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Abstract. We investigate the design and functionality of a network of loop-
shaped charge qubits with switchable nearest-neighbour coupling. The qubit
coupling is achieved by placing large Josephson junctions (JJs) at the intersections
of the qubit loops and selectively applying bias currents. The network is scalable
and makes it possible to perform a universal set of quantum gates. The coupling
scheme allows gate operation at the charge degeneracy point of each qubit, and
also applies to charge-phase qubits. Additional JJs included in the qubit loops for
qubit readout can also be employed for qubit coupling.
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1. Introduction

During the last six years it has been experimentally proven that superconducting circuits can
serve as quantum mechanical two-level systems, qubits, to be used for quantum information
processing [1]–[6]. Besides the experiments with individual qubits, several experiments have
been performed so far on two permanently coupled qubits [7]–[11]. For instance, to observe the
coupling of two charge qubits, the qubit islands have been permanently coupled via a capacitor,
and the strength of the coupling has been varied by tuning the qubits in and out of resonance
with each other (by varying the gate voltage) [7, 8].

In order to build a functional, scalable quantum computer, a network design is needed that
allows coupling of an arbitrarily large number of qubits, with the possibility to switch on and off
the coupling by means of external control knobs. In principle, coupling of only nearest-neighbour
qubits is sufficient to perform a universal set of gates [12].

Theoretical schemes for variable coupling of charge qubits have been intensively discussed
in literature. Couplings via inductive and capacitive elements have been examined as well as
couplings via linear LC-oscillators and Josephson junctions (JJs) [13]–[17]. A standard approach
to achieve a variable coupling is to employ a SQUID-type geometry either for the qubits [18] or
for the coupling element [19], to be able to control the Josephson energy by an external magnetic
flux. A somewhat different approach has been suggested in [20], where the qubits are coupled
via another charge qubit thus creating a variable capacitive coupling.

Recently, a different way to achieve a variable inductive coupling has been suggested,
namely to let the charge-qubit loops intersect and share a coupling JJ or SQUID. The interaction
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is then controlled either by varying the magnetic flux in the qubit loops (or the coupling SQUID)
[21], or by applying bias currents to the coupling JJ [22].

In this paper we give a detailed analysis of the qubit network based on the coupling method
proposed in [22]. The idea of this method is to couple loop-shaped charge qubits by letting the
circulating loop currents, which are sensitive to the charge state of the qubit island, interact. This
is done by placing a nonlinear oscillator—a large JJ—at the intersection of the qubit loops. Such
a coupling can be made variable by using the fact that in the absence of an external magnetic
field, the persistent currents in the qubit loops are absent (for symmetric qubits with equal JJs).
However, when a dc current bias is applied to a coupling JJ the symmetry is broken and currents
start to circulate, the magnitude of the currents being dependent on the bias current. These
currents interact with the oscillator, resulting in a variable effective qubit–qubit coupling. A
similar coupling effect can be accomplished by inserting large readout JJs in the qubit loops [3].
As we show in this paper, applying current to one of the read-out junctions allows one to measure
the state of the corresponding qubit without disturbing the other qubits (to first order); however,
when two neighbouring read-out junctions are biased, the qubit–qubit coupling is switched on.

The advantage of the current-biased coupling scheme is that it does not need any local
magnetic fields to control the coupling, fields which could create unwanted parasitic long-range
interactions. An important feature is the possibility to operate at the qubit charge degeneracy
point, where the decoherence effect is minimized [3, 23], and where the gate operations are very
simple. This coupling scheme can also be extended to charge-phase qubits which are still less
sensitive against decoherence due to flatter band structure [3]. With this coupling mechanism,
neighbouring qubits in an arbitrarily long qubit chain can be coupled, and several independent
two-qubit gates can be performed simultaneously. The fundamental entangling two-qubit gate
is a control-phase (CPHASE) gate, which together with single-qubit gates constitute a universal
set of operations.

The structure of the paper is as follows: in section 2 we explain the principles of the coupling
by considering the simplest case of two coupled qubits. We estimate the maximum coupling
strength, evaluate the residual parasitic couplings, and investigate the charge-phase regime for
the qubits. In section 3 we add measurement junctions to the qubit circuits and investigate how
to use these junctions as read-out devices and the means to create qubit coupling. In section 4
we generalize the derivation of section 3 to a multi-qubit network with an arbitrary number of
coupled qubits. Finally, in section 5, we discuss how to use the network for quantum computing.

2. Controllable coupling of two qubits

To more clearly explain the principle of the qubit coupling, we first consider the case of two
coupled qubits. The qubits consist of single Cooper pair boxes (SCB) with loop-shaped electrodes
[3, 24]. To create coupling between the qubits, a large-capacitance JJ is placed at the intersection
of the qubit loops, see figure 1. The physics of the coupling is as follows: as long as no magnetic
flux is applied to the qubit loops, and no bias current is sent through the coupling junction, there
are no circulating currents in the qubit loops. However, when the bias current is switched on,
circulating currents start to flow in the clockwise or counter-clockwise direction depending on
the charge state of the Cooper pair box. These currents displace the coupling junction oscillator
and change its ground state energy, leading to an effective qubit–qubit interaction. The strength of
the interaction is proportional to the bias current through the coupling junction. In the idle state,
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Figure 1. A system of two coupled charge qubits. Vgi control the individual qubits
whereas Ib controls the coupling of the two qubits. Arrows indicate the direction
of the Josephson current for positive phase difference (smaller than π).

when the bias current is switched off, small phase fluctuations at the coupling junction generate
permanent parasitic qubit–qubit coupling. However, this parasitic coupling can be made small
compared to the controllable coupling by choosing the plasma frequency of the coupling junction
ωb = (1/h̄)

√
2Eb

JE
b
C to be small compared to the Josephson energy Eb

J . This requirement implies
that the junction charging energy Eb

C must be small,

Eb
C � h̄ωb � Eb

J, (1)

i.e. the coupling junction must be in the phase regime. This is the most essential requirement for
the qubit coupling under consideration.

2.1. Circuit Hamiltonian

We begin the evaluation of qubit coupling with the derivation of a circuit Hamiltonian. To this
end, we first write down the Lagrangian L of the circuit in figure 1. The Lagrangian consists of
the respective Lagrangians of the SCBs and the coupling JJ,

L =
2∑

i=1

LSCB,i + LJJ. (2)

Assuming the SCB to consist of identical junctions with capacitance C and Josephson energy
EJ , and following the rules described in e.g. [25, 26], we write the corresponding Lagrangian in
the form,

LSCB,i = h̄2C

2(2e)2
(φ̇2

1i + φ̇2
2i) +

h̄2Cg

2(2e)2

(
2e

h̄
Vgi − φ̇1i

)2

+ EJ(cos φ1i + cos φ2i), (3)
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where φ1i (φ2i) is the phase difference across the left (right) JJ of the ith SCB, and Cg is the
gate capacitance. The Lagrangian of the coupling JJ includes the electrostatic energy and the
Josephson energy of the junction, and also the interaction energy of the junction with applied
bias current Ib,

LJJ = h̄2Cb

2(2e)2
ϕ̇2 + Eb

J cos ϕ +
h̄

2e
Ibϕ, (4)

where ϕ is the phase difference across the coupling junction.
The flux quantization condition in each of the qubit loops allows the elimination of one of

the qubit variables from the Lagrangian. We assume that there is no external magnetic flux in the
loops since magnetic flux will not be used to control either the qubits or the qubit interaction, and
we also assume that the loop self-inductances are negligible. Then the flux quantization equation
takes the form,

φ+,1 + ϕ = 0, φ+,2 − ϕ = 0. (5)

where we introduced new qubit variables,

φ−,i = 1
2(φ2i − φ1i), φ+,i = φ1i + φ2i. (6)

By virtue of relations (5), the gate capacitance terms will take the form ( h̄2Cg/2(2e)2)(2eVgi/h̄ +
φ̇−,i ± ϕ̇/2)2 introducing a capacitive interaction of the SCB with the coupling junction. From
here on, the upper (lower) sign corresponds to the first (second) qubit. Similarly, the appearance
of the variable ϕ in the SCB Josephson terms introduces an inductive interaction between the
SCB and the coupling junction.

At this point, we are ready to proceed to the circuit Hamiltonian. By introducing the
conjugated variables, ni = (1/h̄)(∂L/∂φ̇−,i), and n = (1/h̄)(∂L/∂ϕ̇), which have the meaning
of dimensionless charges (in the units of Cooper pairs) on the SCB and on the island
confined between the coupling JJ and the SCBs, respectively, and then applying the Legendre
transformation, H = ∑

i h̄ niφ̇−,i + h̄ nϕ̇ − L, we get,

H =
2∑

i=1

HSCB,i + HJJ + HC. (7)

Here

HSCB,i = EC(ni − ngi)
2 − 2EJ cos

ϕ

2
cos φ−,i, (8)

is the SCB Hamiltonian, where EC = (2e)2/2C�, C� = 2C + Cg is the total capacitance of the
qubit island and ngi = CgVgi/2e is the (dimensionless) charge induced on the qubit island by the
gate voltage. The JJ Hamiltonian is

HJJ = Eb
C

(
n − ng1 − ng2

2

)2

− Eb
J cos ϕ − h̄

2e
Ibϕ, (9)

New Journal of Physics 7 (2005) 178 (http://www.njp.org/)

http://www.njp.org/


6 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

where Eb
C = (2e)2/(2Cb + C�). The last term in equation (7),

HC = Cg

C�

Eb
C

(
n − ng1 − ng2

2

)
((n2 − ng2) − (n1 − ng1)) − C2

g

2C2
�

Eb
C(n1 − ng1)(n2 − ng2),

(10)

describes capacitive interaction of the qubits and the JJ, and also direct qubit–qubit coupling,
induced by the gate capacitance.

The Hamiltonian (7) is quantized by imposing the canonical commutation relations,
[φ−,j, nk] = iδjk, [ϕ, n] = i. To incorporate the Coulomb blockade effect, we take advantage
of the periodic SCB potential and impose periodic boundary conditions on the wave function
with respect to the phase φ−,i. This results in charge quantization on the island. Keeping the
system at low temperature (kBT < EC) and close to the charge degeneracy point ng = 1/2,
restricts the number of excess charges on the island to zero or one Cooper pair. Assuming the
charge regime, EC � EJ for the SCB, and no transitions to the higher charge states to occur
during qubit operation, we truncate the SCB Hilbert space to these two lowest charge states.
Then the single-qubit Hamiltonian reads

Hi = EC

2
(1 − 2ngi)σzi − EJ cos

ϕ

2
σxi, (11)

while the capacitive interaction (10) takes the form,

HC = Cg

2C�

Eb
C

(
n − ng1 − ng2

2

)
(σz2 − σz1) − C2

g

8C2
�

Eb
Cσz1σz2. (12)

The qubits and JJ both interact capacitively, equation (12), and inductively (the last term in
equation (11)). It has been noticed by Shnirman et al [13], that the capacitive interaction
can be fully transformed into an inductive one. This can be done by using a unitary rotation
conveniently combined with a gauge transformation eliminating the gate-charge-dependent terms
in equations (12) and (9) (this is possible since the charge on the coupling JJ is not quantized).
The corresponding unitary operator is

U = exp [−iα(σz2 − σz1)ϕ] exp

(
i
ng1 − ng2

2
ϕ

)
, α = Cg

4C�

. (13)

It is straightforward to check that the transformed part of the Hamiltonian, U†(HJJ + HC)U, does
not contain any interaction, while the whole interaction is concentrated in the Josephson term of
the qubit Hamiltonian,

U†HiU = EC

2
(1 − 2ngi)σzi − EJ cos

ϕ

2
[cos(2αϕ)σxi ± sin(2αϕ)σyi]. (14)

The α-dependent correction is small when the gate capacitance is small, Cg � C�.

2.2. Controllable qubit coupling

Let us consider the main part of the inductive interaction. Making use of assumption, equation (1),
we consider small phase fluctuations across the JJ, γ = ϕ − ϕ0, around the minimum point ϕ0,
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and expand the ϕ-dependent terms in equation (14) in powers of γ � 1. The quantity ϕ0 is
determined by the applied bias current Ib,

sin ϕ0 = h̄Ib

2eEb
J

. (15)

To zeroth order with respect to γ we get a free qubit Hamiltonian which, after additional rotation
U ′ = exp [iα(σz2 − σz1)ϕ0], takes the form,

Hi = EC

2
(1 − 2ngi)σzi − EJ cos

ϕ0

2
σxi. (16)

Controllable qubit–qubit coupling results from the terms which are linear in γ in the expansion
of equation (14). Neglecting the effect of the small α in these terms (which will be considered
in the next section), we obtain,

Hint = 1

2
EJ sin

ϕ0

2
γ(σx1 + σx2). (17)

It is convenient to combine these terms with the quadratic potential of the JJ that approximates
the tilted Josephson potential near its minimum. We then get the total Hamiltonian in the form,

H =
∑

i

Hi − λEJ

sin2(ϕ0/2)

4 cos ϕ0
σx1σx2 + Hosc, (18)

where λ = EJ/E
b
J , and

Hosc = Eb
Cn2 +

1

2
Eb

J cos ϕ0

[
γ + λ

sin(ϕ0/2)

2 cos ϕ0
(σx1 + σx2)

]2

(19)

is the Hamiltonian of a displaced linear oscillator associated with the coupling JJ.
The further analysis is significantly simplified if one assumes the qubit–oscillator interaction

to be small, λ � 1, and the oscillator to be fast on a time scale of qubit evolution, h̄ωb � EJ .
In fact, these assumptions are not needed when the qubits are parked at the charge degeneracy
point, ngi = 1/2, because in this case the interaction term commutes with the qubit Hamiltonians,
and the problem is exactly solvable [27]. The assumption on λ can be relaxed for the two-qubit
circuit; however for a multi-qubit network it becomes essential, as discussed later.

The imposed constraints together with equation (1) lead to the following chain of
inequalities:

EJ � h̄ωb � Eb
J. (20)

Under these constraints, one can neglect the excitation of the oscillator, which at low temperature
will remain in the ground state. This does not significantly differ from the ground state of the
Hamiltonian in equation (19). For instance, the estimate for the amplitude of the first order
correction reads,

c0→1 ∼ EC(1 − 2ng)

( h̄ωbE
b
J)

1/2(cos ϕ0)3/4
∼ EJ

( h̄ωbE
b
J)

1/2
� 1. (21)
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Therefore one can average over the oscillator ground state and drop the oscillator energy term,
because it does not depend on the qubit-state configurations.

Summarizing our derivation, after integrating out the oscillator, we arrive at the effective
two-qubit Hamiltonian,

Heff =
∑

i

Hi − λEJ

sin2(ϕ0/2)

4 cos ϕ0
σx1σx2. (22)

The qubit–qubit coupling term in equation (22) has a clear physical meaning: it results from
interacting persistent currents in the qubit loops. Indeed, the persistent currents are given in
terms of equations (3)–(8) by the relation Ii = (2e/ h̄)EJ sin(φ1i), or identically,

Ii = 2e

h̄
EJ sin

φ+,i

2
cos φ−,i = 2e

h̄

∂H

∂φ+,i

. (23)

In the truncated form, this relation reduces to

Ii = e

h̄
EJ sin

ϕ0

2
σxi (24)

(neglecting phase fluctuations over the coupling JJ), and the coupling term in equation (22) can
be expressed as an inductive coupling energy of the two persistent currents, LbI1I2, with the
Josephson inductance of the tilted coupling junction,

Lb = h̄2

4e2Eb
J cos ϕ0

, (25)

playing the role of mutual inductance. In the absence of the bias current when the JJ potential
is not tilted, sin ϕ0 = 0, the persistent currents are not excited and the coupling is switched off.
When the bias current is applied, the coupling is switched on, and its strength increases with
the bias current because of increasing persistent currents, and also because of decreasing JJ
inductance.

2.3. Effect of qubit asymmetry

Let us consider the effect of small α-terms in equation (14). Although small, the last term in this
equation proportional toσy leads to an interesting qualitative effect in the qubit coupling, changing
its symmetry. A similar effect is produced by asymmetry of the qubit junctions. Although an ideal
qubit should consist of identical JJs, in practice the junction parameters may vary at least within
the range of a few per cent. In the asymmetric case, the property of the symmetric qubit to
have zero persistent current when the bias is turned off is lost. Now a persistent current is
spontaneously generated, the direction of which depends on the charge state of the SCB. This
affects the symmetry of the controllable qubit coupling.

The most important is the variation of the Josephson energy. For an asymmetric qubit, the
Josephson term in Lagrangian, equation (3), has the form, EJ1 cos φ1i + EJ2 cos φ2i. For small
junction asymmetry, δEJ = EJ1 − EJ2 � EJ , the Josephson term in the qubit Hamiltonian,
equation (11), acquires the form

−EJ cos
ϕ

2
σxi ± δEJ

2
sin

ϕ

2
σyi. (26)
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The second term in this equation, resulting from the junction asymmetry, has the same
y-symmetry as the last term in equation (14). They can therefore be considered on the same
footing and added to the interaction Hamiltonian (17), which now takes the form,

Hint = EJγ

[
1

2
sin

ϕ0

2
(σx1 + σx2) + cos

ϕ0

2

(
2α − αϕ0 tan

ϕ0

2
− δEJ

4EJ

)
(σy2 − σy1)

]
. (27)

The additional terms give rise to a small direct qubit coupling of the xy-type, in addition to the
controllable xx-coupling in equation (22),

1

4
λEJ tan ϕ0

(
2α − αϕ0 tan

ϕ0

2
− δEJ

4EJ

)
(σy1σx2 − σx1σy2). (28)

Although small, this additional coupling term does not commute with the qubit Hamiltonian even
at the degeneracy point, which may complicate the gate operation discussed towards the end of
this paper.

2.4. Residual qubit coupling

Even in the absence of bias current, and in the symmetric qubits, there exist small circulating
currents in the qubit loops because of ground state phase fluctuation in the coupling junction.
These currents interact via the coupling junction, creating a small parasitic coupling of the qubits.
The effect is described by the higher order terms neglected in the previous discussion. One term,
which does not vanish atϕ0 = 0 is due to the interaction via the gate capacitance (cf equation (27)),

H
(1)
int = 2αEJ cos

ϕ0

2
γ (σy2 − σy1). (29)

This term is linear in γ , and it creates a direct parasitic qubit–qubit coupling via the mechanism
discussed in the previous sections,

H(1)
res = 4α2λEJ

cos2(ϕ0/2)

cos ϕ0
σy1σy2. (30)

This coupling is smaller than the controllable coupling by a factor α2 = (Cg/4C�)2 � 1.
Obviously, the effect of the junction asymmetry also contributes to this kind of residual

coupling, and can be included in equation (30), by making a change, α → α − δEJ/2EJ .
Another parasitic term is quadratic in γ ,

H
(2)
int = 1

8
λEb

J cos
ϕ0

2
γ2(σx1 + σx2). (31)

The effect of this interaction is to change the frequency, and hence the ground state energy of
oscillator (19), depending on the qubit-state configuration. This squeezing effect creates a direct
residual qubit coupling in the lowest-order approximation,

H(2)
res = − 1

128
λEJ

h̄ωb

Eb
J

cos2(ϕ0/2)

(cos ϕ0)3/2
σx1σx2. (32)

This coupling is smaller than the controllable interaction in equation (22) by a factor,
h̄ωb/E

b
J � 1.
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2.5. Maximum coupling strength

Because of the limitation on the gate operation time imposed by decoherence, it is desirable
that the qubit coupling is as strong as possible. In our case, the coupling strength is generally
determined by the parameter λ; the strength however increases with the applied current bias.
This is reflected by a cosine-factor in the denominator in equation (22), which formally turns
to zero at ϕ0 = π/2. This corresponds to the point when the bias current approaches the critical
current value for the coupling JJ. At this point the minimum in the tilted Josephson potential
disappears, and the junction switches to the resistive state, sweeping the qubit phase and thus
destroying the qubit. Therefore the ultimate limitation on the coupling strength is imposed by
the switching of the coupling JJ. The latter may even occur at smaller applied current because of
tunnelling through the Josephson potential barrier (macroscopic quantum tunnelling, MQT). The
assumption of a small MQT rate imposes an additional limitation on the coupling strength to the
one imposed by the constraints (20). Indeed, because the potential wells of the tilted Josephson
potential become shallow with decreasing Josephson energy, Eb

J cos ϕ0, the constraints must be
reconsidered,

EJ � h̄ωb

√
cos ϕ0 � Eb

J cos ϕ0, (33)

clearly putting limitations on the maximum allowed tilt.
In order to roughly estimate an upper bound for the maximum coupling strength, let us

soften requirements (33), and consider the relations

EJ ∼ h̄ωb

√
cos ϕ0 ∼ Eb

J cos ϕ0. (34)

Both the relations can be fulfilled by applying a sufficiently large bias current, and by choosing
appropriate plasma frequency. The latter can be adjusted by shunting the coupling JJ with a large
capacitance. The corresponding relations read,

cos ϕ0 ∼ EJ

Eb
J

, h̄ωb ∼
√

EJE
b
J . (35)

The coupling strength for a tilted JJ is given by the phase-dependent coupling parameter in
equation (22),

λ(ϕ0) = λ
sin2(ϕ0/2)

4 cos ϕ0
. (36)

The maximum value of this parameter is estimated by using equation (35),

max λ(ϕ0) ∼ 1. (37)

Let us compare this result with the limitation imposed by MQT. For a large applied bias current,
the potential well can be approximated with a cubic curve, and the MQT rate is estimated
by [30]

�MQT = ωb

√
30s

π
cos ϕ0 e−s, s = 24Eb

J

5 h̄ωb

(cos ϕ0)
5/2

sin2 ϕ0
. (38)
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Suppose that the value h̄ωb ∼ (1/2)Eb
J(cos ϕ0)

5/2 gives a satisfactory small MQT rate (∼ 10−4EJ

according to the following estimates). Under this condition, which is more restrictive than the
right one in equation (34), the relations in equation (35) become modified,

cos ϕ0 ∼
(

EJ

Eb
J

)1/3

, h̄ωb ∼ E
5/6
J (Eb

J)
1/6, (39)

leading to a somewhat smaller maximum coupling parameter,

max λ(ϕ0) ∼
(

EJ

Eb
J

)2/3

< 1. (40)

2.6. Charge-phase regime

So far, we have assumed the qubit island to be in the charge regime EC � EJ , where the
two lowest charge eigenstates, |n = 0〉 and |n = 1〉, serve as the qubit basis. However, from
an experimental point of view, it may be more appealing to work in the charge-phase regime
EC ∼ EJ because the qubit becomes more stable against charge noise when the energy bands
flatten [3]. In this regime, the qubit states are given by Bloch wavefunctions, consisting of
superpositions of many charge states. Nevertheless, as easily seen, the controllable qubit coupling
via a current-biased large JJ will persist also in the charge-phase regime. Indeed, an essential
physical characteristic of the qubit–JJ interaction is the persistent current in the qubit loop,
equation (23), I = (2e/h̄) sin(φ+/2) cos φ−. The magnitude of this current is controlled by the
tilt of the JJ (sin(φ+/2) = sin(ϕ0/2)), and it is zero when the JJ is idle, regardless of whether the
qubit is in the charge or charge-phase regime.

Furthermore, an important property of the charge regime is that the qubit–JJ interaction
is diagonal in the qubit eigenbasis when the qubit is parked at the charge degeneracy point,
ng = 1/2, i.e. it has zz-symmetry in this eigenbasis. This property simplifies the 2-qubit gate
operations discussed later, and it also allows a quantum non-demolishing measurement of the
qubit by means of current detection using the large JJ, as discussed in the next section. We show
in this section that this property persists in the charge-phase regime. Namely, we show that the
SCB Hamiltonian truncated to a pair of lowest Bloch states commutes with the truncated current
operator at ng = 1/2. This leads to direct qubit–qubit coupling of zz-type in the qubit eigenbasis.

Let us consider the SCB Hamiltonian HSCB, equation (8), in the charge basis, |n〉, and
separate the part which does not depend on the gate charge,

H1 =
∞∑

n=−∞
[ECn(n − 1)|n〉〈n| − ẼJ(|n + 1〉〈n| + |n − 1〉〈n|)], (41)

from a small part proportional to the departure from the charge degeneracy point (e.g. during
single-qubit manipulation) δng(t) = 1/2 − ng(t),

H2 =
∞∑

n=−∞
2ECδng(t)n|n〉〈n|, HSCB = H1 + H2. (42)
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The notation ẼJ = 2EJ cos(ϕ/2) is introduced here for brevity. We split the complete set of
the charge eigenstates, −∞ < n < ∞, in the positive and negative charge subsets labelled with
σ =↑, ↓, and m, 1 < m < ∞, such that

m = n, n > 0,

m = 1 − n, n � 0.
(43)

In the basis |m, σ〉, m = . . . , 2, 1, the Hamiltonian H1 acquires the form,

H1 =
[

H0 −ẼJU

−ẼJU H0

]
, (44)

where H0 is tridiagonal, and U contains only a single element,

H0 =




. . .
. . .

. . . 6EC −ẼJ

−ẼJ 2EC −ẼJ

−ẼJ 0


 , U =


. . .

...

0 0
. . . 0 1


 . (45)

A Hadamard rotation, H, in σ-space,

H = 1√
2
(σz + σx), (46)

takes the basis |m ↑〉, |m ↓〉 to |m±〉 = (1/
√

2)(|m ↑〉 ± |m ↓〉), and transforms the matrix in
equation (44),

H1 = H01 − ẼJUσx → H01 − ẼJUσz. (47)

Then this matrix acquires a block-diagonal form,

H1 =




H0 − ẼJU 0
×

0 H0 + ẼJU

×




. (48)

The above block-diagonal form is suitable for identifying the qubit states in the charge-
phase regime. Indeed, when the Josephson energy is tuned to zero, the lower-corner elements
of the blocks, marked with ×, correspond to the lowest energy states of the SCB. In fact, the
Hadamard transformation (46) corresponds to the rotation to the eigenbasis of a charge qubit at
the charge degeneracy point, which coincides with the current eigenbasis. When the Josephson
energy increases, the eigenstates of the matrix (48) become superpositions of many charge states,
which however does not mix the charge superpositions denoted with indices + and −, and can
be obtained by independent rotations of the matrix blocks. During these rotations, although the
two lower-corner eigenvalues marked with × do change, they however remain the lowest energy
levels. This follows from the fact that the eigenvalues of the Mathieu equation do not cross when
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the amplitude of the potential increases [28]. Therefore the charge qubit eigenstates develop to
the lowest energy Bloch states, which are identified as the charge-phase qubit eigenbasis |E+〉
and |E−〉.

Let us evaluate the form of the current operator, equation (23), in the charge-phase qubit
eigenbasis. The current operator in the charge representation is proportional to the operator
X = |n + 1〉〈n| + |n − 1〉〈n|. In the |mσ〉-basis, this operator is written as

X = X01 + Uσx, (49)

where

X0 =




. . .

. . . 1
1 0 1

1 0


 . (50)

In the eigenbasis of H1, i.e. after the Hadamard transformation, this operator acquires a block-
diagonal form,

X →
[
X0 + U 0

0 X0 − U

]
, (51)

which means that X does not couple the states |E+〉 and |E−〉.
One implication of this result is that the qubit–qubit coupling in the charge-phase regime

will still be of zz-type in the truncated Hilbert space, i.e. diagonal in the qubit eigenbasis. It also
means that current measurement will not mix the qubit states, i.e., current detection provides a
means for quantum non-demolition measurements.

Finally, we analyse the term H2 in equation (42), which is non-zero only when the gate
charge deviates from the degeneracy point. In the |mσ〉 representation, this term has the form,

H2 = 2ECδng(t)

[
D↑ 0
0 D↓

]
, (52)

where D↑ and D↓ are diagonal matrices,

D↑ = diag(. . . , 3, 2, 1), D↓ = diag(. . . , −2, −1, 0). (53)

After the Hadamard rotation, it acquires the form,

H2 → ECδng(t)

[
1 D↑ − D↓

D↑ − D↓ 1

]
. (54)

Thus after truncation to the qubit basis, D↑ − D↓ provide off-diagonal elements, which couple
the qubit states and can be employed for qubit manipulation.

3. Coupling via read-out junctions

The read-out circuit is an important ingredient of the qubit network, which must be explicitly
included in the consideration. We discuss here the read-out method successfully tested on a
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Figure 2. Applied currents Imi across large measurement JJs can be used for
reading out the current state of qubit i and for qubit coupling. Arrows indicate the
direction of the Josephson current for positive phase difference (smaller than π).

single qubit by the Saclay group [3]. With this method, the persistent current flowing in the qubit
loop is excited and measured by using a large JJ in the qubit loop, as shown in figure 2. To do
the measurement, a large dc current is applied to the junction so that the net current through
the junction either exceeds the critical value or not, depending on the direction of the persistent
current in the loop. In the former case, the measurement JJ switches to a resistive state, which
is detected by measuring a dc voltage across the JJ; in the latter case, no voltage is detected.
This method of threshold detection is quite invasive, sweeping the phase across the qubit and
creating a large number of quasi-particles. A recently tested more gentle method [29] utilizes
an ac driving current with comparatively small amplitude applied to the JJ, and measures the
qubit-state-dependent ac response.

We now analyse the compatibility of such measurement methods, via a large JJ, with our
coupling scheme. Before proceeding with the calculations we note that one may distinguish two
cases: measurement and coupling. In the measurement case, the bias current is applied only to a
single measurement junction. This will excite the persistent current in the corresponding qubit
loop, allowing qubit readout, while the neighbouring qubit loop will remain, as we will see,
in the idle state, neglecting the effect of a small parasitic coupling, and this qubit will not be
destroyed. In the coupling case, bias current sent through both measurement junctions in figure 2
will create persistent currents in both qubit loops, resulting in the qubit coupling discussed above.
This physical picture implies that qubit–qubit coupling can be achieved even without sending
current through the coupling junction [22].

3.1. Measurement of individual qubits

When a measurement JJ is included in each qubit loop (figure 2), the corresponding terms must
be added to the circuit Lagrangian equation (2):

Lmi = h̄2Cmi

2(2e)2
ϕ̇2

mi + Em
Ji cos ϕmi +

h̄

2e
Imiϕmi. (55)
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Here ϕmi denotes the phase across the measurement junction of the ith qubit, and Imi is the applied
current. The phase quantization relations (5) will now change,

φ+,1 + ϕ − ϕm1 = 0, φ+,2 − ϕ − ϕm2 = 0, (56)

giving rise to interaction of the qubits with the measurement JJ, in addition to the coupling
JJ, in the charge sector as well as in the current sector. As before, it is possible to eliminate
the capacitive interaction, but now it is more convenient to do it on the Lagrangian level. The
interaction via the gate capacitance is eliminated via transformation of the qubit variable,

φ−,i → φ−,i + 2α(ϕmi ∓ ϕ), (57)

which is equivalent to the transformation in equation (13) (the upper (lower) sign corresponds
to the first (second) qubit). As already described, this interaction leads to a small residual direct
yy-qubit coupling, which we will omit from the further discussion. Similarly, the capacitive
interaction via the qubit capacitance C can be eliminated by transformation of the measurement
JJ variable,

ϕmi → ϕmi ± βϕ, β = C

2Cmi + C
. (58)

This transformation will only slightly affect the inductive interaction since β is small.
At this point, we proceed to the quantum description of the circuit and truncate the qubit

Hamiltonian, assuming the charge regime, EC � EJ . The circuit Hamiltonian will take the form,

H =
2∑

i=1

(Hi + Hmi) + HJJ, (59)

where

Hi = EC

2
(1 − 2ngi)σzi − EJ cos

(1 − β)ϕ ∓ ϕmi

2
σxi, (60)

refers to the qubits, while

Hmi = Em
Cin

2
mi − Em

Ji cos(ϕmi ± βϕ) − h̄

2e
Imi(ϕmi ± βϕ), (61)

and

HJJ = Eb
Cn2 − Eb

J cos ϕ, (62)

are the Hamiltonians of the measurement JJ and the coupling JJ, respectively. In these equations,
Em

Ci = (2e)2/(2Cmi + C), and Eb
C = (2e)2/2Cb�, Cb� = Cb +

∑
i [C(Cmi + C)/(2Cmi + C)]; the

current applied to the coupling junction is absent because we will focus on the effect of the
measurement junctions.

In the measurement regime, only a single external current, say Im1, is applied. The steady-
state point for the 3-JJ network, (ϕ0, ϕmi,0), is found from equations (60)–(62) in the main
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approximation with respect to the small parameters β ≈ C/Cb and λ = EJ/E
b
J ,

sin ϕm1,0 = h̄

2e

Im1

Em
J1

, ϕ0 = λ

2
sin

ϕm1,0

2
σx1, ϕm2,0 = βϕ0 − λ

2
sin

ϕ0

2
σx2. (63)

It follows from these equations that indeed the phases across the coupling JJ and the second
measurement JJ remain negligibly small even though the first measurement junction may be
biased at the critical level. Thus, the constraint (20) is essential for not disturbing the other qubit
while the first qubit is measured.

3.2. Qubit coupling via read-out junctions

In the case of qubit–qubit coupling, both measurement junctions are biased, while the coupling
junction is not tilted by external bias,

sin ϕmi,0 = h̄

2e

Imi

Em
Ji

, ϕ0 = 0. (64)

Expanding the potential terms in equations (60)–(62) around the steady state point up to
second order with respect to small phase fluctuations, γ and γmi = ϕmi − ϕmi,0, and neglecting
β-corrections, we may present the Hamiltonian in the form

H =
2∑

i=1

Hi + Hosc + Hint. (65)

Here

Hi = EC

2
(1 − 2ngi)σzi − EJ cos

ϕmi,0

2
σxi, (66)

is the qubit Hamiltonian, which differs from the one in equation (11) by the phase of the
measurement JJ substituting for the phase of the coupling JJ. The next term,

Hosc = Eb
Cn2 + Em

C1n
2
m1 + Em

C2n
2
m2 + 1

2(E
b
Jγ

2 + Em
J1 cos ϕm1,0γ

2
m1 + Em

J2 cos ϕm2,0γ
2
m2) (67)

describes uncoupled linear oscillators, while the interaction is described by the last term,

Hint = 1
2λEb

J [(�1 + �2)γ
2 + �1γ

2
m1 + �2γ

2
m2] + λEb

J(�2γm2 − �1γm1)γ

+ λEb
J [(B1 − B2)γ − B1γm1 − B2γm2]. (68)

Here we introduced for brevity the following notations,

�i = 1
4 cos

ϕmi,0

2
σxi, Bi = − 1

2 sin
ϕmi,0

2
σxi. (69)

Now our goal will be to eliminate the linear terms in γs in equation (68), which can be easily
done by using oscillator normal modes. To this end we rewrite the potential part of equations
(67) and (68) in a symbolic form in terms of a 3-vector γ̂ = (γ, γm1, γm2),

1
2E

b
J γ̂(D̂ + λ�̂)γ̂ + λEb

JB̂γ̂. (70)
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Here D̂ is a diagonal matrix representing the free oscillator potentials in equation (67), while the
3 × 3 matrix �̂ and the 3-vector B̂ represent the interaction in equations (68) and (69). Without
loss of generality we may assume the charging energies of the oscillators to be equal.2 Then
performing rotation to the eigenbasis γ̂ ′ of the matrix D̂ + λ�̂ and then shifting the variable,
γ̃ = γ̂ ′ + λD̂′−1B̂′ (here the prime indicates a new basis), we get,

1
2E

b
J γ̃D̂′γ̃ − 1

2λ
2Eb

JB̂(D̂ + λ�̂)−1B̂. (71)

The last term in this equation, which is conveniently written in the original basis, gives a direct
controllable qubit–qubit coupling similar to the one in equation (22),

Hint = 1

4
λEJ sin

ϕm1,0

2
sin

ϕm2,0

2
σx1σx2. (72)

As expected, this coupling is switched off when one or both measurement junctions are idle, and
it is switched on only when both the measurement junctions are biased. We emphasize that this
coupling does not require biasing of the coupling junction.

The first term in equation (71) gives, after averaging over the oscillator ground state,

the oscillator ground state energy, ( h̄ωb/2) Tr
√

D̂′ (remember that D̂′ is diagonal). Treating
λ�̂ as a small perturbation, we find the first perturbative correction to the matrix spectrum,
D̂′ = D̂ + λ diag �̂. It is easy to see that only the contribution of the coupling JJ contains the
dependence on the qubit-state configuration. The relevant matrix element has the explicit form
(1/2)Eb

J [1 + λ(�1 + �2)], and yields the residual interaction

Hires = − 1

128
λEJ

h̄ωb

Eb
J

cos
ϕm1,0

2
cos

ϕm2,0

2
σx1σx2. (73)

This is a small residual interaction substituting for equation (32) in the present case.

4. Multi-qubit network

To implement useful quantum algorithms, controllable systems with large numbers of qubits are
needed. In this section we will show that the effective qubit–qubit coupling derived in sections 2
and 3 can be generalized to a chain of N qubits with each qubit being coupled to its nearest
neighbours via current-biased JJs and each having its own read-out device, as shown in figure 3.

4.1. Circuit Hamiltonian

The Lagrangian of the N-qubit circuit presented in figure 3 can be written as a straightforward
generalization of equations (2)–(4), and (55),

L =
N∑

i=1

[LSCB,i + Lmi] +
N−1∑
i=1

LJJ,i. (74)

2 By rescaling γ-variables, the charging energies can always be made equal; then rescaling constant factors will
appear in �i and Bi, introducing no qualitative changes.
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Figure 3. A system of N coupled charge qubits. Vgi controls individual qubit i,
whereas Ibi controls the coupling of qubits i and i + 1. Imi can be used to read out
the current state of qubit i and also for qubit coupling. There are no coupling JJs
at the ends, ϕ0 = ϕN = 0. Directions of the Josephson currents are the same as
indicated by the arrows in figure 2.

Since now there are two coupling JJs per qubit loop, the flux quantization relation (56) must be
extended,

φ+,i + ϕi − φmi − ϕi−1 = 0, (75)

leading to a more complex form of the interaction among the qubits and the coupling and
measurement JJs. Nevertheless, our previous strategy for elimination of the interaction in the
charge sector still works. Generalizing equation (57),

φ−,i → φ−,i + 2α(ϕmi + ϕi−1 + ϕi) (76)

allows us to decouple qubit charges; the resulting weak interaction in the current sector yields
a direct parasitic yy-qubit coupling, similar to the one in equation (30). Further transformation,
generalizing equation (58),

ϕmi → ϕmi + β(ϕi − ϕi−1), β = C

2Cmi + C
, (77)

decouples the charges of the measurement JJs, and yields weak additional interaction in the
current sector, which will also be omitted.

After the transformations (76) and (77), the only capacitive interaction which remains in
the Lagrangian (74) is the interaction among the coupling JJs. This interaction is proportional
to a small qubit capacitance C, while the diagonal terms are proportional to much larger
capacitances of the coupling JJs, Cbi � C. We assume that the JJ capacitances are different so
that Cbi − Cbj � C; this is a realistic assumption because a spread of the junction characteristics
during fabrication usually exceeds 10%. Under this assumption, the diagonalization of the
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capacitance matrix will introduce small corrections to the inductive interaction, corrections which
will not provide any qualitative change and can be omitted.

With diagonal kinetic terms in the Lagrangian (74), it is straightforward to proceed to the
truncation of the quantum Hamiltonian,

H =
N∑

i=1

[Hi + Hmi] +
N−1∑
i=1

HJJ,i. (78)

In the charge regime, EJ � EC, the qubit Hamiltonian will take the form,

Hi = EC

2
(1 − 2ngi)σzi − EJ cos

ϕi − ϕmi − ϕi−1

2
σxi, (79)

while the large-JJ terms will not change,

Hmi = Em
Cin

2
mi − Em

Ji cos ϕmi − h̄

2e
Imiϕmi,

HJJ,i = Eb
Cn2

i − Eb
J cos ϕi − h̄

2e
Ibiϕi. (80)

In these equations, the effective capacitances of the measurement JJs are the same as
in equation (65), while the effective capacitances of the coupling JJs are straightforward
generalizations of the one in equation (62), namely Cb�,i = Cb + C[(Cmi + C)/(2Cmi + C) +
(Cm,i+1 + C)/(2Cm,i+1 + C)].

4.2. Direct qubit–qubit coupling

The next step in the derivation of the direct qubit–qubit coupling is to eliminate the large JJs,
following the previous procedure for the two-qubit case. After expanding the Hamiltonian,
equations (78)–(80), with respect to small fluctuations around the steady state points, (ϕi0, ϕmi,0),
determined by the applied controlling and measurement currents,

sin ϕmi,0 = h̄

2e

Imi

Em
Ji

, sin ϕi0 = h̄

2e

Ibi

Eb
J

, (81)

we get the qubit terms (79) with steady-state phases, (81), in the Josephson terms. The qubits
interact with a subnetwork of the linear oscillators,

Hosc =
N−1∑
i=1

[
Eb

Cn2
i +

Eb
J

2
cos ϕi0γ

2
i

]
+

N∑
i=1

[
Em

Cin
2
mi +

Eb
J

2
cos φmi0γ

2
mi

]
, (82)

via the interaction Hamiltonian, which also connects the oscillators,

Hint = λEb
J

2

N−1∑
i=1

[(�i + �i+1)γ
2
i − 2�iγiγi−1]

+
λEb

J

2

[
N∑

i=1

�iγ
2
mi + 2

N−1∑
i=1

(�iγiγmi − �i+1γiγm,i+1)

]

+ λEb
J

[
N−1∑
i=1

(Bi − Bi+1)γi −
N∑

i=1

Biγmi

]
. (83)
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The quantities � and B now also contain the phases of the two coupling JJs (cf equation (69)),

�i = 1
4 cos

ϕi0 − φmi0 − ϕi−1,0

2
σxi,

Bi = 1
2 sin

ϕi0 − φmi0 − ϕi−1,0

2
σxi. (84)

The interaction (83) can be presented in the symbolic form of equation (70) by
introducing the (2N − 1)-vector γ̂ = (γ1, γ2, . . . , γm1, γm2, . . .) , the (2N − 1) × (2N − 1)

matrix �̂ representing the oscillator interaction, and the (2N − 1)-vector B̂ representing the
qubit–oscillator interaction. Then we proceed to equation (71) by performing the diagonalization,
and shifting the oscillator variables as described after equation (70). The result of this procedure
is as follows [22]: assuming no applied measurement currents, the coupling induced by only
tilting coupling JJs has the form,

Hint =
N−1∑
i=1

λEJ

4 cos ϕi0
sin

ϕi0 − ϕi−1,0

2
sin

ϕi+1,0 − ϕi0

2
σxiσx,i+1. (85)

On the other hand, when the coupling JJs are kept idle while the measurement junctions are
biased, the coupling has the form,

Hint =
N−1∑
i=1

λEJ

4
sin

φmi0

2
sin

φm,i+1,0

2
σxiσx,i+1. (86)

Whichever way the coupling is initiated, one is allowed to simultaneously perform a number
of two-qubit gates on different qubit pairs, as long as the qubit pairs are separated by at least
one idle qubit. The small residual xx-coupling resulting from the shift of the oscillators’ ground
energy is restricted to the neighbouring qubits and given by equation (32).

We conclude this section with a discussion of the effect of different Josephson energies of
the qubit junctions, EJi, and the coupling JJ, Eb

Ji. This variation can easily be taken into account
by introducing numerical scaling factors, EJi = ξiEJ , and Eb

Ji = ξb
i E

b
J . Then, while deriving

equation (83), these scaling factors can be included in the definition of the quantities �i and Bi

in equation (84). As a result, the coupling energies λEJ in the final results, equations (85) and
(86), are replaced by

λEJ = E2
J

Eb
J

→ EJiEJi+1

Eb
Ji

. (87)

5. Gate operations with the qubit network

All quantum algorithms can be implemented using a limited universal set of gates. One such
set consists of the controlled-NOT (CNOT) gate together with single-qubit gates [32]. In this
section, we will describe how to perform a CNOT gate on two neighbouring qubits in the above-
mentioned charge qubit network. Using a sequence of two-qubit operations on nearest neighbours
only, two-qubit operations on arbitrary qubits in the chain can be performed [12]. The CNOT
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gate presented here is composed of a CPHASE gate and two kinds of single-qubit gates, a phase
gate and the Hadamard gate.

By default, during qubit operations the qubits are parked at the charge degeneracy point,
where they are more stable against charge noise [3, 23] and the qubit levels are maximally
separated from higher states. The computational basis is chosen to be the current basis, which is
the eigenbasis at the charge degeneracy point and differs from the charge basis by the rotation
σx ↔ σz.

5.1. Single-qubit operations

When Ibi = Ib,i−1 = Imi = 0, qubit i is disconnected from the network to first-order and single-
qubit gates can be performed. The time evolution is determined by the single-qubit Hamiltonian
Hi, equation (16) or (66),

Hi = ECδngi(t)σxi − EJσzi, (88)

where δngi(t) = 1/2 − ngi(t) is the deviation from the charge degeneracy point.
In the idle state, the non-zero energy-level splitting results in a phase gate Sθ being performed

on the qubit;

Sθ =
{|0〉 → eiθ/2|0〉,
|1〉 → e−iθ/2|1〉, (89)

where θ depends on the elapsed time T through T = θ/(2EJ).
A particularly useful case is the Z-gate, equivalent to the S3π/2-gate (up to a global phase),

Z =
{|0〉 → |0〉,
|1〉 → i|1〉. (90)

Another useful single-qubit operation is the Hadamard gate H,

H =
{|0〉 → 1√

2
(|0〉 + |1〉),

|1〉 → 1√
2
(|0〉 − |1〉), (91)

which can be implemented by applying a microwave pulse at the gate [3, 31], δngi(t) =
A cos(2EJt), during a time T = π/2A. Choosing the amplitude A involves a trade-off between
keeping the operation time short and minimizing the deviations from the charge degeneracy
point.

5.2. Two-qubit gates

A two-qubit gate involving qubits i and i + 1 is created by applying a bias current Ibi at the
intersection between the two qubits, or by simultaneously applying measurement currents Imi

and Im,i+1. The qubits are coupled according to the coupling terms equations (85) and (86), while
their individual time evolutions are determined by Hi, equation (16) or (66). As an example,
when applying the bias current Ibi, the Hamiltonian of the two interacting qubits reads,

Hi + Hi+1 + Hint = −EJ cos
ϕi0

2
(σzi + σz,i+1) − λEJ

4 cos ϕi0
sin2 ϕi0

2
σziσz,i+1. (92)
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H H

Z

Z

CPHASE

QUBIT 1

QUBIT 2

Figure 4. A CNOT operation using single-qubit gates (Hadamard and phase
gates) and CPHASE. Time runs from left to right.

Choosing operation time and bias current amplitude properly results in the entangling CPHASE
gate,

CPHASE =




|11〉 → i|11〉,
|10〉 → |10〉,
|01〉 → |01〉,
|00〉 → i|00〉.

(93)

Moreover, a CNOT gate is created by combining CPHASE with single-qubit gates such as the
Z-gate, equation (90), and the Hadamard gate, equation (91), as shown in figure 4. Thus it is
possible to perform a universal set of quantum gates, and therefore any quantum algorithm, with
the investigated charge-qubit network.
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