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Dynamics and phonon-induced decoherence of Andreev level qubit
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We present a detailed theory for the Andreev level qubit, a system consisting of a highly transmissive
quantum point contact embedded in a superconducting loop. The two-level Hamiltonian for Andreev levels
interacting with quantum phase fluctuations is derived by using a path integral method. We also derive a kinetic
equation describing qubit decoherence due to interaction of the Andreev levels with acoustic phonons. The
collision terms are nonlinear due to the fermionic nature of the Andreev states, leading to slow nonexponential
relaxation and dephasing of the qubit at temperatures smaller than the qubit level spacing.
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I. INTRODUCTION

The possibility to employ Andreev bound levels in super-
conducting contacts for quantum computation has been sug-
gested in Refs. 1 and 2. The proposed Andreev level qubit
sALQd consists of a highly transmissive, with reflectivityR
!1, quantum point contactsQPCd embedded in a low induc-
tance superconducting loop. In the ALQ, quantum informa-
tion is stored in the microscopic two-level system of Andreev
bound states in the contact. Hybridization of the clockwise
and counterclockwise persistent current states in the ALQ
loop is produced by the microscopic processes of electronic
back scattering in the QPC. This is different from the mac-
roscopic superconducting flux qubits3–5 and charge-phase
qubit,6 where the hybridization is provided by charge fluc-
tuations on the tunnel junction capacitors. Thus the require-
ment of large charging energy or large loop inductance is not
critical for the ALQ. A single ALQ consists of a pair of
Andreev bound levels belonging to the same normal con-
ducting mode in the QPC; a multimode QPC will form a
qubit cluster. The way of ALQ operation is similar to the one
of the experimentally tested flux qubits3–5—the Andreev lev-
els can be excited by driving a biasing magnetic flux through
the qubit loop.7,8,1 The read out method is also similar to the
flux and charge-phase qubits: the quantum state of the An-
dreev levels determines the magnitude and direction of the
persistent current circulating in the loop, and also the mag-
nitude of the induced flux. Since the quantum information is
stored in the microscopic system of Andreev levels, while
the access for manipulation and readout is provided by mac-
roscopic persistent currents, the ALQ occupies an intermedi-
ate place between the microscopic solid state qubitsssuch as
localized spins on impurities9 or quantum dots10d and mac-
roscopic superconducting qubits.

During the 1990’s, the Josephson transport in supercon-
ducting QPCs has been intensively investigated, and a num-
ber of remarkable experiments has been performed on atomic
size metallic QPCs using controllable break junction
techniques,11,12 as well as on gated quantum constrictions in
2D electron gas confined between superconductors.13 The
critical Josephson current and current-voltage characteristics

have been thoroughly examined in these experiments by ap-
plying current or voltage bias.13–16There was, however, one
experiment, particularly important in the qubit context,
where flux bias was implemented: Koopset al.17 inserted a
metallic QPC in a SQUID, and evaluated the Josephson
current-phase dependence by measuring the induced flux
with an inductively coupled SQUID magnetometer. Mea-
surements have only been reported for the equilibrium state.
Unfortunately, no experimental attempts to drive the QPC
out of equilibrium to some coherent or incoherent excited
state have been performed so far.

The purpose of this paper is to present a detailed theory
for the Andreev level qubit.2 We will also consider the
electron-phonon interaction as an “intrinsic” source of qubit
decoherence, and derive a kinetic equation for the qubit den-
sity matrix. The ALQ Hamiltonian and the kinetic equation
are derived by using a path integral method.18–20The central
technical difficulty here is to extend the method to contacts
with large transparency. This difficulty is overcome by incor-
porating the exact boundary condition in the QPC action.
Another important point discussed in the paper is the role of
charge electroneutrality in the junction electrodes, which af-
fects the qubit Hamiltonian.

The fermionic nature of the Andreev levels does not affect
the qubit operation and qubit-qubit coupling, but it plays an
important role for the qubit decoherence. We find that the
electron-phonon collision terms in the kinetic equation for
the ALQ differ qualitatively from the Bloch-Redfield master
equation21 commonly applied to study decoherence of the
macroscopic superconducting qubits.22 This results in a long
phonon-induced decoherence time for the ALQ; at tempera-
tures smaller than the qubit level spacing, both the relaxation
and dephasing processes are governed by a power law rather
than an exponential law.

The structure of the paper is the following. We discuss the
model description of the QPC in Sec. II, and then explain in
detail, in Sec. III, the path integral approach for a transmis-
sive QPC: we consider the action for the contact and derive
the effective Hamiltonian for Andreev levels interacting with
quantum phase fluctuations; the single-particle density ma-
trix and effective current operator are also discussed in this
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section. In Sec. IV we discuss averaging over fast phase
fluctuations and derive an effective Hamiltonian for the qu-
bit. This procedure is extended in Sec. V to the case of two
inductively coupled qubits to derive an expression for the
direct qubit-qubit interaction. Section VI is devoted to the
electron-phonon interaction: we derive an effective action for
the Andreev level-phonon interaction and calculate the cor-
responding collision terms in the equation for the qubit den-
sity matrix; we then present solution of the kinetic equation,
and evaluate the decoherence rate.

II. CONTACT HAMILTONIAN

Let us consider a superconducting quantum point contact
with bulk 3D electrodes. We model the contact with a
smooth on the Fermi wave length scalesadiabaticd constric-
tion and assume a local scatterer situated in the neck of the
constriction ssee Fig. 1d producing weak electronic back
scattering with reflectivityR!1. We further assume that the
constriction supports a single conducting mode.

We adopt the mean field approximation for the electrons
in the contact described with the Hamiltonian

He =E drC†sr ,tdhsr ,tdCsr ,td +
1

2
CV2std, s1d

where the first term is the BCS Hamiltonian for the bulk
superconducting electrons,Csr ,td being the two-component
Nambu field operator, and the second term describes the
charging energy of the contact capacitorC.18–20 The single-
particle Hamiltonianh in Eq. s1d has the form

h = F f− i" ¹ − se/cdAsr ,tdszg2

2m
− m + Usr d + ewsr ,tdGsz

+ Dsr ,tdeiszxsr ,tdsx, s2d

whereDsr ,td and xsr ,td are, respectively, the modulus and
phase of the superconducting order parameter, the potential
Usr d accounts for the confinement of electrons within the
contact as well as the electron scattering, whilewsr ,td and
Asr ,td are electromagnetic potentials. The voltage drop at
the contact,Vstd, in Eq. s1d is related to the discontinuity of

the electric potential at the contact,Vstd=ws−0,td−ws+0,td.
To investigate the decoherence effects, we allow the elec-
trons in the electrodes to interact with acoustic phonons, and
include the corresponding electron-phonon interaction and
phonon terms in the total Hamiltonian of the contact

Hc = He + He-ph + Hph. s3d

It is convenient to introduce the quasiclassicalsAndreevd
approximation for the superconducting electrons. Following
the standard procedure, we eliminate the rapidly space vary-
ing potentialUsr d by introducing quasiclassical wave func-
tions of the single conducting mode in the left and right
electrodes

Csr ,td = o
s=±

c'sr ',xdeisedx ksxdcssdsx,td, s4d

and couple these wave functions by means of a normal-
electron scattering matrix. In Eq.s4d, cssdsxd are slowly vary-
ing 1D envelopes for the longitudinal electron motionss
=± indicates the direction of the motiond; c'sr ' ,xd is a
normalized wave function of the transverse motion with en-
ergyE'sxd; psxd="ksxd=Î2mfm−E'sxdg=mvsxd is the qua-
siclassical longitudinal electronic momentum. The coupling
of the quasiclassical envelopes in the leftsLd and rightsRd
electrodescL,R is conveniently described by the transfer
matrix7,23

ScL
s+d

cL
s−d Ds0,td = T̂ScR

s+d

cR
s−d Ds0,td, s5d

T̂ = S1/d r * /d*

r/d 1/d*
D . s6d

Here d and r are the energy-independent transmission and
reflection amplitudes, respectively. Since any observable
quantity is expressed through a bilinear combination of the
envelopes with the sames, the energy-independent scatter-
ing phases can be eliminated from the boundary condition
s5d; hence, without loss of generality, the scattering ampli-
tudes will be further assumed to be reald=ÎD, r =ÎR, where
D and R are the transmission and reflection coefficients of
the contact, respectively.

The electromagnetic potentialswsr ,td , Asr ,td, and the
complex order parameter in Eq.s2d are to be found from the
Maxwell equations and the self-consistency equation. It is
convenient to present the Hamiltonian in a gauge-invariant
form by extracting the phase of the order parameter using a
local gauge transformationCsr ,td→eiszxsr ,td/2Csr ,td. Then
the superfluid momentumps="¹x /2−se/cdA, and the
gauge-invariant electric potentialw̃="ẋ /2+ew, appear in the
quasiclassical Hamiltonian of the electrode

hssd = svs− i"]xdsz + svps + w̃sz + Dsx, s7d

while the phase differencefstd=xRs0,td−xLs0,td appears in
the boundary condition

FIG. 1. Adiabatic superconducting constriction with a local scat-
terer sdark regiond in the neck. The length of the constriction is
small on the scale of the superconducting coherence length but
large on the scale of the Fermi wavelength.
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T̂ → eiszfstd/2T̂. s8d

In the bulk metallic electrodes with good screening, and at
the low frequencies relevant for the problem, the gauge-
invariant fieldsw̃sr ,td ,pssr ,td, are to be found from the elec-
troneutrality condition and current conservation24–26

dnsr ,td = 0, ¹ j sr ,td = 0, s9d

wherensr ,td is the electronic density. In the electrodes, the
charge imbalance relaxation yields the equilibrium relation
w̃=s]n/]md−1dn over distances exceeding the electric field
penetration length. Furthermore, in the absence of normal
dissipative current,ps is proportional to the total current den-
sity j =sen/mdps, which is negligibly small far from the con-
tact due to the rapid spreading out of the current in the point
contact geometry. Thus the conditionss9d result in complete
cancellation of the electromagnetic potentials in the elec-
trodes

w̃sx,td = 0, pssx,td = 0. s10d

Taking into account that the modulus of the order parameter
far from the contact is equal to the equilibrium value27 D
=const, we conclude that the Hamiltonians7d takes the equi-
librium form.

The potentialw̃ can be expressed through the electric field

E, w̃="ẋ̄ /2+eedx E, by introducing the gauge-invariant
phasex̄=x−s2e/c"dedx A=s2/qdedx ps. The spatial distri-
bution of these quantities is illustrated in Fig. 2. Sincew̃
vanishes far from the contact, andx̄ is constant according to
Eq. s10d, then the time derivative of the gauge-invariant

phase difference across the contactf̄
˙ = ẋ̄Rs0,td− ẋ̄Ls0,td is

related to the voltage dropV=e−`
` dx E,

f̄
˙ std =

2eV

"
s11d

sJosephson relationd. In the SQUID, this relation is equiva-
lent to the phase versus flux relationf̄=2eF /"c since the
voltage drop across the contact is generated by the time
variation of the magnetic fluxF threading the SQUID. Fi-
nally, we notice that the gauge-invariant phase differencef̄
rather thanf enters the boundary conditions8d, which can be
explicitly seen by extracting the Aharonov-Bohm phase from
the transfer matrix. Thus the gauge-invariant phase differ-
ence remains the only free collective variable whose dynam-

ics is determined by the electrodynamic environment of the
contact. Below we will not distinguish betweenf̄ and f,
because the difference is negligibly small in the QPC.

Proceeding with a discussion of the interaction of elec-
trons with phonons, we consider only longitudinal acoustic
phonons and describe the interaction within the deformation
potential approximation

He-ph = gE dr ¹ usr ,tdC†sr ,tdszCsr ,td, s12d

whereg is the deformation potential constant,usr ,td is the
phonon field operator,

usr d = o
q
Î "

2rVVq

q

q
sbqeiq·r + bq

†e−iq·rd, Vq = sq,

s13d

s is the sound velocity, andr is the crystal mass density. The
Hamiltonian of free phonons has the standard form

Hph = o
q

"Vqsbq
†bq + 1/2d. s14d

Our strategy will now be to derive an effective Hamil-
tonian for the Andreev levels including interaction with
phonons. If the phase difference would be a classical vari-
able, this derivation can in principle be done by direct trun-
cation of the Hamiltonians3d. However, in the presence of
quantum phase fluctuations it is convenient to apply the path
integral technique.

III. CONTACT EFFECTIVE ACTION

Let us consider the whole system, the QPC and supercon-
ducting loop ssee Fig. 3d, and introduce the path integral
representation for the propagator

U =E D2cLD2cRDhXqjDfeiedt Ltot/q, Xq = bq + bq
* .

s15d

The Lagrangian of the systemLtot consists of the contact part
Lc, and the part describing the circulating current in the loop.

FIG. 2. Spatial distribution of the electric potentialw sthin lined,
gauge invariant potentialw̃ sbold lined, and the time derivative of

the gauge invariant phaseẋ̄ sdashed lined in the vicinity of the
contact.

FIG. 3. Sketch of the Andreev level qubit: a low inductance
superconducting loop with a quantum point contactsQPCd. F is the
magnetic flux; the arrows indicate fluctuating persistent currents.
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The latter is conveniently combined with the charge term
from the electronic Hamiltonians1d giving the Lagrangian of
the loop oscillatorLosc

Ltot = Lc + Losc, Losc= S "

2e
D2SC

2
s]tfd2 −

c2

2L
sf − fed2D ,

s16d

wherefe corresponds to the bias magnetic flux andL is the
loop inductance. The remaining part of the contact Lagrang-
ian consists, similar to Eq.s3d, of the electronic part, the
phonon part, and the electron-phonon interaction

Lc = Le + Lph + Le-ph. s17d

In the quasiclassical approximation, the electronic La-
grangian splits into two partsLa, a=L ,R, corresponding to
the left and right electrodes,

La = o
s=±

E dx c̄a
ssdsx,tdLssdsx,tdca

ssdsx,td,

Lssdsx,td = i"]t + svi"]xsz − Dsx, s18d

and a third partLBC, which accounts for the boundary con-
dition discussed in detail in the next section. Noting that
relaxation processes are caused by phonons with small wave
vectors compared to the Fermi wave vectorq!k transitions
between the statescs+d and cs−d are forbidden, and the
electron-phonon Lagrangian can be written in the form

Le-ph = − g o
a=L,R

o
s=±

E dr uc'u2c̄a
ssdsx,tdszca

ssdsx,td ¹ usr ,td.

s19d

The phonon Lagrangian is given by

Lph =
1

2o
q

s"/2VqdXqfsi]td2 − Vq
2gXq. s20d

A. Boundary condition

The boundary conditions5d is valid for any contact trans-
parency. To include this boundary condition in the path inte-
gral formulation, we introduce an additional term in the
Lagrangian2

LBC = h̄stdo
s

fÎDe−iszfstd/4cL
ssds0,td

− s1 +ÎRdeiszfstd/4cR
ssds0,tdg + H.c., s21d

whereh is an auxiliary fermionic Nambu field playing the
role of a Lagrange multiplier. Correspondingly, the integra-
tion over h is to be included in the propagator in Eq.s15d,
giving the following form for the electronic part of the
propagator:

Ue =E D2hD2cLD2cReiedtsLL+LR+LBCd/". s22d

Let us prove that such a Lagrangian indeed generates the
boundary conditionss5d ands8d. To this end, it is convenient

to take a step back and restore a nonquasiclassical form for
the fermionic field

csx,td = o
s

eisekdxcssdsx,td s23d

in the bulk part of the Lagrangian

LL + LR =E
−`

`

dx c̄sx,tdLsx,tdcsx,td,

Lsx,td = i"]t − fs− "2/2md]x
2 + E' − mgsz − Dsx. s24d

The dynamic equations and the boundary condition result
from the zero variation of the actionSe=edtsLL+LR+LBCd
with respect toc̄L,R and h̄,

dSe

dc̄L,Rsx,td
= 0,

dSe

dh̄std
= 0 s25d

or, in the explicit form,

Lsx,tdcLsx,td = − ÎDdsxdeiszfstd/4hstd,

Lsx,tdcRsx,td = s1 +ÎRddsxde−iszfstd/4hstd, s26d

and

ÎDe−iszfstd/4cLs0,td = s1 +ÎRdeiszfstd/4cRs0,td. s27d

Integrating Eqs.s26d over x in the close vicinity ofx=0
yields the relations

s"2/2mdsz]xcLs0,td = ÎDeiszfstd/4hstd,

s"2/2mdsz]xcRs0,td = s1 +ÎRde−iszfstd/4hstd. s28d

Then introducing again the quasiclassical envelopes and
combining Eqs.s27d ands28d with the quasiclassical relation

]xcL,Rs0,td = iko
s=±

scL,R
ssd s0,td, s29d

we get the boundary condition equivalent to Eqs.s5d ands8d.

B. Effective action for Andreev levels

We are now in a position to derive an effective action for
the Andreev levels. Following the procedure of Ref. 18, we
integrate out fast electronic fieldsca in Eq. s22d,

eiSh
0/" =E p

a=L,R
p
s=±

Dc̄a
ssdDca

ssdexpH i

"
E dt LeJ . s30d

We are then left with the effective actionSh
0, which contains

only variableshstd andfstd,

Sh
0 = −E dt1dt2h̄st1dfDe−iszfst1d/4gst1 − t2deiszfst2d/4 + s1

+ ÎRd2eiszfst1d/4gst1 − t2de−iszfst2d/4ghst2d, s31d

wheregstd is given by the Fourier component
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gv = −
"v + Dsx

"vÎD2 − s"vd2
. s32d

A connection between the effective actions31d and the An-
dreev levels can be established by considering the case of
time-independent phasef=const. Indeed, by writing the ef-
fective action in the Fourier representation

Sh
0 =

2s1 +ÎRd
"v

E dv

ÎD2 − s"vd2
h̄v

3F"v + DScos
f

2
sx − ÎRsin

f

2
syDGhv, s33d

we identify the spectrum of the system,"v= ±Easfd, by
calculating the eigenvalues of the matrix inside the brackets

Easfd = DÎcos2sf/2d + Rsin2sf/2d; s34d

this equation coincides with the well known Andreev level
spectrum28,29 ssee Fig. 4d. Thus we conclude that the fermi-
onic field h represents the Andreev levels.

Proceeding to a time-dependent phasefstd, we restrict the
rate of time variation to small values"]tf /4!D. Further-
more, the dynamics of the Andreev levels is also to be slow
Esfd!D, which implies that the contact reflectivity must be
small R!1, the ALQ must be biased atfe<p, and the
amplitude of the quantum phase fluctuationsf̃std=fstd−fe

must be sufficiently small,f̃!fe. We emphasize that the
constraint on the amplitude of the phase fluctuations is actu-
ally provided in our case by the loop geometry of the elec-
trodes having sufficiently small inductance; this constraint is
important to suppress the Landau-Zener transitions to the
continuum states. Under the imposed conditions, the nonlo-
cal in time kernelgv, Eq. s32d, can be replaced by a constant
value sadiabatic approximationd ÎD2−s"vd2→ÎD2−Ea

2=ze

with Ea=Esfed, leading to the equation

Sh
0 =

2s1 +ÎRd
"vze

E dt h̄std

3Fi"]t +
ÎR

4
"ḟsz + DScos

f

2
sx − ÎRsin

f

2
syDGhstd.

s35d

We then eliminate the term with the phase time derivative in
Eq. s35d by transformingh

h → S "vze

2s1 +ÎRd
D1/2

eisz
ÎRf/4eisyp/4h s36d

and finally arrive at the effective action

Sh
0 =E dt h̄stdfi"]t − haghstd, s37d

where

ha = De−isx
ÎRf/2Scos

f

2
sz + ÎRsin

f

2
syD s38d

describes the effective single-particle Hamiltonian for the
two-level Andreev system.2 The Hamiltonian in Eq.s38d dif-
fers by the exponential prefactor from the two-level Hamil-
tonian derived in Refs. 30 and 31 and further employed in
Refs. 32 and 33. This factor appears in the present derivation
after electric potential has been included in Eq.s1d to provide
the electroneutrality in the electrodesfsee text after Eq.s8dg.
The Hamiltonians are equivalent under stationary conditions
]tf=0 and the difference is not important for the adiabatic
dynamics. However, in general, the prefactor is important,
e.g., for derivation of the correct equation for the current
operator in Eq.s50d.

It is instructive to compare the case of the transparent
contact considered here with the case of a tunnel contact
extensively studied in MQC theory.18–20The physical differ-
ence between the two cases is that the Andreev level system
in transparent contacts is a slow one, while in tunnel contacts
it is fast because the Andreev level energy in tunnel contacts
is close toD. Within the present formalism, the integration
overc fields is similar in both cases. However, the next step,
the adiabatic approximation in Eqs.s31d and s32d is not al-
lowed in the tunnel limit; instead one should perform also
the integration overh in Eq. s22d, and make an expansion
over small D. The result of this calculation, presented in
Appendix A, coincides with the results of Refs. 18, 19, and
34.

C. Andreev level density matrix

Macroscopic properties of the Andreev levels are de-
scribed by asingle-particledensity matrixrastd. In particu-
lar, the Josephson current through the QPC is defined by this
matrix as shown in the next section. The Andreev level den-
sity matrix is a 232 matrix in the Nambu space defined via
statistical average

rastd = kĥstdĥ†stdl, s39d

whereĥ denotes the fermionic operator corresponding to the
Grassmann fieldh, and the average is taken over all elec-
tronic states. The statistical average in Eq.s39d is represented
by a path integral

rastd =E D2hD2cL,Rhstdh̄stdeiSe/" s40d

or, after the averaging overcL,R,

rastd =E D2hhstdh̄stdeiSh
0/". s41d

FIG. 4. Spectrum of the Andreev levels in a QPC with finite
reflectivity sR=0.04d ssolid lined. The level anticrossing is produced
by electronic backscattering; atR=0 the Andreev levelssdashed
lined coincide with the current eigenstates.
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A dynamic evolution of the Andreev level density matrix
is governed by a single-particle Hamiltonians38d. To derive
the dynamic equation forrastd we notice that a free evolution
of the Andreev variable,h, is described by equation

dSh
0

dh̄std
= 0, i"]th = hah. s42d

Then calculating the time derivative in Eq.s41d, and using
Eq. s42d and the corresponding conjugated equation, we ob-
tain

i"]tra = fha,rag. s43d

Thus the Andreev level dynamics is described by the Liou-
ville equation similar to ordinary quantum mechanical two-
level systems. In equilibrium, the density matrix is diagonal
in the Andreev level eigenbasis, and the matrix elements give
equilibrium level populations described by the Fermi factors
nFs±Ead. This is the initial condition for the qubit operation.
Since the sum of the level populationsnFsEad+nFs−Ead=1 is
preserved during the time evolution, the density matrix sat-
isfies the normalization condition Trrastd=1. For a QPC
with reflectivity R,0.01, the Andreev level energyEaspd
=ÎRD corresponds to a frequency of the order or larger than
10 GHz, which considerably exceeds typical experimental
temperaturessbelow 100 mKd. Thus the QPC should exhibit
well pronounced spin 1/2 quantum dynamics, which is the
basis for the qubit application.

D. Andreev level current

We conclude this section with a derivation of a single
particle current operator for the Andreev levels. A common
quantum-mechanical expression for the current applied to the
fields cL,R at x= 70 gives

IL,Rstd =
e

2m
fc̄L,Rs0,tds− i"]xdcL,Rs0,td + H.c.g s44d

or, using Eq.s28d,

Istd = IL,Rstd = sie/"dÎDh̄stdsze
−iszfstd/4cLs0,td + H.c.

s45d

fthe current is continuousILstd= IRstd by virtue of Eq.s27dg.
The same equation can be obtained by varying the electronic
part of the actionSe with respect to the phase difference

Istd =
− 2e

"

dSe

dfstd
. s46d

It is well known that the Josephson current through a short
superconducting constriction is only contributed by the An-
dreev levels. Having this in mind, we express the Josephson
current through the statistically average

kIstdl =E D2hD2cL,RIstdeiSe/" s47d

or, equivalently,

kIstdl = 2ei
d

dfstd E D2hD2cL,ReiSe/". s48d

Tracing out the fieldscL,R, we get the Josephson current in
terms of the Andreev variable

kIstdl = 2ei
d

dfstd E D2h eiSh
0/" =E D2h h̄stdI hstdeiSh

0/",

s49d

where

I =
2e

"

dha

df
= −

e

"
Isfde−isx

ÎRf/2sz, Isfd = DD sin
f

2
.

s50d

The 232 matrix I appearing in this equation corresponds to
an effective single particle current operator of the Andreev
levels. Indeed, comparing equations41d for the Andreev
level density matrix with Eq.s49d, we find

kIstdl = TrsraId. s51d

Apparently the current operator in Eq.s50d does not com-
mute with the Andreev level Hamiltonians38d, fha,IgÞ0,
which is the consequence of the normal-electron reflection at
the QPC. Hence the Andreev level eigenstates consist of su-
perpositions of the current eigenstates, unlessR=0 ssee Fig.
4d. Correspondingly, the Andreev level current, defined as an
expectation value of the current operator over the Andreev
state

Ia = kIla = ±
2e

"

dEasfd
df

= 7
eDD2

2"Ea
sinf, s52d

differs from the current eigenvalues7eI /" fk¯la denotes
here a quantum-mechanical averaging over the Andreev level
eigenstateg. Thus the Andreev level current undergoes strong
quantum fluctuations. The spectral density of current-current
correlation function can be directly calculated by using Eqs.
s38d and s50d scf. Ref. 35d

Ssvd = kIla
2R tan2sf/2ddsv − 2Ea/"d. s53d

IV. AVERAGING OVER PHASE FLUCTUATIONS

Equations43d describes the dynamics of the Andreev lev-
els for a given realization of the time dependent phase across
the QPC. However, the phase dynamics is strongly coupled
to the Andreev levels. The intrinsic dynamics of the phase is
governed by the quantum Hamiltonian of the loop oscillator
fsee Eq.s16dg,

Hosc=
p2

2M
+

Mvp
2f̃2

2
, fp,fg = − i", M =

"2

8EC
,

s54d

wherevp=Î8ELEC/"2 is the plasma frequency of the oscil-
lator determined by the contact charging energyEC=e2/2C
and the loop inductive energyEL=s"c/2ed2s1/Ld. Thus the
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whole system is generally a multilevel one. On the other
hand, the phase dynamics and the coupling between the loop
oscillator and the Andreev levels is a vital part of the ALQ
operation: The Andreev levels cannot be manipulated if the
phase dynamics were frozen because, first, any manipulation
requires variation of the current and secondly, the read out of
the Andreev levels can be only performed via measuring the
quantum state of the loop oscillator. An obvious way to solve
this problem and preserve the qubit property of the coupled
system is to “enslave” the loop oscillator by choosing the
oscillator level spacing"vp much larger than the Andreev
level spacing"vp@2Ea. Then the Andreev state evolution
will not excite the oscillator, which will remain in the ground
state and adiabatically follow the evolution of the Andreev
levels. This implies that the phase is a fast variable which
should be averaged out, leading to an effective qubit Hamil-
tonian.

To facilitate the averaging procedure we take advantage
of the small amplitude of the phase fluctuationsf̃=f−fe
!fe, which was already assumed when proceeding from Eq.
s33d to Eq. s35d. This assumption is justified by the large
inductive energyEL@EJ<D and it allows us to expand the
Andreev level Hamiltonians38d in terms of smallf̃; then
proceeding to the current eigenbasish→e−isxÎRfe/4h, we ob-
tain

ha = DScos
fe

2
sz + ÎRsin

fe

2
syD −

Isfed
2

f̃sz = ha
0 + hint.

s55d

Averaging over fast phase fluctuations can be done di-
rectly in Eq. s15d by performing explicit integration over
phase. However, there is a simpler way to get the same re-
sult. Equations43d holds for a fluctuating phase provided the
oscillator is not excited. It can be viewed as the diagonal part
with respect tof of a more general equation for a full den-
sity matrix rssf ,s8f8d for the Andreev levels plus oscilla-
tor system

i"]tr = fha
0 + hint + Hosc,rg. s56d

The interaction between the Andreev levels and the oscillator
given by the second term in Eq.s55d displaces the oscillator
steady state from the origin by ±I /2Mvp

2 depending on the
direction of the current in the junction or, equivalently, the
state of the Andreev levelsssee Fig. 5d. We eliminate this
term in Eq.s55d by applying the transformation

ha → eiAphae
−iAp, A =

Isfedsz

2M"vp
2 , s57d

and then average the resulting Hamiltonian over the oscilla-
tor ground state, taking into account the relationkeiA pl0

=exps−A2kp2l0/2d fk¯l0 indicates averaging over the oscil-
lator ground stateg. As a result we get an effective Hamil-
tonian

khal0 = DScos
fe

2
sz + ÎR* sin

fe

2
syD = hqsfed, s58d

where the bare contact reflectivityR is renormalized by the
phase fluctuations

R* = e−2lR, l = I2sfed/4M"vp
3. s59d

This renormalization effect can be understood as the effect of
inertia of the loop oscillator, which hinders the current varia-
tions, i.e., it works against the effect of the electronic back
scattering at the contact responsible for the hybridization of
the current statesssee discussion in the end of the Sec. III Dd.
The renormalization effect becomes increasingly strong in
the limit of a classical oscillator with large “mass.” Because
of renormalization of the contact reflectivity, the Andreev
level spectrum is modified,

Easfed → Ea
*sfed = DÎcos2sfe/2d + R* sin2sfe/2d,

s60d

and the qubit frequency reduced. This might be important for
practical applications, because it would allow one to reduce
the qubit frequency by choosing the circuit parameters rather
than by tuning the contact reflectivity.

Equations58d gives an effective Hamiltonianhq for the
ALQ in the absence of interaction with phonons. Similarly,
averaged over phase fluctuation, the density matrixkrl0

gives the density matrix for the ALQ. Keeping the same
notationr for the qubit density matrix, we finally arrive at
the equation for the free evolution of the ALQ

i"]tr = fhqsfed,rg. s61d

This equation is sufficient to describe the ALQ manipulation
sby driving the biasing fluxd and read outsby measuring the
induced currentd,1,2 and also the qubit-qubit interaction,
which is discussed in the next section.

V. INDUCTIVE QUBIT-QUBIT COUPLING

Our treatment of the interaction of the Andreev levels
with phase fluctuations can be easily extended on the case of

FIG. 5. Potential energy diagram for two displaced oscillator
states corresponding to the different current states in the point con-
tact sshown as arrowed circlesd. The plasma frequencyvp is large
compared to the Andreev level spacing; the oscillator remains in the
ground state during the qubit evolutionsdashed arrowd.
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several inductively coupled SQUIDs to describe direct qubit-
qubit coupling. Let us consider as an example two SQUIDs
with different QPC reflectivitiesR1ÞR2, identical circuit pa-
rametersC and L, and mutual inductanceM. Then the in-
ductance terms in the Lagrangians16d written for the two
qubits will take the form

1

2
S"c

2e
D2

f̃TL̂−1f̃, f̃ = Sf̃1

f̃2

D, L̂ = S L M
M L

D , s62d

wheref̃1,2 are fluctuating phases in the first and second qu-
bits. By introducing the normal modes for the LC oscillators
f̃→e−ityp/4f̃ we obtain the two-qubit Hamiltonian on form
similar to Eq.s55d

H = o
i=1,2

FDScos
fe,i

2
szi + ÎRi sin

fe,i

2
syiD

−
f̃i

2Î2
fs− 1di+1I1sz1 + I2sz2g + Hosc,iG , s63d

whereHosc,i describes the normal oscillator with frequency
vpi=c/ÎCsL±Md, and the indexi =1,2 refers to the first and
second qubit. Then we apply to Eq.s63d the similar transfor-
mations as in the previous section, namely, we eliminate the
terms linear in f̃i by means of a canonical trans-
formation H→expsioiAipidH exps−ioiAipid, with Ai

=fs−1di+1I1sz1+I2sz2g / s2Î2Mqvi
2d, and then average the

transformed Hamiltonian over the ground state of the normal
oscillators. As a result, we obtain an effective two-qubit
Hamiltonian including direct qubit-qubit coupling

H = hq1 + hq2 + se/"cd2MI1I2sz1sz2. s64d

The renormalized contact reflectivities are now given byRi
*

=Riexpf−sIi
2/4"Mdsv1

−3+v2
−3dg.

It is worth mentioning that the two-qubit configuration
may be also realized with asingleSQUID containing a QPC
with two conducting modes. In this case, we have the two
Andreev level Hamiltonians coupled to the same loop oscil-
lator

H = o
i=1,2

Sha,i
0 −

Iisfed
2

f̃sziD + Hosc. s65d

Averaging over the phase fluctuations, we arrive at the same
interaction Hamiltonian as in Eq.s64d but with the loop in-
ductanceL substituting for −M. Thus we come to an inter-
esting conclusion that the effect of the phase fluctuations not
only reduces the bare contact reflectivity but also introduces
effective coupling of the Andreev levels of different conduct-
ing modes in a multimode QPC.

VI. ANDREEV LEVEL-PHONON INTERACTION

A. Effective action

In this section we take electron-phonon interaction into
account. We start with the derivation of an effective action
for the Andreev level-phonon interaction. To this end we

repeat the calculation of the previous section adding the La-
grangianLe-ph, Eq. s19d, to Eq. s30d. By retaining in the
electrode Green functions only the first-order correction in
the small interaction constantg, we arrive at the following
action:

Sh = −E dt1dt2h̄st1dfDe−iszfst1d/4GLst1,t2deiszfst2d/4

+ s1 +ÎRd2eiszfst1d/4GRst1,t2de−iszfst2d/4ghst2d, s66d

where the Green functionsGL,R read

Gast1,t2d = o
s=±

fga
ssds0,0;t1 − t2d + gE dr uc'u2

3E dt ga
ssds0,x;t1 − td ¹ usr ,tdszga

ssdsx,0;t − t2dg.

s67d

In this equation, the quantitiesgL,R
ssd refer to the different parts

gssdsx,0,x8,0;td and gssdsx.0,x8.0;td, respectively, of
the translation-invariant free electron Green functiongssdsx
−x8 ,td, which obeys the equation

fi"]t + sszvi"]x − Dsxggssdsx − x8,td = dsx − x8ddstd.

s68d

The Green functionsga
ssd in Eq. s67d are explicitly given by

gL,R
ssd sx,0;td = − Us7xd

e−uxuzt/"v

2"vzt
fi"]t + Dsx 7 siztszgdstd,

s69d

where zt is given by the Fourier componentzv

=ÎD2−s"vd2.
Proceeding to the adiabatic approximation discussed in

the previous sectionszv→zed, and performing the transfor-
mation s36d, we arrive at the following effective action for
the Andreev level-phonon interaction:

Sh-ph = − gE dtE dr uc'u2nsx,td ¹ usr ,td, s70d

where

nsx,td =
e−2uxuze/"v

4"vze
s1 + sgnxÎRdLsx,td s71d

and

Lsx,td = "2s]th̄dsxs]thd + "Ds]th̄e−isxsÎR−sgnxdfe/2syh + H.c.d

− Ea
2h̄sxh. s72d

Taking into account the zero-order dynamic equation with
respect tog, Eq. s42d, and puttingf=fe

i"]th = De−isx
ÎRfe/2Scos

fe

2
sz + ÎRsin

fe

2
syDh, s73d

we obtain for the quantitynsx,td, Eq. s71d, the following
expression:
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nsx,td = sÎR/2dk sgnxe−2kuxuh̄sxh, s74d

where k=ze/"v. Finally, integrating overr in the action
s70d, we obtain the effective interaction on the form

Sh-ph = −E dto
q

gqXqh̄sxh, s75d

where gq is the effective constant of the Andreev level-
phonon coupling

gq = gkÎ"VqR

2rVs2E
0

+`

dx Fsq',xde−2kxsinsqxxd,

Fsq',xd =E dr 'uc'sr du2ei·q'r '. s76d

We notice that the Andreev level-phonon interaction in Eq.
s75d has purely transverse origin, i.e., while inducing inter-
level transitions and hence relaxation, it does not produce
any additional dephasing to the one associated with the re-
laxation.

It is important to mention that the effective coupling con-
stant is proportional toÎR, and it turns to zero in the case of
perfectly transparent constriction. This results from the al-
ready mentioned fact that the relevant phonons have small
wave vectors and are not able to provide large momentum
transfers,2"kd during scattering with electrons.

The effective action in Eqs.s75d ands76d was derived for
a given realization of the time dependent phase. To take into
account the effect of phase fluctuation, we have to apply the
transformation in Eq.s57d to the actions75d; the Lagrange
form of the transformation reads

h → expSi
Isfedsz

2"
Et

dtf̃stdDh. s77d

Then the integration over the phase adds the factore−l to the
action, see Eq.s59d, which simply implies a renormalization
of the coupling constant

gq → gq
* = e−lgq. s78d

This result can be expected: since the Andreev level-phonon
coupling is transverse in the current basis and depends on the
contact reflectivity, the renormalized reflectivityR* rather
than the bare one has to enter the coupling constantgq

*

=gqsR* d; this is consistent with Eqs.s76d and s78d.

B. Kinetic equation

Qubit decoherence is usually described through collision
terms in the Liouville equation for the qubit density matrix
taking into account the interaction with an environment. Our
goal will now be to derive the phonon-induced collision
terms in Eq.s61d for the ALQ density matrix, and to evaluate
the decoherence of the ALQ.

While the description of free qubit evolution was possible
in terms of the single-particle density matrix, evaluation of
the collision terms goes beyond the single-particle approxi-
mation and requires the knowledge ofelectronictwo-particle

correlation functions. This is because the Andreev levels do
not form a rigorously isolated system but rather belong to a
large fermionic system of the superconducting electrons in
the contact electrodes. Thus to derive the collision terms, we
apply the many-body Keldysh-Green function technique36

combined with the path integral approach. The method de-
scribed below automatically takes into account many-body
effects in the form of the Pauli exclusion principle, leading to
a nonlinear form of the collision terms and eventually to the
suppression of decoherence.

The starting point of the derivation is Eqs.s15d and s22d
for the propagator, in which the integration over the fast
fermionic fieldscL,R and phasef has been performed while
integration over the phonons and Andreev states remains

U =E DhXqjD2heiS/". s79d

The time evolution in the action now follows along the
Keldysh contour37 CK, S=eCK

dt L, which goes from −̀ to
+`, and then backwards.20,38,39The interaction is supposed
to be switched on and off adiabatically at the remote pastt
=−` and the phonon bath is supposed to be in thermal equi-
librium. The LagrangianL has the form

L = h̄si"]t − Ea
*szdh − o

q
gq

* Xqh̄sxh + Lph, s80d

whereLph is given by Eq.s20d. To reduce the time integra-
tion along the Keldysh contour to an ordinary time integral,
we distinguish forward and backward branches of the con-
tour by labeling them with indexs=1,2, and introduce the
two-component fieldshs andXq

s. Since the action is local in
time, it can be rewritten asS=e−`

+`dtsL1−L2d, where Ls

=Lfh̄s,hs,Xq
sg.

The first step of the derivation is to integrate out the pho-
non fields, which will give rise to an effective self-interaction
for the fieldh,

Sintfh̄,hg = −
1

2
E dtdt8fh̄stdsxhstdgs

3ftzĎst − t8dtzgss8fh̄st8dsxhst8dgs8, s81d

with the kernelĎst− t8d given by

Ďst − t8d = o
q

ugq
* u2Ďqst − t8d,

Dq
ss8st − t8d = − si/"dkTCsXq

sstdXq
s8st8ddl, s82d

whereĎqst− t8d is the equilibrium Keldysh Green function of
the phonons represented by the 232 matrix in the Keldysh
space. In these equations,TC is the time-ordering operator on
the Keldysh contour andtz is the Pauli matrix operating in
the Keldysh space; summation over repeated indices is im-
plied.

The next step is to take advantage of the weak electron-
phonon interaction, and to decouple the four-fermionic inter-
action term in Eq. s81d by introducing the Hubbard-

Stratonovich field Gab
ss8st ,t8d, which is a matrix in the
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Keldysh-Nambu-time space. Before doing this, it is conve-
nient to explicitly extract the small parameterlph, which
determines the electron-phonon coupling strength, from the

kernel Ď in Eq. s81d by redefining the kernelĎ→lphĎ
flph,sv /sdsv /vDd2!1, vD is the Debye frequencyg. As a
result, we get

U =E DǦD2h expFsi/"d E dtdt8h̄sstdfLst,t8dtz

− tzŠst,t8dtzgss8hs8st8d + iWfǦgG , s83d

where Lst ,t8d=si"]t−Ea
*szddst− t8d is diagonal in the

Keldysh space and

WfǦg =
"

2lph
E dtdt8Gab

ss8st,t8d

3ftzĎst − t8dtzgss8fsxǦst8,tdsxgba
s8s, s84d

Sab
ss8st,t8d = i"Dss8st − t8dfsxǦst,t8dsxgab

ss8. s85d

Equations83d describes the dynamics of the fieldh interact-

ing with the effective fieldǦ. In terms of the Keldysh-Green
function for the fieldh,

Gab
ss8st,t8d = − si/"dkTCsha

sstdhb
†s8st8ddl, s86d

this evolution is described by the Dyson equation

sLtz − tzŠfǦgtzdǦ = 1̌, s87d

where the self-energyŠ depends on the effective fieldǦ. A

closed equation forǦ can be derived by integrating out the
field h in Eq. s83d. This procedure leads to the equation

U =E DǦeiSfǦg/",

SfǦg/" = − iTr lnsLtz − tzŠfǦgtzd + WfǦg, s88d

where Tr denotes both the matrix trace in the Keldysh-
Nambu space and the integration over the time variables.

Noticing that the action is large,SfǦg,lph
−1, we evaluate the

integral in Eq.s88d within the saddle-point approximation
scf. Ref. 38d. The corresponding saddle-point equation is de-

rived by varying the action with respect toǦ, which yields

sLtz − tzŠfǦgtzdǦ = lph1̌. s89d

Comparing Eqs.s87d and s89d, we obtain the relationǦ
=lphǦ. Written in the terms ofǦ,

sLtz − tzŠflphǦgtzdǦ = 1̌, s90d

the saddle-point equation is the Dyson equation for the qubit
Keldysh-Green functions86d in which the self-energy con-
tains only an undressed vertex part and a free phonon Green

function. Including the parameterlph back into the kernelĎ,

lphĎ→ Ď, we arrive at the expression for the self-energy

s85d, with Ǧ being replaced byǦ, while Ď is given by Eq.
s82d.

To proceed with the derivation of the kinetic equation, it
is convenient to introduce a triangular form for the Keldysh-
Green function by performing a transformation in Keldysh
space

Ǧ → ĽtzǦĽ−1 = SGR GK

0 GAD, Ľ =
1
Î2

S1 − 1

1 1
D , s91d

whereGRsAd=G11−G12s21d is the retardedsadvancedd Green
function andGK=G11+G22=G12+G21 is the Keldysh com-
ponent. Similar relations also hold for the self-energy. Then
Eq. s90d takes the form

ĽǦ = 1̌ + ŠǦ. s92d

A kinetic equation is obtained by considering the difference
between Eq. s92d and its Hermitian conjugate for the
Keldysh component36

iqs]t + ]t8dG
Kst,t8d − Ea

*fsz,G
Kst,t8dg

= sSRGK − GKSA + SKGA − GRSKdst,t8d. s93d

The right-hand side of Eq.s93d describes the qubit decoher-
ence as well as dynamic corrections due to the phonons.40 In
the absence of the coupling to phonons, the solution of Eq.
s93d has the form

G0
Kst,t8d = s− i/"de−iEa

*szt/qFeiEa
*szt8/", s94d

whereF is a time-independent matrix determined by the ini-
tial state of the qubit. When a weak interaction with the
phonons is switched on, an asymptotic solution to Eq.s93d
can be written in the form

GKst,t8d = s− i/"de−iEa
*szt/"hFfst + t8d/2g + F̃st,t8djeiEa

*szt8/",

s95d

where the matrixF is, on the time scale" /Ea
* , a slowly

evolving function of the global timest+ t8d /2 sMarkovian

approximationd, and F̃ is a rapidly oscillating small-
amplitude correctionssee Appendix Bd. Equations for the
matrix elements ofF are derived in Appendix B, Eqs.sB14d
and sB15d, and for the diagonal matrix elements they read

]tF1 = − ]tF2 = −
n

2
fs2N + 1dsF1 − F2d + F1F2 − 1g,

s96d

while for the off-diagonal matrix elementF12=F21
* the equa-

tion has the form

]tF12 = − Fn

2
s2N + 1 −Fzd + 2isd + d0FzdGF12,

Fzstd = sF1 − F2d/2, s97d

where n is the phonon-induced transition rate between the
qubit levels
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n = s2p/"d E d3q

s2pd3Vugq
* u2ds2Ea

* − "Vqd. s98d

N=se2bEa
*
−1d−1 is the phonon distribution function at a fre-

quency equal to the qubit level spacingb=1/kT andd andd0
are small dynamic corrections defined in Eq.sB16d.

For equal timest= t8, GKst ,td is related to the qubit den-
sity matrix s39d as follows: Gss8

K st ,td=s−i /"df2rss8std
−dss8g, and therefore Eqs.s96d and s97d in fact give the
kinetic equation for the qubit density matrix in the interac-

tion picture r̃=eiEa
*
szt/"re−iEa

*
szt/", Fs=2rss−1, F12=2r̃12. It

is instructive to write Eq.s96d in terms of the qubit occupa-
tion numbersns=1−rss,

]tn1 = − ]tn2 = − nfsN + 1dn1s1 − n2d − Nn2s1 − n1dg.

s99d

The right-hand side of this equation has the standard form of
the electron-phonon collision term, yielding the Fermi distri-
bution for the equilibrium occupation numbers

n1,2
0 =

1

e±bEa
*
+ 1

. s100d

This conclusion is consistent with the well known fact that
the Fermi distribution of the Andreev levels gives correct
magnitude for the equilibrium Josephson current.28,29 Fur-
thermore, it follows from Eqs.s99d and s100d that Tr rstd
=1. Then the equations for the two independent components
of the density matrixrz=sr11−r22d /2, andr̃12, omitting the
dynamic corrections, are given by

]trz = − nfs2N + 1drz − rz
2 − 1/4g, s101d

]tr̃12 = − nsN + 1/2 −rzdr̃12. s102d

These nonlinear equations are drastically different from the
linear Bloch-Redfield equation describing the decoherence of
macroscopic superconducting qubits,22 and they have quali-
tatively different solutions, as illustrated in Fig. 6. The exact
solutions for Eqs.s101d and s102d read

drzstd =
drzs0de−Gt

1 + drzs0dsinhsbEa
*ds1 − e−Gtd

, G =
n

sinhsbEa
*d

,

s103d

r̃12std =
r12s0de−Gt/2

1 + drzs0dsinhsbEa
*ds1 − e−Gtd

, s104d

wheredrzstd=rz
0−rzstd is the deviation from the equilibrium

rz
0=s1/2dtanhsbEa

* /2d. The evolutions of the diagonalsrelax-
ationd and off-diagonalsdephasingd parts of the density ma-
trix are qualitatively similar. One may distinguish the linear
regimedrzs0dsinhsbEa

*d!1, when the decoherence is deter-
mined by the exponential law

drzstd = drzs0de−Gt, r̃12std = r12s0de−Gt/2. s105d

However, the decoherence rateG becomes exponentially
small at temperature smaller than the qubit level spacing

bEa
* @1. At this temperature, the most interesting is the op-

posite, nonlinear regimedrzs0dsinhsbEa
*d@1. In this case,

there is a wide time intervalt!sinhsbEa
*d /n, where both the

relaxation and dephasing follow the power lawssee Fig. 6d

drzstd =
1

nt
, r̃12std =

r12s0d
drzs0d

1

nt
, s106d

and only at very large timest@sinhsbEa
*d /n, the decoher-

ence undergoes a crossover to an exponential regime similar
to Eq. s105d. We note that the exponentially small relaxation
rate in the linear regime is well known for the quasiparticle
recombination in bulk superconductors.41

C. Evaluation of the transition rate

We conclude our study with the evaluation of the phonon-
induced transition rate,n in Eq. s98d. To evaluate the transi-
tion rate, one needs to specify the geometry of the junction in
greater detail. Let us suppose that our adiabatic constriction,
Eq. s4d, is formed by a hard-wall potential and has an axial
symmetry. Under these assumptions, the Fourier component
of the transverse wave function in Eq.s76d has the form

Fsq',xd = 2
J1fr'sxdq'g

r'sxdq'

, s107d

where r'sxd is the radius of the constriction cross section.
The magnitude of the relaxation rate essentially depends on
the parameterr's0dQ, wherer's0d is the radius of the neck
of the constriction andQ=2Ea

* /"s is the wave vector of
phonons responsible for the interlevel transitions; for atomic-
size constrictions, this parameter is small,r's0dQ!1. Let us
assume that the qubit level spacing is not too small,Ea

* /D
@s/v; then the phonon wave vectorQ is large compared to
the inverse penetration length of the Andreev level wave
function Q@k.

Let us for a moment assume that the Andreev level wave
function does not spread out in the electrodes, but remains

FIG. 6. Decay with time of a “cat” statefdrzs0d=r12s0d=1/2g.
The bold line indicates the evolution of bothsnormalizedd density
matrix elements for ALQ for 1/b=0.2Ea

* . For comparison, expo-
nential relaxation and dephasing of a macroscopic superconducting
qubit are illustrated with the dashed and dashed-dotted lines,
respectively.
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confined in the transverse directionr'sxd=const=r's0d ssee
Fig. 7d; then the Fourier component in Eq.s107d is close to
unity and the interaction region in Eq.s76d is limited by the
penetration length of the Andreev statex,1/k, restricting
relevant phonon longitudinal wave vectors to small values
qx,k!Q. The transition rate in this case reads

n0 =
g2R*

16"rs2kQ2 , R* sze/Ea
*dtph

−1sEa
*d, s108d

where tph
−1sEa

*d,Ea
*3 /"UD

2 is a bulk electron-phonon relax-
ation rate at the Andreev level energysUD is the Debye
temperatured. This result has been derived in Ref. 32sal-
though neglecting the renormalization effectd, and it can be
qualitatively applied to long constrictions, whose length ex-
ceeds the coherence length. For the short constrictions con-
sidered hereL!1/k, the effect of spreading out of the An-
dreev level wave function is essential and the approximation
r'=const is not applicable.

Let us adopt the following model for the constriction
shaper'sxd=r's0ds1−uxu /Ld−a, a.1. It is then easy to see
that the integral in Eq.s76d will have a cut off at uxu=L
!1/k. The functionJ1szad /za in Eq. s107d can with good
accuracy be approximated with the functions1/2dusz0−zd,
wherez0<1 and the integral in Eq.s76d is easily evaluated,
giving

n = kLn0, s109d

i.e., the transition rate in short constrictions is significantly
reduced. This is the effect of the small spatial region avail-
able for the Andreev level-phonon interaction in short QPC.

VII. CONCLUSION

Let us summarize the outlined theory for the Andreev
level qubitsALQd. The ALQ belongs to the family of super-
conducting flux qubits, but it differs from the macroscopic
flux qubits3–6 in several important respects. First, the quan-
tum hybridization of the fluxsand persistent currentd states in
the ALQ loop is produced by electronic backscattering in the
quantum point contactsQPCd rather than by charge fluctua-

tions on the junction capacitors in the case of the macro-
scopic qubits. Thus, in principle, neither small junction ca-
pacitance nor large loop inductance is critical for the ALQ
operation. Secondly, the ALQ is based on a QPC with large,
almost full, transparency, in contrast to classical tunnel junc-
tions employed in the macroscopic superconducting qubits.
Large contact transparency is required for placing Andreev
levels deep within the superconducting energy gap to achieve
good decoupling from the continuum electronic states. To
guarantee good separation of the qubit levels from the con-
tinuum, the amplitude of the phase fluctuations around the
biasing pointf<p must be restricted to small values, which
implies small inductance of the qubit loop.

In the tunnel junctions of the macroscopic qubits, An-
dreev levels are fast variables whose effect, after averaging,
reduces to the Josephson potential energy added to the
Hamiltonian of the loop oscillator. In the transparent junction
of the ALQ, Andreev levels are slow variables which cannot
be averaged out and the full description includes the Andreev
two-level Hamiltonian strongly coupled to the quantum loop
oscillator. Derivation of the effective two-level Hamiltonian
goes beyond the tunnel model approximation and is done by
incorporating the exact boundary condition into the action of
the contact.

The qubit read out is performed by measuringsfluctuat-
ingd persistent current or induced flux in the qubit loop. To
simplify the interpretation of the measurements, the loop
plasma frequency is supposed to be large compared to the
qubit frequency so that the loop oscillator is “enslaved” by
the Andreev levels making the current to directly follow the
Andreev level evolution. Other regimes, e.g., resonance be-
tween the Andreev levels and the loop oscillator, can also be
considered but they remain outside the scope of this paper.

Typical circuit parameters for the ALQ could be chosen as
follows: The Josephson coupling energy for a single open
conducting mode is quite largeEJ<D, giving considerable
Josephson critical currentIc,400 nA for Nb. For a bare
contact reflectivityRø0.01 and a contact capacitanceC
,0.1 pF, and a loop inductanceL,0.1 nH, the loop plasma
frequency vp,1011s−1 and the inductive energyEL /"
,1013s−1,10DNb/", exceed, as required, the qubit level
spacingEa

* /",1010s−1. In temperature units, the latter cor-
responds to approximately 100 mK. Therefore, at typical ex-
perimental temperatures of 10–20 mK the system should ex-
hibit pronounced quantum dynamics.

In the absence of microscopic interaction of the Andreev
levels with other microscopic modes in the junction, a full
description of the ALQ dynamics is given by a reduced
single-particle electronic density matrix. This concerns the
qubit manipulation with external fields, qubit measurement,
and qubit-qubit coupling. It is important to emphasize that
the fermionic origin of the Andreev levels does not affect this
macroscopic behavior of the system, which is adequately de-
scribed with the two-level density matrix and the Liouville
equation similar to any other qubit.

Even if good decoupling of the qubit states from the con-
tinuum electronic states is achieved, there are still soft mi-
croscopic modes in the junction that could couple to the
Andreev levels. These modes present a potential source of
“intrinsic” decoherence, in addition to the commonly consid-

FIG. 7. Interaction region of the Andreev levels with phonons in
short QPCsdark shadowd and long QPCslight shadowd; in long
QPC, increase of the constriction radiussdashed lined can be
neglected.
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ered external decoherence, e.g., due to fluctuating biasing
and read out circuits. We have considered such intrinsic de-
coherence of the ALQ related to acoustic phonons under the
simplest assumptions about the phonon equilibrium and the
Markovian evolution. It turns out that the collision terms in
the kinetic equation are nonlinear, in contrast to the linear
master equation for the macroscopic superconducting
qubits.22 This reflects the fermionic nature of the Andreev
states and leads to considerable enhancement of the decoher-
ence time at low temperature. One can understand this effect
in the following way. Andreev levels belong to a many-body
system of superconducting electrons. Although the macro-
scopic behavior of the ALQ can be expressed in terms of the
single-particle density matrix, the microscopic interaction
with phonons involves two-particle correlation functions,
which are sensitive to the fermionic nature of the Andreev
states and obey the Pauli exclusion principle. This leads to a
reduced probability of phonon-induced interlevel transitions
and hence to a slower decoherence.

Furthermore, the rate of phonon-induced transitions be-
tween the Andreev levels is significantly reduced compared
to the bulk transition rate. The reason is that both the An-
dreev levels belong to the same normal electronic mode; this
together with a rapid spreading out of the Andreev level
wave function in the contact electrode strongly reduces the
relevant phonon phase space.

In this paper, only the case of a single-mode QPC was
considered for clarity. However, the approach might also be
relevant for macroscopic Josephson qubits with tunnel junc-
tions. In junctions with disordered tunnel barriers, open con-
ducting modes with large transmissivity are present.42,43This
introduces low-energy Andreev levels, which implies that
quantum phase fluctuations become coupled to these An-
dreev levels, and the system must be described with the ef-
fective ALQ-type Hamiltonian. Finally, the effective ALQ
Hamiltonian might be appropriate ford-wave qubits for ge-
ometries where low-energy Andreev levels, midgap states,44

build up in the junction.
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APPENDIX A: TUNNEL LIMIT FOR QPC

In this appendix, we consider a low transparency QPC
D!1 and apply our method to recover the results of Refs. 18
and 19 for tunnel Josephson junctions. In this limit, the An-
dreev levels lie very close to the edges of the superconduct-
ing gapEa<D, and therefore the fieldh is a fast variable,
which has to be integrated out along with all the other elec-
tronic degrees of freedom. This will result in an effective
action for the phase difference alone. After integration over

the electronic fields, the propagator in Eq.s22d takes the
form

Ueffg =E D2hD2cL,ReiSe/" = exphiSffg/"j, sA1d

Sffg/" = − iTr lnS1 +
D

s1 +ÎRd2
g−1e−iszf/2geiszf/2D .

sA2d

Hereg is the Green function defined in Eq.s32d,

gstd = − s1/"vdE
−`

+` dv

2p
e−ivt "v + Dsx

ÎD2 − "2sv + i sgnv 0d2
,

sA3d

and the matrix product in Eq.sA2d also includes the time
convolutions. Taking advantage of the smallD, and expand-
ing the actionsA2d, the lowest order term reads

Sffg/" = − isD/4dtrE
−`

+`

dt1dt2g
−1st1 − t2de−iszfst2d/2gst2

− t1deiszfst1d/2, sA4d

where the trace refers to the Nambu space. After taking the
trace, the action can be written in the following form:

Sffg/" =E
−`

+`

dt1dt2Fast1 − t2dcos
fst1d − fst2d

2

+ bst1 − t2dcos
fst1d + fst2d

2
G , sA5d

with the kernelsa andb given by

astd = isD/2dsD/2"d2fH1
s1dstD/"dg2, sA6d

bstd = − isD/2dsD/2"d2fH0
s1dstD/"dg2, sA7d

whereH0,1
s1d are Hankel functions of the first kind. Analytical

continuation to imaginary time in Eqs.sA6d and sA7d using
the relationKnstd=sp /2di1+nHn

s1dsitd leads to the same ex-
pressions for the kernelsa and b as derived in Refs.
18,19,34, for tunnel Josephson junctionsfwith normal resis-
tance of the tunnel junction being replaced by the normal
resistance of the single-channel QPC:RN=sDe2/p"d−1g.

For a slowly varying phase,f, on the time scale of the
kernel variations" /D both cosine terms in Eq.sA5d can be
expanded with respect to the relative time coordinatet= t1
− t2 up to the second order, and the effective action then takes
a simpler form

Sffg =E dtFdC

2
S"ḟ

2e
D2

+
"

2e
Ic cosfG , sA8d

where Ic=2ee−`
+`dt bstd=eDD /2" is the critical Josephson

current of the single-channel tunnel point contact and
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dCsfd = −
e2

"
E

−`

+`

dtt2fastd − bstdcosfg

=
3

32

De2

D
f1 − s1/3dcosfg sA9d

is the correction to the contact capacitance due to quasipar-
ticle tunneling.34,19

APPENDIX B: DERIVATION OF THE
KINETIC EQUATION

In this Appendix we derive Eqs.s96d and s97d from the
equation for the Keldysh functions93d. It is convenient to
write the equation in the mixed representation

i"]tGv
Kstd − Ea

*fsz,Gv
Kstdg

= sSRGK − GKSA + SKGA − GRSKdvstd, sB1d

where

Ǧvstd =E dteivtǦst + t/2,t − t/2d sB2d

and the products include the convolutions defined by the
equation

sABdvstd =E dv1dv2

s2pd2 E dt1dt2e
ifsv−v1dt2+sv−v2dt1gAv1

st

+ t1/2dBv2
st − t2/2d. sB3d

Neglecting the effect of the phonons, we replace the retarded
and advanced Green functions of the qubitGR,A in the right-
hand side of Eq.sB1d by the free Green functionsGv

R,A

=s"v−Ea
*sz± i0d−1, which are time independent in the mixed

representation. Thus, the time dependence in the self-energy
only comes from the Keldysh componentGK. The self-
energy components take the form

Sv
RsAdstd = si"/2dsxE dV

2p
fDV

KGv−V
RsAd + DV

RsAdGv−V
K stdgsx,

sB4d

Sv
Kstd = si"/2dsxE dV

2p
sDV

R − DV
Adfs2NV + 1dGv−V

K std

+ Gv−V
R − Gv−V

A gsx, sB5d

where

DV
R,A =E dV8

2p"

DV8

V − V8 ± i0
, DV

K = − si/"ds2NV + 1dDV,

sB6d

NV=seb"V−1d−1 is the equilibrium phonon distribution func-
tion, andDV is the spectral weight function of the phonon
bath

DV = 2p sgnsVdo
q

ugq
* u2dsuVu − Vqd. sB7d

After integrating Eq.sB1d overv, we obtain equation for the
Keldysh function at coinciding times

GKstd =E dv

2p
Gv

Kstd, sB8d

i"]tG
Kstd − Ea

*fsz,G
Kstdg = I0 + I1std + I2std, sB9d

whereI0=s1/2"2dD2Ea
* /"sz and

I1std =
− i

2"

dVdv

s2pd2E
0

+`

dts2NV + 1dDVfeisv−V+Ea
*sz/"dtGv

Kst

− t/2d − eisv+V−Ea
*sz/"dtsxGv

Kst − t/2dsx − H.c.g,

sB10d

I2std =E dVdv1dv2

2s2pd3 E
0

+`

dtDVfeisv2−v1−VdtsxGv1

K st

− t/2dsxGv2

K st − t/2d + H.c.g. sB11d

For weak electron-phonon interaction, the right-hand side of
Eq. sB9d is a small perturbation, which allows one to con-
struct an asymptotic solution by using an improved perturba-
tion expansion

Gv
Kstd = − s2pi/ " de−iEa

*szt/"SFvsltd + o
n=1

`

lnF̃v
sndstdDeiEa

*szt/",

sB12d

Fvstd = dsv − Ea
*sz/ " dSF1std 0

0 F2std
D + dsvd

3S 0 F12std
F12

* std 0
D . sB13d

In Eq. sB12d, l is a formal perturbation parameter that re-
flects weak electron-phonon interaction,DV and allows one
to develop a systematic perturbative expansion. In the zero-
order approximation with respect tol, the stime-
independentd matrix F in Eq. sB13d is the solution of Eq.
sB9d without the right-hand side. The first-order equation
determines the time dependence in this matrixswhich ab-
sorbs terms that formally diverge with time in a straightfor-
ward perturbative expansiond,

]tF1 = − ]tF2 = −
n

2
fs2N + 1dsF1 − F2d + F1F2 − 1g,

sB14d

]tF12 = − Fn

2
s2N + 1 −Fzd + 2isd + d0FzdGF12,

ZAZUNOV et al. PHYSICAL REVIEW B 71, 214505s2005d

214505-14



Fzstd = sF1 − F2d/2, sB15d

wheren=D2Ea
* /" /"2 is the phonon-induced transition rate be-

tween the qubit levelsN=N2Ea
* /" and the quantities

d = s1/2"2dE– dV

dp
s2NV + 1d

DV

V + 2Ea
* /"

,

d0 = s1/2"2dE– dV

2p

DV

V + 2Ea
* /"

sB16d

determine the phonon-induced shift of the qubit frequency.
The higher order equations determine the rapidly oscillating

termsF̃v
snd in Eq. sB12d; e.g., the equation forF̃v

s1d reads

]tF̃
s1d = Izsz + I+s+ + I−s−, sB17d

wheres±=s1/2dssx± isyd

Iz = e−4iEa
* t/"sn/4 − id0dF12

2 std + c.c., sB18d

I− = I+
* = e−4iEa

* t/"fnsN + 1/2d + 2isd + d̃0FzdgF12std,

d̃0 = s1/2" d2E– dV

2p

DV

V
. sB19d

It follows from these equations thatF̃s1d indeed rapidly os-
cillates, with the frequency 4Ea

* /" and has relatively small
amplitude, proportional to"n /Ea

* .
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