2], a widely used estimator that inherits
the good statistical properties from the ML estimator. In the system
identification context, f(u;;#) can be replaced by a regressor function
¥(t,0) which also takes into accout past inputs and outputs of the
system. In this way, it is possible to represent dynamical models.
Depending on the underlying system’s behaviour, several choices of
the regressor function are possible. For instance, the regressor function
representation is suitable for Nonlinear AutoRegressive with eXogenous
input (NARX) models and Nonlinear AutoRegressive Moving Average
with eXogenous input (NARMAX) models [2]|, nonlinear state-space
models in predictor form, block-oriented models [7]|, Volterra series
models [8]. The particular choice of model representation is usually
based on prior knowledge about the system, but also on the final
use of the model. This stage of the identification process is called
model structure selection, and it is a fundamental and difficult step. In
this thesis, we do not address the model structure selection problem,
but we assume that a parametrized model is available and we are
concerned with the parameter estimation task only. In literature,
several approaches address the selection of a model structure for
nonliner systems, see e.g. [9] and [10].

The general model representation (1.1) only assumes additive measure-
ment noise. Although this situation is common in practice, it does not
cover all the possibilities of disturbances affecting the systems in the
real world. A more general representation is given by the second case,
discussed next.
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2. Latent process. We assume that a disturbance or a latent pro-
cess x; affects the system’s output through a non-invertible nonlinear
transformation. This is described by the following equation

Yo = flx,u0) +e t=1,...,N (1.5)

where z; is a random variable distributed according to p(x;;#). The
PDF of the latent process can also be function of 8 or of a subset of it.
In order to find the likelihood function, it is required to marginalize
the unknown process out. By defining x = [x1,...,2zy]|, the PDF of y
is

p(y:0) = /p(y, x; 0)dx, (1.6)

where p(y, x;0) is the joint PDF of y and x. Even in case p(y, x;60)
has a known analytical form, the integral (2.5) is multidimensional
and, in general, intractable, i.e. it has no closed-form solution. Hence,
the challenge is to come up with approximate solutions to the ML
problem for this case. The main approaches addressing this issue were
originally based on Monte Carlo integration, see e.g. [11], [12], [13], [14].
By extending and improving these approaches, some ongoing research
from the system identification community can be found in [15], [16],
[17], [18], [19], where the ML estimation is based on Sequential Monte
Carlo (SMC) methods. The main drawback of approaches based on
Monte Carlo methods is that they can be computationally expensive
and their convergence can be very slow. In this thesis, we will present
the available solutions and analyse their issues. The goal is to improve
some computational and convergence aspects.

Assuming for a moment that the likelihood function, or an approximation
of it, has been found, a second issue needs to be addressed. In case of
nonlinear models the MLE is obtained by solving a nonlinear optimization
problem, which may be intractable too (not solvable in closed-form). Hence,
this requires the deployment of numerical optimization techniques. Most
of these techniques proceed through local explorations of the cost function,
starting from an initial guess for . A widely used technique for numerical
optimization is the Newton’s method. By using information from the gradient
and the Hessian of the cost function to optimize, the method is proved to
converge to a stationary point of the gradient. Hence, depending on the
starting point (initial guess), the method may end its search in the global or
one of the local optimizers of the non-convex cost function. Of course, the
latter case is not desirable. Thus, the choice of a good initial guess for the
search algorithm is of crucial importance.
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In case of likelihood intractability, the Newton’s algorithm cannot be
deployed on the analytic likelihood, but approximate solutions have to be
derived. For this, many approaches available in the literature suggest the
deployment of numerical integration techniques to estimate the likelihood or
its gradient. In this case, the key issue to address is to come up with inte-
gration and optimization routines that do not compromise the convergence
to a local optimizer of the true likelihood. Only when this convergence is
ensured, the problem of finding a good initial guess can be addressed.

In this thesis, the two issues regarding the derivation of approximate
solution for intractable likelihood function and the search for a good initial
guess are addressed. In particular, the first issue is addressed in general terms.
A general stochastic nonlinear model is considered and a Newton-based
method for solving the approximate ML problem is developed. The method
is then tested on a particular model structure: the Wiener-Hammerstein
(WH) model with process noise. This is a block-oriented model structure
consisting of the interconnection of two LTI blocks with a static nonlinearity
in the middle,

e = Gw(q, O)us +we,  wp ~ py(wy),
= f(xh 9)7 (17)
v=Gu(q,0)ze + e, e~ peler),

where Gy (q,0), Gy(q,0) are the two LTI systems, represented as discrete-
time transfer functions (¢ denotes the time-shift operator), parametrized in
6, and f(-,0) is a static nonlinearity. Due to the presence of the disturbance
wy (process noise), the intermediate signal x; can be seen as a latent process.
Since z; is then filtered through the nonlinear transformation f(-,#), the
likelihood p(y; @) cannot be computed in closed-form. Hence, the WH model
with process noise is a special instance of the stochastic nonlinear models
class, and it will be referred to as stochastic WH model.

The second issue is harder to consider in general terms. Thus, initializa-
tion algorithms for the search of the global optimizer is developed for WH
models only. For this kind of block-oriented model structure, in fact, it is
shown that linear approximations can be effectively used to initialize the
nonlinear ML optimization problem. Both the cases of stochastic WH model
and WH model (no process noise) are considered.

In the next section, the outline of the thesis is presented and the contri-
butions are detailed.
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1.2 QOutline of the Thesis and Contributions

Most of the results presented in this thesis are based upon well-established
concepts in system identification and statistical estimation theory. A brief
overview of these basic concepts is therefore given in Chapter 2. In particular,
the Maximum Likelihood method is presented and explained in details. Then,
we discuss the standard solutions for finding the MLE when the likelihood
function is available or can be computed in closed-form. This special class
of models is often referred to as tractable models. Although, in this case,
the likelihood is available in closed-form, the optimization problem may still
require approximate solutions. Standard numerical optimization methods are
used in this case, such as the gradient-based algorithms and the Ezpectation-
Maximization algorithm.

In the next two parts, the contributions of this thesis are presented.
The first part (Chapters 3-4) addresses the case of likelihood intractability.
This issue is usually addressed by computing Monte Carlo estimates of the
intractable quantity. Maximum Likelihood methods based on Monte Carlo
estimates, however, may show high complexity or stability problems. Hence,
in Chapter 3, we analyse the main issues of methods based on Monte Carlo
estimates and we propose, in Chapter 4, some modifications addressing the
main computational and stability issues. The derived solutions reduce the
overall complexity of the estimation methods, by implementing an efficient
use of the Monte Carlo samples. The results presented in this part are
extensions of

G. Giordano, S. Gros, J. Sjoberg, “A Newton-based method for Maximum
Likelihood estimation from incomplete data”, to be submitted to Automatica,
2018.

G. Giordano, J. Sjoberg, “Maximum Likelihood identification of Wiener-
Hammerstein system with process noise", 18th IFAC Symposium on System
Identification, Stockholm, Sweden, July 2018.

The second part (Chapters 5-6) addresses the initial guess problem for
WH models. Initialization algorithms based on linear approximations are
derived. In the first chapter, the concept of Best Linear Approximation
(BLA) of nonlinear system is introduced. For a WH model not affected
by process noise, it is proved that the BLA provides a consistent estimate
of the linear parts of the WH model. In this thesis, the consistency of
the BLA is extended to the case of stochastic WH models, where both
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measurement and process noise are present. The BLA is then used to
initialize the two LTI systems of the WH model structure. Thereafter, a ML
estimation problem can be formulated to estimate the nonlinearity too. The
initialization algorithms are combined with the methods for ML estimation
presented in the first part. Finally, the special case of absence of process
noise is also addressed. For this, we prove that standard approaches for MLE
initialization suffer of ill-conditioning problems. Thus, a modification of
the standard approach is proposed, which alleviates the conditioning issues
and improves the algorithmic performance of the initialization method. The
results presented in this part are based upon

G. Giordano, S. Gros, J. Sjoberg, “An improved method for Wiener-
Hammerstein system identification based on the Fractional Approach”, in
Automatica, Vol 94, pp. 349-360, 2018.

G. Giordano, J. Sjoberg, “Consistency aspects of Wiener-Hammerstein
model identifcation in presence of process noise", IEEE 55th Conference on
Decision and Control (CDC), Las Vegas, USA, December 2016.

G. Giordano, J. Sjoberg, “A time-domain Fractional Approach for Wiener-
Hammerstein systems identification", 17th IFAC Symposium on System
Identification, Beijing, China, October 2015.

Other related publications by the Author not included in this thesis:

G. Giordano, V. Klass, M. Behm, G. Lindbergh, J. Sjcberg, “Model-based
Lithium-Ion Battery Resistance Estimation from Electric Vehicle Operating
Data”, in IEEE Transactions on Vehicular Technology, Volume: 67, Issue: 5,
May 2018, Pages 3720 - 3728.

G. Giordano, J. Sjoberg, “Black- and white-box approaches for cascaded
tanks benchmark system identification”, in Mechanical Systems and Signal
Processing, Volume 108, August 2018, Pages 387-397.
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Chapter 2

Background

In this chapter, a background on basic estimation theory and system identi-
fication concepts is introduced. The focus is on the Maximum Likelihood
method and its statistical properties. The problem of finding the MLE
for stochastic nonlinear models is then introduced and discussed. Finally,
standard methods for the case of tractable models are presented.

2.1 Signals and models

The objective of system identification is to model dynamical systems given
a set of observed data

Z% = {up, g}ty = {u, v} (2.1)

where u € RY and y € RY are, respectively, input and output signals of the
system. A basic assumption in system identification is that the behaviour of
the system is well approximated by some parametrized mathematical model.
The choice of the parametrization depends on the application. Experience
and prior information are important factors in selecting a proper model
parametrization. Of course, the mathematical model cannot provide an
exact description of the system, but modelling errors are always present.
Furthermore, other disturbances may affect the system’s output. Hence, it
is important to extend the model definition by using a stochastic framework.
In this way, it is possible to model the uncertainty present in the system
and use statistical inference techniques for parameter estimation. In the
following, we introduce the main assumptions and definitions on signals and
models, required by the stochastic framework.

11
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2.1.1 Basic assumptions and definitions

The output signal y is therefore modelled as a set of random variables
distributed according to a joint probability density function. In this thesis,
we assume that the input signal is known exactly and the joint PDF of the
output is parametrized by a finite-dimensional real vector # € © C R¥e,

y ~ p(y:0). (2.2)

Hence, the PDF describes the model behaviour by wrapping a deterministic
part of the model within a stochastic envelope. Based on the nature of
the mathematical relationships contained in the model, different model
definitions are possible. The mathematical models considered in this thesis
are part of the class of stochastic parametric nonlinear dynamical model.
Using the formulations introduced by [20], we have the following definition
and assumption.

Definition 2.1.1. (Stochastic parametric nonlinear dynamical models) The
models are defined by the following discrete-time output relations

ye = f({uliz Avhieii0), t=1,2,...,N, (2.3)

where f is a nonlinear function, 0 is the parameter to be estimated, and
{v}i_, is a sequence of latent random variables.

The dependence of the output on past values of inputs and unknown
signals ({v}:_,) makes the model dynamic. The signals {v}:_; summarize
all the stochastic contributions to the model output. For stochastic nonlinear
dynamical systems, the main sources of disturbances are the latent process
x = {z; € R%=}N, and the measurement noise e = {e;}~ ;. Hence, in this
thesis, we will make the assumption that

vy =[xy, €. (2.4)

Since x; is a latent process, the PDF of the outputs has to be calculated by
marginalization, i.e. solving the multi-dimensional integral

p(y;0) = /RM p(y, x;0)dx (2.5)

where p(y, x; 0) is the joint PDF of outputs and latent process.

Finally, as mentioned in the introduction, it is useful to describe the real
system in terms of mathematical relations, in order to compare and analyze
the quality of the estimators. Hence, we assume that a true system exists,
which we define in the following.

12
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Assumption 2.1.1. (True system and true parameter) The observed data
are generated by the following mathematical relation

ye = f({ubi {vhoisfo), t=12,... N, (2.6)

where Oy € © C RN is defined as the true parameter.

2.1.2 State-space models

A special class of nonlinear dynamical models is the class of discrete-time
nonlinear state-space models. These models are composed by a set of first
order difference equations. Thanks to its flexibility and generality, a state-
space model can describe the behaviour of a wide range of nonlinear systems.
The stochastic state-space model can be defined by the following state and
output equations

Ti1 = h(l"t,ut,wt; 9)>

2.7
yt:g<xt7€t;0)v t:1527"'7Na ( )

where w; and e, are, respectively, process and measurement noise. A partic-
ular instance of this model class considers only additive disturbances on the
state and output equations

$t+1 = h(l‘t,ut; 0) + Wy,

2.8
v = gz 0) + e, t=1,2,...,N. (2.8)

Given the presence of the process noise wy, the state x; can be viewed as a
latent /hidden process, in accordance with Definition 2.1.1.

2.1.3 Wiener-Hammerstein models

In this thesis, ML estimates and initialization algorithms are developed
for another important class of stochastic nonlinear dynamical models: the
Wiener-Hamemrstein (WH) model. The WH model is a single-input/single
output model and it is part of the block-oriented structures family. Block-
oriented models represent a more structured approach to nonlinear modelling,
see [7]. In particular, nonlinear systems whose behaviour can be easily
decomposed in linear and static nonlinear contributions are well-described
by block-oriented model structure. The linear contributions are modelled
by Linear Time-Invariant (LTI) dynamical blocks. They can have several
mathematical representations, such as rational transfer functions, linear
state-space models, basis function expansions, or nonparametric descriptions,
e.g. nonparametric frequency responses. The static nonlinearity can be

13
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Figure 2.1: The Wiener-Hammerstein system

expressed by basis function models, polynomial expressions, nonparametric
kernel models, etc.

The LTI block and the static nonlinearities can be combined in many
ways. The simplest combinations are the Wiener model and the Hammerstein
model. In the first case, the input of the system is filter by an LTI block,
whose output goes through a static nonlinearity. The Hammerstein model
is the reverse: the nonlinearity is present at the input, followed by an LTI
model. By combining these two models, we obtain the Wiener-Hammerstein
model. It is composed by two LTI blocks with a static non-linearity in the
middle, see also Figure 2.1,

z, = Gw(q, Ow)u, + wy,
Zt = f(l't, QNL), (29)
Y = Gr(q,0m)2 + e,

with 0 = [0y, 0N, 0g]. Similarly to the state-space model, also in this case

wy and e; are, respectively, process and measurement noise. The function
f is a static nonlinear function, while Gy and Gy are two LTT systems
expressed in terms of discrete-time transfer functions, parametrized in 6.
The operator g defines the forward time shift operation, i.e.

QUi = Uqq-

A generic discrete-time transfer function G(g; 0) is defined in terms of rational
functions

G(q,0) =

(2.10)

where B(q,0) and F(q, ) are polynomials in the shift operator whose coeffi-
cients are functions of 6.

In this thesis, we will consider the following parametrization for the
blocks of the WH model. The two linear parts are parametrized with two
stable linear time-invariant transfer functions. In the discrete-time domain,

14
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they can be expressed as

TLW _
Zkio bZVq i

Gw(q,ew) = W w s (211)
L+ 32 ) g
H
vB pH gk
Grrla, by) = —0 2T 212)
L+352, aflg"
where Oy = [bY, ...,bZVW,aI{V, ...,anWW] and 0 = [b, ...,be,a{{, ...,afH] are
B A B A

the parameter vectors. The static non-linearity is expressed as a basis
functions expansion,

d
JeOxn) = 3 0k, fula), (2.13)
k=1

where f, are the basis functions, 6%, are the parameters entering linearly in
f, and d is the number of basis functions.

An advantage of the block-oriented models is that, under some assump-
tions, the best linear approximation (BLA) [21], [22], [23] of the nonlinear
system is strictly related to the LTI blocks, see [10], [24]. This result is used
to separate the estimation of the linear and nonlinear parts of the model. In
this thesis, we will use and extend this result, in order to derive initialization
algorithm for the stochastic Wiener-Hammerstein model identification. In
some cases, we will test the derived algorithms on experimental data provided
by a real system that can be modelled as a WH. This is presented next.

2.1.4 The Wiener-Hammerstein benchmark system

In this thesis, real experimental data from a Wiener-Hammerstein benchmark
example are used to test some of the derived algorithms and methods. The
benchmark was originally proposed by [25]. The real system is an electronic
WH system built by sandwiching a resistor-diode network in between two
third-order Cheyshev filters. A picture of the electronic system is reported
in Figure 2.2. The benchmark data presented in [25] were collected from
the real WH system when only the measurement noise e¢; was affecting the
system’s output.

More recently, a modification of the benchmark example has been pre-
sented, see [26]. In this case, an additional disturbance has been introduced
at the input of the resistor-diode network, to simulate the effect of the
process noise. From the information available in [26]|, we know that the
noises sources e; and w; can be considered to be white and Gaussian. The
dominant noise source is w;, the measurement noise e; is very small. We
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Figure 2.2: The Wiener-Hammerstein benchmark system

will use this second benchmark set of data to test the algorithms derived for
the stochastic WH model.

2.2 Parameter estimation methods

Once a mathematical model and a stochastic framework have been deter-
mined, the next step of the system identification procedure is to choose a
parameter estimation method. In the frequentist framework, two methods
are mainly used for parameter estimation. They are the Maximum Likeli-
hood Method and the Prediction Error Method (PEM). In this thesis, the
focus will be on the first one, introduced in the following. Nevertheless, we
also briefly present the PEM and its connection with the ML method.

2.2.1 The Maximum Likelihood method

The Maximum Likelihood method is a statistical inference method introduced
by Fisher [27]. It is based on the likelihood function, which is defined in the
following.

Definition 2.2.1. (Likelihood function) Given the joint PDF of the outputs
of the system

the likelihood function is defined as the joint PDF p(y;0) evaluated at a
particular realization (observation) y* of the random vector y,

p(y*;0). (2.15)

This is a deterministic function of 6, once the numerical value y* is inserted.
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Hence, a reasonable estimator of # is the one following the likelihood
principle: pick the value of # so that the observed event becomes as likely
as possible. In mathematical terms, this can be defined as in the following.

Definition 2.2.2. (Mazimum Likelihood Estimator) The random variable
Our, = argmax p(y";6). (2.16)

is the Maximum Likelihood Estimator (MLE) of 6.

With these definitions, some statistical properties of the MLE can be
discussed. Since the estimator is a random variable, its quality can be
assessed by its mean-square error matrix

P =E[0n1, — 00)[0nsr — 0] (2.17)

where 6, is the true parameter. It is desirable to come up with estimators
with small P. For unbiased estimators, see [28], [29], it exists a lower limit
to the value of P. This limit is defined by the Cramér-Rao inequality.

Theorem 2.2.1. (Cramér-Rao inequality) Let 6 be an unbiased estimator
of 0, and assume that the PDF of the observations y* is p(y*;6y). Then

E[ — 6o)[0 — 6)" > M~ (2.18)
where M is the Fisher Information Matriz (FIM), defined by

M = —E[V;logp(y*; 0 (2.19)

Mo,

in which Vilog p(y*;0) denotes the Hessian of the log-likelihood function of
6.

A proof of the Cramér-Rao inequality is given in [2]. In case of indepen-
dent observations, the ML estimator benefits from the following asymptotic
properties [30], [31].

Theorem 2.2.2. Suppose that the random variables yy,ys, .. .,yn are inde-
pendent and identically distributed, so that

N

p(y:0) = [ [ p(ye: 0). (2.20)

t=1

Suppose also that the distribution of the observation y* is given by p(y*;6p).
Then

lim Ovir, =00 w.p. 1, (2.21)
and )
V N[Oy — 0] ~ N(0, M71). (2.22)
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The two results of Theorem 2.2.2 are also referred to as, respectively,
consistency and asymptotic efficiency. Thanks to these properties, the MLE
is thus the best possible estimator and it is widely used in many scientific
fields, including system identification. It is however important to underline
that those properties hold asymptotically, as N approaches infinity. In the
finite case, there are no general guarantees. Nevertheless, in many practical
cases, the MLE shows its asymptotic properties even for finite but long
enough data sequence. This is also why the MLE is widely used in practice.

Once the MLE has been defined, the next step is to compute it. For
general nonlinear models, the optimization problem (2.16) cannot be solved
in closed-form. Hence, numerical optimization techniques are employed.
Furthermore, we will discuss the problem of finding the MLE for stochastic
nonlinear models, i.e. when the likelihood function has to be calculated as
marginalization of the latent process, see Equation (2.5). The methods for
the computation of the MLE are presented in Section 2.3.

2.2.2 Connection with the Prediction Error Method

Another widely used family of parameter estimation methods is the family
of Prediction Error Methods (PEMSs), see [2], [6], [32]. In this case, the main
idea is to write the parametrized model in terms of parametrized predictor:
known inputs and previous observed outputs are used to predict future
outputs. Then, the parameter estimation is performed via minimization of
some metric ¢ defined on the prediction error e;(f), i.e. the distance between
the observed and predicted output.
The one-step-ahead predictor is defined by the function

gt|t—1(€) = ¢(Zt_17 ta 0)’t = 17 R N (223)

where 7't = {u;,y;}'] and it is assumed the presence of one-time input

delay. Also in this case, the function ¢ can be selected based on prior
knowledge of the system and on the stochastic description of it. Once
this predictor is defined, the parameter estimation is done by solving a
minimization problem.

Definition 2.2.3. (Prediction Error Method estimator) Given a predictor
function ¢ and a nonnegative scalar-valued function £, the random variable

N
Oppa = m@in Zﬁ(et(Q),t;G), (2.24)
t=1

where e;(0) =y — Gep—1(0), Vt =1,..., N, is the prediction error method
estimator.
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The particular choice of ¢ and ¢ defines the particular instance of the
estimator within the family of PEMs. When this metric and predictor
can be chosen according to the exact probabilistic nature of the data, the
PEM coincides with the ML method. This is true for the following additive
measurement noise case. Assume that the data are generated according to

vy = o274 0) +e, t=1,...,N (2.25)

where e; is an independent zero mean process, with PDF p(e;; #). Thus, it is
easy to define the likelihood function of the observed output as a reflection
of the PDF of ¢,

N N

p(y;0) = [[ ples: 0) = [ plwe — (2" ,1,6);6) (2.26)

t=1 t=1

The MLE can thus be found by

mjn — log(p(y30)) = min — 3 log(p(u — 27 6.0):6). (220

If we choose the predictor for the PEM as

gt\tfl(e) = ¢(Zt_17 t 9) (2'28)

and the metric ¢ as
U(e, t,0) := —log(p(es; 0)), (2.29)
where e;(6) = v — Yiu—1(0), the PEM estimator would be provided by

N
min — > log(p(y: — ¢(Z2"7",1,0);0)), (2.30)
t=1

which coincides with the ML estimator, defined in (2.27). This entails that
the PEM estimator inherits the statistical properties of the ML estimator, i.e.
consistency and asymptotic efficiency. The equivalence to the MLE is due to
the fact that, in this case, it is possible to choose the predictor for the PEM
estimator according to the actual stochastic description of the data, defined
in (2.25). As already discussed in the introduction, this is not the general
case for the stochastic nonlinear models, for which the presence of the latent
process makes the equivalence invalid. Hence, the focus of this thesis will
be on the derivation of ML estimates and, in case of stochastic WH model,
we will show that a standard PEM approach, as defined in (2.30), leads to
inconsistent estimates.
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Nevertheless, it is important to stress that when PEM is not equivalent
to the MLE, this does not directly imply its inconsistency. In fact, there
are other ways to define the predictor and the metric in order to obtain
consistent PEM estimates, even when it does not coincide with the MLE.
Recent studies in this direction can be found in [20], [33]. A consistent PEM
estimator might be harder to define, but the related optimization problem
would be easier to solve. On the other hand, a ML estimator is always
possible to define, but finding the MLE solution might be difficult. From
this point of view, this thesis is an attempt to simplify the search for the
MLE.

2.3 Finding the MLE for stochastic models

In this section, an overview of the main numerical techniques for finding the
MLE, when the optimization problem (2.16) cannot be solved in closed-form,
is presented. In particular, we consider the case of stochastic nonlinear
models. The key quantity of the ML problem is the likelihood function. For
stochastic model, this is calculated via marginalization of the latent process

pyi0) = [ | ply.xso)ix, 2:31)

where y € RY and x € R%". The methods presented in this chapter and in
the rest of the thesis require a basic assumption regarding the joint PDF

p(y.x;0).

Assumption 2.3.1. The joint PDF p(y, z;0) has a known analytical form,
parametrized in 6.

This assumption holds for many nonlinear dynamical models, e.g. state-
space models with known process and measurement noise distributions, or
block-oriented models with similar characteristics. The joint PDF can be
factorized as

p(y. x;0) = p(y|x; 0)p(x; 0). (2.32)
In this case, Assumption 2.3.1 imposes that both p(y|x;#) and p(x; 8) have

a known analytical form. In an analogous way, it is possible to factorize the
joint PDF as

p(y,x;0) = p(x|y; 0)p(y; 0), (2.33)

where p(x|y;6) is the posterior distribution of x given y. If this posterior is
known, then the likelihood function can be computed as

ply:6) = Z((;—;‘g)) (2.31)
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Hence, the computation of the likelihood function of stochastic models
requires either the solution in closed-form of the integral in (2.31) or the
availability in analytical form of the posterior p(x|y;#). Thus, we can define
the intractable stochastic nonlinear models in the following way.

Definition 2.3.1. (Intractable stochastic nonlinear models) A stochastic
nonlinear model, see Definition 2.1.1, is defined intractable if the likelihood
function of its outputs, p(y;0), is not available in analytical form.

This happens when both the integral (2.31) cannot be solved in closed-
form and the posterior p(x|y;#) is not available. While Assumption 2.3.1
holds for many nonlinear systems, the tractability of the integral (2.31) or
the availability of the posterior p(x|y;#) are satisfied very rarely in case of
nonlinear systems. Approximate solutions for the ML problems, in this case,
will be discussed in the next chapter.

Nevertheless, it is still important to present the available solutions to the
ML problem when either the likelihood function (and its gradient) or the
posterior p(x|y; ) possess a known analytical form. When this happens, the
stochastic models are often referred to as tractable models. The two main
approaches for finding the MLE for tractable models are the gradient-based
and the Expectation-Maximization algorithms. The first one is mainly used
when the likelihood function and/or its gradient are available, the second
one when the same is true for the posterior p(x|y;@).

2.3.1 Gradient-based algorithms

Gradient-based algorithms are widely used in numerical optimization, see
[34], [35]. The two main algorithms in this class are the steepest-ascent
algorithm and the Newton’s method. They are iterative algorithms that,
starting from an initial guess of €, proceed through local explorations of the
quantity to optimize. The key quantity used in the iterations is the gradient
of the likelihood function

Vop(y;0) (y;0). (2.35)

_9
~ o6”
The steepest-ascent algorithm updates the guesses of 6 by iterating

00D = 00 1 aVp(y:0)|p—p (2.36)

where « is the a small non-negative real number and it is used to control the
size of the update. In this formulation, only the gradient of the likelihood
is evaluated at each iteration. In practice, line-search techniques [34] are
also implemented, in order to guarantee that the update in 6 provides an
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increase of the value of the cost function and that the algorithm is stable.
In this case, the evaluation of the likelihood function is also required.

The Newton’s method makes use of the gradient and the Hessian of the
likelihood function. The iterative update is

0t = 0 — [Vap(y:0)]g—p ] Vop(y; ) |o—oeo - (2.37)
Also in this case, a small step size o can be introduced
09Ut =09 — a[Vip(y;0)|g—gr] " Vap(y; 0)|g—geo - (2.38)

The Newton’s method has quadratic convergence, see [34]. Therefore, its use
is desirable. However, its application hinges on the possibility of efficient
computation and use of the Hessian matrices. Fortunately, recently developed
algorithmic tools allow for fast computation of sensitivity information, see
[36]. Moreover, when non-invertible or ill-conditioned Hessian matrices
render the Newton’s scheme difficult to implement, other methods can be
used to alleviate such difficulties, i.e. the quasi-Newton methods [34].

When using gradient-based algorithms for solving ML problems, it is
also quite common to work with the log of the likelihood function instead of
the likelihood itself. This may provide some numerical benefits. In fact, the
likelihood of dynamical system’s outputs is usually expressed in terms of
product of single realization distributions, p(y;#) = Hivzl p(y; 0). For big N,
this value may become very small. The use of logarithm turns the product
into a sum and the produced values may be more tractable. Furthermore,
the gradient of log-likelihood is usually well-scaled compared to the gradient
of the likelihood, especially for the exponential family distributions.

Finally, both gradient-based and Newton’s methods are proved to con-
verge to a stationary point of the gradient. Hence, in case of non-convex
likelihood function, only local convergence is guaranteed. This is why the
choice of the initial guess 6, is of crucial importance, and it is one of the
issues addressed in this thesis. In fact, in case of Wiener-Hammerstein
models, we will discuss a particular initialization strategy based on linear
approximations of the nonlinear system.

2.3.2 The Expectation-Maximization algorithm

Similarly to the gradient-based algorithms, the Expectation-Maximization
(EM) algorithm is another iterative procedure for solving ML problems. It is
mainly employed when a latent process or, more generally, incomplete data
are present, see [37]. The algorithm requires the knowledge of the posterior
p(x]y;#) but it assumes that the likelihood function is not available. In
fact, it makes use of intermediate quantities, function of the joint PDF
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p(y,x;0), in order to maximize the likelihood function. This is explained in
the following. Consider the likelihood factorization

p(y.x;0)
p(xly;0) = : 2.39
(ely:) p(y;0) (239)

By taking the log of these quantities, we obtain
log p(y; 0) = log p(y. x; 0) — log p(x[y; 0). (2.40)

Given a guess value ) of the parameter, and knowing the posterior density
p(x]y; 0), the latent process can be marginalized over this posterior, providing

log p(y: 6) = / log ply, x: 0)p(x]y; 6V)dx — / log p(xly: 6)p(xy: 69)dx.
(2.41)
By defining

Q(6,0) = / log p(y, x; 0)p(xly; 00))dx, -
2.42

~5(6,0) = / log p(xly; 8)p(xly; 67)dx,
it is possible to write
log p(y; 0)—log p(y; 0) = (Q(6,0)—Q (8, 0))+(S(6W, 09)—S (0, 6))).

The quantity (S(6@,00)) — S(,0®)) is defined as the relative entropy and
it is always non-negative, see [38|. Hence, in order to obtain a positive

increment of the log-likelihood function, we have to seek for another value
0U) of 0 such that
QO 69) — Q0 6) > 0. (2.43)

That is the basic principle of the EM algorithm, whose steps are formalized
in the following.

e E-step: Compute Q(6,0%) = E,xjy:00) [log p(y, x; 0)]
e M-step : Compute 7+ = arg max Q(0,0)

By iterating these two steps, the algorithm is proved to converge to a local
maximum of the likelihood function, see [39]. The rate of convergence of
standard EM algorithm is linear [37].

Compared to the gradient-based algorithm, the use of the EM algorithm
is highly suggested when the E-step is cheap to compute and the M-step
has a simple expression allowing a closed-form solution. When the E-step is
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computationally expensive and/or the M-step requires the deployment of
numerical optimization techniques, there is no clear advantage of using the
EM algorithm instead of a gradient-based algorithm. However, it has been
proved that each M-step does not need full convergence to a local maximizer,
but any parameter guess 60! satisfying the condition Q(60+Y 1)) >
Q(0W D) is enough. Thus, some approaches propose to use only one
iteration of a gradient-based algorithm to solve the M-step, see e.g. [40].
On the other hand, the use of gradient-based algorithm is highly suggested
when second-order information are easy to compute, allowing quadratic

convergence, which is clearly a benefit compared to the linear convergence
of the EM methods.

2.4 Summary

In this chapter, the main theoretical and algorithmic tools for system identi-
fication and statistical estimation have been introduced. Given its statistical
properties, a widely used parameter estimation method is the Maximum
Likelihood estimator. For stochastic nonlinear models, the likelihood func-
tion is not available directly but it is the result of a marginalization operation.
In case of tractable stochastic models, two main numerical algorithms are
adopted to solve the ML problem (2.16). They are the gradient-based and
the Expectation-Maximisation algorithms. General guidelines on the use of
the these two methods have been presented. The next part of the thesis will
deal, instead, with the intractable case.
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Chapter 3

Methods for the intractable case

In this chapter, we introduce the problem of finding approximate solutions
to the MLE problem, for the general case of intractable stochastic nonlinear
models. The main object required for computation of the MLE is the
likelihood function defined in (2.15). For stochastic nonlinear models, the
presence of the latent process x makes the computation of this likelihood
problematic. In fact, the likelihood can be either computed by solving the
multi-dimensional integral (2.31) or using the factorization (2.34), which
requires the knowledge of the posterior p(x|y;6).

With intractable case, we mean that both it is not possible to solve
(2.31) in closed-form and the posterior p(x|y;#) is not available. Hence,
approximate solutions to the MLE need to be used in this case. Most of
the approaches available in the literature address the issue by deploying
numerical integration techniques. In particular, the gradient-based and the
EM algorithms, described in the previous chapter, are modified using a
random numerical integration technique, the Monte Carlo method [41]. We
give a brief overview of the Monte Carlo method in Appendix 8.1. In the
following, instead, we present and analyze the main modifications to the
gradient-based and EM algorithms available in the literature, addressing the
intractable problem. The goal of this chapter is to understand which are
the main difficulties of obtaining the MLE in the intractable case.

3.1 Methods based on Monte Carlo simulations

The main advantage of the Monte Carlo methods, compared to analytic or
other numerical integration techniques, is that, asymptotically, they can
be considered as exact methods for numerical integration. In fact, the
approximation errors tend to zero has the Monte Carlo effort tends to
infinity, where, with effort, we mainly mean the number of random points
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used to evaluate the integrand function. Hence, the integration errors are
only function of the available computational time and budget needed to
generate the random points and evaluate the function, see 8.1.

In most cases, when Monte Carlo methods are used for solving the
MLE problem, the theoretical convergence to the true parameter can be
established under mild conditions. In practice, however, the required effort
might be too expensive. The focus of the next sections will be to analyze
the problems related to the complexity and computational issues of the
available approaches based on Monte Carlo simulations, in order to propose
new solutions to them.

We will distinguish between two main categories addressing the ML
problem based on Monte Carlo simulations. They are the Monte Carlo
approximations of gradient-based methods and the Monte Carlo Expectation-
Maximization (MCEM) methods. Although both of them address the ML
problem, in literature the first category is also known as the Monte Carlo
Maximum Likelihood (MCML) method, since it directly tries to maximize
the likelihood function.

3.1.1 The Monte Carlo Maximum Likelihood methods

These methods approximate directly the likelihood function and/or its
gradient. Recall that the likelihood function is given by the marginalization
integral

pyi0) = [ pyxoax= [ plviopiaodx @)

Rz N

Hence the integral can be reformulated as expectation of functions over a
probability distribution,

p(y;0) = Epn) [p(y]%;0)]- (3.2)

If XM = {X(IM_ s a set of M iid. random samples, distributed
according p(x; @), then an unbiased Monte Carlo estimate of this quantity is

M
. 1 m m
p(y:0) = By 0. XM) = - > p(y|X:0), XU ~p(xi0). (33)

m=1

Thus, in principle it is possible to deploy the gradient-based algorithm,
described in Section 2.3.1, using this likelihood approximation. The gradi-
ent can be computed by analytical derivation of the function (3.3), or by
numerical differences. The main difficulty is, however, that the sampling
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PDF p(x; 0) requires the knowledge of the unknown parameter 6. To ad-
dress this problem, [11], [42] resort the ML problem into a likelihood ratio
maximization problem,

; p(y;0)
Oy = arg max ) 3.4
e o ply;v) (34)
and the ratio is approximated via Monte Carlo integration
p(y;0) _ My p(y|X™ (m)
0, X 5 X~ op(xs ). 3.5
v - Z Fe o) i) B9

In this way, the samples simulation can be performed using any arbitrary
value of the parameter space, ¢ in this case, and the a priori knowledge
of 6 is not required. Another solution is presented in [13] where, instead,
importance sampling is used to address the sampling issue,

(m)
ly:0,X) = Zpy|x<m e XM o). (30

Also in this case, the sampling is performed using ¢ instead of §. Importance
sampling also helps in reducing the variance of the Monte Carlo estimate,
see Appendix 8.1. In both cases, convergence of the ML estimate to a local
optimizer of the true likelihood holds when the sample size M goes to infinity,
see [42]. If M < oo, convergence may still be achieved but the sample size
has to grow exponentially fast with the dimension N of the signals x and y.
The main reason for this is that the samples simulation should provide the
whole picture of the likelihood, i.e. how the likelihood changes as a function
of the parameter, for all possible values in the parameter space. With only
one samples simulation, from an arbitrary parameter value, enormous effort
(M) is required in order to achieve this level of approximation.

Based on these results, the authors of [13| and [42]| conclude that these
MCML methods are effective in practice only when 1 is already in a close,
local neighbourhood of the true parameter 6y. In this case, in fact, it is
arguable that the convergence results are actually achieved for a reasonably
finite M, which can provide a local but accurate approximation of the
likelihood. However, 6, is typically unknown, and ¢ may be far from it.
Hence, they suggest to use many runs of these MCML methods, where the
Monte Carlo integration stage and the gradient-based search are nested
in a loop, and intermediate solutions %) are used for the sampling stage,
instead of ¢. The local solution of one MCML run can be used to locally
approximate the unknown sampling distribution in the next run (similarly
to the EM algorithm) and the parameter search can move towards . In
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this way, a smaller sample size M would be enough to build an accurate,
local approximation the the likelihood, since the portion of the parameter
space to explore is a local, limited neighbourhood of the current parameter
estimation.

This idea is implemented in practice in [43], [44], [45], where the authors
propose to iteratively alternate the Monte Carlo integration stage with
one iteration of a gradient-based method. In particular, Newton’s method
is used in [43], [45], and steepest-ascent method in [44]. Based on the
local sampling from the current guess 8*), the methods proceed through
local approximations of the likelihood. Furthermore, instead on relying on
the numerical differentiation of the Monte Carlo likelihood estimates, for
obtaining the gradient, these methods make use of Monte Carlo estimates of
the gradient of the log-likelihood directly. This is presented next.

MCML methods based on gradient approximations

Since the main object of gradient-based method is the gradient of the
likelihood, Monte Carlo simulations can be used to estimate this quantity
directly,

Vinly:0) = 5 [ plyixs 0t 0)ax (.1)

However, given the presence of the intractable integral, it is not always
possible to change the order of differentiation and integration, in order to
obtain a suitable form for Monte Carlo approximation. Nevertheless, if we
consider the gradient of the log-likelihood instead, Fisher’s identity can be
used to obtain a suitable form. Under some regularity conditions, see [46],
the identity states that

Vylogp(y; 0) = / Vo[log p(x,y;0)]p(x]y; 0)dx. (3.8)

The derivation of (3.8) can be found in Appendix 8.2. The joint likelihood
can be factorised, leading to

Vo logp(y; 0) = /X %[log p(ylx; 0)p(x; 0)|p(x|y; 0)dx
— [ s5losp(ylxi6) +log e )lp(xly:0)dx
x (3.9)
~ [ vy,

0 0
U(x;0) = 55 logp(ylx; 6) + 57 log p(x; 6).
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The integral can be reformulated as expectation of functions over a probability
distribution,

Vilogp(y;0) = Epxlyio) [V (x;0)]. (3.10)

This form is suitable for Monte Carlo integration,

Vologp(y; 0) ~ G(6,X Z\P XU~ p(xly; ). (3.11)

This quantity can be used to derive an iterative gradient-based algorithm
for likelihood maximization, which makes use of local approximations of the
gradient. At each guess %) of the parameter, simulated samples are drawn
from the posterior distribution p(x|y; ™), used to locally approximate
p(x|y;#). Then the Newton’s scheme is deployed,

O = 0 — [V,yG (0, XM)|g_gw] ' G(OW, XM), k >0, (3.12)

where the Hessian is computed by derivation of (3.11) or by using numerical
differences. When the derivation of the Hessian is problematic, other approx-
imations can be used. In literature, it is often referred to this approach as
stochastic Newton’s method or stochastic gradient ascent method, depending
on the approximation used for the Hessian, see e.g. [11], [43], [45].

The term stochastic comes from the fact that noisy estimates of the
gradient are used. At each iteration, in fact, a new Monte Carlo integration
is performed and different random numbers (the samples) are generated and
used to estimate the likelihood function gradient. In Chapter 4, we will
discuss in more details these stochastic algorithms.

One final consideration regards the practical implementation of the
gradient estimate (3.11). In fact, it relies on the assumption that it is
possible to draw samples according to the posterior p(x|y; ). However, we
are assuming that, for intractable models, this posterior is not available
and direct samples drawing is not possible, even in case a guess 8% for 6 is
available. The same problem affects the implementation of the Monte Carlo
Expectation-Maximization methods, presented in the next section. Hence,
we will address this common issue later on, in Section 3.2.

3.1.2 The Monte Carlo Expectation-Maximization meth-
ods

The Monte Carlo Expectation-Maximization (MCEM) algorithm was first
introduced by [14], who considered an intractable E-step. Thus, the principle
consists of estimating the quantity in the E-step introduced in Section 2.3.2,

Q(6,6") = B,y 00 [log p(x, y; )], (3.13)
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via Monte Carlo integration,

M
A 1
Q0.0) = Q0.0 XM) = 23 logp(X™,y;0), X ~ p(x]y; 0).
m=1

(3.14)

The M-step is then replaced by the maximization of Q(6, "), XM ), which
provides A+

0+ = arg max Q0,0® XM, (3.15)

The procedure is repeated in loop, until convergence. General convergence
results are available in [47]. Similarly to the MCML methods, convergence
to the true MLE can be easily shown when M goes to infinity, see also
[48]. In this case, the MCEM sequence is viewed as a convergent Monte
Carlo approximation of the ordinary EM. In [49], instead, the authors treat
the samples size as increasing across the MCEM iterations, and establish
convergence of the sequence as the iterations count goes to infinity.

For general stochastic nonlinear models, the M-step is intractable, and
MCEM methods must be combined with numerical optimization methods.
Thus, at each EM iterate, many iterations may be required just to converge
to the next parameter guess. This is why, in [40], the author proposes
to use only one iteration of a gradient-based method, after each E-step,
proving local equivalence to classical EM. Given the current guess 6%, a
gradient-based optimization scheme for solving the M-step in one iteration
can be deployed,

gD = o) — [Vg@(@, H(k)7XM>|6:6(k>]_lv9@(07 e(k)7 XM)|6:6(’€)7 k=>0.
(3.16)
In this case, gradient and Hessian are computed by differentiating the
estimate (3.14). Also in this case, however, the Monte Carlo estimate used

for the E-step renders the method a stochastic algorithm, similar to [44].
Furthermore, there is a strong connection between the MCEM method
based on (3.16) and the MCML method based on gradient approximations,
described in Section 3.1.1. In fact, if we look at the definitions of the Monte

Carlo estimates in (3.11) and (3.14), we note that

Vologp(y; 0) ~ G(0,XM) = V,Q(0,0%, XM) =~ V,Q(0,0™).  (3.17)

Thus, we can conclude that the two methods based on Monte Carlo simula-
tions are practically equivalent. This is why, in the following, we will only
consider the MCML methods, but we will have in mind that the use Monte
Carlo estimates of the log-likelihood gradient entails the equivalence with
MCEM methods.
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Finally, also the MCEM methods assume the possibility to obtain i.i.d.
samples from the posterior p(x|y;#%*)). However this is not true by assump-
tion. Hence, approximate methods for sampling have to be developed. We
address this issue in the next section.

3.2 Sampling from the posterior

Both MCML and MCEM methods require samples from the posterior dis-
tribution p(x|y;#*)). For intractable stochastic nonlinear models, this
distribution is not available. Thus, an indirect approach to the simulation of
complex distributions needs to be implemented. Sample simulations based
on Markov chain can be adopted. In particular, Markov Chain Monte Carlo
(MCMC) methods [41] preserve the asymptotic results of the Monte Carlo
methods, see Appendix 8.1, via the weak law of large numbers, for the
number of passages through a recurrent state in an ergodic Markov chain,
see [50], [51]. Moreover, almost sure convergence holds via the Ergodic
Theorem, see [12].

These methods return samples from a Markov chain which is ergodic
and stationary w.r.t. the distribution to approximate. Hence, simulating
this Markov chain is intrinsically equivalent to a standard simulation from
the distribution, with the difference being in the necessity to simulate more
samples to achieve a given accuracy. An example of MCMC methods is
the Metropolis-Hastings (MH) technique [52], [53]. When we deal with non-
linear state-space models, a very efficient technique for sample simulation is
represented by the Sequential Monte-Carlo (SMC) techniques [19], [54], [55].
Those techniques are also known as Particle Filters and they implement an
efficient simulation of high dimension random variables. MCML and MCEM
methods that make use of particle filters can be found in [19], [56].

In the following, we will assume that MCMC methods are available for
sample simulation from p(x|y; ). Hence, when we write

X~ p(x[y; 0), (3.18)

we actually imply the implementation of a MCMC sampling routine, pro-
viding the samples set {X™}M_ We make this assumption because the
methods we developed in this thesis for ML estimation do not rely on a par-
ticular implementation of the sampling method. In this way, depending on
the specific problem and model definition, one can choose the most suitable
sampling method, e.g. particle filters, Metropolis-Hastings, Gibbs sampling,
etc. The only requirement is that the simulated samples have to guarantee
the asymptotic results of the Monte Carlo estimate.
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Nevertheless, for completeness, we provide a practical implementation of
the samples simulation from p(x|y;#) based on Metropolis-Hastings. This is
detailed in the next section.

3.2.1 The Metropolis-Hastings technique

The Metropolis-Hastings algorithm is a Markov chain Monte Carlo (MCMC)
method for obtaining a sequence of random samples from a probability
distribution for which direct sampling is difficult. The distribution to sample
from is defined target distribution. In our case, the target is the posterior
p(x|y; 6) that can be expressed as

p(x,y;0) _ pylx; 0)p(x;0)
p(y:0) p(y;0)

where at the denominator we find the unknown likelihood function. However,
the knowledge of this normalizing constant is not required by the MH
algorithm. The algorithm is explained in the following.

p(xly;0) = (3.19)

1. Starting from an arbitrary initial sample X© a candidate is sampled
from a proposal distribution X ™+ ~ g(x|X (™).

2. An acceptance ratio is computed as

p(X"]y; 0)

P(Xy:0) (3:20)

a =

3. The posterior distribution is further factorized and expressed as ratio
between the joint likelihood of x and y, available by assumption, and
the likelihood of y, which is unknown,

L pX " Ilyi6)  p(X yi0)  p(y;6) (3.21)
p(X ™y 0) p(y;0)  p(X™),y;0)

The unknown quantity simplifies and the ratio is only function of
known, analytical available quantities,
~ p(XD yi0)  p(y| XD 9)p(X ) 6)

_ 3.92
p(X (™) y:0) p(y|X ™) 0)p(Xm);0) 7 (3.22)

4. The ratio a is translated into a probability p = min{1, a}.
5. The candidate is accepted with probability p, otherwise it is rejected.

6. A new candidate is then generated and the procedure is repeated in
loop.
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The dimension of the sample is the dimension of the signals x € RY. For
system identification problems, this dimension corresponds to the length
of the data used of estimation. In order to ensure consistency results
of the ML estimate, a long data sequence is desirable. This makes the
sample simulation more problematic. In fact, already with N > 50, the
probability of generating samples within the multi-dimension 6-0 sphere is
almost zero, see [53]. However, a modification of the Metropolis-Hastings
techniques can be used in this case, i.e. the Component-Wise Metropolis-
Hastings [53]. Instead of drawing one N-dimension sample from the proposal,
the algorithm draws one scalar component of the sample at the time. Then,
the acceptance/rejection routine is applied to single components. Similar
ideas are at the base of the particle filter, where the samples simulation is
done by propagating the sample components through the system dynamics.

Another drawback of the MH method is that the generated samples
may show high correlation, since the simulation is based on a Markov
chain. This may compromise the asymptotic results of the MC integration,
valid for independent random variables. However, solutions to the problem
were already proposed by [53], and more recent approaches can be found
in [57], where a smart choice of the proposal distribution ¢(x) addresses the
correlation problem.

3.3 Summary

In this chapter, we presented the main methods for ML estimation in case of
intractable stochastic nonlinear models. They are the Monte Carlo Maximum
Likelihood and the Monte Carlo Expectation-Maximization methods. With
the use of Monte Carlo simulations, it is possible to establish asymptotic
convergence results, at least to a local optimizer of the true likelihood
function. However, the methods have proven convergence properties only in
case of infinite sample size or when it grows across the iterations count. In
practice, these conditions are hardly achievable because the sample size to
be used is mainly imposed by the available computational budget.

The MCML methods attempt to overcome this issue by nesting the
integration and the optimization stages. The nested procedure uses the
current guess of the parameter for a local samples simulation. From an
algorithmic perspective, this makes the MCML similar to the MCEM, where
the nesting and the local sampling is already implemented. In the next
chapter, we will discuss in more details the nested algorithms, by analysing
advantages and drawbacks.
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Chapter 4

Nested methods for MLE

The MCML and MCEM methods presented Chapter 3 address the intractabil-
ity problem of stochastic nonlinear models identification by making use of
Monte Carlo methods. These methods provide exact estimates of the in-
tractability quantities when the sample size goes to infinity. In practice,
however, only a finite sample size can be used. Thus, the algorithms are
modified by nesting the MC estimate and the numerical optimization stages,
allowing to work with local approximations of the intractable quantities.
In this chapter, we analyse the nested algorithms and we explain how
they are useful for the finite sample size problem. Then, we address the main
issues emerging from the use of a nested algorithm, i.e. noisy parameter
search and increasing Monte Carlo errors, by proposing two modifications.

4.1 A nested MCML method

In this section, we analyse in details the pros and cons of nesting the MC
integration and the numerical optimization stages, in case of finite sample
size M available for integration. At the end of Section 3.1.2, we showed the
equivalence between the MCML method based on gradient approximations
and the MCEM method where the M-step is approximated with one iteration
of a gradient-based scheme. Thus, we will focus on the MCML method in
the following.

The gradient Vylogp(y; @) of the log-likelihood is approximated via
Monte Carlo integration, see Equation (3.11),

M
G0, XMy = ! Z\If xm.9), (4.1)
m:l

where {X ém)}%ﬂ are samples simulated from p(x|y; #*)). This integration
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introduces a Monte Carlo error, defined as
| M
ex(0) = Vylogp(y; 0 Z 1\ X(m (4.2)
m:l

where the subscript £ indicates that the samples set X],CW is simulated from
p(x|y; ). The main purpose of the MC estimate is to keep this error as
small as possible. Clearly, if M — oo, the error tends to 0. For a finite
sample size M, however, the Monte Carlo error is a function of the parameter
0. In fact, since the random samples are simulated according to p(x|y; 6*)),
their distribution is able to provide an accurate estimate of Vylog p(y;6)
in a close neighbourhood of %), At any other value 09 # %) only few
samples from the distribution p(x|y;#*)) may be useful. This results into a
reduction of the effective number M of samples used for estimation. Hence,
in general we have that

s (0%))] < |ex(09)], ¥ 0Y) € ©, 99 £ o). (4.3)

Thus, if the samples are only simulated once, from an initial guess of 6,
and then the MC estimate of the gradient is used in an optimization loop,
the Monte Carlo error would grow across the iterations, resulting into an
increasing error of the parameter estimate too.

This is the main reason behind the nesting idea: a new samples set has
to be generated from each new guess %*t1) of the parameter during the
optimization loop. In this way, at each iteration, all the M samples contribute
to build local approximations of the gradient. The actual magnitude of
each error, then, will depend on the value of M used. Also the error of the
parameter estimate will then only depend on M, which can be defined based
on the desired accuracy of the estimate.

Based on these considerations, we introduce the nested MCML method,
whose main steps are described in the following.

1. Start from initial guess 8% with k = 0.
2. Simulate new samples X2 = {X"™}M_ where X™ ~ p(x|y; %))

3. Compute a new MC estimate of the log-likelihood gradient
M
GO, X}") = 47 > WX (4.4)
m:l

where W(x;6) is defined in (3.9).
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4. Take one Newton’s step

0D = 90 — [V, G (0, X)) gepon] G (O, X2 |g—gir - (4.5)

5. Set k = k + 1 and check if the parameter search converged.

6. If convergence is achieved, terminate the procedure; otherwise go to
step 2.

Hence, the nested MCML method allows to find accurate estimation of
the parameters, in the finite sample size case. The accuracy depends on
M. However, a main drawback emerges from this formulation of method,
explained in the following. Since at each iterate, a new, random samples
simulation is performed, the function approximating the gradient is altered
every time. This results into an indirect modification of the ML criterion
that we are trying to maximise. As a consequence, the parameter search
may show a noisy behaviour, poor convergence rate, and, in extreme cases,
instability.

In summary, the parameter search shows different behaviours based on
how often, across the iterations, the samples simulation is performed. The
two extreme cases are:

e Only one samples simulation at the start of the algorithm. In this
case, the function estimating the gradient is not altered across the
iterations, providing a stable behaviour of the search. If full Newton’s
steps are deployed at each iterate, the method can also benefit from the
quadratic convergence. However, since M is finite, the Monte Carlo
error will increase across the iterations, resulting into an increasing
error of the parameter estimate too.

e Re-sampling at each iterate. In this case, the final parameter
estimation error only depends on the chosen M. On the other hand,
the function approximating the gradient is changed at each iteration
and the search is noisy.

Thus, the challenge is to come up with intermediate solutions addressing
both the large error and the noisy search problem. In the following, we present
two new methods addressing these issues: the deterministic method and the
partial re-sampling method. The first one tries to avoid the re-sampling stage
at each iterate by working with local, deterministic approximations of the
likelihood function. The second one, instead, is a direct modification of the
nested MCML method. In order to stabilize the search, a re-sampling rule is
derived in order to understand which samples, at each iterate, can be useful
for future iterates too. This second solution shows superior performance
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in terms of accuracy and convergence rate, as it will be explained in the
following.

4.2 The deterministic method

The main idea is to fix, at each iterate, the samples set Xfy and to deploy
the optimization procedure. The solution of this optimization is then used
as a next guess of the parameter search, and a new samples simulation is
performed from it. In this way, the MC estimate can be considered as a
deterministic function of # that does not change during the optimization
phase, resulting into a stable algorithm. The procedure is then repeated in
loop until final convergence. The scheme is detailed in the following.

1. Start from initial guess 8%, with k = 0.
2. Simulate samples XM = {X™}M_, | where X™ ~ p(x; 6%*)).

m=1 >

3. Compute the MC estimate of the likelihood with importance sampling,

see (3.6),
M (m)
Ply; 0, XMy = =N p(y| X ) —Zk 1.6
( i) Mm§1 (v Xy )p(X,im);W)) (4.6)

With a fixed set XkM , p(y; 0, Xéw ) can be considered as a deterministic
function of 6.

4. Solve an optimization problem in order to obtain the new guess %+

o+ = arg max p(y; 0, X2, (4.7)

5. Set k = k + 1 and check if the parameter search converged. This can
be assessed by measuring the relative variation among consecutive
guesses of the parameter. If this variation is within some pre-defined
tolerance bound, convergence is achieved.

6. If convergence is achieved, terminate the procedure; otherwise go to
step 2).

Hence, the method proceeds through local, deterministic approximations
of the likelihood function and the optimization in (4.7) can be solved by
a standard deterministic optimization tool. The method was originally
presented in [58]. However, it is important to mention that a similar method
has been independently developed for nonlinear state-space models, see [59].
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The main drawback of this method is that we introduced inner optimiza-
tion loops. Hence, the overall convergence rate may still be very poor. For
these reasons, a more advanced solution has been developed and it will be
presented in Section 4.3.

Nevertheless, the deterministic method shows good performance in finding
accurate, consistent estimates for a stochastic WH model.

4.2.1 Application to stochastic WH models

In this section, we apply the deterministic method to a stochastic WH model
identification. In particular, we want to illustrate two main characteris-
tics of the deterministic method, compared to other methods used for the
identification of this type of models:

1. As the deterministic method is computing the MLE, we expect it to
find unbiased estimates of the parameters of the model. To illustrate
this, we also compare the method with the standard PEM estimator,
where we derive the output’s predictor neglecting the presence of
process noise. We show that, in this case, the PEM always leads to
biased estimates, even in the case it can be formulated as a Linear
Least Squares problem.

2. The deterministic method proceeds through local approximations of
the likelihood. Hence, we expect that the method is able to find
the solution with a reduced Monte Carlo sample size. For this, we
compare the deterministic method with a standard MCML method
for Wiener-Hammerstein ML estimation, as the one presented in [61],
which implements a global sampling, i.e. only one samples simulation
with enormous M.

A stochastic WH model

We consider the stochastic WH model, as defined in Section 2.1.3. For
simplicity, we assume that the parameters of the linear parts are known,
and the estimation only concerns the parameters on the nonlinearity. We
recall the model structure,

zy = Gw(q, Ow)ur + wy,
2y = f($t> QNL)a (4-8)
v = Gu(q,0m)z + e,

and we assume that 0y, and 0y do not need to be estimated. The signal
wy is the process noise and it is filtered via the nonlinear function f. This
makes the WH model a stochastic nonlinear model.
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Inconsistency of the PEM estimator

In this section we show that, for the stochastic WH model (4.8), a standard
PEM estimator is not consistent. We first assume that the true system is
within the model class, i.e. there exist parameters (6%, 6%, 6%) such that
the true output can be defined as

yr = Gu(q,0%) fF(Gw (g, 0% )us + wi, %) + e (4.9)

A standard one-step-ahead predictor for this system is defined by neglecting
the presence of the noise wy,

Ge—1 = Gu(q, 0m) f(Gw(q, Ow)us, Onr).- (4.10)

This definition of the predictor leads to the following PEM criterion

1

Vn(Ow,OnL,0m) = — Gu(q,90) f(Gw(q, Ow)us, Onr))*.  (4.11)

Mz

t:l

Consistency of the parameters means that

éWaéNLaéH — ‘9 0NL’ 6 when N — o0, (412)
where o A
Qw,eNL,QH = arg min VN(Hw,eNL,9H>. (413>
Ow,ONL,0n

We assume that the linear parameters are known and fixed in the estimation,
ie. Oy = 60%, 0 = 0%. Then we have the following theorem.

Theorem 4.2.1. (Inconsistency of a standard PEM estimator) Let the
nonlinearity f(x¢, Onr) be polynomial or well approzimated by a polynomial
function. Under the assumption of ergodicity, the estimate of O, obtained
by minimization of the PEM criterion (4.11) is inconsistent.

The proof can be found in Appendix 8.3. The PEM criterion (4.11) is the
standard least squares error cost function that is usually chosen as criterion
of fit. However, here we showed that in the presence of process noise, this
is clearly the wrong criterion for parameter estimation. In order to get a
consistent PEM estimator, the predictor (4.10) and the metric used in (4.11)
should take into account the correct stochastic description of the data.

Numerical example

In this section, the deterministic method implementing the ML estimator
and the PEM estimator are tested on a numerical example. Noisy data are
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simulated using the stochastic W-H system,

1
Ty = 1_—Wut -+ wy (414&)
z = f(w,0n1) (4.14b)
1
Ye = 1_—56]_1215 + €. (4.14c)

with f(z;,0nr) being a third degree polynomial f(x;,0n1) = co + c1xy +
cow? + czxd, and Oy = [co, 1, Co, c3] € RE. The process and output noise are
respectively white and Gaussian with standard deviations o, = 4, 0. = 1.
The signals u, w, and e are mutually independent. Knowing this, the
distributions needed for the deterministic method, see (4.6), can be defined,

1 o o7 Gu(@f)f(@0n1))?

P(ye|ae; 0) = ,
\/2mo?
¢ (4.15)

2

1 — L (2~ Gw (g,0)ur)
z4;0) = e 2w ’ .
P13 0) 2702,

The PEM estimator is defined and computed as minimization of

Vn(One) = Z(yt — Gulg, B) f(Gw(q, a)us, QNL))27 (4.16)

t=1

1
N

which, given the parametrization of f(x¢, 6y ), results into a linear least
squares problem.

The parameter of the linear parts are known and fixed during the es-
timation, [a, 8] = [0.4,0.8], while the parameters of the nonlinearity are
estimated. The estimated parameters with PEM and with the deterministic
method are reported in Figure 4.1. A data-set of 1000 input-output points
have been used for estimation. For the deterministic method a sample size of
M =100 has been used for the MC estimate (4.6). Since the deterministic
method implements the ML estimator, it is labelled ML in the figure. As
expected, the the PEM estimate is biased, while the ML is not. In particular,
we want to stress the fact that, in this case, the PEM estimator is a linear
least squares problem, since the parameters of the linear parts are fixed
and the nonlinearity is linearly parametrized in 6y;. Hence, the biased
estimates of the PEM are not the result of local minima effects, but they
are a consequence of the inconsistency of the PEM. On the other hand, the
MLE is a nonlinear problem, thus it may suffer of local optimizer effects.
Hence, to illustrate consistency, we initialized the MLE problem in a close
neighbourhood of the true solution. We will address the initialization prob-
lem of the MLE in the next part of the thesis. We can conclude that, with a
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Figure 4.1: PEM vs ML (deterministic method). Estimates of the nonlinear
parameters. Histograms over 1000 Monte Carlo simulations. The ML
estimates are unbiased and they also show quite narrow variance. The PEM
estimates are biased.

good initial guess, the ML method is able to find the true solution, while
the standard PEM will always provide biased results.

From a computational perspective, the deterministic method shows a
significant reduction of the required sample size. In fact, compared to a
standard MCML method, as the one presented in [61], the sample size
is reduced from M = 30000 to M = 100. The main reason is that the
deterministic method works with local approximations of the likelihood, by
the use of a local (around the current value of ¢) sampling. The MCML
method of [61], instead, is an implementation of the method described
in [42], [13], where a whole picture of the likelihood is built from only one
samples simulation, requiring enormous sample size. Furthermore, none of
the estimations performed using the deterministic method led to instability,
indicating that noisy behaviour is actually reduced.

On the other hand, a drawback of the deterministic method is that, at
each iteration, a full optimization problem has to be solved till convergence,
see (4.7). In Table 4.1, the main indicators for computational analysis are
reported. Compared to the standard MCML method of [61], the overall
number of required iterations for convergence is higher for the deterministic
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Table 4.1: Indicators for computational analysis. M = Sample size for MC
estimate; Iters = Average number of iterations for convergence; Inner iters
= Average number of iterations for convergence of the inner optimization
loop (4.7); Time = Average time per iteration (inner loop iterations in case
of deterministic method)

Method M | Tters | Inner iters | Time (s)
Deterministic Method | 100 | 9.52 4.3 0.45
Standard MCML 30000 | 21.4 - 5.21

method. This is mainly due to the inner optimization loops. However,
at each iteration the deterministic method solves a smaller optimization
problem, thanks to the smaller sample size, resulting into a reduction of the
time per iteration.

4.3 The partial re-sampling method

The partial re-sampling method is a direct modification of the nested MCML
method, discussed in Section 4.1. The main drawback of the nested MCML
method is that a new, samples simulation is performed at each iteration,
altering the function approximating the gradient.

The main idea is then to keep, at each iteration, a considerable part
of the samples set, and reuse it in the next iteration. In this way, the
samples sets are only slightly altered, resulting into a smoother change
among the functions approximating the gradient. Furthermore, the samples
that cannot be reused allow to simulate new samples from the current guess
of the parameter. In this way, all the M samples contribute to build the MC
estimate of the gradient and the estimation error does not increase.

The challenge is then to come up with a rule deciding whether samples
generated at iteration k can be used at iteration k + 1.

In literature, similar ideas have been developed in [15] and [62], with
focus on noise reduction for MCEM methods. The proposed solutions
implement a smooth, stochastic update of the quantity to maximise: all
the samples from the previous iteration are used again, and only few new
ones are simulated from the current guess of the parameter. This is the
Stochastic Approximation version of the EM method (SAEM). Since, in this
way, all samples are kept from one iteration to another, the noisy behaviour
is drastically reduced. However, using all samples from previous iterations
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might also be quite inefficient. The sample size has to increase at each
iterate with a related increase of the required computational resources for
storage and evaluation. With our idea, instead, the samples size M can be
kept fixed.

In the following, the key aspects of the new idea are presented. Firstly, in
order to correctly reuse samples simulated at old guesses of 6 for computing
MC estimates at the current guess, a correction to the MC estimates, based
on importance sampling, has to be implemented. Then, we present the
re-sampling rule for the selection of old samples that can be reused in the
future iterations. Finally, we discuss some convergence and complexity
aspects of the algorithm.

4.3.1 Importance sampling for correction

As already discussed in Section 3.1.1, the MC estimates require a correction
when the sampled functions are evaluated at a different parameter value
from the the one used for samples simulation. This correction can be done
by using importance sampling, e.g. see Equation (3.6). In a similar fashion,
the proposed solution requires that samples simulated for old values of the
parameter are reused to evaluate the log-likelihood gradient of the nested
MCML method, see (4.4), at the new values of 6. Hence, we correct (4.4)
via importance sampling. At each iteration, the distribution p(x|y; %) acts
as a proposal and (4.4) is corrected via

(m)
¢ X4 = MZ p(o,j |y’y )> e

Clearly, when # = %) the important ratio simplifies to one and the original
MC estimate (4.4) is retrieved. The importance sampling correction used
in (4.17) requires the evaluation of the posterior p(x|y;€) on the samples
{X, (m) M_ . By assumption, the posterior is not available in closed-form,

since it requires the knowledge of the likelihood function p(y;6),
p(x,y;0)
p(y; 0)

Nevertheless, this issue is solved by implementing a self-normalizing impor-
tance sampling operation, which is often used for weighting distributions
that are only known up to a normalizing constant, see Appendix 8.4. As a
result, we obtain that (4.17) is reformulated as

M m m
LM e ™ 0)w(x™)
LM w(x™)

p(xly;:0) = (4.18)

G0, X)) =

, (4.19)
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where the weights w(x) are only function of the joint PDF p(x,y; ), available
for evaluation, see Assumption 2.3.1,

~ p(x,y;0)
wix) = p(x,y;0W)’

The derivation of (4.19) is detailed in Appendix 8.4.

(4.20)

4.3.2 The samples selection

The sample selection procedure has to decide which samples from previous
iterations can be reused in the future. The idea is to keep, at each iterate,
only samples that have a high impact on the parameter search in the next
update, and simulate new samples in place of the low impact ones, which do
not contribute to the search. Assume that, at iteration k, a sample set X7/
is available to compute (4.19). Then (4.5) can be deployed,

0D = ) — [V,G(0, X lpogn] ' GOW, XM (421)

The ideal samples selection procedure will now select a set of high impact
samples, denoted by XkH C X{y and composed of H, < M. The L, = M —H,,
remaining samples are defined as low impact samples, and collected in the
set Xt C XM, In their place, M — Hj, new samples are simulated from
g(k—&—l)’

(XYM p(xy; 00+D), (4.22)

This set of new simulated samples is appended to the old Hj samples, and
used to define the samples set for §*+1,

XA (X (XM (4.23)

in order to compute §%*2 . In this way, all the M samples are useful
to compute the MC estimate and the estimation error does not increase.
Furthermore, thanks to XkH , the MC estimates between two consecutive
iterations is altered less compared to the full re-sampling case, as the one in
the nested MCML method, see Step 2.

In the next section, we propose a practical procedure to select the high
and low impact samples.

4.3.3 The sensitivity-based re-sampling rule

The practical implementation for selection of high and low impact samples
can be based on the sensitivity of the parameter search with respect to the
samples. In fact, each parameter guess %) is retrieved by implementing

47



CHAPTER 4. NESTED METHODS FOR MLE

the optimization procedure described in Section 4.1, i.e. the nested MCML
method. Thus, the parameter guess can be seen as an implicit function of
the samples, i.e. 8% = 9(F)(XM). Assuming that we are at the solution of
the optimization procedure, %) = #*, then the following must hold,

GOW (XM XMy =, v XM (4.24)

Using the implicit function theorem [63], we can then retrieve the following
relation,

90k
oxXM

G0, XM
ox

VG0, X ] [

9_9(1@)} . (4.25)

Although the previous relation is derived for 8% = §* it still provides
a good approximation to the sensitivity of the parameter #%) w.r.t. the
samples, also during the search. Hence, we have found a rule to select high
and low impact samples. We call this rule the sensitivity-based re-sampling
rule. At each iterate, the sets of high and low impact samples can be defined
in the following way

g (k)
X 2 {X,gm> e XM, Ha—() > g}, (4.26)
ax\™ I,
and
(k)
XL & {X,ﬁm) e XM Hae_() < s}. (4.27)
ax\™ I,

The scalar s is a non-negative threshold for the sensitivity, and it can be
used as a tuning parameter to control the ratio between the number of old
samples to keep and new ones to simulate.

The threshold 5 plays an important role. In fact, if s = 0, then all
samples are kept, X\, = X} = X}/, and no samples are simulated from
6+ As discussed before, in this case the MC error will increase across
the iterations. On the other hand, if 5 is too high, then all samples are
discarded and, at each iterate, a whole new set of samples is simulated, as
in the standard nested MCML method, which suffers of stability problem.
Hence, s should be chosen in order to keep a substantial part of old samples,
for stability reasons, and to simulate new samples from the current guess of
the parameter, for keeping the MC error limited.

Some practical guidelines on how to define s are given at the end of the
next section.
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4.3.4 Final identification algorithm

In this section we summarize the main steps of on the partial re-sampling
method. Compared to the nested MCML methods, the main modification
affects the samples simulation part; at each iterate, not a whole new samples
set is simulated but the sensitivity-based re-sampling rule decides which
samples can be kept from the previous iterate. The procedure is illustrated
in the following.

1.
2.
3.

10.
11.

Start from initial guess %), with k£ = 0.
Set indexes Hy = 0, L, = M, and decide the value of the threshold s.
Set the high impact samples set to Xt | = ().

Simulate samples set with dimension Ly,

X} = {X,im) Lt where X,gm) ~ p(x|y; 0*)).

Define Xé” by appending the high impact samples set Xkal to Xﬁ ,

Xy = {X, X5k

Compute the MC estimate of the log-likelihood gradient, with the

importance sampling correction, see Equation (4.19), using X,ICW ,

31 Lo VOG5 0)w(XG™)
37 Lo w(X(™)

Take one full Newton’s step

004D = 909 — [V,G(0, X)) pp] I GOW, XM, (4.29)

GO, XM) = C XM e XM (4.28)

Check the sensitivity of the paramter w.r.t the samples and define X}/,

.
2

Set the index Hjy = dim{X}'}, and L, = M — H,

89(k+1)
)
ax(m

X2 {X,ﬁm’ e XM

Set k=Fk + 1.

Check if the parameter search converged. This can be assessed by
measuring the relative variation among consecutive guesses of the
parameter. If this variation is within some pre-defined tolerance
bound, convergence is achieved. In this case, terminate the procedure;
otherwise go to step 4).

We now discuss important aspects regarding the convergence and the
complexity of the presented algorithm.
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Convergence aspects

e How to define 5. As discussed before, the threshold s should guar-

antee both a stable search and the simulation of new samples from
the current parameter. Therefore, a first idea would be to allow the
threshold 5 to change across the iterations, i.e. § = 5;. In this way, at
the beginning of the search, 5, can be kept quite low, favouring the
generation of more samples during the first iterations. Then, when the
search has moved in the neighbourhood of the solution, the relative
variation among the parameter guesses is smaller and more samples can
be kept among the iterations. Hence, 5, can be decreased, providing a
stable convergence. Another idea, which has been implemented and
tested in practice, is to define 5 as a fraction of the median sensitivity of
all samples. In this way, 5 can still change during the iterations, but it
does that in accordance with the overall sensitivity of the samples. As
we will illustrate in Section 4.3.5, this choice of 5 shows some desirable
behaviour. In particular, we observe that the number of samples that
are changed automatically decreases across the iterations. This is a
consequence of the fact that, close to convergence, the parameter does
not vary a lot between the iterations and, thus, more samples can be
reused.

Control of the Newton’s step and rate of convergence. The re-
sampling routine implemented by the partial re-sampling method can
be seen as a way to control the stability of the Newton’s step. In fact,
in presence of noisy behaviour, other techniques are usually deployed
for stabilizing the search. FE.g., in [11], [43|, and [45], line-search
techniques are implemented. From this point of view, the re-sampling
rule has the effect of stabilizing the search, and full Newton’s steps
can be deployed at each iterate. Thanks to this, when the number
of replaced samples considerably decreases, the algorithm can benefit
from the quadratic convergence of the Newton’s method. Furthermore,
in this case, the value of the gradient can be used for assessing the
convergence of the parameter search.

Complexity and computational aspects

20

e Complexity of the posterior sampling routine. As the other

MCML and MCEM methods, a samples simulation from the posterior
distribution p(x|y) is required. However, for intractable stochastic
nonlinear model, this posterior is not available and the sample simula-
tion cannot be performed directly. We discussed alternative solutions
to this issue in Section 3.2. The idea is to use MCMC techniques to
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approximate the samples simulation. In case of stochastic nonlinear
state-space models, efficient samples simulation can be performed via
SMC techniques. In any case, the complexity of this operation is in
the order of O(M x N), where M is the number of samples to simulate
and N is the dimension of each sample. Hence, for a standard MCML
or MCEM method, where a full re-sampling is performed at each
iteration, the operation of complexity O(M x N) has to be repeated
at each iterate, until convergence. For the partial re-sampling method,
instead, the complexity is O(Ly x N), where L denotes the number of
samples which are discarded from one iteration to another. In general
we observed that, except for the first few iterations, Ly << M, and
it decreases across the iterations. Thus, the overall complexity of the
algorithm is reduced.

Hessian computation. The used of an exact Hessian is desireble
in order to guarantee quadratic convergence. So far we assumed
that it is possible to derive this second order information simply by
differentiation of the gradient estimate. Actually, modern automatic
Algorithmic Differentiation (AD) tools allow this operation by making
use of symbolic expressions, see e.g. [36]. The only limitation may
reside in the computational complexity required by these tools. In
our case, the developed methods address the problem of reducing
the sample size M in order to reduce the overall complexity. Hence,
this reduction can be also beneficial for this sensitivity computational
tools. When the complexity is anyway too high, common Hessian
approximation techniques can be used. E.g., in [45] and [64], unbiased
estimates of the Hessian are computed only using MC estimates of the
gradient.

Sensitivity computation. Some extra complexity is introduced by
the implementation of the sensitivity-based re-sampling rule. However,
the computation of this sensitivity is not more expensive than other
techniques to control the stability of the Newton’s iteration. As
discussed before, some step-length control is usually implemented to
stabilize the search, and this requires extra evaluation of cost function
and sensitivities. In our case, the rule (4.25) requires the evaluation of
the Hessian and the derivative of the gradient w.r.t. the samples. The
first one is obtained at zero cost, since it has already been computed
in the Newton’s update. The second one may be more costly, as it
may involve complicated expressions. However, a small modification
can be performed to simplify this operation. It consists of introducing
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a virtual weight Wk(m) for each sample X ,im) used in the MC estimate,
M m m m
31 Sy W WG D) w(X™)
M m
% ZmZI w(Xlg ))
with W,gm) € WY'. In this way, the sensitivity (4.25) can be com-

puted w.r.t. the virtual samples instead, which enters linearly in the
expression of the MC estimate,

96k
owWM

G0, XM, W) =

. (4.30)

L[OG(OR) XM W)

= — [VoG (0™, X} W]
[VeG( ko Wi )] oW

(4.31)

In the evaluations, the value of the virtual weights can be set to 1
for all the samples, in this way the MC estimate is not altered. The
tool presented in [36] can be used to derive the sensitivity (4.31) by
symbolically differentiation of the modified gradient expression (4.30).

One final consideration concerns the generality of the re-sampling rule
implemented by this method. The rule mainly affects the sample simulation
stage, where we assumed that a generic MCMC technique is implemented.
Hence, the sensitivity-based re-sampling rule can be in principle adopted by
any MLE method based on Monte Carlo approximations where a samples
simulation stage is nested with the numerical optimization iterations. For
example, this could be the case of the methods based on Sequential Monte
Carlo, see [17], [19].

4.3.5 Numerical examples

In this section, we evaluate the partial re-sampling method (PRM) by
considering a stochastic nonlinear state-space model. Firstly, we describe
the model under test. Then, we apply the partial re-sampling method and
we compare it with other two MCML methods, described in the following:

1. A nested MCML (NMCML) method, as the one described in Section
4.1, where a new, random samples simulation is performed at each
iteration;

2. A one-sampling MCML (OMCML) method, i.e. a modification of the
nested MCML method, where the samples simulation is only performed
from the initial guess of the parameter.

From this comparisons, we expect the following results:

1. The NMCML should show small estimation error but quite noisy search
behaviour.
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2. The OMCML should show a more stable search behaviour, but a higher
estimation error.

3. The PRM should inherits the benefits of the two previous methods,
l.e. a stable search and a small estimation error.

Finally, we also compare the PRM with the MCML proposed in [45], i.e. a
nested method implementing Monte Carlo estimates of the gradient and local
sampling based on particle filters. The authors label this method as ALG3FL.
The method is a stochastic Newton’s scheme, where the stability problem is
addressed by making use of a line-search algorithm. This methods performs
a new samples simulation at each iterate. Hence, it is able to provide small
estimation errors. However, it addresses the stability problem via line-search.
Compared to our PRM, it shows slower convergence rate.

A stochastic nonlinear state-space model

The state-space model under test is the following,

T = O arctan zy + wy, w; ~ N(0,1)

4.32
Yr = oy + ey, er ~ N(0,0.1%). ( )

The unknown parameter vector is § = [0y, 65]. For analysis, we simulated
100 data sets, consisting of N = 500 input-output data points each. The
true parameter value is 6y = [0.7,0.5] and each estimation experiment is
initialized with 6(® = [0.5,0.7].

Firstly, in Figure 4.2, we compare estimates from the PRM, the NMCML,
and the OMCML, on the same data-set. Those estimates are representative
of the average behaviour over the 100 data sets. As expected the NMCML
shows noisy behaviour but small error; the OMCML is more stable but the
error is bigger; the PRM is both stable and accurate. The reason of these
different behaviours is further explained by the value of the infinity norm
of the gradient estimates across the iteration, reported in Figure 4.3. The
NMCML gradient stays noisy across all the iterations; the OMCML gradient
is stable, but the introduced MC errors drift away its solution; the PRM
gradient is a bit noisy at the beginning of the search, but then it stabilizes.
This is mainly due to the re-sampling rule implemented by the PRM, which
reuses a different number of samples across the iterations. In Figure 4.4,
the gradient of the PRM is reported together with the number of replaced
samples per iteration.

From the previous figures, we can conclude that the PRM converges to
a stable solution after 14-15, i.e. when the infinity norm of the gradient is
lower than 1071°. The ALG3FL method from [45] provides similar solutions
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Figure 4.2: State-space model (4.32). Estimates of 0y, 05 (true value [0.7,
0.5]) using the NMCML (orange), the OMCML (yellow), and the PRM
(blue), on one data-set. The NMCML shows noisy behaviour but small error;
the OMCML is more stable but the error is bigger; the PRM is both stable
and accurate.

in terms of accuracy, but convergence is achieved after 25-30 iterations. We
argue that the improvement in the convergence rate of the PRM is mainly
due to the re-sampling rule which allows the deployment of full Newton’s
steps at least in the last iterations, when the number of replaced samples is
almost zero and the method benefits of the quadratic convergence typical of
the deterministic Newton’s method.

In Figure 4.5, the final estimates from the 100 data-sets are reported, in
order to show bias and variance information. The bias is very small and
the variance is comparable to the one from the ALG3FL method, reported
in [45].

Finally, the PRM implements the Monte Carlo integration with a sample
size M = 500. The ALG3FL method is implemented with M = 2000. The
PRM requires a full sample simulation only at the first iteration, see Figure
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Figure 4.3: State-space model (4.32). Infinity norm of the gradient estimates
using the NMCML (orange), the OMCML (yellow), and the PRM (blue),
on one data-set. The NMCML gradient is very noisy; the OMCML gradient
is stable, but the introduced MC errors drift away its solution; the PRM
gradient shows noisy behaviour at the start, but then it stabilizes.

4.4. From the second iteration, the number of samples to be simulated
reduces, resulting into an overall reduction of complexity of the method.

4.4 Summary

In this chapter, two methods addressing the finite sample size problem have
been presented. When M < oo, two main issues affect the performance of
a nested MCML method: increasing Monte Carlo error and noisy search
problem.

The first one occurs when the samples simulation is performed only once,
from an arbitrary or initial value of the parameter. Since the parameter
is updated during the iterative search, the function resulting from the MC
estimate is evaluated at values of 6 different from the one used for samples
simulation. This results into an increase of the MC errors and, hence, of
the final parameter estimate. The second issue occurs when the samples
simulation is performed at each iteration of the iterative search. In this case,
the MC error does not increase, but the function resulting from the MC
estimate is altered at each iteration. This leads to a noisy search.

Two new methods have been proposed to address these two issues. The
first one is the deterministic method: at each iteration a new sample set is
simulated but it is kept fixed during the successive optimization stage. In
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Figure 4.4: State-space model (4.32). Infinity norm of the gradient estimate
and number of replaced samples per iteration of the PRM. The behaviour
of the gradient is noisy as long as many samples are changed across the
iterations. When this number decreases, the PRM shows the quadratic
convergence of the Newton’s method.

this way, each optimization is deterministic and the search is more stable.
However, at each iteration, an optimization problem has to be solved till
full convergence. This increases the total number of iterations required for
convergence.

The second method is the partial re-sampling method. It is based on
the nested MCML method, where a samples simulation is performed at
each iteration. However, a sensitivity-based re-sampling rule is derived in
order to decide which samples from the current iteration can be reused
in future iterations too. In this way, a lower number of new samples is
simulated each time, stabilizing the search. Furthermore, the efficient use
of the samples, based on their sensitivity w.r.t to the parameter search,
reduces the complexity of the samples simulation operation and improves
the convergence rate of the method.
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Chapter 5

Introduction

All the methods discussed and presented in the previous chapter address the
problem of finding the ML estimate in case of intractable stochastic nonlinear
models. In this case, the resulting MLE problem can be highly nonlinear and
non-convex, and all the methods have proven convergence results only to a
local optimizer of the likelihood function. Although the two new methods,
proposed in Chapter 4, improve some stability and computational issue
related to the ML and EM methods based on Monte Carlo simulations, they
cannot solve the global optimization problem. Furthermore, even when the
problem is tractable and no Monte Carlo approximations are needed, the
resulting ML criterion may still be non-convex, since the underlying model
structure is nonlinear. Hence, the search for the global maximum of the
likelihood has to be addressed separately.

General algorithms for global convergence make use of random global
search strategies, see e.g. [41], [65]. However, these strategies may be
extremely computational expensive and time-consuming. Hence, in many
cases, it is common to derive ad hoc initialization methods with the sole
purpose of finding a good initial guess. With good initial guess, we mean
an initialization point for the parameter search that increases the chances
of converging to a global optimizer, using local exploration methods. This
is the central object of this third part of the thesis, where we attempt to
derive initialization methods for a specific class of block-oriented models:
the Wiener-Hammerstein model. For this class of models, in fact, we will
show that linear approximations can be used to retrieve a good initial guess.

In this introductory chapter, we introduce the initialization problem
for MLE of WH models and we present the main properties of the linear
approximations for this type of models. In the next chapter, we present and
discuss two intialization algorithms based on linear approximations.
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5.1 The MLE initialization problem for WH
models

In this section, we recall the definition of the WH model and discuss the
initialization problem for ML estimation. In Section 4.2.1, we already
presented the MLE of an example WH model, using the deterministic
method. However, we did not address the initialization problem. We start
by introducing the stochastic WH model first, i.e. the presence of both
measurement and process noise. Then, we focus on the special case where
the process noise is not present.

5.1.1 Presence of measurement and process noise

When both measurement and process noise are present, we define the WH
model as stochastic WH model, see also Section 2.1.3. The model equations
are

re = Gw(q, Ow )u + wy,
2 = f(@y,0nL), (5.1)
yr = Gu(q,0m)2 + ey

where w,; and e; are, respectively, process and measurement noise, indepen-

dently and identically distributed according to some distributions pe(e;) and
pw(w;). For this model, the MLE is defined as

Orir = arg max p(y; ), (5.2)

where y = {y;}&, and p(y;0) is the likelihood function, see Definition 2.2.1.
Given the presence of the process noise wy, this likelihood function has to
be computed by marginalizing the unknown signal x = {z;}, out from the
joint probability,

pyi0) = [ plxy:0)ax. (53

where the joint probability is factorized as p(x,y;0) = p(y|x; 0)p(x;6). The
input u = {u;}, is assumed to be known exactly. Hence, we have that
p(y|x;0) and p(x;0) are direct reflections of, respectively, the measurement
and process noise distributions,

p(yx;0) = pe(y — Gu(q,0u)f(x,0n1)),
p(x;0) = pw(x — Gw(q, Ow)u).

Given the presence of the non-invertible nonlinear transformation f(-;6yp),
the integral (5.3) is intractable and one of the Monte Carlo methods described

(5.4)
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in Chapter 4 has to be implemented. In particular, we consider the nested
MCML method described in Section 4.1. Starting from an initial guess 6(),
this method implements a local exploration of the likelihood function by
making use of Monte Carlo estimates of its log-gradient. In general, because
of the presence of the nonlinearity f(-;0y;) and of the process noise, the
likelihood function is nonlinear and non-convex. Thus, §©) = [Qg,g), 61(83:, 952)]
has to be chosen carefully, in order to avoid local maxima.

Initialization algorithms for this type of model are at their early stage of
development. The algorithm presented in this thesis (Section 6.1), based
on [66], is the first attempt to combine the ML estimates with the linear
approximations of the system. After this, [67] has generalized and extended
the framework of the linear approximations to general nonlinear models
affected by process noise.

5.1.2 Presence of measurement noise only

When process noise is not present, the only stochastic contribution to the
model outputs comes from the measurement noise e;, distributed according to
pel(et). Since the signal x is not affected by disturbances, the marginalization
integral can be easily solved

pyi0) = [ plxyi0)dx—xadx = [ plyixi0)p(xi6)5(x — xa)dx
R R

(5.5)
where 0(x — Xg) is a Dirac delta function centred in xq, which is defined as

xo = Gy (q, 0o ), (5.6)

i. e. the actual, undisturbed output of the first linear block. Thus, the
probability p(x;6) boils down to a Dirac delta function in x, and

p(y;0) = p(ylx = x¢;0)
= pe(y — Gu(q,9m) f (%0, 0nL)) (5.7)
= pe(y — Gu(q,0u) [(Gw(q,0w)u,0nL)).

Hence, the likelihood function p(y; @) is a direct reflection of the measurement
noise only. Since the measurement noise is independently distributed over ¢,
the likelihood can be expressed as product of the probabilities of the single
realizations,

p(y;0) = [ [ pe(w: — Gulg,0u) F(Gw (g, 0w )us, O1)), (5.8)
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and the MLE problem can be formulated as the minimization of the negative
log-likelihood,

N
Orrp = arg mein - Zlog pe(yt — Gu(q, 0u) f(Gw (g, 0w )ur, Onr)). (5.9)

t=1

Although the MLE problem simplified a lot, compared to stochastic case, the
cost function of the minimization problem is still nonlinear and, depending
on the shape of the measurement noise distribution and of the nonlinearity,
many local minima can be present. Thus, also in this case, the choice of
0© =67, 69 6] is crucial.

A typical assumption for the measurement noise is that it is normally
distributed with zero mean and variance o2,

er ~ N(0,02), Vt. (5.10)

In this case, the MLE problem simplified even further to

N
. . 1
Orrp = arg min ;1 Tcg[yt — Gu(q,0m) f(Gw(q, 0w )ur, Onp)?,  (5.11)

which is equivalent to a weighted least square error criterion. Furthermore,
as already discussed in Section 2.2.2, if we define the predictor of the model
output as

9:(0) = Gu(q,0m) f(Gw(q, Ow)us, OnL), (5.12)

then (5.11) is equivalent to the PEM estimator. However, the cost function
to minimize is still nonlinear and iterative search algorithms may end up
in local minima, see e.g. [68]. Thus, initialization algorithms need to be
developed for this special case as well. We will address this problem in
Section 6.2.

Unlike the stochastic WH model case, many approaches for initializing
the WH model identification problem, when process noise is not present, are
available in literature. Many of them are based on linear approximations
and, in particular, they rely on the asymptotic results of the Best Linear
Approximation (BLA) of a nonlinear system. In the next section, we will
formally define the BLA and we will explain how it can be used to initialize
the WH model identification problem.

5.2 The Best Linear Approximation

The Best Linear Approximation of a nonlinear system is defined in the
following.
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Definition 5.2.1. (The Best Linear Approzimation) The BLA of a time-
wmvariant nonlinear system to a given class of stationary input signals U,
containing sequences of length N, is defined as the best linear system approz-
imating the system’s output in the mean square sense [69], [70],

(e — G(q,0)ur)?, (5.13)

WE

X 1
G Oy) = in —
BrA(q,0n) argmin

t=1

where G(q,0) is a linear model belonging to the class of linear systems G.

When process noise is not present, it is proved that the BLA of a WH
system provides a consistent estimate of the concatenation of the two linear
dynamic blocks, when the input belongs to the Riemann equivalence class of
asymptotically normally distributed signals [5], [70]. Consider the following
WH model with no process noise,

Ty = GW(CL 0W)“’t7
Zt = f(flft, GNL), (514)
Y = Gu(q,0m)z + e,

and assume that real data are generated when the true value of the parameter
vector is used, ie. Oy = [6},,0%,,0%]. By using Definition 5.2.1, the
consistency result from [5] and [70] entails that

GBLA(q,éN) — kGW(q,H%)GH(q,H?{) wp. 1 as N — o0 (5.15)

where the constant scaling factor k depends on the input amplitude and
on the nonlinearity. Clearly, this result provides a strong tool for deriving
initialization algorithms for WH model identification. A simple linear least
squares problem provides consistent estimates of the concatenation of the
linear parameters. Therefore, the problem of retrieving a good approximation
of 6%, 6% is reduced to a partitioning problem, where it is required to
correctly divide the dynamics contained in the BLA between the two linear
parts. Once this partitioning problem has been solved, 6%, 6% can be used
to define a new MLE problem for identification of the 6y;. This is the
main idea at the basis of many WH system identification algorithms, see
e.g. [10], [68], [71], [72], |73], [74].

Hence, the question is whether we could use the BLA also in case of
stochastic WH model, i.e. when the process noise is present. The answer is
positive and it is based on the results originally presented in [66], where we
extended the BLA consistency results to the stochastic WH model case. We
recall the main consistency result in the following section.
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5.2.1 Best Linear Approximations of stochastic WH
models

We first recall the stochastic WH model define in Section 2.1.3,

Ty = GW(qa GW)ut + Wy,
zt = f(re,0nL), (5.16)
Y = Gu(q,0m)z + ey,

and we assume that real data are generated when the true value of the
parameter vector is used, i.e. 6y = [09,,60%;,0%]. Then we have the following
theorem.

Theorem 5.2.1. (Consistency of the BLA of stochastic WH models) If the
following assumptions are satisfied,

1. The input u; and the process noise w; are independent, Gaussian,
stationary processes;

2. The measurement noise e; is a stationary stochastic process, indepen-
dent of uy and wy;

3. G(q,0) is an arbitrary transfer function parametrization with freely
adjustable gain, such that G(q,60) = Gw(q, 85,)Gr(q,0%), for some
parameter value 0g;

4. The parameter 0 is estimated from w and y using an output error
method,

i — arg min —
N—argmemN

(y(t) — G(g, 0)u(t))?, (5.17)

WE

t=1
then
G(q,0n) = kGw(q,0%)Gu(q,0%) wp. 1 as N — oo (5.18)

The proof can be found in Appendix 8.5. The static £ depends on the
variance of the input u; and the process noise wy, see [67]. In the next section,
we illustrate the consistency results of the BLA on numerical examples. In
the next chapter, instead, we will use the BLA to derive an initialization
algorithm for stochastic WH model identification.
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Table 5.1: BLA estimation - Example 1

Poles/Zeros | True | Estimated (u =+ o)
o 0.4 0.3988 == 0.1000
B 0.8 0.7998 £ 0.0401

5.2.2 Numerical examples

To support the theoretical results, we provide here two numerical examples
illustrating the consistency of the BLA estimation. Two different stochastic
WH systems are simulated to obtain data. The generated data are used to
estimate the best linear approximation of the systems. Monte Carlo analysis
is used to generate estimation distributions over 1000 sets of 1000 data
points for each set.

Example 1: Two first order systems with polynomial nonlinearity

The first WH model is the same model that we used in Section 4.2.1 to
illustrate the ML estimation of the parameters of the nonlinearity. In that
case, we assumed known linear parts. Now, we estimate the parameters of
the linear parts using the BLA. The WH model is

1
Tt = 1_—&61_11% + wy (519&)
z = f(z1,0n1) (5.19b)
1
Y = 1_—&]_1% + e (5.19¢)

with f(xs, On7) being a third degree polynomial f(zy, Onr) = co+ci12i+cow?+
csz3. The process and output noise are respectively white and Gaussian with
standard deviations o,, = 4, 0. = 1. The signals u, w, and e are mutually
independent. The BLA estimates are reported in Table 5.1.

67



CHAPTER 5. INTRODUCTION

Table 5.2: BLA estimation - Example 2

Poles/Zeros True Estimated (u + o)
Pie 0.8+ 0.4i | (0.7965 = 0.012) £ (0.3999 £ 0.0154)i
Psa 0.4 4 0.7i | (0.3954 = 0.037) = (0.6997 % 0.0504)i
21 0.6 0.5714 £0.1015

Example 2: Two second order systems with polynomial nonlinear-
ity

The second example is a Wiener-Hammerstein system consisting in two
second order linear systems with a polynomial nonlinearity in the middle:

q—0bl n
Ty =————U; + W
TR tagtas ! !
z =f (@, On1) (5.20)
q
=z +e
Yt q2—|—a3q+a4t t

where the f(z,0x1) is a third degree polynomial:
flxe,0nL) = co + 1y + coxf + ca) (5.21)

Signals u, w and e have same statistical properties as previous example and
standard deviations, respectively, 5, 5 and 1. Linear parameters by, ay, as,
as, ay correspond, respectively, to a real zero in z; = 0.6 and two pairs of
complex poles in p; o = 0.8 £0.4i and p34 = 0.4 £ 0.7i. Also in this case the
BLA provides good estimates of the linear parameters, see Table 5.2.

5.3 Summary

In this chapter, we introduced the initialization problem of WH models
identification. For both the case of presence of process noise (stochastic WH
model) and of its absence, the choice of an initial guess for the parameter
vector 6 = [0y, 0Ny, 0y is crucial in order to avoid local minima. In fact, in
both cases, the MLE problem can be highly nonlinear and local explorations
methods need to be implemented.

When the process noise is not present, many approaches for initializing
the MLE problem rely on the fact the the Best Linear Approximation of the
WH system provides a consistent estimate of the concatenation of fy, and

68



5.3. SUMMARY

Oy . Hence, the problem of finding the initial guess for these two parameters
boils down to a partitioning problem, consisting of deciding how to split the
dynamics contained in the BLA between the two linear blocks of the WH
model.

In order to use the same idea also in case of stochastic WH model,
the consistency result of the BLA has been extended to the general case
of presence of process noise. In this way, initialization algorithms solving
the partitioning problem can be adapted for this case too. Once the initial
estimates for the parameters of the linear blocks are found, the only remaining
problem is the initialization and identification of 5. We will discuss this
point in the next chapter.
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Initialization algorithms

In this chapter, the BLA is used to derive initialization algorithms for WH
models. The main idea is to use the consistent estimates of the linear
dynamics contained in the BLA, to initialize the two linear blocks of the WH
model. The initialization problem becomes actually a partitioning problem
of the BLA dynamics between the two linear parts.

A common solution to the partitioning problem is the exhaustive search
approach (ESA), where all the possible combinations of the dynamics con-
tained in the BLA are tested as initial guess. In this way, the approach is
formulated as a discrete optimization problem. The resulting initialization
algorithm might be very expensive for high order models, since it shows a
combinatorial complexity. However, it shows good performances in obtain-
ing the dynamics of the two linear parts and it is easy to implement. The
approach was presented in [74] and it was developed for the identification
of WH model structure affected by measurement noise only. In this thesis,
we extend and apply the exhaustive search approach to the stochastic WH
model case, by combining the initialization algorithm with the new MCML
methods developed in Chapter 4.

Next, we focus on the initialization problem of the WH model, when the
process noise is not present. In this case, in fact, the MLE results into a
simpler optimization problem, see Section 5.1.2, and a more efficient initial-
ization algorithm can be deployed. It is the fractional approach (FA) and it
performs a relaxation of the discrete optimization problem into a continuous
one. The linear dynamics obtained from the BLA are parametrized in a
fractional way and only one optimization problem is required to retrieve
the partitioning of the dynamics. The FA was originally presented in [75],
and its main advantage is that the original discrete partitioning problem is
replaced by a single continuous one, resulting in a reduced complexity. In
this thesis we show that the FA becomes ill-conditioned for some particular
configurations of the linear dynamics, causing identifiability issues. Hence,
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we propose a modification of this approach, based on series expansion of the
fractional dynamics. This modification shares most of the properties of the
fractional approach. Nevertheless, it provides an implicit regularization of
the identification problem. It addresses the ill-conditioning problem while
preserving meaningful statistical properties of the estimation.

6.1 Initialization algorithm for stochastic WH
models

In this section, we first describe the exhaustive search approach for initializing
WH models. Then, based on the result about the consistency of the BLA,
derived in Section 5.2.1, we combine the exhaustive search approach with
the ML estimation algorithms derived in Chapter 4. In particular, we make
use of the partial re-sampling method, see Section 4.3. Finally we test the
initialization algorithm with simulated and benchmark data.

6.1.1 The Exhaustive Search approach

The Exhaustive Search approach |74] was originally developed for initializing
WH models with no process noise. In this case, we showed that ML and
PEM estimators are equivalent, see Section 5.1.2. Hence, we formulate the
identification problem as a PEM problem,

e — Gu(q,0m) [ (Gw(q, 0w )ur, Onp)]?, (6.1)

WE

éML ‘= arg min —
& 0 Nt_1

where 6 = [0y, 0n1,0n]. Given the consistency of the BLA, we can separate
the identification of the parameters of the linear and nonlinear parts. Hence,
the idea is to split the BLA model into two sub-models in all possible ways,
and to initialize a WH model with each of these splits, for estimating the
parameters of the nonlinearity. The steps of the algorithm are the presented
in the following.

1. Estimate the BLA Gpra(q, éN) of the system, see Section 5.2.1.

~ ~

2. Split the BLA into all possible Gy (q,68},) and Gg(q,0%) so that
Gpra(q,0n) = Gw(q,05,)Gr(q, 0%), with i = 1,...,C and C is the
total number of possible partitions. For this, the poles and the zeros
of the BLA need to be calculated. Depending on prior knowledge of
the system, e.g. order of one or both linear parts, some split can be
avoided.
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3. For all partitions, fix the linear parameters in the model’s predictor
and estimate the parameters of the nonlinearity 6y, using PEM,

N
R 1 . 4
Oxnp = argmin N g [y: — Gu(q,0%) f(Gw(q, 0y )us, Onz)])*  (6.2)

0
NL =1

4. Order the partitions with respect to the criterion of fit.

The best partition is selected and the corresponding parameters, defined as
0 = [6%,, 0% ,0%], are used to initialize a final parameter estimation. Hence,
a final minimization using (6.1), with 8 = ¢° is performed.

It is possible to prove that the identification algorithm initialized with the
exhaustive search is able to provide consistent estimates of the parameters.
To illustrate this, we first note that the PEM estimator defined in (6.2)
is consistent, since it corresponds to the MLE. Since one of the tested
combination corresponds to the right split of the linear dynamics, for that
combination the global solution of (6.2) also corresponds to the true value
of Oy and it provides the lowest value of the criterion. Hence, proving
consistency boils down to showing that the global solution of (6.2) can be
retrieved for each combination. This is clearly true if f(-,0y) is linearly
parametrized in fy. In this case, in fact, the optimization problem (6.2) is
a linear least squares problem, with a global, unique solution. Formal proof
of the consistency of the algorithm can be found in [74].

6.1.2 Adaptation to the stochastic WH model case

In order to make use of the exhaustive search approach for initializing
stochastic WH model structure, we implement one important modification,
originally introduced in [58]. The consistency result of the exhaustive search
algorithm mainly relies on the consistency of the estimation problem in Step
3. However, when process noise is present, the PEM criterion used in (6.2)
is proved to be inconsistent, see Section 4.2.1. The main reason for the
inconsistency is that the criterion used in (6.2) does not take into account
the stochastic contribution coming from the process noise. Hence, in order
to be able to get consistent estimates, we replace the PEM estimator in step
3 with a ML estimator,

éNL = argmax p(y; nr), (6.3)
ONL
where p(y;0xy) is the likelihood function, derived for stochastic WH models

in Section 5.1.1, Equation (5.3). In this case, however, we are only interested
in the estimation of the parameter 6. In fact, the parameters of the linear
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parts are fixed and given by the BLA. Nevertheless, given the presence of the
process noise, the likelihood function is still computed via a marginalization
operation. Hence, one of the methods developed in Chapter 4 have to be
used in this case. In particular, we make use of the partial re-sampling
method, presented in 4.3.

With these modifications, the main steps of the exhaustive search ap-
proach for stochastic WH model initialization are:

1. Estimate the BLA Gpra(q, éN) of the system, see Section 5.2.1.

2. Split the BLA into all possible Gy (q,0}) and Gr(g,0}) so that
Gpra(q,0n) = Gw(q,04,)Gr(q,0y), with i = 1,...,C and C is the

total number of possible partitions.

3. For all partitions, fix the linear parameters in the deterministic parts
of the measurement and process noise distributions

p(y[x;0) = p(y|x;Onr) = pe(y — Gul(q, Qﬁ)f(ﬁ OnL)),

p(x;0) = p(x) = pw(x — Gw(q, Oy )u). (64)

and define ML estimator for the parameters of the nonlinearity 6y,
only,

O, = avgmax ply: ) —angas [ plybiOy)plx)dx (69
ONL Onr  JRN
4. Solve the ML problem by using the partial re-sampling method of
Section 4.3.

5. Order the partitions with respect to the criterion of fit.

Again, the best partition is selected and the corresponding parameters, de-
fined as 0° = 0%, 0%, 0%], are used to initialize a final parameter estimation.
This time, the final parameter estimation is the MLE,

s = argma / by O)p(x:0)dx (6.6)
where the linear parameters 6y, 0y are not fixed and they can be re-
estimated. The partial re-sampling method can be deployed again and the
search is initialized with 6 = 6°.

Also in this case, the identification algorithm based on the exhaustive
search is able to provide consistent estimates of the true parameter. However,
a formal proof of consistency in this case is harder to derive, since the
optimization problem in Step 3 is a nonlinear ML problem. Hence, the

74



6.1. INITIALIZATION ALGORITHM FOR STOCHASTIC WH MODELS

partial re-sampling method, used in Step 4, requires a good initial guess in
order to obtain a consistent estimate of the parameters of the nonlinearity.
At this point, one may argue that the derived initialization algorithm does
not actually solve the global optimization problem of the MLE estimate for
stochastic WH model. From a general perspective, this is true. However,
this initialization algorithm is a first step towards the derivation of consistent
estimates, since it makes use of consistent estimators in all its steps. In fact,
if at Step 3 the standard PEM were used, it would be impossible to obtain
unbiased estimate of Oy, even in case of linear parametrization of f(-,6yy).
Hence, we argue that the combination of the exhaustive search and the ML
estimates for 0, is still advantageous in terms of finding a good initial guess,
because the ML problem (6.5), given its reduced parameter dimension, is
simpler and easier to initialize than the ML problem in all models parameters
(6.6). Our statement is also supported by practical numerical examples,
where the derived initialization algorithm has been used to retrieve the right
split of the dynamics of the BLA, see next section.

6.1.3 Numerical examples

In this section, we illustrate the effectiveness of the initialization algorithm
combining the exhaustive search and the ML estimates on two numerical
examples.

Simple stochastic WH model

The first example is the stochastic WH model used in Section 4.2.1 and
Section 5.2.2,

1
Ty = 1_—0“]_17% + wy, (673)
Zt = f(:r;t, GNL), (67b)
1
e Bg 1 2+ ey, (6.7¢)

with f(z¢,0n1) = co+ 1@ + cox? + c3x?. The same system, in fact, has been
used to test the consistency of the ML estimates of the nonlinear parameters
using the deterministic method (Section 4.2.1), and the consistency of the
BLA (Section 5.2.2). Thus, we have all the ingredients to implement the
initialization algorithm described in 6.1.2.

When estimating the nonlinear parameters only (Section 4.2.1), we
assumed that the parameters «, 3 of the linear parts were known and fixed
during the estimation, and 6y was the only unknown parameter vector.
Here, instead, we use the estimated values from the BLA to initialize «, (3.
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Table 6.1: Example 1 - The BLA estimation of a stochastic WH model
provides unbiased estimates of the linear dynamics.

Poles/Zeros | True | Estimated (u =+ o)
o 0.4 0.3988 £+ 0.1000
Ié] 0.8 0.7998 £ 0.0401

Table 6.2: Example 1 - BLA partitioning - For both combinations of the
linear parts, the nonlineraty of the WH model is estimated with ML and
PEM. The RMSE is used to decide a partitioning of the linear parts. The
ML manages to find the right split. The PEM, inconsistent, provides a lower
RMSE for the wrong split.

ML PEM
True split | 1.6934 | 8.1125
Wrong split | 4.3872 | 8.0762

These values are reported in Table 6.1. Since the data are generated from a
simulated system, we actually know the true values of the linear parameters.
Hence, in order to test the initialization algorithm, we assume we do not
know which of the estimated poles from the BLA corresponds to o and
which to 8, and we deploy the exhaustive search algorithm. Since there are
only two poles, only two combinations are possible. For each combination,
we estimate 6y using the partial re-sampling method implementing the
MLE. We use 65\% = [0,1,0,0] as initial guess for 0y,. We also compare
this estimation with a standard PEM estimator. In Table 6.2, we report the
RMS of the data-fitting errors obtained when using the nonlinear parameters
estimated with ML and with the PEM, for the two possible splits of the
BLA. We observe that the ML estimate finds the right split, while the PEM,
inconsistent for the process noise case, shows lower value of the criterion for
the wrong split.

Benchmark example

In this second example, we test the derived algorithm for BLLA partitioning on
the benchmark WH system introduced in Section 2.1.4. The available data
from the system affected by process and measurement noise are used. The
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Figure 6.1: Estimation of the WH nonlinearity using ML (partial re-sampling
method) and PEM. The ML estimate tries to capture the true saturation
behaviour of the true nonlinearity.

BLA is estimated by fitting a 6-th order OE model, with 10000 input/output
data. The input used for estimation is the Multisine, provided by the
benchmark. A set of data not affected by process noise is also available for
validation. The BLA provides a RMSE of 35 mV on the validation data.
The linear model is then split into two sub-models in all possible ways, but
avoiding the combination providing improper transfer functions. For each
split, a 5-th order polynomial function is estimated as static non-linearity,
via the partial re-sampling method. In this case, 3000 data and a sample size
of M = 300 are used. The RMSE achieved by the best split, i.e. lowest value
of the ML criterion, is 16.2 mV. This result is comparable with other recently
developed methods for stochastic WH model identification, see [59], [76].

The identification of the nonlinearity, providing the best split, is reported
in Figure 6.1, and it is compared with the one estimated using PEM. From
prior knowledge of the WH benchmark system, we know that the nonlinearity
is a diode-resistor network implementing a saturation effect. The ML
estimate tries to capture this behaviour.

Finally, in Figure 6.2, the estimated model output, using ML and PEM,
is reported. The estimated output is compared with the validation data
set, i.e. a process noise-free data. Also in this case, the ML estimate shows
better results.
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Figure 6.2: ML and PEM estimated outputs for the corresponding identified
split and nonlinearity. Validation on a process noise-free data-set. The ML
estimate shows better fitting results.

6.2 Initialization algorithm for WH models

In this final part of the thesis, we focus on the case of WH models whose
outputs are only affected by measurement noise. For this type of models
we showed that the MLE is actually equivalent to the PEM estimator,
see Section 5.1.2. Hence, consistent estimates of the parameters can be
obtained by implementing a nonlinear least squares problem. Compared
to the stochastic WH model case, where approximate solutions based on
Monte Carlo estimates are required for solving the MLE problem, the overall
difficulty of solving the estimation problem is considerably reduced and
no approximate solutions are required. This also affects the design and
implementation of an initialization algorithm. In this case, in fact, a more
efficient approach can be used, i.e. the fractional approach (FA), originally
presented in [75]. With this approach, the discrete optimization problem with
combinatorial complexity, implemented by the exhaustive search approach,
is replaced by only one optimization problem in a new set of variables. In
fact, the FA uses the BLA to initialize both linear parts of the WH model
and integer exponents in the set {0, 1} are introduced for every pole/zero
present in the BLA. In this way, it is possible to describe the partition
between the two linear parts. A relaxation of the set {0, 1} to the continuous
interval [0, 1] is then performed. The resulting real-valued exponents can be
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identified via a continuous optimization problem. When all the identified
real-valued exponents are close to their integer values {0, 1}, a partition of
the pole or the zero can be decided. Iterative methods can be used to solve
the continuous problem efficiently, in the considered noise framework.

However, the FA shows some identifiability and conditioning issues, aris-
ing from the continuous relaxation of the discrete problem. In the following
sections, we present in details the FA and we analyse its identifiability issues.
Then, we present a modification of the FA to solve these issues. The relax-
ation of the set of the integer exponents yields fractional dynamics. The
proposed modification treats these fractional dynamics via series expansion.
The expansion method naturally introduces a form of regularization in the
estimation problem, which alleviates its potential ill-conditioning. Moreover,
since no artificial regularization is introduced, the identification problem
retains a meaningful description of the (local) statistical properties of the
estimation. Finally, a novel formulation of the identification problem based
on lifting techniques [77] is proposed, yielding advantageous properties in
the resulting continuous optimization algorithm, which allow for a faster and
more reliable convergence to the solution when using Newton-type methods.
The results presented in the following are mainly based on [78].

6.2.1 The Fractional Approach

To present the fractional approach, we recall the parametrization of the
linear parts of a WH model, introduced in Section 2.1.3,

w
Z:ﬁo bZVq_k
1%74 bl
1+ Z:il ay ¢ *

TLH _
Zkz() kaq y
T , (6.9)
L+>2 affq*

Gw (g, 0w) = (6.8)

and we assume that the BLA of the WH system has been identified and
expressed in terms of poles (p) and zeros (z) factorization,

15 (1 — zig7Y)
G Dy 2) = k5 : 6.10
BLA(q p ) Hlﬁl(l _ piqil) ( )

with 2 = [z1,..., Zng), P =[P1,- -+, Pnyl), and na, np being the total number
of poles and zeros of the system.

With the FA, the poles and zeros of the BLA are used to initialize two
new linear blocks Gy and G u, where the partition of poles and zeros is
parametrized through a new vector of real parameters [«, 5] in the following
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way,
_ A =z N
W(qaaaﬂ) - H (1 Diq 1)&17 (611 )
: D N O
GH(q7a7/8) - H (1 _1)1 a;’ (611b>

The indices n4 and np also denote the dimension of vectors o and S,

a = [alv T 7a”A]7 B = [617"' aﬁnB]' (6'12)

For a real pole (zero) one «; (f;) is introduced, and complex pairs of
poles/zeros share the same parameter, so that they are kept together during
the estimation, see [75]. As a result, oy = 1 (8; = 1) locates the i-th
pole or pair of complex poles (zero or pair of complex zeros) at Gy, while
a; = 0 (B; = 0) locates the i-th pole or pair of complex poles (zero or
pair of complex zeros) at Gy. The estimation of o and f provides the
splitting of the dynamics and, hence, the initial guesses HW, 9( ) Thus, by
using the PEM criterion, consistent for the considered noise framework, the
initialization problem consits of finding 6y = [&, 3, O] minimizing

Z a,B,0n1))%. (6.13)

The minimum of the criterion (6.13) is obtained at the true value 6y =
[a® 3Y,6%,], which represents the parameter vector describing the true
splitting and the true non-linear function. Once the splitting of the dynamics
is retrieved, a final optimization can be performed over all parameters, i.e.
poles, zeros, and non-linearity. In this way, possible estimation errors from
the BLA can be reduced, see [75]. In the next section, we show that the
problem of minimizing (6.13) is ill-conditioned for certain configurations of
poles and zeros.

6.2.2 Conditioning problem of the fractional approach

In this section, we show that the conditioning problem of the FA derives from
a lack of identifiability of the «,  parameters, when particular pole/zero
configurations occur in the BLA. Since in the considered noise framework the
PEM criterion (6.13) is also the Maximum Likelihood criterion, see Section
2.2.2, the Cramér-Rao lower bound for the covariance C of the estimate O
is

Cly) > —M ()", (6.14)
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where M is the Fisher Information Matriz (FIM), defined by
M(6y) =E

ViV (9)] (6.15)

0=09

The argument of the expectation operator is the Hessian of the criterion,

v = 3 (7))

o\ A9 40
= N (6.16)
+ Z d g;ge)( +(0) — w)

At the true solution 6, the residuals ¢;(6y) — y; behave as random numbers
distributed according the noise distribution pe(e;). As discussed before, this
noise is the measurement noise for which the common assumption is the
normal distribution N(0,c?). However, for our purposes it is enough that
the distribution is zero mean. In this case, in fact, the residuals 3,(6y) — y;
are zero mean and the FIM becomes

= 3 (B0 900

t=1

(6.17)

0=0¢

Thus, the FIM can be ill-conditioned if there is linear dependence among

the elements of the sensitivity of model output dyéée), for example if
dy,(0 dy, (0
9 400y (6.18)

o, Mg

for some constant p and ¢ # j. In the following we prove that the matrix
M (0), defined in (6.19), can have an arbitrarily bad conditioning (or even
be rank-deficient) for some non-trivial configurations of pole-zeros in the
linear subsystems, resulting from some elements dzge(f) and dgc’fg(f) being nearly
linearly dependent.

Theorem 6.2.1. Assume the fractional parametrization of the Wiener-
Hammerstein dynamics as in (6.11) and assume a static non-linearity
f(zy,0n1) in the middle. Consider the following cases:

1. One pole p; (zero z;) from Gy is in the neighbourhood of a zero z;
(pole p;) from G ;

2. One pole p; (zero z;) from Gy or Gy is in the neighbourhood of another
pole p; (zero z;) from Gw or Gy.
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Let \in be the smallest eigenvalue of the matriz

M@O) =) (dg;ée)) d%@)) (6.19)

then 0 < Anin < [T(O)A, V0,
where A is the distance between the pole (zero) and the zero (pole) of case

(1) or the distance between the two poles (zeros) of case (2). The function
['(0) is defined in Appendiz 8.6.

Corollary 6.2.1. If A =0, then Equation (6.18) holds with u =1 for Case
1 and p = —1 for Case 2, and with 6;, 6; being the o and/or B parameters
corresponding to poles and/or zeros considered in Case 1 and Case 2 of
Theorem 6.2.1.

The proof of Theorem 6.2.1 and Corollary 6.2.1 can be found in Appendix
8.6. The conditioning problem, described by Theorem 6.2.1, can cause both
numerical and identifiability issues. This is explained by the following remark
and corollary.

Remark 6.2.1. Matriz (6.19) also defines the Gauss-Newton approzimation
of the Hessian for least-squares optimization problems. Hence, the bad
conditioning of this matriz can cause numerical issues when the Gauss-
Newton approximation is used in the iterative optimization algorithm.

Corollary 6.2.2. The parameters o and/or 8 corresponding to poles and/or
zeros considered in Case 1 and Case 2 of Theorem 6.2.1 are not identifiable
using the fractional approach.

Proof. The identifiability of the parameters can be assessed by checking
the FIM for singularities. The FIM is the matrix (6.19) evaluated at 6.
Thus the conditioning results of Theorem 6.2.1 extend to the FIM, causing
the identifiability issue.

The conditioning problem generated by Case 2 of Theorem 6.2.1 can be
intuitively understood by considering the fractional parametrization (6.11).
Indeed, the fractional exponents allow for changing the multiplicity of a pole
(zero) arbitrarily. Thus, when two poles (two zeros) are very close to each
other, or in case of double pole (double zero), having multiplicity 1 for both
of them is equivalent to increase the multiplicity of one while decreasing the
multiplicity of the other. On the other hand, Case 1 is less intuitive and
more challenging from the identification perspective.

In the next section, we develop and argue for a solution to the iden-
tifiability issue generated from Case 1. For the sake of completeness and
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comparison, however, we also consider two standard tricks addressing the
conditioning problem. The first one is to add an explicit regularizing function
to the cost function (6.13). The purpose of the regularization is to accentu-
ate the curvature around the possible minima of the cost function, which
correspond to the integer values of «, 8 and for which Theorem 6.2.1 shows
conditioning problems. The second one is to add the inequality constraints
0 <6,;,0; <1. In this way, the flat directions of the cost function, indicated
by Corollary 6.2.1, would intersect the constrained variable space at a single
point, i.e. one of the corner of the constrained box, which would also be the
solution of the optimization problem. This is what is also done in [75], but
without any further explanation regarding the need of inequality constraints.

Both explicit regularization and inequality constraints, while fixing the
conditioning problem, artificially alter the covariance properties of the
parameters at the solution. Furthermore the explicit regularization requires
some user-tuning of the regularizing function. Our solution is represented
by the Expanded Fractional Approach (EFA) which, for Case 1, provides an
implicit and natural regularization effect for the FA conditioning problem.
The EFA and its properties are presented in the next sections.

6.2.3 The Expanded Fractional Approach

In this section, the novel expansion approach is presented and the initializa-
tion problem using the Expanded Fractional Approach (EFA) is introduced.
The implicit regularization effect of the EFA is finally established.

The expansion idea

In order to get a formulation of the fractional approach which makes use of
integer values of the delay operator ¢, a series expansion is made separately
for the numerator and denominator of Gy and Gy, see Expressions (6.11).
Numerator and denominator are expanded separately in order to fulfil the
following property.

Property 6.2.1. At the integer values {0, 1} of the parameters o and f3,
the series expansions of numerator and denominator of Gw and Gy (6.11)
are exact.

This property does not hold in the original expansion approach presented
in [79], where numerator and denominator are expanded together. Property
6.2.1 is important because it allows the model derived from the expanded
formulation to recover the original parametrization (2.11)-(2.12) for integer
values of o and 8. Numerator and denominator, in their fractional form
(6.11), are analytic in the complex variable g everywhere except in 0, and
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can therefore be expanded as an ordinary Laurent power series about 0, in
the variable ¢!, see [80]. For example, the n''-order expansion of a single
pole p is given by:

(1—pg " )*~1+Ai(p.a)g " +...+ A(p,a)g ", (6.20)

where « is a scalar, n is the expansion order, and the coefficients A;(p, ),
., Ap(p, @) are uniquely determined and equal to the Taylor coefficients
of the expansion of the function f(z) = (1 — pz)®, where z = ¢~!, see [81].

Thus, the functions Gy and Gy can be approximated by é{,EVXP and GgXP ,
defined as
W
A 1+52, BV (2,8)q"
GEXP (g0, ) = LT 2 B (& D) (6.21a)
L+ 0, A (p,a)g !
R 1 + ”2 BH 2, -
e Af(pa)g

where the indices n!V', nY¥ ni’ ni are the expansion orders for denominators

and numerators, and

AV(a) = [A] (p.@),..., A (p, )],
BY(g) = [BF/(Zaﬂ) , B (2, 8)],

I I (6.22)
A (a - [Al (p,a ) )]7

) )y A (p,
BH(B)Z[BF(Z,B% s f( Bl

are the coefficients provided by the Taylor expansion, depending on the vec-
tors «, 3, p, z, see Expression (6.11). The expansion orders n\", ni ni nf
have to be chosen high enough in order to reproduce all possible pole/zero
combinations of the BLA, see Property 6.2.1 . This sets a lower bound for
the orders. While one may consider a high order desirable, in order to obtain
high accuracy of the expansion, in the next section we show that choosing

an order higher than the lower bound can be counter-productive.

Conditioning property of the expanded approach

In this section, it is shown that a low-order expansion of the problematic
pole/zero pair described in Case 1 of Theorem 6.2.1 results in rectifying the
ill-conditioning problem. This observation is formally stated in the following
theorem.

Theorem 6.2.2. Consider the fractional parametrization as in (6.11) and
Case 1 of Theorem 6.2.1. If the two factors containing the zero and the pole
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close to each other are expanded with a first order series expansion, then the
matriz M(0) is well-conditioned, independently of A.

Proof. See Appendix 8.7.

Thus, a low-order expansion of the problematic pole/zero pair addresses
the ill-conditioning of the FA problem, providing a well-conditioned Fisher
Information Matrix. In general, it has been observed that the EFA, i.e. the
expansions (6.21), preserves the result of Theorem 6.2.2 if sufficiently low ex-
pansion orders are used. In order to fulfil Property 6.2.1, the lowest possible
orders are given by the total number of zeros (ng) for the expansion of the
numerator, and total number of poles (n4) for the expansion of the denomina-
tor. This becomes a general guideline for choosing n}", n} n ni. Finally,
the EFA introduces algebraic expressions in «, S of increasing complexity in
the expansion orders, see (6.22). However, a particular structure resides in
these algebraic expressions. By using this structure, a reformulation of the
optimization problem allows to improve the algorithmic performance of the
optimization problem. We detail these observations next.

6.2.4 Properties of the Expanded Fractional Approach

In this section, firstly we show that a particular structure relates the vari-
ables o and 3 to the coefficients of the expansions in (6.21). A structure
that we label as pseudo-linearity property. Then, a reformulation of the
initialization problem is presented, which makes use of this property. Finally,
convergence aspects of Newton-type methods applied to the new formulation
are discussed.

The pseudo-linearity property
The pseudo-linearity property is defined in the following.

Definition 6.2.1. (Pseudo-linearity). A function g(x) = [g1(x) - - gn(2)]T
is pseudo-linear in x € R™ if, Vk, gi(x) = Apx+by, Vo € Sp_1 (for some con-
stant matrices Ay, and vectors by, ), where Sy_1 = {z|g;(x) =0,i =1, ...,k — 1}.

The following lemma provides results of uniqueness of the solution for a
pseudo-linear system of equations.

Lemma 6.2.1. Consider the system of M equations g(x) = g, with g(x)
being pseudo-linear, g given, and x € R". The system admits a unique
solution if M =n.

The proof can be found in Appendix 8.8. A useful remark related to
the computation of the solution of a pseudo-linear equations system follows
next.
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Remark 6.2.2. The proof of Lemma 6.2.1 also shows that the solution to a
pseudo-linear system of equations can be analytically computed by substitution,
solving one equation at the time, from k=1 to M.

We show next that the Taylor coefficients (6.22) are pseudo-linear func-
tions of the parameters o and 8. For simplicity, we consider the generic
fractional function G(n, x), representing either the numerator (n = /) or the
denominator (n = a) of (6.21), and where the variable change z = ¢! is
made. Furthermore, only real zeros (poles) are considered, but all the results
can be generalized to complex pairs of zeros and poles, by introducing the
same exponent for both the complex zero (pole) and its conjugate. Based

on these considerations, we introduce the following theorem.

Theorem 6.2.3. Consider a generic fractional function G in the form

G(nx) =] @+ am)™, (6.23)

i=1

where n = [Ny, -+ ,ny| are real exponents, and the k-th order partial derivative
of G(n,x) w.r.t x is defined as

G® (n,x) = 57 C (0,7). (6.24)

The generic k-th coefficient of the Taylor expansion of G(n,x) w.r.t x and
about 0 s

A ) = 15 G (0.0)]- (6.25)
Then, the function A(n) defined as
Ax(n)
Am) =1 : |, (6.26)
An(n)

where M 1is the finite order of the Taylor expansion of G(n,x) about 0, is
pseudo-linear in 7.

Proof. See Appendix 8.9.

Corollary 6.2.3. Consider the function A(n), given by the Taylor coef-
ficients of the finite series expansion of a fractional function in the form
(6.23), with expansion order M. Then the system of equations

An) = 4, (6.27)

with A being a given vector in RM | admits a unique solution if M = n, where
n is the dimension of the variables vector 1.
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Proof. 1t directly follows from Lemma 6.2.1 and Theorem 6.2.3.

Theorem 6.2.3 and Corollary 6.2.3, applied to the EFA problem, entail
that it is possible to build a pseudo-linear system of equations admitting a
unique solution in the «, § variables. Moreover, the proof of Theorem 6.2.3
also provides a computationally efficient procedure to build the pseudo-linear
functions, i.e. the recursive law (8.64) in Appendix 8.9. Those results can
be used to reformulate the EFA initialization problem, by introducing a set
of equality constraints for the Taylor coefficients. This is presented in the
next section.

Reformulation of the EFA

With the EFA, the initialization problem is the identification of «, 3, which
now appear in the coefficients of the expansions of the BLA numerator
and denominator, and €y, the parameters of the non-linearity, see (6.21).
In order to exploit the pseudo-linear structure of the Taylor coefficients, a
lifted formulation of the optimization problem is proposed. With the lifting
procedure, intermediate optimization variables and suitable constraints,
which ensure the equivalence with the original problem, are introduced. In
general, this procedure offers advantages in terms of convergence rates and
region of attraction [77]. In our case, the proposed lifting procedure is the
following;:

e the coefficients AV (o), BV (B), A (a), B”(B), see (6.22), are re-
parametrized by introducing the a-, and p-independent quantities
AV BW A" BH in the functions (6.21);

e a set of equality constraints is introduced in order to force A" (a),
BY(B), Af(a), BH(B) to match the newly introduced quantities
AV BW AH BH.

Thus, the lifted initialization problem is

st. AV(a) =AY e R™
(6.28)

BY(3) = BY ¢ R™

Af(a) = A" ¢ R™

BY(B) = BY ¢ R™

where the vector 6 contains both the parameters and the newly introduced
optimization variables, i.e. § = [a, 3, Oy, AW, BV A% BH .
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The set of equality constraints in (6.28) is, thus, a set of pseudo-linear
equations which, according to Corollary 6.2.3, admits a unique solution in
«, B if the number of equations equals the number of variables «, 3. Hence,
the expansion orders ought to match the number of poles and zeros. For
comparison, we will refer with lifted formulation to problem (6.28), while
with wunlifted formulation we will denote the unconstrained version of (6.28),
where the terms A" (), BV (), A% («), BH () are directly substituted in
the model predictor g;. Finally, while Remark 6.2.2 entails that it is possible
to compute the solution of the system of equality constraints analytically,
numerical approaches are far superior for high order systems. This aspect is
addressed in the next section, where we show that a Newton-based method
converges to the analytical solution of the system of equations.

6.2.5 Convergence of the Newton’s method

In this section, we show that the Newton’s method applied to the set of
equations (6.27) converges to the analytic solution of the system in a number
of full steps equal to the number of equations to solve. To do so, we will
make use of the pseudo-linearity definition, together with the Newton’s step
update equation. First we introduce two useful lemmas.

Lemma 6.2.2. If g(x) is pseudo-linear, then every set Sy is an affine
hyperplane.

Proof. By using induction we have that for £k = 1, Sy, = = € RV,
Since the hypothesis is that g(x) is pseudo-linear, then g;(x) = Ajz + by.
Therefore S; will be the set of z solving an affine system, hence it is an
affine hyperplane. Assume now that S is a hyperplane and consider the
set Y1 = {x|Aks12 + bry1 = 0}, which is an affine hyperplane. Then Sy,
would be the intersection of the two affine hyperplanes S, and 7,1, hence
it is an affine hyperplane. O

Lemma 6.2.3. If S = {z[g(x) = 0} is a hyperplane, then ¥z s.t. g(Z) =0,
the set T = {x|8%—(;)(x —Z) = 0} coincides with S.

Proof. At any point € S, the tangent set, i.e. Ts(Z) is equivalent to S,

To(z) = {xya%? (x—7) = 0} _s (6.29)

O
We can now establish the following proposition, about the Newton
convergence.
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Lemma 6.2.4. Let g(x) € R* be pseudo-linear. The solution to the system
g(x) =0 is obtained after k full Newton steps.

Proof. By induction, if k£ = 1, g;(x) is linear and a full Newton’s step
provides an update z* € S;. Assume now a generic k and T € Sp_;. We
have to prove that, after & Newton steps, 2+ € S;. From full Newton’s step
update we have that

dg(7)
07

(27 —7)+g(z) = 0. (6.30)

By separating the first £ — 1 equations from the last one, we have that

91(7) 91(7)

P : (z7 —z)+ : =0 (6.31)

and
SEO() —7) + () =0 (6:32)

From (6.31), since T € Sy_; and from Lemma 3, we have that 2™ € Sj_;.
While, in (6.32), we have that

L oulE) = As, (@) = AT+ by (6:33)

Thus, (6.32) becomes
Ap(zt —2)+ AT+ by =0 — A + b, =0, (6.34)
which is the definition of affine hyperplane, hence 2™ € S. O

Lemma 6.2.4 shows that the k-th iteration of the Newton method, solving
the pseudo-linear equation g(x) = 0, provides a solution lying in the hyper-
plane Sk, i.e. the analytic solution manifold of gi(x) = 0. Therefore, at each
iteration, the Newton method fixes the solution manifold of one equation
and, after k iterations, it converges to the final and unique solution of the
system. Unfortunately, in the EFA case, g(z) = 0 is replaced by the set of
constraints of (6.28), where the right-hand side consists of the optimization
variables AW, BV A" BH  Since those variables are not fixed during the
iterations, convergence and uniqueness results do not automatically extend
to the full optimization problem (6.28). However, we show next in simula-
tions that problem (6.28) inherits numerically advantageous properties from
the pseudo-linear constraints, resulting in superior algorithmic performances
when compared to an unlifted formulation.
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6.3 Numerical examples

In this section, first the conditioning problems and the possible solutions
are illustrated. Then, algorithmic performance of Problem (6.28) for a class
of WH systems are shown and discussed. Finally, the EFA is tested on real
experimental benchmark data.

6.3.1 Illustration of the conditioning problem and its
solution

In this example, the initialization problem for Case (1) of Theorem 6.2.1 is
considered. The data are generated with the following true WH system

1—04q7! 1
_ - - 6.35
with a cubic polynomial as non-linearity
f(z) = 2+ 0.0127 + 0.037}. (6.36)

Hence, the zero in Gy is very close to the pole in Gy. The relative distance
is A = 0.02. The system is excited by white Gaussian noise with variance
5, and the output is corrupted by white Gaussian noise with variance 1.
The input/output data samples generated in this way (N = 3000) are used
to identify the BLA first. The identified poles and zeros are then used to
initialized the transfer functions for FA,

(1 —zz7HA
(1= prz=t)or (1 = pozt)o2’
(1= 227 H)=/
(1 _ plzfl)lfal(l _ pQZfl)lfag )
where z1, p1, p2 are the identified poles/zeros from the BLA, and (1, ay, e are
the corresponding fractional exponents, see (6.11). For the EFA, according

Corollary 6.2.3, the expansion order for the numerator is n}y = nf =1 (one

real zero in the BLA) and for the denominator is n!{’ = nf = 2 (2 real poles

in the BLA). Thus,

GFA =
(6.37)
GFA =

GEFA — AT 1 - Bfivl(ﬁl)z; .
Vo, ag)z=t + AY (o, )z
GEFA — 1— B{(f1)z" '
14+ A (aq, )zt + Al (ay, an) 272

(6.38)

These transfer functions are re-parametrized and constraints are introduced
in order to get the lifted formulation (6.28). The true solution for the
parameter vector 6 = oy, ag, 1] is 0y = [1,0, 1].
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Figure 6.3: Contour plot of the cost function for FA. The small A is the
cause of almost flat directions, which can be expressed by 5; = as + 1. Two
iterative estimations, starting from different initial guess («9%0), 050)), are
plotted. They converge to two different solutions along the ill-conditioned
direction, due to the lack of identifiability.

In the following, for a clear illustration of the identifiability problem,
we will first consider the ideal case of exact identification of poles and
zeros from the BLA, hence z; = 0.4,p; = 0.2,p, = 0.42. In this case,
A = 0.02 and Theorem 6.2.1 predicts very flat curvature of the Hessian of
the cost function along the ay, 5, direction for the FA problem. This can
be visualized by the contour plot of the cost function of the FA problem in
Figure 6.3. In the same figure, the iterations of two estimation problems
are depicted. Each estimation has a different initial guess for 6. In Figure
6.4, instead, the contour plot for the EFA problem is reported. In this
case, no linear dependence occurs between the sensitivities w.r.t. i, as,
and the optimization converges to the minimum of the cost function, which
is not ill-conditioned. In Figure 6.5 and Figure 6.6, the solutions with
explicit regularizing function (reg), and added inequality constraints (boz),
discussed for completeness at the end of Section 6.2.2, are tested on the
same estimation problems. Table 6.3 shows the smallest eigenvalue and
variance of the parameters for each estimation. Finally, the identified poles
and zeros from the BLA are used. A Monte Carlo study has been conducted
and 100 BLAs have been identified. In each case, due to estimation errors,
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Figure 6.4: Contour plot of the cost function for EFA. In this case, the
iterative two estimations, starting from different initial guess (950), 950)),
converge to the well-conditioned minimum of the EFA cost function.

Amin o3, o2,
FA Estl 0.2043 2.04 2.75
FA Est2 0.2697 1.54 2.08
EFA Estl 1383 | 6x107* | 2x 107
EFA Est2 163.8 | 4x107%|1x107*

FA-+reg Estl | 20.07 - -
FA-+reg Est2 | 20.13 - -
FA-+box Estl | 0.2043 - -
FA-+box Est2 | 0.2697 - -

Table 6.3: Smallest eigenvalue and variance of the parameters for all the
estimations. For the FA, the idenfiability issue results in high variances of the
parameters. The EFA shows well-conditioned eigenvalues and meaningful
variances. The eigenvalue for the regularized FA is mainly due to the
regularizing function. The FA with inequality constraints shows the same
low eigenvalues of the FA and variance information is lost due to constraints.
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Figure 6.5: Contour plot of the cost function for FA with explicit regulariza-
tion. Two iterative estimations converge to the same minimum, due to the
artificial curvature introduced by the regularizing function. Such curvature
is too tiny to be visible, but big enough to create a region of attraction
around the solution.

the identified poles and zeros were lying in a neighbourhood of the true
ones, given the finite amount of data used for identification. However, in all
cases the right split was retrieved. Furthermore, in some cases, the distance
between the identified z; and p, was even smaller than the true one. Hence,
for these cases, the use of the EFA is even more justified.

6.3.2 Algorithmic performance

In this section, we illustrate the effectiveness of the lifted formulation of the
EFA as in (6.28), by using some performance indices, such as computational
time, average step-length, memory occupation (in terms of number of nodes
of the symbolic expressions to store). As discussed at the end of Section
6.2.5, convergence and uniqueness results do not automatically extend to
the full optimization problem (6.28). However, the pseudo-linearity of the
constraints in (6.28) improves the performance, especially in the presence of
strong non-linearity of the WH system. Furthermore, an efficient derivation
of the pseudo-linear expressions in «, [ is performed, which makes use of the
recursive law (8.64) given in the proof of Theorem 6.2.3. Table 6.4 compares
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Y

Figure 6.6: Contour plot of the cost function for FA with inequality con-
straints on the «, § parameters. Two iterative estimations converge to the
corner (0, 1) of the box, thanks to the gradient along the non-ill conditioned
direction.

the EFA problem implemented by using the lifted formulation (6.28) (L) with
the unlifted one (U), for which the filters coefficients are directly function
of a, B, see Section 6.2.4. In Table 6.4, some key algorithmic indices are
reported, regarding the estimation of different WH systems. Each tested WH
system has the same linear parts but different polynomial non-linearities,
which are parametrized in the following way

d
flwnOnn) = Ot (6.39)
k=0

where d is the degree of the polynomial. For each tested WH system, 50 sets of
500 samples each are generated to derive average performance. The examples
confirm that, for more complicated non-linearities, the overall complexity of
the optimization problem is lower for the lifted formulation. In particular,
almost always full Newton steps are taken in the lifted formulation and the
overall computation time is, on average, half of the unlifted one. In terms
of memory occupation, the symbolic expression for the unlifted version are
composed by 17633 nodes and 8288 for the lifted one. Both lifted and unlifted
formulations are solved using the Newton’s method with Gauss-Newton
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Onr, L/U| SL |TIters | T (s)
[0,1,0.01,0.03] L[ 10] 8 [sa
U 1.0 8 14.11
[0,—25,5,1] L | 1.0 | 10 |15.05
U | 0817 | 16 | 26.85
5,5, —5, —1] L | 1.0 | 8 |1056
U 0412 | 17 | 45.78
[1,-3,-1,-5,05 | L |098| 14 |13.69
U ]0.525| 24 | 53.02

Table 6.4: Algorithmic performance. L: lifted, U: unlifted formulation of
the EFA. SL: average step-length, as fraction of full Newton’s step-length
(1.0). Iters: average number of iterations to get to convergence. T: average
total computation time. The average is computed over 50 data sets of 500
samples each, for each non-linearity.

approximation of the Hessian. All the expressions (cost function, constraints,
sensitivities) are built using CasADi, a symbolic framework for algorithmic
differentiation and numeric optimization [82|, and the optimization problems
are solved with IPOpt, Interior Point OPTimizer, [83] in Python.

6.3.3 Benchmark example

In this section, the EFA is tested on the benchmark example introduced in
Section 2.1.4. In this case, however, we use the data affected by measurement
noise only. The available dataset is divided into estimation and validation
sets. As in [84], the BLA is fitted with 6 poles, 5 zeros and one sample
delay. The estimated BLA pole/zero pattern is shown in Figure 6.7. It can
be seen that the pattern does not really suffer of the conditioning problems
described by Theorem 6.2.1 (no poles/zeros very close to each other). For
this reason, the EFA provides the same split as the FA, see [75]. Once this
initialization problem is solved, poles and zeros are placed in the identified
positions and a final optimization is performed over all parameters. The
final RMS error, as defined in [25], on validation data, is 0.291 mV, in line
with other methods: 0.295 mV for the FA in [75], 0.286 mV in [84], 0.27 mV
in |74]. Hence, since the benchmark does not suffer of conditioning problems,
the overall performance of the identification procedure is in line with other
methods. However, we can still compare the lifted formulation of the EFA
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Im

ol
Figure 6.7: Poles and zeros of the estimated BLA for the WH benchmark
example. One real zero lies outside the unit circle, at -3.2.

SL | Tters | T (s)
Lifted EFA 097 | 19 | 110.13
Unlifted EFA | 0.65 | 24 | 118.8
FA 0.58 | 44 | 222.45

Table 6.5: Lifted EFA vs Unlifted EFA vs FA. Algorithmic performance
on the benchmark. SL: average step-length, as fraction of full Newton’s
step-length (1.0). Iters: number of iterations to get to convergence. T:
average total computation time.

with other approaches, in terms of computation performance. Table 6.5
compares the lifted formulation EFA with its unlifted counterpart, and with
the FA. Also in this benchmark case, the lifted formulation shows better
performance, especially in terms of number of iterations to convergence and
step-length.

6.4 Summary

In this chapter, we derived and analysed two initialization algorithms, based
on the BLA, for the nonlinear identification of WH model structures. For
both algorithms, the basic idea is to separate the identification of the
parameters of the linear parts and of the nonlinearity. The parameters of the
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two linear parts are, in fact, contained in the BLA and their identification
boils down to find the correct partitioning of the BLA dynamics between
Gw and Gg. Therefore, the initialization algorithm has to perform this
partitioning. In this way, the linear parts can be initialized to their true
value, provided by the partitioning, and a final estimation in all models
parameters results into a simpler problem to initialize and solve.

The partitioning problem has been addressed separately for the case of
stochastic WH models (presence of both process and measurement noise)
and non-stochastic WH model (presence of measurement noise only).

In this first case, the partitioning problem has been solved via the
exhaustive search approach combined with ML estimates of the nonlinearity.
All possible poles/zeros combinations from the BLA are tested and, for each
combination, the nonlinearity is estimated via the partial re-sampling method,
implementing the MLE. The combination providing the best value of the
ML criterion is selected and the corresponding poles and zeros were used to
initialize a final MLE problem in all model parameters. The approach showed
good results when tested on simulated and experimental data. However, the
complexity of the approach is combinatorial in the number of combinations
to test and, hence, its used is limited to low order models (up to 10).

In the second case, we focused on initialization algorithm for WH models
when only measurement affects the model’s outputs. In this case, the
MLE problem boils down to nonlinear least squares problem and a more
efficient algorithm for solving the partitioning problem can be used, i. e. the
fractional approach. This approach makes use of fractional dynamics and it
shows good performance in providing an initial estimate for the identification
problem. However, we showed that it can become ill-conditioned for some
pole/zero configuration of the two linear parts. The conditioning problem
leads to a lack of identifiability of the parameters describing the splitting of
the dynamics from the BLA. We showed that this issue can be solved via a
series expansion of the fractional approach, which led to the development of
the Expanded Fractional Approach (EFA). We proved that the EFA provides
an implicit regularization in the estimation problem, which improves its
conditioning.

Compared to the exhaustive search approach, the complexity of the
fractional approach is lower, since it only requires the solution of one con-
tinuous optimization problem. However, so far its application is limited
to the measurement noise framework only, since it has been developed for
a consistent PEM estimator. Hence, one possibility to investigate is the
combination of the fractional approach with the ML methods derived in
Chapter 4, in order to reduce the complexity of the initialization algorithm
for stochastic WH model too.
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Chapter 7

Conclusions and
Recommendations for Future

Work

7.1 Thesis conclusions and contributions

In the following, we summarize the main conclusions and contributions of
the thesis.

The MLE and the intractability problem

In this thesis, we addressed the parameter estimation problem of stochastic
nonlinear dynamical systems. For this class of systems, the main difficulty
is the presence of a latent stochastic process affecting the system’s outputs
through a non-invertible nonlinear transformation. The most commonly used
tool for parameter estimation is the Maximum Likelihood estimator (MLE),
due to its desirable statistical properties, i.e. consistency and asymptotic
efficiency. However, for the considered stochastic models, the MLE problem
is intractable, since the likelihood function cannot be computed in closed-
form. Ignoring the existence of the latent process may result into inconsistent
estimators. Therefore, in order to obtain consistent estimates, approximate
solutions to the intractable MLE problem have been developed.

Finding the MLE for tractable models

In case of tractable models, two main iterative algorithms are used to find
the MLE. They are the gradient-based and the Expecatation-Maximization
(EM) algorithm. The gradient-based algorithm makes use of the gradient of
the likelihood to convergence to the closest optimizer. The EM, instead, uses
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a proxy of the likelihood function, the @-function, to iteratively maximize
the likelihood. Unfortunately, for stochastic nonlinear models, both the
likelihood (or its gradient) and the Q-function are intractable.

Finding the MLE via Monte Carlo approximations

A commonly used approach addressing the intractability problem is the
Monte Carlo method. The gradient-based and the EM algorithms are
modified by introducing Monte Carlo estimates of the gradient and of the
@-function. The resulting algorithms are Monte Carlo Maximum Likelihood
(MCML) and the Monte Carlo Expectation Maximization (MCEM) methods.
The advantage of methods based on Monte Carlo estimates is that they
become exact as the Monte Carlo effort, i.e. the number of the required
samples, goes to infinity. This also ensures the consistency results of the
MLE. In practice, the actual sample size that can be used depends on
the available computational resources. Hence, further modifications to the
MCML and MCEM methods need to be developed.

Reducing the required sample size

One way to reduce the required sample size, while preserving accurate results,
is to work with local Monte Carlo approximations in the parameter space.
This can be achieved by making use of local sampling techniques. In this
way, accurate, local approximations can be obtained from a relatively small
sample size. However, these approximations depend on the current guess
of the parameter, which may be far from the true solution. Thus, the local
approximations have to be nested in an iterative loop: starting from an
arbitrary initial guess of the parameter, a local approximation using MC
integration is built, which is then maximized to obtain the next guess. This
allows to keep the Monte Carlo error small. The procedure is then repeated
in loop, until convergence. This idea is implemented in the nested MCML
method, where MC estimates of the log-likelihood gradient are used.

The noisy search problem

The combination of MC estimates and optimization renders the nested
MCML a stochastic parameter search algorithm. At each iterate of the loop,
in fact, new random numbers (the samples) are generated and noisy MC
estimates are used in the following optimization steps. As a result, the ML
criterion is altered across the iterations. The main consequence is that the
parameter search becomes noisy and, in some extreme cases, the search may
become unstable.
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The partial re-sampling method

An efficient solution to the noisy search problem problem is represented by
the partial re-sampling method. In order to reduce the noise of the MC
estimates used across the iterations, the proposed method tries to reuse as
many samples as possible from previous iterations.

This is implemented by the sensitivity-based re-sampling rule, i.e. a
re-sampling procedure that decides which samples from the current iteration
can be used in future iterations too. The implicit function theorem provides
an expression for the sensitivity of the parameter guesses w.r.t. the samples
at each iteration. In this way, samples with high sensitivity are kept and
reused in future iterations, while samples with low sensitivity are replaced
by new generated samples. By controlling the threshold defining high and
low sensitivity, it is possible to come up with an algorithm where both the
noisy behaviour and the Monte Carlo error are reduced.

The optimization stage of the partial re-sampling method is solved via
the Newton’s method. As the stability issues of the search are solved via the
re-sampling rule, no line-search techniques are required and full Newton’s
steps can be deployed at each iterate. This allows to achieve the quadratic
convergence, typical of the Newton’s method, at least for the iterations
in which the number of replaced samples reduces drastically. It has been
observed that this happens, in particular, in the neighbourhood of the
solution.

Finally, the efficient reuse of samples generated at previous iterations
results into a general reduction of the complexity of the samples simulation
operation. Since the sensitivity-based re-sampling rule does not assume any
specific samples simulation technique, it can be generalized and adopted
by any iterative method for finding the MLE based on MCMC or SMC

techniques.

The local convergence problem

In case of nonlinear systems, finding the MLE boils down to solving a
nonlinear and non-convex optimization problem. In this case, all the iterative
algorithms solving the MLE problem have proven convergence only to a
local optimizer of the likelihood function or of its proxy. However, the
ML estimate is found at the global maximum of the likelihood function.
Therefore, it is important to derive initialization algorithm that have the sole
purpose of finding a good initial guess, i.e. an initial point of the iterative

search that increases the chances of converging to the global maximum of
the likelihood.
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Initialization algorithms for Wiener-Hammerstein systems

Addressing the problem of finding a good initial guess for general nonlin-
ear models is a very challenging task. Thus, we focused on the Wiener-
Hammerstein system. This is a block-oriented model structure where a static
non-invertible nonlinearity is sandwiched between two LTI models. For this
class of model, initialization algorithms rely on the fact that the best linear
approximation (BLA) of the system contains the true linear dynamics WH
model. In this way, initial estimates can be obtained by finding the right
partition of these dynamics between the two linear parts. The remaining
estimation problem in the parameters of the nonlinearity is in general easier
to initialize and solve. In some cases, formal consistency of the initialization
algorithm can be proved.

In this thesis, the partitioning problem has been solved via the ezhaustive
search approach and the fractional approach.

The exhaustive approach for stochastic WH systems

When a disturbance is present at the input of the nonlinearity, we are dealing
with a stochastic nonlinear model. In this case, we proved that the BLA is
still a consistent estimate of the linear dynamics and initialization algorithms
based on linear approximations can be deployed. In particular, we developed
an initialization algorithm by combining consistent ML estimates with the
erhaustive search approach. For each possible combination of the linear
dynamics contained in the BLA, the parameters of the nonlinearity are
estimated via the partial re-sampling method. Since the partial re-sampling
method is implementing the MLE, the estimated parameters are consistent
and the combination providing the best value of the ML criterion corresponds
to the right partition of the dynamics. These estimates are then used to
initialize a final ML problem in all models parameters.

The fractional approach for WH systems

A major drawback of the exhaustive search approach is that its complexity
is combinatorial in the number of possible partitions to test. An alternative
solution to the partitioning problem is then represented by the fractional
approach (FA). This initialization algorithm has been developed for the case
of WH models only affected by measurement noise. The dynamics of the
BLA are used to initialize both linear parts and fractional exponents are
used to parametrize the partitioning. By estimating the fractional exponents,
a partition of the dynamics can be decided in only one optimization problem.
The approach show good performance in finding the initial guess for high
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order WH models. However, we proved that it can be ill-conditioned for some
particular dynamics configurations of the BLA. This conditioning problem
also leads to identifiability issues. We proposed a modification of the FA,
i.e. the ezpanded fractional approach (EFA). With this modification, the
fractional dynamics are approximated via series expansions, which alleviate
the conditioning problem.

Finally, we proved that a lifted formulation of the optimization problem
resulting from the EFA allows for a faster and more reliable convergence to
the solution when using Newton-type methods.

7.2 Possible future research directions

In this last section, we discuss some directions for possible future research.

Monte Carlo methods for MLE

Deriving efficient methods for MLE based on Monte Carlo approximations
is a very active research area and still many issues need to be solved. In
particular, it is quite challenging to scale these methods to high-dimensional
models with many parameters. From this point of view, the solution derived
in this thesis is a first attempt to reduce the overall complexity of the samples
simulation operation, in order to allow the treatment of higher dimension
problems. However, the complexity reduction was mainly a consequence of
the actual goal we had in the second part of this thesis, i.e. the reduction
of the noisy behaviour. Therefore, possible future work may investigate
the improvement of the sensitivity-based re-sampling rule by addressing
complexity issues directly. For example, the possibility of having a sample
size M that changes across the iterations can be considered.

Connection with Bayesian estimation

As the sensitivity-based re-sampling rule implements an efficient use of the
samples across local sampling explorations, it can be useful also in case of
Bayesian estimation. The Bayesian framework, in fact, treats the parameter
0 itself as a random variable and the parameter estimation method consists
of computing the posterior distribution of 6 given the observed data. Using
Bayes’ theorem, we have that this posterior is given by

_ p(yl0)p(9)

p(Oly) = o) (7.1)

where p(y|0) is the likelihood function that we extensively used in this thesis
in case of frequentist framework, p() is the a priori distribution describing

105



CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

prior information available about the parameter, and p(y) is known as the
marginal likelihood, expressed as

ply) = / P(y10)p(6)ds. (7.2)

This integral, depending on the models and distributions specification, may
be intractable. Hence, Monte Carlo methods can be used for approximating
the integral and samples simulation techniques may be required. In this
thesis we have also seen that, for stochastic nonlinear models, the likelihood
p(y|f) has to be computed via the marginalization operation,

p(y]0) = / p(x, y16)dx, (7.3)

which can be intractable too. Thus, the sensitivity-based re-sampling rule
can be modified and adapted in case Monte Carlo methods based on local
sampling explorations are needed to approximate the two intractable integrals
(7.2) and (7.3).

Fractional approach for stochastic WH models

In this thesis, we presented and analysed the fractional approach as an
initialization algorithm for the case of WH models affected by measurement
noise only. One possible research direction is to extend the fractional
approach to the case of stochastic WH model, i.e. when both measurement
and process noise are present. To do this, the Monte Carlo Maximum
Likelihood methods derived in the second part of this thesis have to combined
with the fractional formulation of the dynamics required by the fractional
approach. This may be challenging, since the overall optimization problem
can become highly nonlinear. Hence, efficient modifications and, if needed,
approximations, need to be investigated.
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Appendices

8.1 The Monte Carlo method

The Monte Carlo (MC) method is a non-deterministic approach for numerical
integration, see [85]. Assume we are interested in approximating the following
integral,

= / F()g(x)dx = By £(3)], (8.1)

where the function f(x) is defined over the set X’ and it is integrable with
respect to the probability distribution g(x). When this integral cannot
be solved in closed form, it is possible to approximate it via numerical
integration. If X = {X(m1M_ g a set of M random variables, i.i.d.
according to ¢g(x), then a Monte Carlo estimator of the integral (8.1) is

XM~ g(x). (8.2)

|~

[]=
=
>

m=1

The quantity [ is an unbiased estimate of / ,

B[] = Eg) [% Z f(X (m))}

4 22 o )] = Byl = 1

(8.3)

Furthermore, the weak law of large numbers, see [51], tells us that for any

arbitrarily small e,
lim P(|I —1I|>¢) =0, (8.4)

M—o0

implying that we can achieve any required approximation accuracy if we use
sufficiently large sample size M. Finally, the central limit theorem [51| implies
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the convergence in distribution of the normalized Monte Carlo approximation
errors,

%M(ﬁ_OP%MmJ%, (8.5)

where 02 = Var(X (™). The results (8.3)-(8.4)-(8.5) are independent on the
dimension of the space X, see [54].

Importance sampling is a common technique for reducing the variance of
the MC estimate or when direct sampling from g(x) is not possible. The
basic idea is to introduce a importance sampling density q(x), also called
proposal, and to rewrite the integral (8.1) in the following way,

[ e
I-A}q@)q(ﬁ. (8.6)

In this way, a MC estimate of the integral can be obtained by drawing
samples from the proposal ¢(x),

. 1 & X (m)
zfs:Mn;ﬂW)%, X0 (), (87)

where g(x)/q(x) is defined as the importance ratio. Using the Cauchy-
Schwarz inequality, it can be shown that the variance of I;g is lower than
the variance of I, see e.g. [85].

110



8.2. THE FISHER’S IDENTITY

8.2 The Fisher’s identity

In presence of a latent process x, the Fisher’s identity is a useful tool to
express the gradient of the log-likelihood function. The identity states that

Vo logp(y;0) = / Vollog p(x,y;0)|p(x|y; 0)dx. (8.8)

To prove the identity, we first recall that

pyi6) = [ plx.yio)ix (89)
and that the differentiation rule of logarithm of a function is

df(z) _ f'(z)
& = o (8.10)

Hence, we write the gradient of the log-likelihood as

Vop(y; 0)
Vo lo ) = —————=,

and we express the likelihood as integral of the joint distribution, see Equation
(8.9),

(8.11)

Vop(y;0) Vg [ p(x,y;0)dx

p(y;0) — p(y;0)

Under the assumption of regularity conditions, see [46], we can perform
change of integration and differentiation, obtaining

(8.12)

Vologp(y;0) :/%dx. (8.13)

We use again the differentiation rule of the logarithm again, but this time
on the gradient of the log-joint probability,

Vop(x,y;0)
Vologp(x,y;0) = —/———— 8.14
olog( ) p(x,y;0) (814
to obtain an expression for Vyp(x,y;6),

Vop(x,y;0) = Vylogp(x,y; 0)p(x,y;0). (8.15)

By substituting this last expression in (8.13), we obtain,

1 ;0 ;0
VG logp(y,e) _ / Vg ng(X, y; )p(X7Y7 )dX, (816)

p(y;0)
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and we recall that, according the Bayes’ rule,

p(x,y;0)
B2 D T — (x| 0). 8.17
(.0) p(x[y;0) (8.17)
Finally, we have
Vglogp(y;0) = / Ve[log p(x,y;0)]p(x|y; 0)dx. (8.18)
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8.3 Proof of Theorem 4.2.1 - Inconsistency of
the standard PEM

By using the input-dependent transformation of the process noise after the
nonlinearity, similarly to what has been done in [86], the true system can be
written as

v = Gu(q, ) f (Gw (g, O )ue, 0% ) + W] + e (8.19)
where

= f(Gwl(q, O )us + we, 0%1) — f(Gw(q, 05 )us, 0%). (8.20)

Statistical properties are not preserved in the transformation from w; to wy.
In particular, signal w; is not independent of u;, as it happens for w;. This
will be used later in the proof.

By using expression (8.20), the cost function Vi (0w, 0yr,0m) can be
written as

N
1
VN<9W79NL79H = NZGO ft +wt +€t G(}{ft(QNL)]Q, (821)

t=1

where, to simplify the notation, the following symbols are introduced,

Gy =GY% = Grl(q,0%) (8.22a)
5 F(Gw(q, 00 )u, 0%;) (8.22b)
fi(Onr) £ f(Gw(q, ng)uta Onr)- (8.22¢)

The approximate PEM criterion then, becomes

Vn(Onz) = [GYU(f) + @) + e — Gy fr(One))?

2| =
WE

t=1

(G (f) — fi(Onp))]?
! (8.23)

N

Z Hwt + et

[GY
ZGO (ff = fe(One)) (Gl + e0)].

ZIH
Mz

=i | i

le

Under the ergodicity assumption, the time averages tend to the mathe-
matical expectations as N tends to infinity. The operator E, then, denotes
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both mathematical expectation and averaging over time. Since the mea-
surement noise e; is zero mean and signals u; and w; are independent, as N
tends to infinity, the criterion tends to

Vn(Ons) =[GHE(f) — fuOn0)]” + [GYLE®) + Ee}

CAACU LIS — F(Ox1))). (8:24)

This cost is quadratic except for the last term E(fY — fi(Onz))iwy, linear
in f;(Onz). We want to show that, due to the presence of this term, the
estimation of Oy, is biased, i.e.

Wnp # One - Vv(Oxr) < Va(0y,)- (8.25)
Let us consider an arbitrarily small € such that
Ong =, +e. (8.26)

Since ¢ is small, we can focus on the first order Taylor approximation of the
term E(f? — fi(Onr))wy, at 6%;. This will be

dfi(Onr)

—-F
donr

wt] €. (8.27)

Since ¢ is arbitrary, it is enough to show that

df (0
p | 40Ox) Wy | #0. (8.28)
deNL 90
Let us consider a linearly parametrized nonlinearity, i.e.
fe(Onr) = 9?\}1;9@?% (8.29)
with 29 = Gy (q,60%,). Thus,
df: (0
JlOne) | 0y, (8.30)
deNL 90
NL

On the other hand, w; can be written, in terms of g(z?), as
@y = O lg(@) +wy) — g(af) (8.31)

Since g is a polynomial nonlinearity, it exists at least one n > 2, such that
g(z° + w) = (z° + w)™ # 0. This term can be expanded as

(2" 4+ w)" = 2§ + naf'w + (5) 2l % (w)* + O(w?). (8.32)
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Therefore we have

SEO = "
g~( ) oT y n n—1 3 n (833)
wy = Oy p[(xg +nag™ w+ O(w?)) — ag],
and, since w is zero mean, the expression (8.28) becomes
0% B [ (1) ah~2(w)? + O(w?))] . (8.34)

Therefore, the argument of the expectation operator contains one term in
the form 22" w?. Since, 79 and w are independent and they are raised to
positive powers, their expectation is different from 0.
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8.4 Self-normalizing Importance Sampling

To make use of the importance sampling correction described in Section
4.3.1, we need to evaluate the posterior distribution p(x|y;#) on different
values of 6 from the one used for samples simulation. However, the posterior
is only known up to a normalizing constant, i.e. the likelihood p(y; ). Hence,
the important weighting is implemented via a self-normalizing operation.
Consider the importance sampling integration in (4.17), where we express
the posterior in terms of joint and likelihood distributions, see (4.18),

p(X™, y:0) ply; 0W)
p(X )y 00y ply;0)

G0, XMy = Mqu (x\™.9)

The self-normalization operation is implemented in the following way,

p(y:0)) (m). oy p(X{™ y:0)
p(y;0) Zm 1\1[(X ) (X(’]fﬁ 0(k)

G0, X)) =

ZM p(X,(cm),y;G) p(y;0k)
m=1 5 x (™) y000)) p(yi0)

The unknown constant ratios simplifies and we get

1 M (m), gy _P(X™ yi0)
2 Lt VX0 S e

G(Q,Xé\/[) = X( ) 3:0)
3 St LTy

According to Assumption 2.3.1, all the quantities in this last expression can
be evaluated. This provides Expression (4.19).
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8.5 Proof of Theorem 5.2.1 - Consistency of
the BLA

To prove the consistency result, we first recall Bussgang’s theorem about
cross spectra transformation.

Theorem 8.5.1. (Bussgang) Let m; and ny be two real-valued, jointly Gaus-
sian stationary process. Let f be a nmonlinear function and g a stochastic
process defined by

gt = f(nyg). (8.35)
Then the cross spectrum between m and n is proportional to the cross spectrum
between m and g:
D,y (w) = kP (w) (8.36)
where k is areal-valued constant (that may be zero).
The proof can be found in [87]. Then, we recall the stochastic WH model
equations,
vy = Gw(q, Ow )us + wy,
2z = f(ze,0n1), (8.37)
Yo = Gu(q,0m)z + e,
and we define the following quantities, considering the true model description
Gy, Gy,
=20+ w, 1) = GY(q)u,
2t = fo(%:) (8.38)
ye=y ten Y =Gua)z
Since e and u are independent, the cross spectra between u and y, y° will be
the same: ®,, = ®,,. Since u and w are Gaussian, then z, is also Gaussian

and Bussgang’s theorem tells us that ®,, = k®,,,. Signals v and w are also
independent, then ®,, = ®,0,. Thus, we have the following result,

D, (W) = kP (W) = kDo, (w) = EGY ()P, (w). (8.39)
Similarly, for the second linear system, we get
Oyu(w) = G () Pau(w) = kG (™) Gy () Pu(w). (8.40)

Now, we know that 9]\;, asymptotically, will minimize (see e.g. Chapter
8 in [2]|) the function

Vi(0) = G(q,0)u)
- / W) — 2Re[G(e, 0)B, ()] (8.41)
+!G “0)[* 0y (w))dw.
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In (8.41), we can add and subtract the quantity k?|GY, (e)G% ()2 @, (w),
obtaining

2 [ (@) + RIGH ()G () P,(w)
~ I[GR (e)Gly () PBu()

— 2Re[G(e™™,0)®,,(w)]

+1G(e¥,0)*®, (w))dw.

(8.42)

Since ®,(w) and k?|GY, (e“)GY (e“)[*P,(w) are f-independent terms,
minimizing V() is the same as minimizing

1

o [0 )6 () P )

—OReG(e, 0)B,(w)] (8.43)
+ |G(ei“, 0)|2<I>u(w))dw.

W (6)

We can substitute now the relation for ®,,(w) from (8.40),
1

— - G )G

— 2Re[kG(e ™, 0)GY ()G ()0, w) (B4
+ |G, 0) P, (w))dw

W)

that leads to

W) = o / KGY (64)GY () — (e, 0)[2D, (w)dw,

which is minimized by G(e, 0) = kGY (e“)GY ().

(8.45)
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8.6 Proof of Theorem 6.2.1 and Corollary 6.2.1

For the smallest eigenvalue of M(0), the following is true

Amin = min 7 M(0)z < d"M(0)d, (8.46)

llzfl2=1

where x,d are two non-zero, unit vectors. Thus, by expressing M(6) in
vector form,

dy(6))" dy(0) dy( )
<dr = 2 :
i <7 (S2) B = Faye (8.47
where y(0) is the vector collecting the model output for all time instants,
y(0) = [51(0),...,9n(0)]F. The sensitivity of y(0) w.r.t. 0 = [, B,0n1] is
dy (@ d A
) — < (0, ) Oxr. G (o By
dGy(a, A
_ G O5) gy vl P+ (8.48)
. of | ofdG
+ GH(OC,B) f + f W(av 6)

9. 00 do |

with u = [u(1),...,u(N)]” and & = Gy (a, )u. The unitary vector d can
be chosen in order to select two specific directions in the parameters space,
related to the two cases of the theorem. Thus, we consider

d=10,...,0,d;,0,...,0,d;,0,...]", (8.49)
where d;, d; refer to parameters 6;, 6; defined, for the two cases of the
theorem, as: 1) [6;,0;] = [, ], associated to a zero z; and a pole p;; 2)
[0;,0;] = [Bi, B;], associated to two zeros z;, zj, or [ay, o], associated to two
poles p;, p;. Thus, by using the vector (8.49), the inequality (8.47) becomes

(9) dy(9) , 2

For Case 1, and from (8.48), it follows that
dy(8) , , dy(9)
d: d: —
a5, " da; @
[ dGy dGy R
— < dﬁl dz + dOéj dj> f(QNL,GWu)—i- (851)

+ Gy 8f dGWd +dGWdJ u
dﬁz j
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The fractional dynamics (6.11) can be expressed as

~ . 1 — Z.q_l)ﬁi R . (1 _ z~q_1)1_5i
G = G/ —( ‘ 5 G pry G/ ¢ ,
R T T A g

where CA%V, G”H are the factors of Gy, Gy not depending on Bi,a;. The
distance between the zero z; and the pole p; is A. Thus, by defining
2 = pj + A, we can linearise in A. Since the assumption is that A is small,
we can focus on the first order term of the expansion. It can be easily verified
that the sensitivities of the fractional dynamics w.r.t the parameter ; and
a; can be expressed as

da
dBW = (@) + 1" (@A +O(A?), (8.52a)
da, ~ (9) +72 (@A +0(A%), (8.52b)
da
5 ; == (0) + 7 (@A + O(A?), (8.52¢)
da, 0 (q) +72 (9 A+ O(A%), (8.52d)

where the 7’s functions are the zero and first order Taylor terms. By inserting
(8.52) in (8.51), we have

dy(9) , , dy(0)
a5, " da; ¥
(—76"di + 71 Ads + 75 d; + 3 Ady) f(6, Gwu) (8.53)
. [0
+Gu 3—£ (70 di + 71" Ady =79 dj + 7" Adj) ul .

Choosing d; = d;, the expression simplifies and

as(6) , dy(6)
dﬁz dO[j

=T(0)A + O(A?), (8.54)

where

L(0) = (v + ") f(6,Gwu)
R af
+ Gy (8@ (71W+72W)u>.
Hence for small A and by using (8.47), we conclude that

)‘min < |F(9)A|27
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which proves Theorem 6.2.1 for Case 1. By setting A = 0, (8.54) satisfies
Equation (6.18), yielding p = 1. This proves Corollary 6.2.1 for the Case 1.
In an analogous way, for Case 2, we have that, from (6.11),

Gw =Gy L (8.55a)

(1—pig=1)*i (1—piq=1)*

Gy =G L - (8.55D)

_ — o —1\1
H (1—pig=1)1=2i(1—pjq—1) '~

with p; = p; + A, in case of a pole in Gy is in the neighbourhood of another
pole in Gy, and

Gw = Gy (1 — zig )P (1 — 2~ )P (8.56a)
Gr = Gy(1 = 2,7 )P (1 — 25477 (8.56b)
with z; = 2z, + A, in case of in case of a zero in Gy is in the neighbourhood

of another zero in G . Similar derivations of the sensitivities via Taylor
expansion lead to

dy(6) ,  dy(9)
a0, " d Y
(Véqdz‘ + 71 Ad; + Vé{dj + 7§Adj) 10, éwu) (8.57)
. |0
+ Gy a—g (v di + 7V Ad; + 78 d; + 73" Adj) | .
where [6;,0;] can be either [o;,a;] or [5;, 5;]. By setting d; = —d;, the

expression simplifies and

dy(0) dy(0) >
o =T()A + O(A?), (8.58)

where
T(0) = (v —') f(6,Gwu)
./
G (SLOF =) u).

Hence, also in this case, for small A and by using (8.47), we conclude that
Amin < ||T(0)Al]?, which proves Theorem 6.2.1 for Case 2. Finally, by setting
A = 0, (8.58) satisfies Equation (6.18), yielding this time p = —1. This
proves Corollary 6.2.1 for the Case 2. O
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8.7 Proof of Theorem 6.2.2

Similarly to the proof of Theorem 6.2.1, we can derive Equations (8.46) to
(8.51), where Gy and Gy are replaced with their expanded versions. We
expand only the two factors of Gy and Gy containing the pole and the zero
close to each other. Thus, ny = ng = 1 and the lowest expansion orders
fulfilling Property 1 are n}¥ = nfl = n}V = nll = 1. By performing the
expansions, we get

A 1—Biziq" !

GErA _ G’w—1 iquq - (8.59a)
EFA —Bi)ziqg

GE = Qi (8.59b)

By defining z; = p; + A, we can linearise in A. Since A is small, we focus
on the first order term of the expansion. The sensitivities of the expanded
fractional dynamics w.r.t the parameter /3; and «; become

dGEFA W )

g Y80(2) + 751 (@A + O(A7), (8.60a)
dég/FA w W 2

dovs = VaO(Q) + Va1 (Q)A + O(A )7 (860b)

J

dGEFA " )

a5, = Y50(0) + v51(9) A + O(A%), (8.60c¢)
dGEra " )

dovs = 7&0(q> + ryal(q>A + O(A )7 (86Od)

J

where the +’s functions are the zero and first order Taylor terms. Therefore,
Equation (8.53) for the EFA case becomes

dy(0) ,  dy(0) ,
dﬂ@ dl * dOéj dj N
(vﬁod + i ) (0, éwu>

af

+ (yﬁlm +~2Ad;) £(8, G’Wu)

[0
an (%Ad + 7 Ad;) }
+O(A2).

+ Gy

Thus, for the smallest eigenvalue of M (0), see (8.46), it holds that

Amin = min — ||To(0, d) + T (0, A,

lld]|2=1
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where

Lo(8,d) = (vsodi +va0d;) £ (6, @Wu)

N _af

I'1(0,d) = (7,31d +7ihd; ) f(@,éwu)
_af

09 ]

Thus, the smallest eigenvalue of M (#) does not go to zero with A. Further-

more, when A = 0,

+éH ('Y,Bld +’}/ald )

Amin = min  [|To(0,d)||> = min d"Ty(0) Ty (0)d,

lldl|2=1 lldl[2=1

where

. . T
_ ’Yé{)f(ea Gwu) + Gy [%’Y%u]
o) = (TR0 e g )
’yaof(9> qu) + GH [%VQOU}
and d = (d; d;)". The two components of I'g(6) only differ in the linear
filters v40, 720 and v, 7. Those filters are linear independent if

Py € C (™) + vyvih(e™) = 0,Vw,

vy € C: 7%(6 )+ wagg(e ) =0, Vw.

Assuming that the input u is persistently exciting, the condition (8.61) holds.
Hence, the two components of I'y(f) are linearly independent, and A, # 0
even when A = 0.
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8.8 Proof of Lemma 6.2.1

We first note that the system g(z) = g can be written in the homogeneous
form g(z) — g = 0, so that g is included in the b terms of the pseudo-linear
definition. The last equation of the system is

gu(x) — g =0 (8.62)

and, according to the pseudo-linear definition, this equation is linear when
evaluated on the solution manifold of the previous equations, i.e.

Sy—1 = {z|gi(x) —g;=0,i=1,...,. M — 1}. (8.63)

This manifold can be expressed as a linear combination of the M-th com-
ponent x,; of x. Therefore, if M = n, the last equation (8.62) will be
only function of z,;, and a unique value for this element can be found. By
analytically propagating the solution backwards, from i = M to¢ =1, a
unique solution for each element of x is found.
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8.9 Proof of Theorem 6.2.3

To prove that A(n) is pseudo-linear, first we define a recursive procedure to
generate a pseudo-linear function A(n) and then we prove that A(n) can be
derived by using the recursive procedure, i.e. A(n) = A(n). Consider the
set Sy =1 € R™, then the element A (n) = i1 a;n; is linear for n € S.
Consider now the element A,(n) = > iy an; [A1(n) — a;]. This element is
linear for n € S; = {n|Ai(n) = 0}. By generalizing this procedure we get
the following recursive law, which satisfies Definition 1,

n

Ag(n) = Z anidh_(n) Vk>1 (8.64a)
#L(n) = A(n) — ka;ép_,(n) Yk >1 (8.64b)
@o(n) =1 (8.64¢)

The k-th element of A(n) is the k-th order Taylor coefficient of the expansion
of G(n,x), see (6.25). Thus, to prove that A(n) can be derived using the
8.64’s, we need to prove that the 8.64’s hold for G(n,x) as well. In terms of
G(n, x), the recursive procedure (8.64) is

GO (n,z) = am(1+az) "¢, (n,x) (8.65a)
j=1
vk > 1

oLn,x)  =GW(nx) (8.65D)
—ka;(1+ aj@ilq;iq(?% )

&, z)  =G9n ) =G(n ) (8.65¢)

This will, in fact, provide 121(77) when z = 0. Hence, it remains to prove that
the (8.65)’s also provide the k-th order derivative of G(n,x), see (6.24), in
order to get A(n). By using induction, we get the following. For k = 1, the
relation (8.65a) becomes

GO (n,x) =D am;(l+a;z) "G, x), (8.66)
j=1

which is the expression for the first order derivative of G(n, z) with respect
to x. Thus, for k£ = 1, the (8.65)’s hold. Assuming that the (8.65)’s hold
for a generic k, we want to show that, by computing G**V(n, z) as the
derivative of G*¥)(n,z), we get the relations as in (8.65), at k + 1. In the
following, for simplicity, explicit dependence on 7,z for G*) and QE{C will be
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omitted. Since (8.65a) holds for &, we have that

(9 -
G+ G(k [Z %77] (1 —|—aj —1 56—1]

By computing the partial derivative, we get that
G(k+1) = Z?:l CLjT]j(l + Cljl’)_l X
(aa:c o1 — a;(1+a;z)™ 2—1) :

In order to get the relation (8.65a), we have to prove that the following is
valid

95 _
837 k—1
where, from (8.65b), ¢/, = G®) — ka;(1 + a;z)'¢,_,. To show this, we can
use induction again. For k = 1, the right-hand side of (8.68) becomes
¢ =G —a;(1 + a;z) GO
and the left-hand side
o - _
5790 — ai(1+ a;z) " dp = G —a;(1 + a;2) 7' G
Thus, for £ = 1, (8.68) holds. Assuming that (8.68) is true for k, we want

to show that it is also valid for k£ + 1. At k + 1, the right-hand side of (8.68)
can be expressed, using (8.65b), as

b= G — (b + Day(1 + ajz) ¢, (8.69)

a;(1+a;2) "', = 0}, (8.68)

while the left- hand side becomes

¢J a;(1 —i—a])léiz

_ 0 -1
= % |:G — kaj(l —|— (ljiU) (ZS _1:|
—a;(1+ a;x z)~
G+ — ( (14 a;x - ~i—1

+(1+4 ajx)_1% [ {;_1}) —a;(1+ aja:)_lagi.

We can now use the assumption (8.68) to substitute = [7@1] Hence, we

obtain that the previous expression is equal to G**+1 — (k+1)a;(1+a;2) " ¢l
also equivalent to (8.69). Therefore, the recursive procedure (8.65) is an
alternative way to derive the k-th order derivative of G(n,z) and, thus,

A(n) = A(n).
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