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PHYSICAL REVIEW B 71, 214505(2005

Dynamics and phonon-induced decoherence of Andreev level qubit

A. Zazunov, V. S. Shumeiko, and G. Wendin
Department of Microtechnology and Nanoscience, Chalmers University of Technology, S-41296 Goéteborg, Sweden

E. N. Bratus’
B. Verkin Institute for Low Temperature Physics and Engineering, 61103 Kharkov, Ukraine
(Received 27 April 2004; revised manuscript received 16 December 2004; published 2 Juhe 2005

We present a detailed theory for the Andreev level qubit, a system consisting of a highly transmissive
guantum point contact embedded in a superconducting loop. The two-level Hamiltonian for Andreev levels
interacting with quantum phase fluctuations is derived by using a path integral method. We also derive a kinetic
equation describing qubit decoherence due to interaction of the Andreev levels with acoustic phonons. The
collision terms are nonlinear due to the fermionic nature of the Andreev states, leading to slow nonexponential
relaxation and dephasing of the qubit at temperatures smaller than the qubit level spacing.

DOI: 10.1103/PhysRevB.71.214505 PACS nunt®er74.50+r, 85.25.Dq, 74.25.Kc, 03.67.Lx

I. INTRODUCTION have been thoroughly examined in these experiments by ap-
i i9ks-16
The possibility to employ Andreev bound levels in super-PIYing current or voltage biaS*®There was, however, one

conducting contacts for quantum computation has been su@XPeriment, particularly important in the qubit context,

: here flux bias was implemented: Koopsall’ inserted a
gested in Refs. 1 and 2. The proposed Andreev level qubl : .
(ALQ) consists of a highly transmissive, with reflectivigy ~metallic QPC in a SQUID, and evaluated the Josephson

<1, quantum point conta¢®PQ embedded in a low induc- current-phase dependence by measuring the induced flux

tance superconducting loop. In the ALQ, quantum informa \With @n inductively coupled SQUID magnetometer. Mea-
surements have only been reported for the equilibrium state.

tion is stored in the microscopic two-level system OfAndreeVUnfortunater no experimental attempts to drive the OPC
bound states in the contact. Hybridization of the clockwise ut of equilibrium to some coherent or incoherent excited

and (_:ounterclockW|se persistent current states in the AL@tate have been performed so far.
loop is produced by the microscopic processes of electronic

S S The purpose of this paper is to present a detailed theory
back scattering in the QPC. This is different from the mac+,, he Andreev level qubf. We will also consider the

roscopic superconducting flux .qutﬁtéland charge-phase g|ectron-phonon interaction as an “intrinsic” source of qubit
qubit? where the hybridization is provided by charge fluc- gecoherence, and derive a kinetic equation for the qubit den-
tuations on the tunnel junction capacitors. Thus the requiresity matrix. The ALQ Hamiltonian and the kinetic equation
ment of large charging energy or large loop inductance is nore derived by using a path integral metH8d° The central
critical for the ALQ. A single ALQ consists of a pair of technical difficulty here is to extend the method to contacts
Andreev bound levels belonging to the same normal conwith large transparency. This difficulty is overcome by incor-
ducting mode in the QPC; a multimode QPC will form a porating the exact boundary condition in the QPC action.
qubit cluster. The way of ALQ operation is similar to the one Another important point discussed in the paper is the role of
of the experimentally tested flux qubits—the Andreev lev- charge electroneutrality in the junction electrodes, which af-
els can be excited by driving a biasing magnetic flux throughfects the qubit Hamiltonian.

the qubit loop’81 The read out method is also similar to the  The fermionic nature of the Andreev levels does not affect
flux and charge-phase qubits: the quantum state of the Arthe qubit operation and qubit-qubit coupling, but it plays an
dreev levels determines the magnitude and direction of th@mportant role for the qubit decoherence. We find that the
persistent current circulating in the loop, and also the magelectron-phonon collision terms in the kinetic equation for
nitude of the induced flux. Since the quantum information isthe ALQ differ qualitatively from the Bloch-Redfield master
stored in the microscopic system of Andreev levels, whileequatiod? commonly applied to study decoherence of the
the access for manipulation and readout is provided by maanacroscopic superconducting quid#sThis results in a long
roscopic persistent currents, the ALQ occupies an intermediphonon-induced decoherence time for the ALQ); at tempera-
ate place between the microscopic solid state qubiish as  tures smaller than the qubit level spacing, both the relaxation
localized spins on impuriti€sor quantum dof¥) and mac- and dephasing processes are governed by a power law rather
roscopic superconducting qubits. than an exponential law.

During the 1990’s, the Josephson transport in supercon- The structure of the paper is the following. We discuss the
ducting QPCs has been intensively investigated, and a nunmodel description of the QPC in Sec. I, and then explain in
ber of remarkable experiments has been performed on atoméetail, in Sec. Ill, the path integral approach for a transmis-
size metallic QPCs using controllable break junctionsive QPC: we consider the action for the contact and derive
techniques!-*? as well as on gated quantum constrictions inthe effective Hamiltonian for Andreev levels interacting with
2D electron gas confined between superconduéfofhe  quantum phase fluctuations; the single-particle density ma-
critical Josephson current and current-voltage characteristidsix and effective current operator are also discussed in this
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the electric potential at the contadf(t) =¢(-0,t) —¢(+0,1).

To investigate the decoherence effects, we allow the elec-
trons in the electrodes to interact with acoustic phonons, and
include the corresponding electron-phonon interaction and
phonon terms in the total Hamiltonian of the contact

Hc: He+ Heph"' th- (3)
rJ_T It is convenient to introduce the quasiclassiGahdreey

approximation for the superconducting electrons. Following
the standard procedure, we eliminate the rapidly space vary-
X ing potentialU(r) by introducing quasiclassical wave func-

FIG. 1. Adiabatic superconducting constriction with a local scat-tlons of the single conducting mode in the left and right

terer (dark region in the neck. The length of the constriction is electrodes
small on the scale of the superconducting coherence length but )
large on the scale of the Fermi wavelength. V()= ¢, (r TRyl (x t), (4)

o=t

section. In Sec. IV we discuss averaging over fast phas
fluctuations and derive an effective Hamiltonian for the qu-g5.tron scattering matrix. In E¢4), ¢49)(x) are slowly vary-

bit. This procedure is extended in Sec. V to the case of tw o .
inductively coupled qubits to derive an expression for the(?ng 1D envelopes for the longitudinal electron motion

Hpgugrt S . .
direct qubit-qubit interaction. Section VI is devoted to the "~ |nd_|cates the d|rec_t|on of the motmnwi(rl_,x) 'S a

i o : . : normalized wave function of the transverse motion with en-
electron-phonon interaction: we derive an effective action forer E, (x): p(x) =fik(x)= m_m (x) is the qua-
the Andreev level-phonon interaction and calculate the cor- gy, (X), pO= ~ VAL =L VY= T q

responding collision terms in the equation for the qubit den_smlassmal longitudinal electronic momentum. The coupling

sity matrix; we then present solution of the kinetic equation,Of the quasicla;sical enve_lopes in thg left and right(R)
and evaluate the decoherence rate. electrodesyy r is conveniently described by the transfer

&nd couple these wave functions by means of a normal-

matrix’23
Il. CONTACT HAMILTONIAN X ~ )
o O =T O}, (5)
Let us consider a superconducting quantum point contact W ¥r
with bulk 3D electrodes. We model the contact with a
smooth on the Fermi wave length scédaliabati¢ constric- ~ (1d r*/d*
tion and assume a local scatterer situated in the neck of the T= (r/d 1/d* ) (6)

constriction (see Fig. 1 producing weak electronic back
scattering with reflectivitfR<<1. We further assume that the Hered andr are the energy-independent transmission and

constriction supports a single conducting mode. : . . )
We adopt thF:apmean fielg approximati%n for the electronsreﬂecyon amplitudes, respecﬂvely: Since any qbservable
in the contact described with the Hamiltonian quantity is expressed through a bilinear combination of the

envelopes with the same, the energy-independent scatter-
1 ing phases can be eliminated from the boundary condition
He:J drw'(r,t)h(r,H W (r,t) +§CV2('E). (1) (5); hence, without loss of generality, the scattering ampli-
tudes will be further assumed to be rea D, r=\R, where
where the first term is the BCS Hamiltonian for the bulk D and R are the transmission and reflection coefficients of
superconducting electron®(r ,t) being the two-component the contact, respectively.
Nambu field operator, and the second term describes the The electromagnetic potentiaks(r,t), A(r,t), and the
charging energy of the contact capaci@t®2°The single- complex order parameter in E() are to be found from the

particle Hamiltoniarh in Eq. (1) has the form Maxwell equations and the self-consistency equation. It is
) ) convenient to present the Hamiltonian in a gauge-invariant
h= {[_ iV - (elOA(r,) o] — U +eo(r 1) | o form by extracting the phase of the .orderlgarameter using a
2m local gauge transformatioW (r ,t) — €“X"-V2(r |t). Then
+A(r, 0o Vg 2) the superfluid momentunps=AV x/2-(e/c)A, and the

gauge-invariant electric potentig=7 y/2+ee, appear in the
where A(r,t) and x(r ,t) are, respectively, the modulus and quasiclassical Hamiltonian of the electrode
phase of the superconducting order parameter, the potential
U(r) accounts for the confinement of electrons within the h@ = gu(- i) o, + ovps+ po, + Aoy, (7)
contact as well as the electron scattering, while,t) and
A(r,t) are electromagnetic potentials. The voltage drop atvhile the phase differencé(t) =xg(0,t)—x, (0,t) appears in
the contactV(t), in Eq. (1) is related to the discontinuity of the boundary condition

214505-2
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O
Y

FIG. 2. Spatial distribution of the electric potentialthin line), QPC
gauge invariant potentidp (bold line), and the time derivative of
the gauge invariant phase (dashed ling in the vicinity of the ><
contact.
é
—
T — goztvieT, (8)

FIG. 3. Sketch of the Andreev level qubit: a low inductance

In the bulk metallic electrodes with good screening, and afuPerconducting loop with a quantum point cont&®Q. & is the

the low frequencies relevant for the problem, the gauge[nagnetlc flux; the arrows indicate fluctuating persistent currents.

invariant fieldse(r ,t),pg(r,t), are to be found from the elec-

troneutrality condition and current conserva&br® ics is determined by the electrodynamic environment of the

i contact. Below we will not distinguish betweef and ¢,
onr,Hh=0, Vjr,n=0, (9 because the difference is negligibly small in the QPC.

wheren(r ,t) is the electronic density. In the electrodes, the ~Proceeding with a discussion of the interaction of elec-

charge imbalance relaxation yields the equilibrium relationtrons with phonons, we consider only longitudinal acoustic

P=(an/gu)ton over distances exceeding the electric field phono.ns and de_scnpe the interaction within the deformation

penetration length. Furthermore, in the absence of normdiotential approximation

dissipative currentyg is proportional to the total current den-

sity j =(en/m)ps, which is negligibly small far from the con- Heph= 7f dr Vu(r,t)¥'(r,t)o,¥(r,1), (12

tact due to the rapid spreading out of the current in the point

contact geometry. Thus the conditiof® result in complete where vy is the deformation potential constani( ,t) is the

cancellation of the electromagnetic potentials in the elecphonon field operator,

trodes -
_ / 9. g o wai- _
E(X,t) =0, ps(x,t) =0. (10) u(r)= % 2pVQqa(bqe'q r 4 bqe iq r)' Qq =5q,

Taking into account that the modulus of the order parameter (13)
far from the contact is equal to the equilibrium vallié
=const, we conclude that the Hamiltoniéf takes the equi- S is the sound velocity, and is the crystal mass density. The
librium form. Hamiltonian of free phonons has the standard form

The potentiakp can be expressed through the electric field
E, p=hx/2+efdx E by introducing the gauge-invariant
phasey=yx—(2e/ch) [dx A=(2/h) [dx p,. The spatial distri-
bution of these quantities is illustrated in Fig. 2. Sirige
vanishes far from the contact, ads constant according to
Eqg. (10), then the time derivative of the gauge-invariant

Hon= 2 iQq(blbg + 1/2). (14)
q

Our strategy will now be to derive an effective Hamil-
tonian for the Andreev levels including interaction with
phonons. If the phase difference would be a classical vari-
oL L able, this derivation can in principle be done by direct trun-
phase difference across the contast xg(0,)=x.(0,t) is  cation of the Hamiltoniar(3). However, in the presence of
related to the voltage drog=[Z,dx E, quantum phase fluctuations it is convenient to apply the path

PRV integral technique.

¢(1) i (11) I1l. CONTACT EFFECTIVE ACTION
Let us consider the whole system, the QPC and supercon-
ducting loop (see Fig. 3, and introduce the path integral

reepresentation for the propagator

(Josephson relatignin the SQUID, this relation is equiva-

lent to the phase versus flux relatiq_h: 2ed/hc since the
voltage drop across the contact is generated by the tim
variation of the magnetic flud threading the SQUID. Fi-

nally, we notice that the gauge-invariant phase differefice
rather thanp enters the boundary conditi¢8), which can be (15)
explicitly seen by extracting the Aharonov-Bohm phase from

the transfer matrix. Thus the gauge-invariant phase differThe Lagrangian of the systely, consists of the contact part
ence remains the only free collective variable whose dynamt ., and the part describing the circulating current in the loop.

U= f D2y D*YeDIX D el ot X = by + by,

214505-3
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The latter is conveniently combined with the charge termto take a step back and restore a nonquasiclassical form for
from the electronic Hamiltoniafil) giving the Lagrangian of the fermionic field
the loop oscillator g,

5\2/C 2 P(x.t) = 2 KXY (x 1) (23
Ltot: Lc + Loso I—osc: (%) <E(at¢)2 - Z(Qﬁ - ¢e)2>- 7
in the bulk part of the Lagrangian
(16) .
where ¢, corresponds to the bias magnetic flux dni the Lo+ Lr= f dx (X, ) LX) (X, 1),

loop inductance. The remaining part of the contact Lagrang-
ian consists, similar to Eq3), of the electronic part, the _
phonon part, and the electron-phonon interaction LX) =ihd ~[(- h22m)FE+E | - plo,~ Aoy (29)

Le=Le+ Lpn+ Lepn. (170  The dynamic equations and the boundary condition result

. . L . from the zero variation of the actiof.=[dt(L, +Lg+L
In the quasiclassical approximation, the electronic La- | 08,=Jdi(L +LetLec)

grangian splits into two parts,, @=L,R, corresponding to With respect tojy g and 7,
the left and right electrodes,

% _ 0, % _g (25)
=2 f dx g7 DL DD Y (XD, Sih m(x,1) o)

or, in the explicit form,

L(x,t) =ihd, + ovitideo, — Aoy, (18) L, (x,1) = = \DSX) 704 (1),

and a third parLgc, which accounts for the boundary con- — i ()4

dition discussed in detail in the next section. Noting that LYY = (1 +VR)SX)e™ 2" q(t),  (26)
relaxation processes are caused by phonons with small wa

vectors compared to the Fermi wave veajegk transitions

between the stateg/* and ¢/~ are forbidden, and the VDe o604y, (0.1) = (1 + VR)ETLV 4y 01).  (27)

electron-phonon Lagrangian can be written in the form . . .
Integrating Egs.(26) over x in the close vicinity ofx=0

o o ields the relations
Lepn=-7 2 = | drly, P2 ho gl vuir,y. Y

LR oot (H212mM) 0,0, 41, (0,1) = \DE TV 1)
(19
The phonon Lagrangian is given by (R?12m) o0, ipr(0,1) = (L +VR)e?W4y(t).  (28)
1 o Then introducing again the quasiclassical envelopes and
Lpn= 52 (712€Q2) X[ (1% = QgIXq. (200 combining Egs(27) and(28) with the quasiclassical relation
q
ai RO =1k ay{7R(O.), (29)
A. Boundary condition o=t

The boundary conditioib) is valid for any contact trans- we get the boundary condition equivalent to E@g.and(8).
parency. To include this boundary condition in the path inte-

gral formulation, we introduce an additional term in the
Lagrangiaf B. Effective action for Andreev levels
i [Seciod(t)i4,(0) We are now in a position to derive an effective action for
Lec ”(t)g (VD™ (0,1) the Andreev levels. Following the procedure of Ref. 18, we
integrate out fast electronic fields, in Eq. (22),

-1+ REHYD O]+ He., (2D ,
.0 — |
where 7 is an auxiliary fermionic Nambu field playing the és/i=| 11 11 D'ﬁig)plﬂf)e)(p{% f dt Le}- (30
role of a Lagrange multiplier. Correspondingly, the integra- a=L.R o=z

tion over 7 is to be included in the propagator in E45),  we are then left with the effective acti@], which contains
giving the following form for the electronic part of the only variablesy(t) and ¢(t),

propagator:

- _ — —io,d(ty)/4 _ i o, (tp)/4
U= f D2y Dy D2y ML LR O 22) S,= f dt;dt,7(ty)[De™ 72" g(ty — tp)e 22 + (1

+ R 28 020(t)/An (1.t )@ i026(tp)/4
Let us prove that such a Lagrangian indeed generates the VR ot -t)e In(t2), (39)
boundary condition$5) and(8). To this end, it is convenient whereg(t) is given by the Fourier component

214505-4
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A ( ﬁvé’e >1/2 L= )
N gz Rq5/4e| 0'y77/4 (36)
T\ 20 +\R 7
E 2@ A and finally arrive at the effective action
= f dt 7O[i%d — hal (1), (37)
-A
0 o 2n where
FIG. 4. Spectrum of the Andreev levels in a QPC with finite iR = . ¢
reflectivity (R=0.04 (solid line). The level anticrossing is produced h, = Ae™x COSEUz"' VRS'”E‘Ty (38)
by electronic backscattering; &=0 the Andreev levelgdashed
line) coincide with the current eigenstates. describes the effective single-particle Hamiltonian for the
two-level Andreev systerhThe Hamiltonian in Eq(38) dif-
9,= - ho+ Aoy (32) fers by the exponential prefactor from the two-level Hamil-
Y hoVAZ = (hw)? tonian derived in Refs. 30 and 31 and further employed in

Refs. 32 and 33. This factor appears in the present derivation
after electric potential has been included in Elq.to provide

e electroneutrality in the electrodesee text after Eq8)].

The Hamiltonians are equivalent under stationary conditions
=0 and the difference is not important for the adiabatic

2(1++VR) dow — dynamics. However, in general, the prefactor is important,
59;: ho f VAZ = (hw)? Mo e.g., for _derivation of the correct equation for the current
operator in Eq(50).

It is instructive to compare the case of the transparent
contact considered here with the case of a tunnel contact
o extensively studied in MQC theot§-2°The physical differ-
we identify the spectrum of the systemiw=*E.(¢), by  ence between the two cases is that the Andreev level system
calculating the eigenvalues of the matrix inside the bracketg, transparent contacts is a slow one, while in tunnel contacts

— AL ; . it is fast because the Andreev level energy in tunnel contacts
Ea(¢) = AVeos(4/2) + Rsinf(4/2); (39 is close toA. Within the present formalism, the integration
this equation coincides with the well known Andreev level over i fields is similar in both cases. However, the next step,
spectrum®?° (see Fig. 4 Thus we conclude that the fermi- the adiabatic approximation in Eq&1) and (32) is not al-
onic field » represents the Andreev levels. lowed in the tunnel limit; instead one should perform also

Proceeding to a time-dependent phagt, we restrict the  the integration over; in Eq. (22), and make an expansion
rate of time variation to small valueiso,¢p/4<A. Further-  over smallD. The result of this calculation, presented in
more, the dynamics of the Andreev levels is also to be slowAppendix A, coincides with the results of Refs. 18, 19, and
E(¢) <A, which implies that the contact reflectivity must be 34.
small R<1, the ALQ must be biased ab.~m, and the

amplitude of the quantum phase fluctuaticfﬁsli):qﬁ(t)—qﬁe

must be sufficiently smallpp<¢,. We emphasize that the Macroscopic properties of the Andreev levels are de-
constraint on the amplitude of the phase fluctuations is actuSC'ioed by asingle-particledensity matrixp,(t). In particu-
ally provided in our case by the loop geometry of the eleclar, the Josephso_n current through the QPC is defined by this
trodes having sufficiently small inductance; this constraint igNatrix as shown in the next section. The Andreev level den-

important to suppress the Landau-Zener transitions to th&ity matrix is a 2<2 matrix in the Nambu space defined via
continuum states. Under the imposed conditions, the nonlgstatistical average

A connection between the effective acti(8il) and the An-
dreev levels can be established by considering the case
time-independent phasg=const. Indeed, by writing the ef-
fective action in the Fourier representation

X [ﬁw + A(Cosi;a'x -\R Sih%ay)} Mo (33

C. Andreev level density matrix

cal in time kerneb,, Eq.(32), can be replaced by a constant VRS
value (adiabatic approximation\/A%-(hw)?— VA2-E2=¢, pa(t) = (07 (1), (39
with E;=E(¢,), leading to the equation where 7 denotes the fermionic operator corresponding to the
— Grassmann fieldy, and the average is taken over all elec-
_21+VR A7) tronic states. The statistical average in B) is represented
K hvle K by a path integral
r VR, - N~ ) — | p2,792 —\aiSdh
ifd,+ 4 hpo,+ A COSEO-X \RSIHZO'y 7(t). pa(t) = | D2yD=Yy g(t) n(t)€e (40)

(35 o, after the averaging ovef_ g,

We then eliminate the term with the phase time derivative in o
Eq. (35) by transforming pa(t) = f D2yn(t) n(t)€S/". (41)

214505-5
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A dynamic evolution of the Andreev level density matrix 5 ) <
is governed by a single-particle Hamiltoni&ss). To derive (1) = 29'% D2nD?y g€, (48)
the dynamic equation fgr,(t) we notice that a free evolution
of the Andreev variabley, is described by equation Tracing out the fields/; r, we get the Josephson current in
terms of the Andreev variable

5s) :

p— = O, |ﬁ(9t77: ha'Y] (42) . 5 5 _SO 5 5 — .S() "

on(t) {I(t)>=26|% D2y 5" = | D%y (0 y(t)eS/,
Then calculating the time derivative in EGt1), and using (49)
Eq. (42) and the corresponding conjugated equation, we ob-
tain where

ifidpa =gy pal. (43) _ 2edhy _ ¢

| = =- EI(qs)e—“fx\’Rd”ZaZ, Z(¢) = AD sin—-.
Thus the Andreev level dynamics is described by the Liou- hdp  h 2
ville equation similar to ordinary quantum mechanical two- (50)
level systems. In equilibrium, the density matrix is diagonal
in the Andreev level eigenbasis, and the matrix elements giv
equilibrium level populations described by the Fermi factor
ne(xE,). This is the initial condition for the qubit operation.
Since the sum of the level populations E,) +n:(-E,)=1 is

preserved during the time evolution, the density matrix sat- 1)) =Tr(p,l). (51)

isfies the normalization condition Ppg(t)=1. For a QPC A v th in EGO d

with reflectivity R~0.01, the Andreev level energy,(m) pparer_1ty the current operator n qs') oes not com-
-5 mute with the Andreev level Hamiltonia(88), [h,,1]#0,

= VRA corresponds to a frequency of the order or larger than hich is the consequence of the normal-electron reflection at
10 GHz, which considerably exceeds typical experimenta he QPC. Hence the Andreev level eigenstates consist of su-

temperaturegoelow 100 mi. Thus the QPC should exhibit E/perpositions of the current eigenstates, unRs® (see Fig.

weII_ pronounced Spin 1-/2 _quantum dynamics, which is th 4). Correspondingly, the Andreev level current, defined as an
basis for the qubit application. .
expectation value of the current operator over the Andreev

g’he 2X 2 matrix | appearing in this equation corresponds to
an effective single particle current operator of the Andreev
Sevels. Indeed, comparing equatiqdl) for the Andreev
level density matrix with Eq(49), we find

state
D. Andreev level current )
We conclude this section with a derivation of a single =)= iz_edEa(¢) = ebA sin ¢, (52)
particle current operator for the Andreev levels. A common ho de 2hE,

quantum-mechanical expression for the current applied to thgiters from the current eigenvalueseZ/# [(---), denotes

fields ¢ r atx=+0 gives here a quantum-mechanical averaging over the Andreev level
e — eigenstatgé Thus the Andreev level current undergoes strong

ILr(M) = [ r(OD(-iAd) P g(O1) +H.c] (44) quantum fluctuations. The spectral density of current-current
2m correlation function can be directly calculated by using Eqgs.

or, using Eq.(28), (38) and(50) (cf. Ref. 35
1) = 1a(®) = (i) VD7V e =50/ (0,0) + H.c. S(w) = (3R tart($/2) dw ~ 2E/H). (53)
(45)
[the current is continuouk (t) =1g(t) by virtue of Eq.(27)]. IV. AVERAGING OVER PHASE FLUCTUATIONS

The same equation can be obtained by varying the electronic

part of the actior§, with respect to the phase difference Equation(43) describes the dynamics of the Andreev lev-

els for a given realization of the time dependent phase across
-2 &5 the QPC. However, the phase dynamics is strongly coupled
(46) to the Andreev levels. The intrinsic dynamics of the phase is

I(t) =

h 5¢(t) governed by the quantum Hamiltonian of the loop oscillator
It is well known that the Josephson current through a shortSe€€ EA(16)],
superconducting constriction is only contributed by the An- 2 MoZR2 52
dreev levels. Having this in mind, we express the Josephson  H__ = LA _‘“rﬁ [p,d]=—ih, M=-—,
current through the statistically average 2M 2 8Ec
(54
— iSJ/h —_—
()= f DZ”DZ‘r”L,R' (e (47) wherewpz\““‘8E,_Eclﬁ2 is the plasma frequency of the oscil-
lator determined by the contact charging enelgy=e?/2C
or, equivalently, and the loop inductive energy, =(c/2e)?(1/L). Thus the
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whole system is generally a multilevel one. On the other I I
hand, the phase dynamics and the coupling between the loop < <2
oscillator and the Andreev levels is a vital part of the ALQ
operation: The Andreev levels cannot be manipulated if the
phase dynamics were frozen because, first, any manipulation \J
requires variation of the current and secondly, the read out of \
the Andreev levels can be only performed via measuring the ho
quantum state of the loop oscillator. An obvious way to solve \/ ¢2Ea
this problem and preserve the qubit property of the coupled \ /
system is to “enslave” the loop oscillator by choosing the 0 i 3
oscillator level spacingiw, much larger than the Andreev
level spacingfiw,>2E,. Then the Andreev state evolution  FIG. 5. Potential energy diagram for two displaced oscillator
will not excite the oscillator, which will remain in the ground states corresponding to the different current states in the point con-
state and adiabatically follow the evolution of the Andreevtact(shown as arrowed circlgsThe plasma frequency, is large
levels. This implies that the phase is a fast variable whiclcompared to the Andreev level spacing; the oscillator remains in the
should be averaged out, leading to an effective qubit Hamilground state during the qubit evoluti¢dashed arroyv
tonian.

To facilitate the averaging procedure we take advantage
of the small amplitude of the phase fluctuatiops ¢— ¢,
< ¢, Which was already assumed when proceeding from Eq.
(33) to Eq. (35). This assumption is justified by the large o )
inductive energyE, > E,~A and it allows us to expand the where the bare contact reflectivi is renormalized by the

Andreev level Hamiltonian(38) in terms of small?&; then phase fluctuations

(ho)o= A(COS%UZ+ \Esin%eay> =hy(ps), (59

pr_oceeding to the current eigenbasgis> e‘i"x‘ﬁ‘ﬁe"‘n, we ob- R* =e 2R, A\ :12(¢e)/4|\/|hwg_ (59
tain
This renormalization effect can be understood as the effect of
() inertia of the loop oscillator, which hinders the current varia-
h,= A<C05ﬁ30'2+ VR sin%(ry> - i?ﬁazz h2 + hip. tions, i:e., it works against the ef_fect of the elect_ro_nic_back
2 2 scattering at the contact responsible for the hybridization of

(55  the current statesee discussion in the end of the Sec. )l D
) _ ‘The renormalization effect becomes increasingly strong in
Averaging over fast phase fluctuations can be done dithe [imit of a classical oscillator with large “mass.” Because

rectly in Eq. (15) by performing explicit integration over of renormalization of the contact reflectivity, the Andreev
phase. However, there is a simpler way to get the same rggyeg| spectrum is modified,

sult. Equation(43) holds for a fluctuating phase provided the . /
oscillator is not excited. It can be viewed as the diagonal part ~ Ea(¢e) — E,(¢e) = AVCOS(d/2) + R* sin(¢/2),

with respect tog of a more general equation for a full den- (60)
sity matrix p(o¢, o’ ¢") for the Andreev levels plus oscilla-
tor system and the qubit frequency reduced. This might be important for

practical applications, because it would allow one to reduce
) o the qubit frequency by choosing the circuit parameters rather
ifidip = [hg + Min + Hoso p1- (56)  than by tuning the contact reflectivity.
Equation(58) gives an effective Hamiltoniah, for the
The interaction between the Andreev levels and the oscillatoALQ in the absence of interaction with phonons. Similarly,
given by the second term in E¢5) displaces the oscillator averaged over phase fluctuation, the density mafpx
steady state from the origin byZ#2M w,z) depending on the gives the density matrix for the ALQ. Keeping the same
direction of the current in the junction or, equivalently, the notationp for the qubit density matrix, we finally arrive at
state of the Andreev levelsee Fig. 5. We eliminate this the equation for the free evolution of the ALQ
term in Eq.(55) by applying the transformation i
iidp = [hy(¢be), p]. (61)

I(po) o, This equation is sufficient to describe the ALQ manipulation
N (57) (by driving the biasing fluxand read outby measuring the
©p induced current? and also the qubit-qubit interaction,
which is discussed in the next section.
and then average the resulting Hamiltonian over the oscilla-
tor ground state, taking into account the relatigf* P),
=exp(—AXp?)o/2) [(---)q indicates averaging over the oscil-
lator ground state As a result we get an effective Hamil- Our treatment of the interaction of the Andreev levels
tonian with phase fluctuations can be easily extended on the case of

h,— €APh,eP, A=

V. INDUCTIVE QUBIT-QUBIT COUPLING
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several inductively coupled SQUIDs to describe direct qubitrepeat the calculation of the previous section adding the La-
qubit coupling. Let us consider as an example two SQUIDgyrangianL.,, EQ. (19), to Eg. (30). By retaining in the
with different QPC reflectivitieR; # R,, identical circuit pa- electrode Green functions only the first-order correction in
rametersC andL, and mutual inductancé1. Then the in- the small interaction constant we arrive at the following
ductance terms in the Lagrangi&h6) written for the two  action:

qubits will take the form

~ Tﬁl ~ L M S,=- f dtydty7(ty)[DeT 7P AG (ty, 1,) €724/
= L= 62
¢ , ( e ) (62)

+(1+ \”E)Zei 7B AGH(ty, 1) 772?24 (t,), (66)

where?&l,z are fluctuating phases in the first and second quwhere the Green functiors, g read
bits. By introducing the normal modes for the LC oscillators

$— ey g we obtain the two-qubit Hamiltonian on form Ga(tit) = > [97(0,0t; — t,) + yj dr|y, |?

} ﬁ_c 2~T“—1~
o) 41

b2

similar to Eq.(55) o=%
H= 2> [A(Cos%crzﬁ \’Esin%ayJ X Jd'f d2(0,x;t; = 1) Vu(r,t)o,9'(x,05t - t,)].
i=1,2

(67)

5 *’IE[(_ D" 04+ Toop] +Hosei | (63)  In this equation, the quantltleﬁL‘% refer to the different parts
v g?(x<0,x’'<0:t) andg?(x>0,x’ >0;t), respectively, of

whereH,; describes the normal oscillator with frequency the translation-invariant free electron Green functgf!(x
wpi:c/fé?l_i—/\/l), and the index=1,2 refers to the firstand —Xx’,t), which obeys the equation

second qubit. Then we apply to E@3) the similar transfor-
mations as in the previous section, namely, we eliminate the
terms linear in Tﬁi by means of a canonical trans- (68)
formation H—exp(iZ;Ap)H exp-iZ;Ap), with A
:[(—1)‘+111021+Izazz]/(2\5thi2), and then average the

[ih6, + ooifid,— Aoy ]g' P (x = X', 1) = S(x = X') &(t).

The Green functiongf;’) in Eq. (67) are explicitly given by

transformed Hamiltonian over the ground state of the normal N _ e _ .
oscillators. As a result, we obtain an effective two-qubit SLRX0D==0(FX) 2hv, [ind+ Aoy = aido]al1),
Hamiltonian including direct qubit-qubit coupling 69)
— 2
H =hgy + gz + (€/h0)" ML L0007, 64 \Where 4 is given by the Fourier component,
The renormalized contact reflectivities are now givenRy = VA?=(fw)>
=Rexf—(Z2/4aM)(w; 3+ w,) . Proceeding to the adiabatic approximation discussed in

It is worth mentioning that the two-qubit configuration the previous sectiof(,— {e), and performing the transfor-
may be also realized with single SQUID containing a QPC mation (36), we arrive at the following effective action for
with two conducting modes. In this case, we have the twdhe Andreev level-phonon interaction:

Andreev level Hamiltonians coupled to the same loop oscil-

lator S, ph=" 'yf dtf dr|¢, |2n(x,t) V u(r,t), (70)
Ti(de) ~
H= E (hg,i —= 2(1)& d)(rzi) + Hoser (65) where
L2 e 2X¢dhv _
Averaging over the phase fluctuations, we arrive at the same n(x,t) = (1 + sgnxvR)A(x,t) (71)

interaction Hamiltonian as in Eq64) but with the loop in- 4hv e

ductancel substituting for M. Thus we come to an inter- gnd

esting conclusion that the effect of the phase fluctuations not -

only reduces the bare contact reflectivity but also introduces\(x,t) = 4%(d ) () + hA(dpe O RSI925 7, + H.c)

effective coupling of the Andreev levels of different conduct- —E%7o (72

ing modes in a multimode QPC. a?70x7]-

Taking into account the zero-order dynamic equation with

VI. ANDREEV LEVEL-PHONON INTERACTION respect toy, Bq. (42), and putting¢= .
A. Effective action ihdym= Ae‘i"mﬁ%&(cos% o, + VR sin% ay> )

In this section we take electron-phonon interaction into
account. We start with the derivation of an effective actionwe obtain for the quantityn(x,t), Eq. (71), the following
for the Andreev level-phonon interaction. To this end weexpression:
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n(x,t) = (V'E/Z)ngnxe‘z”‘xlﬁoxn, (74)  correlation functions. This is because the Andreev levels do
) _ ) ) ) not form a rigorously isolated system but rather belong to a
where «={e/fv. Finally, integrating ovem in the action |arge fermionic system of the superconducting electrons in

(70), we obtain the effective interaction on the form the contact electrodes. Thus to derive the collision terms, we
apply the many-body Keldysh-Green function techni§ue

S, ph= —fth 'yqxq?gxyl, (75) combined with the path integral approach. The method de-

q scribed below automatically takes into account many-body

effects in the form of the Pauli exclusion principle, leading to
a nonlinear form of the collision terms and eventually to the
suppression of decoherence.
+oo The starting point of the derivation is Eq4d.5) and(22)
%B —2KX o} . . A A

Y=Y\ 5y 2 dx F(q ,x)e"*sin(g,X), for the propagator, in which the integration over the fast

P 0 fermionic fieldsyy_ g and phasep has been performed while
integration over the phonons and Andreev states remains

where vy, is the effective constant of the Andreev level-
phonon coupling

= 24q,r
F(qiix) Jer|¢L(r)| el . (76) UZJD{Xq}DZ"]eiS/h- (79)
We notice that the Andreev level-phonon interaction in Eq. ) ) ) )
(75) has purely transverse origin, i.e., while inducing inter- 1he time evqut7|on in the action now follows along the
level transitions and hence relaxation, it does not produc?—_\“"dySh contout’ Cy, S=/c dtL, WhICh goes from % t0
any additional dephasing to the one associated with the ret, and then backward8:**3*The interaction is supposed
laxation. to be switched on and off adiabatically at the remote past
It is important to mention that the effective coupling con- == and the phonon bath is supposed to be in thermal equi-
stant is proportional taR, and it turns to zero in the case of liorium. The Lagrangian. has the form
perfectly transparent constriction. This results from the al- . . ry, —
ready mentioned fact that the relevant phonons have small L= n(ifd - anz)n—§ YaXqn0x7* Lpn.  (80)
wave vectors and are not able to provide large momentum
transfer(~2#k) during scattering with electrons. whereL, is given by Eq.(20). To reduce the time integra-
The effective action in Eq$75) and(76) was derived for tion along the Keldysh contour to an ordinary time integral,
a given realization of the time dependent phase. To take int¢/€ distinguish forward and backward branches of the con-
account the effect of phase fluctuation, we have to apply théour by labeling them with indes=1,2, and introduce the
transformation in Eq(57) to the action(75); the Lagrange two-component fields;* and X3. Since the action is local in

form of the transformation reads time, it can be rewritten a$s=/*Zdt(L'-L?), where LS
. =L, 7, X3
n— exp(if(dwﬂz dr}&(r)) 7. (77 The first step of the derivation is to integrate out the pho-
2h non fields, which will give rise to an effective self-interaction

Then the integration over the phase adds the fagtoto the for the field »

action, see Eq59), which simply implies a renormalization _ 1 —
of the coupling constant Sl 7 m] =~ 5 | dut [ n(O)]°
¥ _ A\ ~ — ’
a7 %€ (78 XDt =) It @), (8D

This result can be expected: since the Andreev level-phonon.
coupling is transverse in the current basis and depends on ti{d
contact reflectivity, the renormalized reflectiviey* rather

than the bare one has to enter the coupling cons’gént
=y4(R*); this is consistent with Eq$76) and(78).

th the kernelli(t—t’) given by

D(t-t') = 2 |72Dg(t - 1),
q

sg N — _ (i s s’ 1

B. Kinetic equation Dy (t=1) == (i#A)Te(X3(U%q (), (82)

Qubit decoherence is usually described through collisiorWhereDq(t—t") is the equilibrium Keldysh Green function of
terms in the Liouville equation for the qubit density matrix the phonons represented by th& 2 matrix in the Keldysh
taking into account the interaction with an environment. Ourspace. In these equatiofig; is the time-ordering operator on
goal will now be to derive the phonon-induced collision the Keldysh contour and, is the Pauli matrix operating in
terms in Eq(61) for the ALQ density matrix, and to evaluate the Keldysh space; summation over repeated indices is im-
the decoherence of the ALQ. plied.

While the description of free qubit evolution was possible ~ The next step is to take advantage of the weak electron-
in terms of the single-particle density matrix, evaluation ofPhonon interaction, and to decouple the four-fermionic inter-
the collision terms goes beyond the single-particle approxiaction term in Eq.(81) by introducing the Hubbard-

mation and requires the knowledgeeadéctronictwo-particle  Stratonovich field ij}(t,t’), which is a matrix in the
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Keldysh'NambU'time Space. Before dOing thiS, itis ConVe')\phb*)b' we arrive at the expression for the Se'f-energy

nient to explicitly extract the small parametgp, which A ~ Lo
determines the electron-phonon coupling strength, from th 8‘2 with G being replaced by, while D is given by Eq.

kernel D in Eq. (281) by redefining the kerneD—\,,D To proceed with the derivation of the kinetic equation, it
[Nph~ (v/9)(w/ wp)*<1, wp is the Debye frequendyAs a s convenient to introduce a triangular form for the Keldysh-
result, we get Green function by performing a transformation in Keldysh
; space
U= f DgDznexp{(i/ﬁ) f dtdt’ () [L(t,t) 7, GR GK 1/1 -1
G"LTZGL_]-:( A)’ L:_/_< )1 (91)
. ¢ g . ] 0 G 2\l 1
- 2 (L) 75 % (U) +IW[G] |, 83 .
(L) (1) 9] 83 where GRA=G1-G!22D js the retardedadvancedl Green

function andGX=G+G??°=G1?+G? is the Keldysh com-

where L(t,t')=(ihg,-E,07) dt-t") is diagonal in the ponent. Similar relations also hold for the self-energy. Then

Keldysh space and Eq. (90) takes the form
. % S
WG] = o f dtdt’gfjg(t,t’) LG=1+3G. (92
ph

. b sdr s A kinetic equation is obtained by considering the difference
XDt -t) 7P [0t Dodps, (84 petween Eq.(92 and its Hermitian conjugate for the
Keldysh componenr

ss N — sS4 _ 47 P ’ ss N
2eptU) SIDZ (-G des. (89) ih(d+ ) G(L 1) — Exo, GX(L.)]
.EquaFion(83) desc_ribe_s thve dynamics of the fieldinteract- = (SRGK - GKSA + SKGA - GRSK)(1,t).  (93)
ing with the effective fields. In terms of the Keldysh-Green ) ) ) )
function for the fields, The right-hand side of Eq93) describes the qubit decoher-
, ence as well as dynamic corrections due to the phoffbims.
Gj%(t,t’) == (ilh) (TR 7y (1)), (86)  the absence of the coupling to phonons, the solution of Eq.

93) has the form
this evolution is described by the Dyson equation ©3

Gg(t,t') =(- i/h)e—iE;o-Zt/hFeiE;O'Zt’/ﬁ, (94)

. . whereF is a time-independent matrix determined by the ini-
where the self-energ}, depends on the effective fieldd A tial state of the qubit. When a weak interaction with the

closed equation fo can be derived by integrating out the Phonons is switched on, an asymptotic solution to &)
field 7 in Eq. (83). This procedure leads to the equation ~ ¢an be written in the form

GK(Lt') = (= ifh)e B (t +17)/2] + F(t,t') }Bacd
(95

(Lr,- 12[G]r)G=1, (87)

U= f DG,

. ) “ v v where the matrixF is, on the time scalé/E,, a slowly
SG1h==iTrIn(L7, - 7,2[G]) + WG], (88)  evolving function of the global timdt+t’)/2 (Markovian

where Tr denotes both the matrix trace in the Keldysh-approximation, and Fis a rapidly oscillating small-
Nambu space and the integration over the time variableamplitude correction(see Appendix B Equations for the
Noticing that the action is Iargé{g]~)\;ﬁ, we evaluate the Matrix elements of are .denved in Append|x B, Eq$B14)

integral in Eq.(88) within the saddle-point approximation and(B15), and for the diagonal matrix elements they read

(cf. Ref. 38. The corresponding saddle-point equation is de-

14
rived by varying the action with respect & which yields dF1==dF,=~ E[(ZN *+*D(F1—Fp) +FFp - 1],

(L7, 72[G17)G = Nopl. (89) (96)
while for the off-diagonal matrix elemefft;,= F*21 the equa-

Comparing Egs.(87) and (89), we obtain the reIatiorQ tion has the form

=N\prG. Written in the terms ofG,

14 .
(L7~ T3 DpGlm)G =1, (90 F12= 7| S@N+L=F)+ (0% &Fy) [Pz

the saddle-point equation is the Dyson equation for the qubit B
Keldysh-Green functior{86) in which the self-energy con- F ) =(F1-F/2, 97

tains only an undressed vertex part and a free phonon Gregghere v is the phonon-induced transition rate between the
function. Including the parametar,, back into the kerneD, qubit levels
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d%q
\Y
)3

v=(27lh) f 2

Yol ?0(2E, ~ i€)g). (98)
N=(e?fFa—1)"1 is the phonon distribution function at a fre- PR
quency equal to the qubit level spacig 1/kT and s and &, Y
are small dynamic corrections defined in E§16). ] AN

For equal timeg=t’, GX(t,t) is related to the qubit den- S
sity matrix (39) as follows: Gﬁo,(t,t):(—i/ ) 2040 (1)
-3, ], and therefore Eq9(96) and (97) in fact give the S el
kinetic equation Eor the qybit density matrix in the interac- e, e
tion picturep=eFara/ipe Bl F =2p —1 F1,=Zp, It % 2 4 6
is instructive to write Eq(96) in terms of the qubit occupa- vt
tion numbersn,=1-p,,,

~ee
.~

FIG. 6. Decay with time of a “cat” statedp,(0)=p12(0)=1/2].
diny == dny=— [ (N+ 1)ny(1 - np) — Nnp(1 —ny)]. The bold line indicates the evolution of bothormalized density
(99) matrix elements for ALQ for 1,$:O.ZE;. For comparison, expo-
nential relaxation and dephasing of a macroscopic superconducting
The right-hand side of this equation has the standard form ofubit are illustrated with the dashed and dashed-dotted lines,
the electron-phonon collision term, yielding the Fermi distri- respectively.
bution for the equilibrium occupation numbers

no. = _1 (100 BE,> 1. At this temperature, the most interesting is the op-

12T B q posite, nonlinear regimeép,(0)sinh(BE,)>1. In this case,
there is a wide time intervdks sinI"(,BE;)/v, where both the

This conclusion is consistent with the well known fact thatrelaxation and dephasing follow the power lésee Fig. b

the Fermi distribution of the Andreev levels gives correct
magnitude for the equilibrium Josephson currérif Fur- 1 p1(0) 1
thermore, it follows from Eqs(99) and (100 that Tr p(t) IpAt) = e palt) = 5—(0)—,[
=1. Then the equations for the two independent components g P2 Y
of the density matrixp,=(p11—pp2)/2, andpy, omitting the  and only at very large times>sinh(8E,)/ v, the decoher-
dynamic corrections, are given by ence undergoes a crossover to an exponential regime similar
to Eq.(105. We note that the exponentially small relaxation

(106)

— 2
dpz=— (2N + 1)p,— p; - 1/4], (10D rate in the linear regime is well known for the quasiparticle
~ _ recombination in bulk superconductdts.
dp12==vIN+1/12 =p,)p1,. (102
These nonlinear equations are drastically different from the C. Evaluation of the transition rate

linear Bloch-Redfield equation describing the decoherence of We conclude our study with the evaluation of the phonon-
macroscopic superconducting qub’ﬁsand.the_y have quali- induced transition ratey in Eq. (98). To evaluate the transi-
tatively different solutions, as illustrated in Fig. 6. The exacttion rate, one needs to specify the geometry of the junction in

solutions for Eqs(101) and (102 read greater detail. Let us suppose that our adiabatic constriction,
5,0t , Eq. (4), is formed by a hard-wall potential and has an axial
Sp,(t) = 2 - - I=———, symmetry. Under these assumptions, the Fourier component
1+ 3p0)sinh(BE) (1 -€e™) sinh(BE,) of the transverse wave function in E6) has the form
(103
F(qiix) = ZM! (107)
~ p1o(0)e " r. (9.
p1at) = (104)

wherer | (x) is the radius of the constriction cross section.
0 ) o o The magnitude of the relaxation rate essentially depends on
where dp,(t)=p, ~ p,(t) is the deviation from the equilibrium  the parameter, (0)Q, wherer , (0) is the radius of the neck
p=(1/2)tanh BE,/2). The evolutions of the diagon@klax-  of the constriction andQ=2E./#s is the wave vector of
ation) and off-diagonaldephasingparts of the density ma- phonons responsible for the interlevel transitions; for atomic-
trix are qualitatively *similar. One may distinguish the linear sjze constrictions, this parameter is small(0)Q<1. Let us
regime dp,(0)sinh(BE,) <1, when the decoherence is deter- assume that the qubit level spacing is not too snEJIA
mined by the exponential law >s/v; then the phonon wave vect@ is large compared to
Sp() = Sp (00T, Buolt) = py(0)€TV2. (105 ;Bﬁclt?ovr?g; E.enetratlon length of the Andreev level wave
However, the decoherence rafé becomes exponentially Let us for a moment assume that the Andreev level wave
small at temperature smaller than the qubit level spacindunction does not spread out in the electrodes, but remains

1+ 8p,(0)sinh(BE)(1 -’
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tions on the junction capacitors in the case of the macro-
scopic qubits. Thus, in principle, neither small junction ca-

pacitance nor large loop inductance is critical for the ALQ

operation. Secondly, the ALQ is based on a QPC with large,
almost full, transparency, in contrast to classical tunnel junc-
tions employed in the macroscopic superconducting qubits.
Large contact transparency is required for placing Andreev
levels deep within the superconducting energy gap to achieve
good decoupling from the continuum electronic states. To
guarantee good separation of the qubit levels from the con-
tinuum, the amplitude of the phase fluctuations around the
biasing point¢=~ 7 must be restricted to small values, which

FIG. 7. Interaction region of the Andreev levels with phonons inimplies small inductance of the qubit loop.

short QPC(dark shadow and long QPCllight shadow; in long In the tunnel junctions of the macroscopic qubits, An-
QPC, increase of the constriction radu(ﬂashed ||na3 can be dl’eeV IeVeIS are faSt Val’lab|ES WhOSE eﬁect, after aVerag'ng,
neglected. reduces to the Josephson potential energy added to the

Hamiltonian of the loop oscillator. In the transparent junction
of the ALQ, Andreev levels are slow variables which cannot
be averaged out and the full description includes the Andreev
two-level Hamiltonian strongly coupled to the quantum loop
oscillator. Derivation of the effective two-level Hamiltonian
goes beyond the tunnel model approximation and is done by
dncorporating the exact boundary condition into the action of
the contact.

confined in the transverse direction(x)=const=r  (0) (see
Fig. 7); then the Fourier component in E(LO7) is close to
unity and the interaction region in E¢Z6) is limited by the
penetration length of the Andreev state-1/«, restricting
relevant phonon longitudinal wave vectors to small value

G~ k<< Q. The transition rate i this case reads The qubit read out is performed by measuriflgctuat-
B Y’R* 5 . 1 ing) persistent current or induced flux in the qubit loop. To
- 16hpszKQ ~ R* (G/E) (B, (108 simplify the interpretation of the measurements, the loop
. . plasma frequency is supposed to be large compared to the
where 7i(E;) ~E; /03 is a bulk electron-phonon relax- qubit frequency so that the loop oscillator is “enslaved” by
ation rate at the Andreev level enerd@y is the Debye the Andreev levels making the current to directly follow the
temperaturg This result has been derived in Ref. 88-  Andreev level evolution. Other regimes, e.g., resonance be-
though neglecting the renormalization effecnd it can be tween the Andreev levels and the loop oscillator, can also be
qualitatively applied to long constrictions, whose length ex-considered but they remain outside the scope of this paper.
ceeds the coherence length. For the short constrictions con- Typical circuit parameters for the ALQ could be chosen as
sidered herd. <1/k, the effect of spreading out of the An- follows: The Josephson coupling energy for a single open
dreev level wave function is essential and the approximatiomonducting mode is quite largé;=~ A, giving considerable
r, =const is not applicable. Josephson critical currert~400 nA for Nb. For a bare

Let us adopt the following model for the constriction contact reflectivityR<0.01 and a contact capacitan
shaper  (x)=r, (0)(1-|x|/L)™, a>1. It is then easy to see ~0.1 pF, and a loop inductante~ 0.1 nH, the loop plasma
that the integral in Eq(76) will have a cut off at|x|=L  frequency w,~10"s™ and the inductive energyE, /%
<1/k. The functionJ;(2)/Z in Eq. (107) can with good ~10%s1~10Ay,/%, exceed, as required, the qubit level
accuracy be approximated with the functih/2)é(zy-z),  spacingE,/# ~10'%™. In temperature units, the latter cor-
wherez,=1 and the integral in Eq(76) is easily evaluated, responds to approximately 100 mK. Therefore, at typical ex-
giving perimental temperatures of 10-20 mK the system should ex-

hibit pronounced quantum dynamics.
v= kL, (109 In the absence of microscopic interaction of the Andreev

i.e., the transition rate in short constrictions is significantly/evels with other microscopic modes in the junction, a full
reduced. This is the effect of the small spatial region avail-description of the ALQ dynamics is given by a reduced

able for the Andreev level-phonon interaction in short QPC Single-particle electronic density matrix. This concerns the
qubit manipulation with external fields, qubit measurement,

and qubit-qubit coupling. It is important to emphasize that
VII. CONCLUSION the fermion.ic origin pf the Andreev Ievels_dogs not affect this
macroscopic behavior of the system, which is adequately de-
Let us summarize the outlined theory for the Andreevscribed with the two-level density matrix and the Liouville
level qubit(ALQ). The ALQ belongs to the family of super- equation similar to any other qubit.
conducting flux qubits, but it differs from the macroscopic  Even if good decoupling of the qubit states from the con-
flux qubits—® in several important respects. First, the quan-tinuum electronic states is achieved, there are still soft mi-
tum hybridization of the fluxand persistent currenstates in  croscopic modes in the junction that could couple to the
the ALQ loop is produced by electronic backscattering in theAndreev levels. These modes present a potential source of
quantum point contadiQPQ rather than by charge fluctua- “intrinsic” decoherence, in addition to the commonly consid-

Yo
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ered external decoherence, e.g., due to fluctuating biasirtpe electronic fields, the propagator in EQ2) takes the
and read out circuits. We have considered such intrinsic dgform
coherence of the ALQ related to acoustic phonons under the
simplest assumptions about the phonon equilibrium and the
Markovian evolution. It turns out that the collision terms in

the kinetic equation are nonlinear, in contrast to the linear
master equation for the macroscopic superconducting
qubits?? This reflects the fermionic nature of the Andreev SHlE —iTrIn(l +————gk
states and leads to considerable enhancement of the decoher- (1+VR?
ence time at low temperature. One can understand this effect (A2)
in the following way. Andreev levels belong to a many-body

system of superconducting electrons. Although the macroHereg is the Green function defined in E(B2),

scopic behavior of the ALQ can be expressed in terms of the -
single-particle density matrix, the microscopic interaction a(t) = - (1/Av) d_we—iwt ho+ Aoy

with phonons involves two-particle correlation functions, . 27 VAZ-%%(w +i sgnew 0)%’
which are sensitive to the fermionic nature of the Andreev

states and obey the Pauli exclusion principle. This leads to a (A3)

reduced probability of phonon-induced interlevel transitions, 4 the matrix product in EqA2) also includes the time

and hence to a slower decoherence. o convolutions. Taking advantage of the sniajland expand-
Furthermore, the rate of phonon-induced transitions berng the action(A2), the lowest order term reads

tween the Andreev levels is significantly reduced compared
to the bulk transition rate. The reason is that both the An- +oo )
dreev levels belong to the same normal electronic mode; this S ¢l/h = - i(D/4)tff dt;dtg™(t; — tp)e 72 g (t,
together with a rapid spreading out of the Andreev level e
wave function in the contact electrode strongly reduces the —t;)eo2t/2, (A4)
relevant phonon phase space.

In this paper, only the case of a single-mode QPC wagvhere the trace refers to the Nambu space. After taking the
considered for clarity. However, the approach might also bdrace, the action can be written in the following form:
relevant for macroscopic Josephson qubits with tunnel junc-

Ud p1= J D2yD%y €5 = exliS[ pl/h}, (A1)

e—i Uzd)/ZQé chgb/Z) i

tions. In junctions with disordered tunnel barriers, open con- _ fﬂc _ $(ty) — &(tp)

ducting modes with large transmissivity are pre$édt This Selh . dtdty| aty = tp)co 2

introduces low-energy Andreev levels, which implies that

quantum phase fluctuations become coupled to these An- + B(t, ~ t )cos¢(tl)+¢(t2)] (A5)

dreev levels, and the system must be described with the ef- o 2 ’

fective ALQ-type Hamiltonian. Finally, the effective ALQ .

Hamiltonian might be appropriate faFwave qubits for ge- With the kernelsa and 8 given by

ometries where low-energy Andreev levels, midgap stétes, .

build up in the junction. Y P alt) =i(D/2)(A/20) HY (A ) P, (AB)
B(t) = =i (D/2)(AI20)[HI (tAIR) 2, (A7)
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e2 +0 - k12 —
o) =- f drZla(7) - B(7)c0S ] Dy =2m sgr@% vPalel-0). (B
3 D2 After integrating Eq(B1) over w, we obtain equation for the
EZT[l (1/3)cos¢] (A9)  Keldysh function at coinciding times
i_s the correption to the contact capacitance due to quasipar- GK(t) = f d—wGK(t) (B8)
ticle tunneling34*° 27
APPENDIX B: DERIVATION OF THE ihGX(t) - EjLo, GR(D)] =g+ 1,(1) + 1,(t),  (B9)

KINETIC EQUATION

wherelo=(1/24%)Doe* 50, and
In this Appendix we derive Eqg96) and (97) from the a
equation for the Keldysh functiof®3). It is convenient to —idQde [ ' .
write the equation in the mixed representation [4(t) = 2 (2m? J dr(2Ng, + 1) D[ HEard7GK ¢

i GR(t) - E[ 05, GR(t
3G, = Bl 72, G,(V)] - 7/2) — gt Eqodhr, o GK(t— 72)o,—H.cl,

— RRK _ ~KS'A KA _ K
= (RGN - GFsA+3KGA-GRSKN) (),  (BD) (B10)
where
dQdw,d ,
5 o= [ g A= f o f drDy[e7 V7, G
G,(t) = | dre"G(t + 7/2,t - 7/2) (B2) 2(2m) 0 1
_ _ _ - 112)0,GX (t- 7/2) + H.cl. (B11)
and the products include the convolutions defined by the 2
equation For weak electron-phonon interaction, the right-hand side of
Eqg. (B9) is a small perturbation, which allows one to con-
(AB), (1) = J d(“;ld)‘;’Z J dTldTZei[(w_w1)72+(w_w2)Tl]Awl(t struct an asymptotic solution by using an improved perturba-
™ tion expansion
+ 71/2)Bw2(t - 7l2). (B3)

Kip) = : S, ol + ne(n) ELotlh
Neglecting the effect of the phonons, we replace the retardedG“’(t) (2miff)e (F‘"(M) gl)‘ Fo (t))e‘ ’

and advanced Green functions of the quB®* in the right-

hand side of Eq(B1) by the free Green function§?* (B12)
=(hw-E,0,£i0)™, which are time independent in the mixed
representation. Thus the time dependence in the self-energy " F.(t)
only comes from the Keldysh compone@. The self- Fw(t):‘s(w_Eagzlh)( 0 Fz(t)) + )
energy components take the form 0 F
x( . 12(t)). (B13)
Fi(t) O

. dQ
STN0 = #1210, | S2IDGIA + DG (0],
In Eqg. (B12), \ is a formal perturbation parameter that re-

(B4) flects weak electron-phonon interactietD, and allows one
to develop a systematic perturbative expansion. In the zero-
K ) K order approximation with respect to\, the (time-
2,1 = (i4/2) o, (Dg DO)[(2Ng + DGE (1) independentmatrix F in Eq. (B13) is the solution of Eq.
(B9) without the right-hand side. The first-order equation
+GS—Q‘GO)—Q]0X, (B5)  determines the time dependence in this matvisich ab-
sorbs terms that formally diverge with time in a straightfor-
where ward perturbative expansign
dqy’ Dqr
RA _ K_ _ v
Pa f 20— zio Do~ (/MENe* Do, 0F1= = aF2= = J[(2N+ 1)(Fy = Fp) + FiF, - 1],
(B6) (B14)
Nq=(e#"?-1)"1is the equilibrium phonon distribution func-
, . . : » '
Eg?ﬁ andD,, is the spectral weight function of the phonon IF1p= - 5(2N+ 1-F) +2i(5+ 8F,) |Fua
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FA0) =(F1—FpI2, (B15) GFV =T,0,+ T,0,+ T 0, (B17)

wherey:DZE;,,,/h2 is the phonon-induced transition rate be- whereo,=(1/2)(oyxioy)
tween the qubit IeveIN:NzE;/ A and the quantities

T,= e ()4 - 6)F2,1) + C.C., (B18)
dQ D
6:(1/%2)} _(2N9+1)—Q*| Lk ~
dm O+ 2B/ T =T, = e EM (N + 1/2) + 2i(8+ 6oF ) JF 15(0),
do D - dQD
8= (L1242 J[ o B16 = 2r ¢
0= ( ) 27 O+ 2E0% (B16) &= (1/2%) J( 0 (B19)

determine the phonon-induced shift of the qubit frequencyyt follows from these equations th&® indeed rapidly os-
The higher order equations determine the rapidly oscillatingsjjjates, with the frequencyH,/% and has relatively small
termng‘) in Eq. (B12); e.g., the equation deﬁul) reads amplitude, proportional tdiv/E;.
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