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Abstract: Vertical arrays of semiconductor nanowires show great potential for material-efficient and 
high-performance solar cells. The characterization and correlation between material structure and 
properties of the individual nanowires are crucial for the continued performance improvement of such 
devices. In this work, we use a scanning tunneling microscope (STM) probe inside a scanning electron 
microscope (SEM) to study single photovoltaic nanowires. The STM probe is used to contact individual 
nanowires in ensembles. We combine the STM-SEM with an in situ light emitting diode (LED) 
illumination source to study both the electrical and photovoltaic properties of vertical GaAs nanowires 
with radial p-i-n junctions. We also study the local charge separation ability within the nanowires by 
electron beam induced current (EBIC) measurements. The in situ SEM setup allows the correlation 
between properties and nanowire structure. The data show that the quality of the electrical contact to the 
semiconductor nanowire is crucial to be able to investigate the inherent properties of the nanowires. We 
have established a procedure to make high-quality Ohmic contacts to the nanowires with the STM probe. 
We also show that the effect of mechanical strain on the electrical properties can be investigated by this 
technique.  

 

1. Introduction 

Semiconductor nanowires have electrical and optical properties that show great potential for 

photovoltaics [1], [2], [3], [4]. As a result, solar cells composed of arrays of vertical 

semiconductor nanowires have been the subject of extensive research the past decade. 

Recently, the record efficiency reached 17.8% for such a device [5]. The vertical nanowire 



array design offers several advantages compared to thin-film solar cells. First of all, the 

nanowires have diameters of a few hundred nanometers, which is smaller than the wavelength 

of visible light. This gives rise to waveguiding and resonance effects [6], [7] , making the 

absorption cross section of a nanowire several times larger than its geometrical cross section 

[8],[9]. This means that if the nanowire diameter and length, as well as the distance between 

the nanowires are optimized [10], basically all the incoming light can be absorbed even 

though the nanowires do not fill up the whole volume of the cell. The material consumption is 

therefore significantly lower than for a corresponding thin-film solar cell [11]. Additionally, 

the difference between absorption and geometrical cross section of the nanowires results in a 

built-in light concentration, which increases the maximum theoretical efficiency of the solar 

cell [12]. Nanowire arrays also exhibit an anti-reflection property, making anti-reflection 

coatings superfluous [11]. Furthermore, strain relaxation in the nanowires enables growth of 

lattice mismatched heterostructures [13] that would not be possible in bulk. It also broadens 

the choice of possible growth substrates significantly, including inexpensive alternatives as Si 

[14]. The nanowire geometry also provides the possibility to separate the direction of light 

absorption and charge carrier separation by the use of radial p-n junctions. This means that the 

path for light absorption is long while the distance to the junction separating the electrons and 

holes is short, which have the potential of optimizing the absorption of light and minimizing 

the probability for recombination and therefore increase the efficiency [15]. 

In order to further evolve this relatively new technology, rigorous characterization methods of 

nanowire solar cell systems are needed. Current-voltage (I-V) measurements of nanowire 

ensembles in both dark and illuminated conditions can be performed by using standard solar 

cell characterization techniques, and are important for providing information about the final 

performance and efficiency of full-scale devices [16]. However, the results of such 

measurements do not reveal the contribution of each single nanowire. Measurements on 



single nanowires can provide insight into the photovoltaic and electric properties inherent to 

the nanowires, and how the physical structure of the nanowires affects these properties. This 

information is important for designing the nanowire solar cells with the best performance. A 

common strategy to study single nanowires is to lift a wire off the growth substrate and place 

it horizontally on another substrate, with metal contacts deposited on both ends of the wire 

[17], [18]. This method works even for radial junction nanowires if one end is etched to reveal 

the core to the metal contact [19], [20], [21]. This type of measurements can provide useful 

information about some properties of the nanowires, for example, the minority carrier 

diffusion length [17]. However, the waveguiding effect is significantly less pronounced in 

nanowires lying on a substrate compared to vertically standing nanowires [22]. Moreover, if 

the nanowire has been removed from the growth substrate the effects of the nanowire-

substrate interface cannot be studied. Hence, measurements performed on single vertical 

nanowires standing on the growth substrate are important for determining the true 

performance of individual nanowires in complete solar cell devices. A technique for 

performing measurements on a standing nanowire is reported in [9]. Here, a solar cell device 

containing only one single vertical nanowire contacted at the bottom via the growth substrate 

and at the top via a layer of indium tin oxide was fabricated. The result of this work showed, 

among other things, that the nanowire had the remarkable property of absorbing light from an 

area approximately 8 times larger than its cross-sectional area. While this characterization 

technique may provide excellent information about the properties of one single nanowire, it 

demands the dedicated growth of an individual nanowire solar cell and does not offer the 

possibility to compare different nanowires in a nanowire ensemble. Recently, characterization 

of individual as-grown nanowire solar cells have been realized by contacting single nanowires 

with a nanoprobe, either inside a scanning electron microscope (SEM) [23]or in atomic force 

microscopy (AFM) [24]. Both these methods enable the probing of individual nanowires in an 



ensemble.  However, a remaining challenge is to simultaneously achieve reproducible Ohmic 

contacts to the nanowires while having the possibility to illuminate the nanowires and study 

mechanical strain-induced effects. 

In this work, we present a technique where a scanning tunneling microscope (STM) probe 

inside an SEM is used to characterize single as-grown photovoltaic nanowires. Our approach 

constitutes a method where electrical, photovoltaic and strain-induced properties of individual 

as-grown semiconductor nanowires for solar cells can be studied simultaneously, with in situ 

high resolution imaging of the structures. The combination of STM and electron microscopy 

for making electrical measurements on nanostructures was introduced already around 15 years 

ago [25], [26] and the technique has been widely used since to investigate, for example, the 

resistivity of semiconductor nanowires [27], [28], and how the electrical transport properties 

depend on the diameter [29], mechanical stress [30], [31] and doping profile [30], [32]. Since 

we are focusing on nanowires for solar cells we are interested in the optical properties and 

light-induced effects. We have therefore introduced a light emitting diode in the SEM for 

illumination of the nanowires. We have also established a procedure to control and optimize 

the electrical contact between the moveable STM probe and the nanowire, which is a common 

challenge for characterizing the electrical properties of semiconductor nanostructures with a 

nanoprobe that needs to be addressed [27], [28],[31], [33]. The electron beam, with a diameter 

of a few nanometers, provided by the SEM is also utilized to study the characteristics of the 

built-in p-i-n junction in the individual nanowires by so called electron beam induced current 

(EBIC) measurements. The STM probe can also be used to apply strain on the nanowires. We 

find that the possibility to selectively choose and perform measurements on single nanowires 

in an ensemble of vertical nanowires offered by the STM probe inside the SEM is very useful 

to investigate the difference in performance between individual nanowires. These 



measurements allow the identification of the reason for the variation in performance, 

ultimately leading to suggestions on how to design nanowire solar cells for best performance.  

 

2. Materials and method 

We have used an STM-SEM sample holder fabricated by Nanofactory Instruments AB. The 

design of the STM part of the holder is illustrated in Figure 1 (a). The STM probe consists of 

a Au-wire with a diameter of 0.25	mm. A sharp tip of the Au-wire can be created by cutting it 

at an approximate angle of 45° with a pair of scissors while pulling the wire away from the 

scissors. The probe is attached to a probe holder which has six legs that are clamped around a 

movable conductive sphere. The movement of the sphere is controlled by sending electric 

signals to five piezoelectric plates that are positioned in a tubular fashion. This design enables 

two different movement modes of the probe, coarse and fine movement. Fine movement is 

achieved when the probe holder basically follows the movement of the sphere, and it provides 

an accuracy of 0.2	Å in the forward/backward direction, and 2	Å in the lateral and vertical 

directions for the probe tip position. Coarse movement is achieved when the sphere is moved 

by the piezo so fast that the inertia of the probe holder makes the legs slide across the sphere. 

This enables quick positioning of the probe with a range of several millimeters in all three 

dimensions. A more detailed description of the STM part of the holder is provided in [25]. 

The nanowire sample is mounted in front of the probe tip and the growth substrate is 

electrically connected to an external measurement circuit containing a picoammeter and a 

variable voltage supply, enabling I-V measurements. The probe is connected to the external 

circuit via the probe holder and the conductive sphere. A white LED was mounted on the 

STM-SEM holder to serve as the illumination source for the measurements involving light, 

see Figure S1 in Supplementary information. The holder with the LED is placed inside the 



vacuum chamber of a Zeiss Ultra 55 field emission gun SEM. An electric feed-through in the 

SEM enables the LED to be connected to a power supply and the STM to be connected to the 

operating system, comprising a pre-amplifier, a measurement/piezo control unit and a 

computer. The control unit contains the external measurement circuit described above and the 

electronics needed for sending the correct electrical signals to the piezo. The live image 



provided by the SEM and the well-controlled motion of the STM probe enable us to contact 

individual nanowires that are part of a nanowire ensemble. 

Figure 1 – Illustration of the STM-SEM technique. (a) The STM probe is brought into contact with individual nanowires by using 
piezoelectric motion in the SEM. An LED is used to illuminate the sample. The probe and the sample are connected to an external 
circuit containing a picoammeter and a variable voltage supply. (b) The STM probe is brought into contact with the tip of a nanowire, 
where a thin layer of Pt has been deposited. In this way, the n-doped region of the nanowire is contacted to the external circuit. The p-
doped core of the nanowire is connected to the circuit via the p-doped Si substrate, a layer of Ag paint and an Al plate. When photons 
from the LED are absorbed in the nanowire, they generate electron-hole pairs that separate in the built-in field of the p-i-n junction. This 
gives rise to a photocurrent in the external circuit. (c) SEM image of the STM probe close to a nanowire sample. The inset highlights 
the Pt deposition at the tip of the nanowires. 



The investigated GaAs nanowires were grown vertically on a p-doped Si substrate by a self-

catalyzed molecular beam epitaxy (MBE) method, further details are provided in [9]. The 

nanowires were 15 − 25	µm	long with a diameter of 250 − 350	nm. They were doped to 

form a radial p-i-n junction within each wire, see Figure 1 (b). The figure also illustrates the 

setup for the electrical characterization. The STM probe is brought into contact with the n-

doped shell of the nanowire. In order to increase the metal-semiconductor contact area, a thin 

layer of Pt is deposited on the tip of the nanowire using electron beam induced deposition in 

an FEI Versa3D focus ion beam instrument. The p-doped core of the nanowire is contacted 

through the p-doped Si substrate, Ag paint and an Al plate. A thin layer of SiO2 at the surface 

of the substrate prevents the n-doped layer to be in contact with the substrate. This in situ 

setup can be used to measure both the illuminated and the dark I-V characteristics of 

individual nanowires. When the LED is turned on, electron-hole pairs will be generated by the 

absorbed photons in the nanowire, and these charge carriers will be separated by the built-in 

field of the p-i-n junction, giving rise to a photocurrent. Figure 1 (c) shows an SEM 

micrograph of the STM probe and the nanowires. Please note the sharp tip of the 

mechanically cut Au-probe with a radius of approximately 120 nm. 

In order to ensure that the measurements represent the inherent properties of the nanowires, it 

is important that the contact resistance between the STM probe and the nanowire is low, so 

that the current is limited by the nanowire and not the contact resistance. As mentioned earlier 

we deposited a thin layer of Pt at the tip of the nanowire to increase the contact area, see the 

inset of Figure 1 (c). However, this is not enough. It is well-known that a Schottky barrier 

forms at the interface of a metal and GaAs, which may cause the contact to be current-

rectifying depending on the width of the depletion layer. Since the nanowires have a relatively 

high doping concentration (~5𝑒45	cm78), the width of the depletion layer should be small 

enough for the charge carriers to tunnel through the barrier in both directions and make the 



contact practically ohmic [34]. However, the nanowires are covered with a thin native oxide 

layer, which has been shown to increase the resistance of a metal-GaAs contact [35]. 

Annealing has been successfully used to disperse the native oxide layer to improve the quality 

of metal-semiconductor contacts [36]. Therefore, we established a procedure to apply a 10 V 

bias between the STM probe and the sample to induce Joule heating, which improves the 

quality and reproducibility of the electrical contact significantly. 

3. Results and discussion 

3.1. Photovoltaic measurements 

We measured the I-V characteristics of individual nanowires, both in dark and illuminated 

conditions. A few examples are shown in Figure 2. During the progress the I-V 

measurements, the electron beam was blanked. The dark I-V curves in Figure 2 (a) and (b) 

demonstrate a current-rectifying behavior, which is due to the p-i-n junction. The illuminated 

IV-curves are shifted downwards compared to the dark curves, due to the photocurrent 

induced by the LED photons. The quality of the metal-semiconductor contact is reflected in 

the illuminated I-V curves. Figure 2 (a) shows that the illuminated IV-curve has an S-shape 

around zero bias before the Joule heating process has been applied. It has been shown before 

that a rectifying contact in series with a p-n junction shows this S-shape characteristics [37]. 

Our annealing procedure of the contact resulted in the disappearance of the S-shape and an 

illuminated I-V curve corresponding to the dark I-V curve with a superimposed photocurrent 

[Figure 2 (b)], indicating an ohmic contact with low resistance. One concern we have is that 

the Joule heating may cause harm to the p-i-n junction within the nanowire. However, in 

Figure 2 (b) it is clear that the junction remains after the Joule heating, indicating that the 

Joule heating only affected the contact between the Pt and the GaAs.  



The short circuit current (ISC), the open circuit voltage (VOC) and the fill factor (FF) of the 

single nanowire can be extracted from the illuminated IV-curve, and their values are shown in 

Figure 2 (b). It is possible to obtain a value of the power conversion efficiency (PCE) of the 

single nanowire by using the formula 𝑃𝐶𝐸 = 	 =>?@A?BB
CDE

, where 𝑃FG is the power of the photon 

flux reaching the projected area of the nanowire. Since the LED light is incident at an angle of 

approximately 40° to the normal of the substrate, the projected area of the nanowire is 𝐴IJ =

𝐿𝑒𝑛𝑔𝑡ℎPQ ∗ 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟PQ ∗ sin(40°). The irradiance of the LED was determined, by use of 

a spectrometer, to be 6.3 mWcm-2. The length and diameter of the nanowire were measured to 

be approximately 16	µm and 250	nm, respectively. The calculated efficiency of this 

nanowire is thus around 11%. It should be noted that this value of the PCE is not directly 

comparable with measurements performed using a standard solar simulator, since the LED 

has a different intensity spectrum compared to a 1 sun illumination source (see Figure S2 in 

Supplementary information). Also, PCE values of single nanowires cannot be directly 

translated into PCE values of a corresponding full-scale nanowire array solar cell, because the 

projected area of the nanowire is not the same as the light absorbing area due to the 

waveguiding effect [1]. The PCE value can be used to compare the performance of single 

nanowires characterized under the same conditions though. In other words, we can use the 

PCE value to make a quantitative comparison between different nanowires.  

 Figure 2 (c) shows a comparison between the dark I-V curves of two nanowires, NW1 and 

NW2. It is evident that the two I-V curves differ substantially, with the most noticeable 

difference at around zero bias. While the curve of NW1 is nearly flat in this region, indicative 

of an ideal solar cell, the curve of NW2 has a relatively large gradient, indicative of a low 

shunt resistance which is detrimental for the performance of the cell. One possible reason for 

this would be if the n-doped shell and the intrinsic layer are deficient at the tip of NW2, 

allowing the Pt deposition to contact the p-doped core of the nanowire. This would result in a 



low shunt resistance. Since this work focuses on the development of the characterization 

method, we have not gone further in the investigation of the difference in performance 

between NW1 and NW2. 



 

Figure 2 – I-V measurements on single nanowires. All the 
measurements were performed without electron beam irradiation. 
(a) I-V characteristics in the dark and under LED illumination for 
NW1 before Joule heating. The illuminated I-V curve has an S-
shape around zero bias, indicating a rectifying metal-
semiconductor contact. (b) I-V characteristics in the dark and 
under LED illumination for NW1 after Joule heating. The S-shape 
is gone, indicating ohmic contact. The parameters short circuit 
current (ISC), open circuit voltage (VOC) and fill factor (FF) are 
included. (c) Comparison of the dark I-V characteristics of NW1 
and NW2. 



The mobile STM probe also provides the possibility to induce mechanical strain during the 

electrical measurements by bending the nanowires, see Error! Reference source not found. 

(a). A crude approximation of the amount of strain induced by the bending can be made using 

the relation 𝜀 = ±	𝑟/𝑅, where 𝜀 is the strain, 𝑟 is the radius of the nanowire and 𝑅 is the 

radius of the curvature of the most bent part of the nanowire. Using this relation, we estimate 

the strain to be within the range of ±	0.5 – 1.5 % in the most bent part of NW2.  At the outer 

perimeter of the wire the strain will be tensile (positive), and at the inner perimeter it will be 

compressive (negative). Error! Reference source not found. (b) shows a comparison of the 

dark I-V characteristics of NW2 with and without bending. The bending affects the I-V 

Figure 3 - (a) SEM image showing how the STM probe can be 
used to bend a nanowire. (b) Comparison of the I-V characteristic 
of NW2 when it was bent and unbent. The measurement was 
performed without electron beam irradiation. 



characteristics of the nanowire. Please see section S4 in Supplementary information for a 

discussion about this. 

 

 

 

 

3.2. EBIC measurements 

Since the measurements are performed inside an SEM, the electron beam can be used to 

generate electron-hole pairs in the nanowire resulting in an electron beam induced current 

(EBIC). The main difference between photocurrent measurements and EBIC measurements is 

that the LED illuminates the whole nanowire while the electron beam can be focused to a spot 

only a few nanometers wide, enabling local characterization of different parts of the nanowire. 

The spatial resolution of EBIC measurements is larger than the spot size of the beam though, 

due to the beam broadening occurring inside the sample. The EBIC resolution is around 200 

nm for a 5 kV acceleration voltage and around 250 nm for 20 kV, see Figure S3 in 

Supplementary information for a Monte Carlo simulation of the beam interaction volume. By 

scanning the nanowire with the electron beam while recording the EBIC signal, an EBIC map 

can be produced, see Figure 4. Here the SEM image of a nanowire [Figure 4 (a)] and the 

corresponding EBIC maps at a beam acceleration voltage of 20 kV [Figure 4 (b)] and 5 kV 

[Figure 4 (c)] are shown. There are a few aspects of the EBIC results that should be noted. 

First of all, the EBIC signal on the Au probe [upper left corner in Figure 4 (a), (b) and (c)] is 

much smaller than the EBIC signal on the nanowire. This is a verification that the nanowire 

contains a functioning p-i-n junction that effectively separates the generated electron-hole 

pairs. The explanation is that the EBIC signal on the Au probe is limited by the beam current 



value, which is roughly 1 nA, since no electron-hole pairs are generated in a metal. On the 

other hand, inside the semiconductor nanowire each beam electron could generate thousands 

of electron-hole pairs, since the average energy it takes to generate one electron-hole pair in 

GaAs by electron radiation, multiple scattering processes considered, is around 4.6 eV [40]. 

As a result, the EBIC signal measured when the beam is focused on the nanowire reaches 

values as high as 72 nA. The second observation is that the EBIC signal is in general quite 

constant in the direction along the nanowire at both electron beam energies. This can be 

attributed to the radial junction geometry of the nanowire. The radial geometry ensures that 

the diffusion distance, for the minority carriers to reach the junction, is short no matter where 

the electron-hole pairs are created along the nanowire. Therefore, the charge separation 

efficiency is constant along the nanowire, as opposed to the situation in nanowires with axial 

junctions, where the charge separation efficiency depends strongly on the position along the 

nanowire (ref). The EBIC maps also show that the junction quality is high and homogeneous 

along the nanowire, without any obvious defective domains. The fact that the EBIC signal is 

significantly weaker at the edges of the nanowire than in the center is mainly due to that a 

greater part of the beam electrons escapes before the entire beam energy has been deposited at 

the edge of the nanowire. A last observation is that at the tip of the nanowire, the EBIC signal 

at a beam acceleration voltage of 20 kV (5 kV) is slightly higher (lower) compared to the rest 

of the nanowire. In the case of 20 kV, this is probably because the electrons that are 

transmitted through the tip of nanowire will end up in the STM-probe and make a small 

additional contribution to the current. At 5 kV, the slightly lower EBIC signal at the tip of the 



nanowire is probably due to surface contamination, reducing the number of electrons reaching 

into the nanowire.   

 

3.3. Evaluation of the technique 

The advantage of the STM-SEM technique compared to the existing techniques for 

characterizing single, photovoltaic nanowires discussed in the introduction of this paper, is 

that it can be used to directly compare the photovoltaic properties of different nanowires on 

as-grown substrates. There is no need to remove the nanowires from the growth substrate or 

to fabricate special single-wire cells. If a nanowire is found to perform badly, the SEM 

imaging can be used to find possible reasons for that, and it could lead to insights valuable for 

the development of the nanowire solar cell technology. Additionally, the possibility to bend 

the nanowires with the STM probe could be important for investigation of the possibility to 

use elastic strain engineering [41] to enhance the performance of the solar cells. The 

technique is also well suited for EBIC measurements. A few drawbacks of the technique have 

been identified. The limited space inside the SEM chamber obstructs the use of a standard 

Figure 4 - (a) SEM micrograph of a nanowire contacted by 
the STM-probe and corresponding normalized EBIC maps at 
a beam acceleration voltage of (b) 20 kV and (c) 5 kV. 



solar simulator to illuminate the nanowires, which would be preferable to the LED in order to 

be able to compare the PCE values to other studies. A possible solution to achieve simulated 

sunlight inside the SEM would be to introduce an optical fiber into the chamber. Another way 

would be to use a compact solar simulator consisting of a combination of LED:s [42]. 

Another drawback is that the STM probe may block light that is incident parallel to the 

nanowires. Our solution was to mount the LED so that the light was incident at an angle of 

40° to the normal of the substrate surface. This could affect the performance of the nanowires 

because the waveguiding effect is mostly pronounced when the light is incident parallel to the 

long axis of the nanowires. In principle, it should be possible for the STM probe to contact the 

side of a nanowire to avoid the parallel light to be blocked. 

 

4. Conclusion 

A technique for investigating photovoltaic and electrical properties of single, vertical 

semiconductor nanowires on as-grown substrates utilizing an STM-SEM sample holder and a 

LED light source was developed. The functionality of the technique was demonstrated by 

performing dark and illuminated IV-measurements, as well as EBIC measurements, on GaAs 

nanowires with radial p-i-n junctions grown on a p-doped Si substrate. The technique enables 

the comparison of the performance of single nanowires, that are part of a nanowire ensemble, 

and correlate it to the nanowire structure. It is also possible to apply strain to the nanowires 

while performing measurements. These abilities are not available in the most common 

existing techniques for characterizing single photovoltaic nanowires. Therefore, it provides 

useful information for understanding the effects of microscopic structure on the photovoltaic 

properties and improving the performance of nanowire solar cells. 
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S1 The STM-SEM holder 

The STM-SEM holder that was used for the experiments is shown in Figure S1. The LED is 

mounted on the side of the holder, and the angle of incidence of the light is approximately 40° 

to the normal of the growth substrate of the nanowires. 

 



 

Figure S5 - Photograph of the STM-SEM holder. The LED is mounted on the side of the holder. The inset shows a zoomed 
view of the STM part of the holder. 

 

 

 

S2 The LED spectrum 

Figure S2 shows a comparison between the spectral irradiance of the LED and AM1.5 

sunlight [1]. The fact that a part of the sunlight spectrum corresponds to photon energies 

lower than the band gap energy of GaAs will make the efficiency of the nanowires at 1 sun 

illumination lower compared to the efficiency at LED illumination. 



 

Figure S6 - Spectral irradiance of AM1.5 sunlight and the LED used for photocurrent measurements. The wavelength 
corresponding to the band gap energy of GaAs is indicated. 

 

S3 EBIC resolution 

Figure S3 shows Monte Carlo simulations of the electron beam interaction volume performed 

by using the Casino v3.3 software [2]. At a beam energy of 5 keV the interaction volume 

diameter, and thereby the EBIC resolution, is around 200 nm. At 20 keV, the interaction 

volume around 250 nm and part of the beam is transmitted through the nanowire.  



 

Figure S7 - Monte Carlo simulations of the beam interaction volume in a GaAs nanowire at beam acceleration voltages of (a) 
5kV and (b) 20 kV. The simulations were performed using the Casino v3.3 software [2]. 

 

S4 Bending nanowire 

When the nanowire is bent, there will be large tensile strain at the outer perimeter of the wire 

and large compressive strain at the inner perimeter, compared to in the center of the 

wire. This means that the strain will be larger in the n-doped region than in the p-

doped region. Previous research has shown that both compressive and tensile strain 

reduces the band gap energy of GaAs. The bending of the nanowire should therefore 

lead to a transition from a p-i-n homojunction to a p-i-n heterojunction in the 

nanowire, and we expect this to affect the I-V characteristics. However, a change in 

band-gap energy alone does not tell us how the I-V characteristics are affected by the 

bending. We must also know how the work function is affected. Unfortunately, to our 

knowledge there has been no studies of the effect of strain on the work function of 



GaAs. One possible option is that the work function of the strained n-layer decreases. 

The situation would then be similar to the one depicted in Figure S4 (c). The strength 

of the total built-in field of this p-n heterojunction is larger than in the p-n 

homojunction illustrated in Figure S4 (b), since qVbi = Ef,p - Ef,n. A stronger built-in 

field Vbi should result in a higher VOC. Therefore, this might be a possible explanation 

for the observed change in I-V characteristics when bending the nanowire, because 

looking at Figure 3 the I-V curve of the bent nanowire seems to result in a higher VOC, 

assuming that the illuminated I-V curve is a superposition of the dark I-V curve. 

 

 

Figure S8 - When the nanowire is bent, the strain will be larger in the n-doped shell. 
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