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INEXACT NEWTON-TYPE OPTIMIZATION WITH ITERATED
SENSITIVITIES∗

RIEN QUIRYNEN† , SÉBASTIEN GROS‡ , AND MORITZ DIEHL§

Abstract. This paper presents and analyzes an inexact Newton-type optimization method
based on iterated sensitivities (INIS). A particular class of nonlinear programming (NLP) problems
is considered, where a subset of the variables is defined by nonlinear equality constraints. The pro-
posed algorithm considers any problem-specific approximation for the Jacobian of these constraints.
Unlike other inexact Newton methods, the INIS-type optimization algorithm is shown to preserve
the local convergence properties and the asymptotic contraction rate of the Newton-type scheme for
the feasibility problem yielded by the same Jacobian approximation. The INIS approach results in
a computational cost which can be made close to that of the standard inexact Newton implementa-
tion. In addition, an adjoint-free (AF-INIS) variant of the approach is presented which, under certain
conditions, becomes considerably easier to implement than the adjoint based scheme. The applica-
bility of these results is motivated specifically for dynamic optimization problems. In addition, the
numerical performance of a corresponding open-source implementation is illustrated.

Key words. Newton-type methods, optimization algorithms, direct optimal control, collocation
methods
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1. Introduction. The present paper considers Newton-type optimization algo-
rithms [19] for a class of nonlinear programming (NLP) problems

min
z,w

f(z, w)(1a)

s.t. g(z, w) = 0,(1b)
h(z, w) = 0,(1c)

where z ∈ Rnz and w ∈ Rnw are the optimization variables. The objective and
constraint functions are defined as f : Rnz × Rnw → R, g : Rnz × Rnw → Rng and
h : Rnz × Rnw → Rnh , respectively, and they are assumed to be twice continuously
differentiable in all arguments. The subset of the variables z and the constraint
function g(·) is selected such that ng = nz and such that the Jacobian ∂g(z,w)

∂z ∈ Rnz×nz

is invertible. It follows that the variables z are implicitly defined as functions of w
via the nonlinear equality constraints g(z, w) = 0. Throughout the paper, this set
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of constraints in Eq. (1b) will be referred to as the forward problem, which delivers
z?(w̄) by solving the corresponding system

(2) g(z, w̄) = 0 for a given value w̄.

Some interesting examples of such problem formulations result from a simultaneous
approach to dynamic optimization [2, 10], where the forward problem imposes the
system dynamics and therefore typically corresponds to a numerical simulation of
differential equations. A popular example of such an approach is direct collocation [5],
where the forward problem consists of the collocation equations, possibly including
also the continuity conditions.

We are interested in solving the forward problem in (2) using Newton-type schemes
that do not rely on an exact factorization of gz := ∂g

∂z , but use instead a full-rank
approximation M ≈ gz. This Jacobian approximation can be used directly in a
Newton-type method to solve the forward problem by steps

(3) ∆z = −M−1g(z̄, w̄),

where z̄ denotes the current guess and the full-step update in each Newton-type
iteration can be written as z̄+ = z̄ + ∆z. Even though local convergence properties
for Newton-type optimization have been studied extensively in [6, 16, 19, 36], this
paper presents a novel contribution regarding the connection between the accuracy
of the Jacobian approximation M and the local contraction rate of the corresponding
optimization algorithm. A Newton-type method with inexact derivatives does not
converge to a solution of the original nonlinear optimization problem, unless adjoint
derivatives are evaluated in order to compute the correct gradient of the Lagrangian [9,
22]. It has been pointed out by [39] that the locally linear convergence rate of the
resulting inexact Newton (IN) based optimization scheme is not strongly connected to
the contraction of the iterations for the inner forward problem in (3). More specifically,
it is possible that the Jacobian approximation M results in a fast contraction of the
forward problem alone, while the optimization algorithm based on the same Jacobian
approximation diverges. In contrast, the proposed INIS algorithm will be shown to
have the same asymptotic contraction rate.

In this work, for the sake of simplicity, we omit (possibly nonlinear) inequality
constraints in the NLP (1). Note however that our discussion on the local convergence
of Newton-type optimization methods can be readily extended to the general case of
inequality-constrained optimization. Such an extension can be based on techniques
from sequential quadratic programming (SQP) where, under mild conditions, the ac-
tive set can be shown to be locally stable for the subproblems [9, 11, 38]. Hence,
for the purpose of a local convergence analysis, the equality constraints in (1c) could
additionally comprise the locally active inequality constraints. This observation is
illustrated further in the numerical case study of this paper. Alternatively, the exten-
sion to inequality-constrained optimization can similarly be carried out in the context
of interior point methods [5, 37]. Convergence results for Newton-type optimization
based on inexact derivative information can be found in [30, 34] for SQP or in [4, 48] for
nonlinear interior point (IP) methods. An alternative approach makes use of inexact
solutions to the linearized subproblems in order to reduce the overall computational
burden of the Newton-type scheme as discussed in [14, 15, 30, 35]. Note that other
variants of inexact Newton-type algorithms exist, e.g., allowing locally superlinear
convergence [22, 29] based on quasi-Newton Jacobian updates. In the case of optimal
control for differential-algebraic equations, even quadratic convergence rates [31] have
been observed under certain conditions.
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1.1. Contributions and outline. The main contribution of the present paper
is the inexact Newton method with iterated sensitivities (INIS) that allows one to
recover a strong connection between the local contraction rate of the forward problem
and the local convergence properties of the resulting Newton-type optimization algo-
rithm. More specifically, local contraction based on the Jacobian approximation for
the forward problem is necessary and, under mild conditions, even sufficient for local
convergence of the INIS-type optimization scheme. The article presents an efficient
implementation of the INIS algorithm, resulting in a computational cost close to that
of the standard inexact Newton implementation. Note that this Newton-type scheme
shows a particular resemblance to the lifted Newton method in [1], based on a lifting
of the forward sensitivities. This connection is also discussed in [44], in the context
of collocation methods for direct optimal control.

In addition, an adjoint-free (AF-INIS) variant for Newton-type optimization is
proposed. This alternative approach can be interesting whenever the algorithm can
be carried out independently of the respective values for the multipliers corresponding
to the equality constraints, but it generally does not preserve the local convergence
properties of the forward scheme. As discussed further, an adjoint-free implementa-
tion can, however, be attractive in case of a sequence of nontrivial operations, e.g.,
resulting from a numerical simulation in dynamic optimization. An open-source imple-
mentation of these novel INIS-type techniques for simultaneous direct optimal control
is proposed as part of the ACADO toolkit. Throughout the article, theoretical results
are illustrated using toy examples of quadratic and nonlinear programming problems.
In addition, the numerical performance of the open-source implementation is shown
on the benchmark case study of the optimal control for a chain of masses.

The paper is organized as follows. Section 2 briefly presents standard Newton-
type optimization methods. Section 3 then proposes and analyzes the inexact Newton
method based on iterated sensitivities (INIS) as an alternative implementation of inex-
act Newton-type optimization. An adjoint-free variant of the INIS-type optimization
algorithm is presented in section 4. An important application of the proposed schemes
for simultaneous approaches of direct optimal control is presented in section 5, includ-
ing numerical results based on a specific open-source implementation. Section 6 finally
concludes this paper.

2. Newton-type optimization. The Lagrange function for the NLP (1) reads
as L(y, λ) = f(y) + µ>g(y) + ν>h(y), where y :=

[
z> w>

]> ∈ Rny denotes all

primal variables. In addition, c(y) :=
[
g(y)> h(y)>

]>, λ :=
[
µ> ν>

]> ∈ Rnc

is defined, and nc = ng + nh, where µ ∈ Rng , ν ∈ Rnh , respectively, denote the
multipliers for the nonlinear equality constraints in (1b) and (1c). The first-order
necessary conditions for optimality are then defined as

(4)
∇yL(y, λ) : ∇yf(y) +

nc∑
i=1

λi∇yci(y) = 0,

∇λL(y, λ) : c(y) = 0,

and are generally referred to as the Karush–Kuhn–Tucker (KKT) conditions [37]. Note
that a more compact notation is used to denote the gradient of a scalar function,
i.e., this is the transpose of the Jacobian ∇yL(·) = ∂L

∂y (·)> = Ly(·)>. We further
generalize this operator as ∇yc(·) =

[
∇yc1(·) · · · ∇ycnc(·)

]
= ∂c

∂y (·)> = cy(·)>.
This nonlinear system of equations can also be written in the compact notation
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(5) F(y, λ) =
[
∇yL(y, λ)
c(y)

]
= 0.

Each local minimizer (y?, λ?) of the NLP (1) is assumed to be a regular KKT point
F(y?, λ?) = 0 as defined next. For this purpose, we rely on the linear independence
constraint qualification (LICQ) and the second-order sufficient conditions (SOSC) for
optimality, of which the latter requires that the Hessian of the Lagrangian is strictly
positive definite in the directions of the critical cone [37].

Definition 2.1. A minimizer of an equality constrained NLP is called a regular
KKT point, if both LICQ and SOSC are satisfied at this KKT point.

2.1. Newton-type methods. Newton-type optimization proceeds with apply-
ing a variant of Newton’s method [17, 19] to find a solution to the KKT system in
(5). Note that an exact Newton iteration on the KKT conditions reads as

(6)
[
∇2
yL(ȳ, λ̄) c>y (ȳ)
cy(ȳ) 0

]
︸ ︷︷ ︸

= J(ȳ,λ̄)

[
∆y
∆λ

]
= −

[
∇yL(ȳ, λ̄)
c(ȳ)

]
︸ ︷︷ ︸

=F(ȳ,λ̄)

,

where cy(ȳ) := ∂c
∂y (ȳ) denotes the Jacobian matrix and the values ȳ and λ̄ denote the

primal and dual variables at the current guess. In the following, we will refer to the
exact Newton iteration using the compact notation

J(ȳ, λ̄)
[

∆y
∆λ

]
= −F(ȳ, λ̄),(7)

where the exact Jacobian matrix is defined as J(ȳ, λ̄) := ∂F
∂(y,λ) (ȳ, λ̄). In this work, a

full-step update of the primal and dual variables is considered for simplicity in each
iteration, i.e., ȳ+ = ȳ + ∆y and λ̄+ = λ̄ + ∆λ, even though globalization strategies
are typically used to guarantee convergence [5, 37].

As mentioned earlier, many Newton-type optimization methods have been pro-
posed that result in desirable local convergence properties at a considerably reduced
computational cost by either forming an approximation of the KKT matrix J(·)
or by solving the linear system (6) approximately [35]. For example, the family
of quasi-Newton methods [18, 37] is based on the approximation of the Hessian of
the Lagrangian H̃ ≈ H := ∇2

yL using only first-order derivative information. Other
Newton-type optimization algorithms even use an inexact Jacobian for the nonlinear
constraints [9, 22, 31, 47] as discussed next.

2.2. Adjoint-based inexact Newton (IN). Let us consider the invertible Ja-
cobian approximation M ≈ gz in the Newton-type method of (3) to solve the forward
problem. The resulting inexact Newton method, aimed at solving the KKT conditions
for the NLP in (5), iteratively solves the following linear system:

(8)

 H̃

(
M> h>z
g>w h>w

)
(
M gw
hz hw

)
0


︸ ︷︷ ︸

=: J̃IN(ȳ,λ̄)


∆z
∆w
∆µ
∆ν

 = −
[
∇yL(ȳ, λ̄)
c(ȳ)

]
,

where the right-hand side of the system is exact as in (6) and an approximation
of the Hessian H̃ ≈ ∇2

yL(ȳ, λ̄) has been introduced for the sake of completeness.
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Note that the gradient of the Lagrangian ∇yL(·) can be evaluated efficiently using
adjoint differentiation techniques, such that the scheme is often referred to as an
adjoint-based inexact Newton (IN) method [9, 22]. The corresponding convergence
analysis will be discussed later. Algorithm 1 describes an implementation to solve the
adjoint-based IN system in (8). It relies on a numerical elimination of the variables
∆z = −M−1(g(ȳ) + gw∆w) and ∆µ such that a smaller system is solved in the
variables ∆w,∆ν, which can be expanded back into the full variable space. Note that
one recovers the Newton-type iteration on the forward problem ∆z = −M−1g(ȳ) for
a fixed value w̄, i.e., in case ∆w = 0.

Remark 2.2. The matrix Z̃> :=
[
−g>wM−>, 1nw

]
in step 1 of Algorithm 1 is an

approximation for Z> :=
[
−g>wg−>z , 1nw

]
, which denotes a basis for the null space of

the constraint Jacobian gyZ = 0 such that Z>∇yL(ȳ, λ̄) = Z> (∇yf(ȳ) +∇yh(ȳ)ν̄).
When using instead the approximate matrix Z̃, this results in the following correction
of the gradient term:

(9) Z̃>∇yL(ȳ, λ̄) = Z̃>(∇yf(ȳ) +∇yh(ȳ)ν̄)−
(
(gzM−1 − 1nz)gw

)>
µ̄.

In addition, let us write the first nz expressions in (8) as follows:

(10) M>∆µ = −
[
1nz 0

] (
∇yL(ȳ, λ̄) + H̃∆y + h>y ∆ν

)
,

which has been used to obtain the expansion step for ∆µ in Algorithm 1.

2.3. Newton-type local convergence. One iteration of the adjoint-based IN
method solves the linear system in (8), which can be written in the following compact
form:

(11) J̃IN(ȳ, λ̄)
[

∆y
∆λ

]
= −F(ȳ, λ̄),

where F(·) denotes the exact KKT right-hand side in (6). The convergence of this
scheme then follows the classical and well-known local contraction theorem from [6,
19, 22, 39]. We use a particular version of this theorem from [20], providing sufficient
and necessary conditions for the existence of a neighborhood of the solution where
the Newton-type iteration converges. Let ρ(P ) denote the spectral radius, i.e., the
maximum absolute value of the eigenvalues for the square matrix P .

Algorithm 1. One iteration of an adjoint-based inexact Newton (IN) method.

Input: Current values ȳ = (z̄, w̄), λ̄ = (µ̄, ν̄) and approximations M , H̃(ȳ, λ̄).

1: After eliminating the variables ∆z, ∆µ in (8), solve the resulting system:[
Z̃>H̃Z̃ Z̃>h>y
hyZ̃ 0

] [
∆w
∆ν

]
= −

[
Z̃>∇yL(ȳ, λ̄)

h(ȳ)

]
−
[
Z̃>H̃
hy

] [
−M−1g(ȳ)

0

]
,

where Z̃> :=
[
−g>wM−>, 1nw

]
.

2: Based on ∆w and ∆ν, the corresponding values for ∆z and ∆µ are found:
∆z = −M−1(g(ȳ) + gw∆w) and
∆µ = −

[
M−> 0

] (
∇yL(ȳ, λ̄) + H̃∆y + h>y ∆ν

)
.

Output: New values ȳ+ = ȳ + ∆y and λ̄+ = λ̄+ ∆λ.
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Theorem 2.3 (Local Newton-type contraction [20]). We consider the twice con-
tinuously differentiable function F(y, λ) from (5) and the regular KKT point F(y?, λ?)
= 0 from Definition 2.1. We then apply the Newton-type iteration in (11), where
J̃IN(ȳ, λ̄) ≈ J(ȳ, λ̄) is additionally assumed to be continuously differentiable and in-
vertible in a neighborhood of the solution. If all eigenvalues of the iteration matrix
have a modulus smaller than 1, i.e., if the spectral radius satisfies

(12) κ? := ρ
(
J̃IN(y?, λ?)−1J(y?, λ?)− 1nF

)
< 1,

then this fixed point (y?, λ?) is asymptotically stable, where nF = ny + ng + nh.
Additionally, the iterates (ȳ, λ̄) converge linearly to the KKT point (y?, λ?) with the
asymptotic contraction rate κ? when initialized sufficiently close. On the other hand,
if κ? > 1, then the fixed point (y?, λ?) is unstable.

A proof for Theorem 2.3 can be found in [20, 41], based on a classical stability
result from nonlinear systems theory.

Remark 2.4. The inexact Newton method relies on the standard assumption that
the Jacobian and Hessian approximations M and H̃ in (8) are such that the corre-
sponding matrix J̃IN(ȳ, λ̄) is invertible. However, in addition, Theorem 2.3 requires
that J̃IN(·) is continuously differentiable in a neighborhood of the solution. This
assumption is satisfied, e.g., for an exact Newton method, for fixed Jacobian approxi-
mations, as well as for the generalized Gauss–Newton (GGN) method for least squares
type optimization [8, 20]. This theorem on local Newton-type convergence will there-
fore be sufficient for our discussion, even though more advanced results exist [16, 19].

Remark 2.5. As mentioned earlier in the introduction, an inequality constrained
problem can be solved with any of the proposed Newton-type optimization algorithms,
in combination with techniques from either SQP or interior point methods to treat
the inequality constraints. Let us consider a local minimizer which is assumed to be
regular, i.e., it satisfies the linear independence constraint qualification (LICQ), the
strict complementarity condition, and the second-order sufficient conditions (SOSC)
as defined in [37]. In this case, the primal-dual central path associated with this
minimizer is locally unique when using an interior point method. In case of an SQP
method, under mild conditions on the Hessian and Jacobian approximations, the
corresponding active set is locally stable in a neighborhood of the minimizer, i.e., the
solution of each QP subproblem has the same active set as the original NLP [9, 11, 46].
Hence, for the purpose of a local convergence analysis, the equality constraints in (1c)
could additionally comprise the active inequality constraints in a neighborhood of the
local minimizer.

2.4. A motivating QP example. In this paper, we are interested in the exis-
tence of a connection between the Newton-type iteration on the forward problem (3)
being locally contractive, i.e., κ?F := ρ

(
M−1gz(z?, w̄)− 1nz

)
< 1, and the local con-

vergence for the corresponding Newton-type optimization algorithm as defined by
Theorem 2.3. From the detailed discussion in [7, 39, 40], we know that contraction
for the forward problem is neither sufficient nor necessary for convergence of the
adjoint-based inexact Newton (IN) type method in Algorithm 1, even when using an
exact Hessian H = ∇2

yL(ȳ, λ̄). To support this statement, let us consider the fol-
lowing quadratic programming (QP) example from Potschka [39], based on a linear
constraint g(y) =

[
A1 A2

]
y, nh = 0, and quadratic objective f(y) = 1

2y
>Hy in (1).

The matrix A1 is assumed invertible and close to identity, such that we can select the
Jacobian approximation M = 1nz ≈ A1. The problem data from [39] read as
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(13)
H =


0.83 0.083 0.34 −0.21
0.083 0.4 −0.34 −0.4
0.34 −0.34 0.65 0.48
−0.21 −0.4 0.48 0.75

 ,
A1 =

[
1.1 1.7
0 0.52

]
, A2 =

[
−0.55 −1.4
−0.99 −1.8

]
.

For this specific QP instance, we may compute the linear contraction rate for the
Newton-type method on the forward problem (3):

κ?F = ρ(M−1gz − 1nz) = ρ(A1 − 1nz) = 0.48 < 1.

In addition, let us consider the IN algorithm based on the solution of the linear
system (8) for the same QP example using the exact Hessian H̃ = H. We can then
compute the corresponding contraction rate at the solution point:

κ?IN = ρ(J̃−1
IN J − 1nF ) ≈ 1.625 > 1,

where J = J(y, λ) denotes the exact Jacobian of the KKT system in (5). For this QP
example (13), the Newton-type method on the forward problem locally converges with
κ?F = 0.48 < 1, while the corresponding IN algorithm is unstable with κ?IN ≈ 1.625 > 1.
In what follows, we present and study a novel Newton-type optimization algorithm
based on iterated sensitivities, which circumvents this problem at a negligible ad-
ditional computational cost. These observations are illustrated in Figure 1, which
presents the Newton-type iterations for the different algorithms, starting from the
same initial point and using the same Jacobian approximation. The figure includes
the linear convergence for the Newton-type method (3) on the forward problem.

0 5 10 15 20 25 30
10

−10

10
−5

10
0

10
5

Iteration

||
 y
 −
 y
*  
||

∞

IN scheme

INIS scheme

AF−INIS scheme

Forward problem

Fig. 1. Illustration of the divergence of the inexact Newton (IN) scheme and the convergence
of the inexact Newton with iterated sensitivities (INIS) scheme for the QP in (13). In addition, the
rate of convergence for INIS can be observed to be the same as for the forward problem.



 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

INEXACT NEWTON WITH ITERATED SENSITIVITIES 81

3. Inexact Newton with iterated sensitivities (INIS). Let us introduce an
alternative inexact Newton-type optimization algorithm, labeled INIS in the following,
based on the solution of an augmented KKT system defined as1

(14) FINIS(y, λ,D) =

 ∇yL(y, λ)
c(y)

vec(gzD − gw)

 = 0,

where the additional variable D ∈ Rnz×nw denotes the sensitivity matrix, implic-
itly defined by the equation gzD − gw = 0. The number of variables in this aug-
mented system is denoted by nINIS = nF + nD, where nF = ny + ng + nh and
nD = nznw. The following proposition states the connection between the augmented
system FINIS(y, λ,D) = 0 and the original KKT system in (5).

Proposition 3.1. A regular point (y?, λ?, D?) for the augmented system in (14),
corresponds to a regular KKT point (y?, λ?) for the NLP in (1).

Proof. This result follows directly from observing that the first two equations of
the augmented system FINIS(y, λ,D) = 0 correspond to the KKT conditions F(y, λ) =
0 in (5) for the original NLP problem in (1).

3.1. Implementation. We introduce the inexact Newton method with iterated
sensitivities (INIS), to iteratively solve the augmented KKT system in (14) based on
(15)

H̃

(
M> h>z

D̄>M> h>w

)
0(

M M D̄
hz hw

)
0 0

0 0 1nw ⊗M


︸ ︷︷ ︸

=: J̃INIS(ȳ,λ̄,D̄)


∆z
∆w
∆µ
∆ν

vec(∆D)

 = −

 ∇yL(ȳ, λ̄)
c(ȳ)

vec(gzD̄ − gw)


︸ ︷︷ ︸

=FINIS(ȳ,λ̄,D̄)

,

where ⊗ denotes the Kronecker product of matrices, and where we use the Jacobian
approximation M ≈ gz from the Newton-type method on the forward problem in (3).
The resulting matrix J̃INIS(ȳ, λ̄, D̄) forms an approximation for the exact Jacobian
JINIS(ȳ, λ̄, D̄) := ∂FINIS

∂(y,λ,D) (ȳ, λ̄, D̄) of the augmented system. Similar to Remark 2.4,

we assume that the Jacobian and Hessian approximations M , D̄, and H̃ are such that
the INIS matrix J̃INIS(·) is continuously differentiable and invertible.

Algorithm 2 shows that the INIS scheme in (15) can be implemented efficiently
using a condensing and expansion procedure and the computational cost can be made
close to that of the standard inexact Newton method in Algorithm 1. More specifically,
the INIS scheme requires the linear system solution −M−1(gzD̄ − gw), for which the
right-hand side can be evaluated efficiently using AD techniques [28]. Similar to
Remark 2.2, let us write the gradient correction in step 1 of Algorithm 2:

(16) Z̃>∇yL(ȳ, λ̄) = Z̃>(∇yf(ȳ) +∇yh(ȳ)ν̄)− (gzD̄ − gw)>µ̄,

where Z̃> :=
[
−D̄>, 1nw

]
. Note that the evaluation of gzD̄ − gw can be reused in

steps 1 and 3 of Algorithm 2, which allows INIS to be computationally competitive
with the standard IN scheme. This will also be illustrated by the numerical results
for direct optimal control in section 5.

1The operator vec(·) denotes a vectorization of a matrix, i.e., this is a linear transformation that
converts the matrix into a column vector.
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Algorithm 2. One iteration of an adjoint-based inexact Newton with iterated sen-
sitivities (INIS) optimization method.

Input: Current values ȳ = (z̄, w̄), λ̄ = (µ̄, ν̄), D̄ and approximations M , H̃(ȳ, λ̄).

1: After eliminating the variables ∆z, ∆µ in (15), solve the resulting system:[
Z̃>H̃Z̃ Z̃>h>y
hyZ̃ 0

] [
∆w
∆ν

]
= −

[
Z̃>∇yL(ȳ, λ̄)

h(ȳ)

]
−
[
Z̃>H̃
hy

] [
−M−1g(ȳ)

0

]
,

where Z̃> :=
[
−D̄>, 1nw

]
.

2: Based on ∆w and ∆ν, the corresponding values for ∆z and ∆µ are found:
∆z = −M−1g(ȳ)− D̄∆w and
∆µ = −

[
M−> 0

] (
∇yL(ȳ, λ̄) + H̃∆y + h>y ∆ν

)
.

3: Independently, the sensitivity matrix is updated in each iteration:
∆D = −M−1(gzD̄ − gw).

Output: New values ȳ+ = ȳ + ∆y, λ̄+ = λ̄+ ∆λ, and D̄+ = D̄ + ∆D.

3.2. Local contraction theorem. In what follows, we show that Algorithm 2
allows one to recover the connection between the contraction properties of the forward
problem and the one of the Newton-type optimization algorithm. This observation
makes the INIS-type optimization scheme depart fundamentally from the classical
adjoint-based IN method. The local contraction of the forward problem will be shown
to be necessary for the local convergence of the INIS algorithm, and can be sufficient
under reasonable assumptions on the Hessian approximation H̃.

Let us formalize the local contraction rate κ?INIS = ρ(J̃−1
INISJINIS − 1nINIS) for the

INIS scheme (15), where the Jacobian of the augmented KKT system (14) reads

(17) JINIS =

∇2
yL c>y 0
cy 0 0
sy 0 1nw ⊗ gz

 , where sy :=
∂

∂y
vec(gzD − gw).

The following theorem specifies the eigenspectrum of the iteration matrix J̃−1
INISJINIS−

1nINIS at the solution point (y?, λ?, D?), using the notation σ(P ) to denote the spec-
trum, i.e., the set of eigenvalues for a matrix P .

Theorem 3.2. For the augmented linear system (15) on the NLP in (1), the
eigenspectrum of the INIS-type iteration matrix at the solution (y?, λ?, D?) reads as

(18) σ
(
J̃−1

INISJINIS − 1nINIS

)
= {0} ∪ σ

(
M−1gz − 1nz

)
∪ σ

(
H̃−1
Z HZ − 1ñZ

)
,

where ñZ = nw−nh and Z ∈ Rny×ñZ denotes a basis for the null space of the complete
constraint Jacobian cy, such that the reduced Hessians HZ := Z>HZ ∈ RñZ×ñZ and
H̃Z := Z>H̃Z ∈ RñZ×ñZ are defined. Note that H := ∇2

yL(y?, λ?) is the exact Hessian
and H̃ ≈ H is an approximation. More specifically, the iteration matrix has the ñZ
eigenvalues of the matrix H̃−1

Z HZ − 1ñZ and the nz eigenvalues of M−1gz − 1nz with
an algebraic multiplicity of (2 + nw) and {0} with algebraic multiplicity (2nh).

Proof. At the solution of the augmented KKT system for the NLP in (14), the
sensitivity matrix corresponds to D? = g−1

z gw. We then introduce the following
Jacobian matrix and its approximation:
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gy =
[
gz gw

]
, g̃y =

[
1nz D?

]
= g−1

z gy,

such that the exact and inexact augmented Jacobian matrices read

JINIS =


H g>y h>y 0
gy 0 0 0
hy 0 0 0
sy 0 0 1nw ⊗ gz

 , J̃INIS =


H̃ g̃>y M

> h>y 0
M g̃y 0 0 0
hy 0 0 0
0 0 0 1nw ⊗M

 ,
(19)

at the solution point (y?, λ?, D?). We observe that the eigenvalues γ of the iteration
matrix J̃−1

INISJINIS − 1nINIS are the zeros of

det
(
J̃−1

INISJINIS − 1nINIS − γ1nINIS

)
= det

(
J̃−1

INISJINIS − (γ + 1)1nINIS

)
= 0.

Since J̃INIS is invertible, the second equality holds if and only if

det
(
J̃INIS

(
J̃−1

INISJINIS − (γ + 1)1nINIS

))
= det

(
JINIS − (γ + 1)J̃INIS

)
= 0.

Using the notation in (19), we can rewrite the matrix JINIS − (γ + 1)J̃INIS as the
following product of block matrices:

(20)

JINIS − (γ + 1) J̃INIS

=


1ny 0 0 0
0 M̃ 0 0
0 0 −γ 1nh 0
0 0 0 1nD



H − (γ + 1) H̃ g̃>y h>y 0

g̃y 0 0 0
hy 0 0 0
sy 0 0 1nw ⊗ M̃



∗


1ny 0 0 0
0 M̃ 0 0
0 0 −γ 1nh 0
0 0 0 1nD


>

,

where the matrix M̃ = gz − (γ + 1)M is defined such that M̃ g̃y = gy − (γ + 1)M g̃y.
The determinant of the product of matrices in (20) can be rewritten as

(21)

det
(
JINIS − (γ + 1)J̃INIS

)
= det




1ny 0 0 0
0 M̃ 0 0
0 0 −γ 1nh 0
0 0 0 1nD




2

∗det



H − (γ + 1) H̃ g̃>y h>y 0

g̃y 0 0 0
hy 0 0 0
sy 0 0 1nw ⊗ M̃




= (−γ)2nhdet
(
M̃
)2+nw

det

 H − (γ + 1) H̃ g̃>y h>y
g̃y 0 0
hy 0 0

 .

Note that the Jacobian approximation M is invertible such that the determinant
det(M̃) is zero if and only if det(M−1gz − (γ + 1)1nz) = 0 holds. It follows that
det(JINIS − (γ + 1)J̃INIS) = 0 holds only for the values of γ that fulfill
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84 RIEN QUIRYNEN, SÉBASTIEN GROS, AND MORITZ DIEHL

γ = 0 or(22a)

det
(
M−1gz − (γ + 1) 1nz

)
= 0 or(22b)

det

 H − (γ + 1) H̃ g̃>y h>y
g̃y 0 0
hy 0 0

 = 0.(22c)

Note that (22b) is satisfied exactly for the eigenvalues γ ∈ σ(M−1gz − 1nz) with an
algebraic multiplicity (nw + 2) as can be observed directly in (21). It can be verified
that the values for γ satisfying (22c) are given by

det
(
Z>

(
H − (γ + 1) H̃

)
Z
)

= det
(
HZ − (γ + 1) H̃Z

)
= 0,(23)

where Z ∈ Rny×ñZ denotes a basis for the null space of the complete constraint
Jacobian cy. The last equality in (23) is satisfied only for the eigenvalues γ ∈
σ(H̃−1

Z HZ−1ñZ). Note that this, for example, corresponds to an additional eigenvalue
γ = 0 in the case of an exact Hessian matrix H̃ = H.

Based on the latter results regarding the eigenspectrum of the iteration matrix,
we now formally state the local contraction theorem for the proposed INIS method.

Corollary 3.3 (Local INIS-type contraction). The local rate of convergence
for the INIS-type optimization algorithm is defined by

κ?INIS = ρ
(
J̃−1

INISJINIS − 1nINIS

)
= max

(
κ?F, ρ(H̃−1

Z HZ − 1ñZ)
)
,

where κ?F = ρ(M−1gz − 1nz) is defined for the Newton-type method on the forward
problem in (3). It follows that local contraction for the forward problem, i.e., κ?F < 1,
is necessary for local convergence of the INIS-type algorithm. Under the condition
ρ(H̃−1

Z HZ−1ñZ) ≤ κ?F on the quality of the Hessian approximation, e.g., ρ(H̃−1
Z HZ−

1ñZ) = 0 in the case of an exact Hessian, local contraction for the forward problem is
sufficient since the asymptotic rate of convergence satisfies κ?INIS = κ?F.

3.3. Numerical results. Let us first revisit the motivating QP example from
section 2.4, where the asymptotic contraction rate for the Newton-type method on
the forward problem reads κ?F = 0.48 < 1. In contrast, the solution was found to be
asymptotically unstable since κ?IN ≈ 1.625 > 1 for the IN method based on the same
Jacobian approximation. Let us now consider the proposed INIS algorithm based
on the solution of the linear system (15) for the same QP example using the exact
Hessian H̃ = H. We compute the corresponding contraction rate at the solution

κ?INIS = ρ(J̃−1
INISJINIS − 1nINIS) = 0.48 < 1,

where JINIS denotes the exact Jacobian of the augmented KKT system in (17). There-
fore, the INIS scheme indeed exhibits a linear local convergence with the same asymp-
totic rate as the forward problem, i.e., κ?INIS = 0.48 = κ?F. This result is consistent
with Theorem 3.2 and is illustrated in Figure 1.

In addition, let us introduce a simple example of an NLP (1) based on the QP
formulation above, where again nh = 0. For this purpose, let us take a quadratic
objective f(y) = 1

2y
>Hy + e>y, where H is defined in (13), the gradient vector

e =
[
0.1 0 0 0

]>, and the nonlinear constraint function reads

(24) g(y) =
[
A1 A2

]
y + 0.1

[
y3

1
y2y4

]
,
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Fig. 2. Illustration of the divergence of the inexact Newton (IN) scheme and the convergence
of the inexact Newton with iterated sensitivities (INIS) scheme for the NLP in (24). In addition,
the rate of convergence for INIS can be observed to be the same as for the forward problem while
the adjoint-free (AF-INIS) implementation has a different contraction rate for this NLP example.

where also the matrices A1 and A2 are adopted from (13). Figure 2 then illustrates the
convergence results for the IN and INIS schemes from Algorithms 1 and 2 on this NLP
example. It can be observed that the local contraction rate for INIS corresponds to
that for the forward problem, while the standard IN implementation locally diverges
for this particular example. More specifically, the asymptotic contraction rates at the
NLP solution can be computed to be

κ?F = κ?INIS ≈ 0.541 < 1 < 1.441 ≈ κ?IN.

4. Adjoint-free INIS-type optimization. Algorithm 2 presented an INIS-
type Newton method to solve the augmented KKT system in (14), based on ad-
joint sensitivity propagation to evaluate the gradient of the Lagrangian ∇yL(y, λ) =
∇yf(y) + ∇yg(y)µ+∇yh(y)ν. Unlike the standard IN method in Algorithm 1,
for which adjoint sensitivity propagation is necessary for convergence as discussed
in [9, 22], the proposed INIS algorithm allows for deploying an adjoint-free implemen-
tation as presented in this section. For this purpose, in order to motivate the use of
such an adjoint-free INIS (AF-INIS) scheme, we assume the following.

• A multiplier-free Hessian approximation H̃(y) ≈ H(y, λ) := ∇2
yL(y, λ) can

be used for the NLP in (1), e.g., based on the generalized Gauss–Newton
method [8, 37]. It can be desirable to use a multiplier-free algorithm, which
therefore does not require a good initialization of the multiplier values.
• The constraint function g(·) of the forward problem consists of a sequence

of nontrivial operations, resulting in a Jacobian gz with a block banded
structure. For example, in the case of direct optimal control [10], these
constraints typically correspond to the numerical simulation of the system
dynamics. Especially for implicit integration schemes, the computation of
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Algorithm 3. One iteration of an adjoint-free inexact Newton with iterated sensi-
tivities (AF-INIS) optimization method.

Input: Current values ȳ = (z̄, w̄), D̄ and approximations M , H̃(ȳ).

1: After eliminating the variables ∆z, ∆µ in (26), solve the resulting system:[
Z̃>H̃Z̃ Z̃>h>y
hyZ̃ 0

] [
∆w
ν̄+

]
= −

[
Z̃>∇yf(ȳ)

h(ȳ)

]
−
[
Z̃>H̃
hy

] [
−M−1g(ȳ)

0

]
,

where Z̃> :=
[
−D̄>, 1nw

]
.

2: Based on ∆w, the corresponding value for ∆z is found:
∆z = −M−1g(ȳ)− D̄∆w.

3: Independently, the sensitivity matrix is updated in each iteration:
∆D = −M−1(gzD̄ − gw).

Output: New values ȳ+ = ȳ + ∆y and D̄+ = D̄ + ∆D.

adjoint derivatives typically results either in relatively high storage require-
ments of the forward variables or in an increased computational cost [45].
• Unlike the equations of the forward problem, the constraint function h(·)

allows a relatively cheap evaluation of forward and adjoint derivatives.
The above assumptions are often satisfied for dynamic optimization problems, as
discussed further in section 5. Even though any derivative in a Newton-type method
could be evaluated either forward or backward, note that there is a clear motivation
to avoid the use of adjoint differentiation specifically for the function g(·). However,
we will show, including a counterexample, that such an adjoint-free INIS method
generally cannot preserve the same asymptotic contraction rate for NLPs.

4.1. Implementation. Algorithm 3 presents the adjoint-free variant of the INIS
optimization method from Algorithm 2. It corresponds to solving the following ap-
proximate variant of the augmented KKT system in (14):

(25) FAF(y, λ,D) =

∇yf(y) +
(

g>z
D>g>z

)
µ+∇yh(y)ν

c(y)
vec(gzD − gw)

 = 0.

The following proposition formalizes the connection between this augmented system
of equations and the original NLP in (1).

Proposition 4.1. A solution (y?, λ?, D?) to the alternative augmented system in
(25), corresponds to a regular KKT point (y?, λ?) for the NLP in (1).

Proof. The third equation in both augmented KKT systems from (14) and (25)
at the solution (y?, λ?, D?) reads as gzD?− gw = 0 such that D? = g−1

z gw holds. The
following equality therefore holds at the solution

∇yL(y?, λ?) = ∇yf(y?) +∇yc(y?)λ? = ∇yf(y?) +
(

g>z
(gzD?)>

)
µ? +∇yh(y?)ν?.

It follows that a solution of the adjoint-free augmented system (25) also forms a
solution to the adjoint-based augmented system (14) and therefore is a regular KKT
point for the NLP in (1) based on the result in Proposition 3.1.
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The adjoint-free inexact Newton method with iterated sensitivities (AF-INIS)
then uses the same approximate Jacobian matrix J̃INIS(ȳ, λ̄, D̄) from (15) to solve
the augmented set of equations in (25). At each iteration, the corresponding linear
system reads as

(26)


H̃

(
M> h>z

D̄>M> h>w

)
0(

M M D̄
hz hw

)
0 0

0 0 1nw ⊗M


︸ ︷︷ ︸

= J̃INIS(ȳ,λ̄,D̄)


∆z
∆w
∆µ
∆ν

vec(∆D)



= −

∇yf(ȳ) +
(

g>z
D̄>g>z

)
µ̄+∇yh(ȳ)ν̄

c(ȳ)
vec(gzD̄ − gw)


︸ ︷︷ ︸

=FAF(ȳ,λ̄,D̄)

.

Using this augmented linear system, the steps ∆z, ∆w, and ∆D can be computed
without evaluating adjoint derivatives for the function g(·) in Algorithm 3. The eval-
uation of these adjoint variables can be avoided because the following term vanishes
when multiplying the first equation in the right-hand side of the latter system (26)
by Z̃> := [−D̄> 1nw ]:

[
−D̄> 1nw

]( g>z
D̄>g>z

)
= −D̄>g>z + D̄>g>z = 0,

resulting in an adjoint-free and multiplier-free computation in Algorithm 3. Note that
the multipliers ν are also not needed, depending on how the linear system is solved
in step 1 of the algorithm. Because we assumed the Hessian approximation H̃(ȳ) in
this case to be independent of the current multiplier values, we can completely omit
the computation of the update ∆λ.

4.2. Local convergence results. Proposition 4.1 states that, if it converges,
the adjoint-free implementation of the INIS method in Algorithm 3 converges to a
local minimizer for the NLP in (1), and this is unlike standard adjoint-free inexact
Newton methods as discussed in [9, 22]. Even though we will show that the result
in Theorem 3.2 does not necessarily hold for the AF-INIS scheme applied to general
NLPs, the following theorem extends this local contraction result for quadratic pro-
gramming (QP) problems. Let us introduce the exact Jacobian of the adjoint-free
augmented KKT system in (25):

(27) JAF(y, λ,D) =


fyy + g̃yy + hyy

(
g>z h>z

D>g>z h>w

)
g̃D(

gz gw
hz hw

)
0 0

sy 0 1nw ⊗ gz

 ,

where the matrices fyy := ∇2
yf(y), g̃yy := ∂

∂y ( g>
z µ

D>g>
z µ

), hyy :=
∑nh
i=1∇2

yhi(y)νi, and

g̃D := ( 0
1nw⊗µ

>gz
) are defined and sy := ∂

∂y vec(gzD − gw) similar to (17). For this
local convergence result, we consider a QP of the form in (1):
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min
z,w

1
2
y>Hy + h>y(28a)

s.t. A1z +A2w + a = 0,(28b)
B1z +B2w + b = 0,(28c)

where the matrix A1 is assumed to be invertible and we have an invertible Jacobian
approximation M ≈ A1 available.

Theorem 4.2. For the adjoint-free augmented linear system (26) corresponding
to the QP in (28), the eigenspectrum of the AF-INIS iteration matrix reads

(29) σ
(
J̃−1

INISJAF − 1nINIS

)
= {0} ∪ σ

(
M−1A1 − 1nz

)
∪ σ

(
H̃−1
Z HZ − 1ñZ

)
,

at the solution (y?, λ?, D?). The exact Jacobian JAF(y, λ,D) is defined by (27) for
which sy = 0, g̃yy = 0, hyy = 0, and fyy = H in case of a QP formulation. Similar to
Theorem 3.2, ñZ = nw − nh and Z ∈ Rny×ñZ denotes a basis for the null space of the

constraint Jacobian [
A
B

], and HZ := Z>HZ ∈ RñZ×ñZ and H̃Z := Z>H̃Z ∈ RñZ×ñZ .

The local rate of convergence for the adjoint-free INIS scheme on the QP formulation
in (28) is defined by

κ?AF = ρ
(
J̃−1

INISJAF − 1nINIS

)
= max

(
κ?F, ρ(H̃−1

Z HZ − 1ñZ)
)
.

Proof. At the solution of the adjoint-free augmented KKT system in (25) for the
QP formulation in (28), we know that D? = A−1

1 A2 and we use the notation A =[
A1 A2

]
and Ã = A−1

1 A. The eigenvalues γ of the iteration matrix J̃−1
INISJAF−1nINIS

are given by the expression det(JAF−(γ+1)J̃INIS) = 0, based on the exact and inexact
adjoint-free augmented Jacobian matrices

JAF =


H A> B> g̃D
A 0 0 0
B 0 0 0
0 0 0 1nw ⊗A1

 , J̃INIS =


H̃ Ã>M> B> 0
MÃ 0 0 0
B 0 0 0
0 0 0 1nw ⊗M

 ,
(30)

where g̃D = (
0

1nw⊗µ
?>
A1

) is defined at the solution point (y?, λ?, D?). We can rewrite

JAF − (γ + 1)J̃INIS as the following product of block matrices:

(31)

JAF − (γ + 1) J̃INIS

=


1ny 0 0 0
0 M̃ 0 0
0 0 −γ 1nh 0
0 0 0 1nD



H − (γ + 1) H̃ Ã> B> g̃D

Ã 0 0 0
B 0 0 0
0 0 0 1nw ⊗ M̃



∗


1ny 0 0 0
0 M̃ 0 0
0 0 −γ 1nh 0
0 0 0 1nD


>

,

where M̃ = A1 − (γ + 1)M is defined. The proof continues in the same way as for
Theorem 3.2, since the determinant of this matrix can be written as
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det
(
JAF − (γ + 1)J̃INIS

)
= (−γ)2nhdet

(
M̃
)2+nw

det

 H − (γ + 1) H̃ Ã> B>

Ã 0 0
B 0 0

 .(32)

4.3. Remark on AF-INIS for NLPs. When applying the adjoint-free INIS
scheme from Algorithm 3 to the NLP formulation in (1), the augmented system
introduces off-diagonal blocks for the Jacobian matrix as defined in (27). Therefore,
the local contraction result in Theorem 4.2 cannot be directly extended to the general
NLP case, even though the practical convergence of AF-INIS can typically be expected
to be similar for relatively mild nonlinearities in the problem formulation. Note that
Figure 1 already illustrated the local convergence of the AF-INIS scheme on the QP
in (13), for which the following holds:

κ?F = κ?INIS = κ?AF = 0.48 < 1 < 1.625 ≈ κ?IN.

Note that section 3.3 included a counterexample to the conjecture that Theorem 4.2
could hold for general NLPs. It can be observed from Figure 2 that the local conver-
gence rate of AF-INIS is different from the adjoint based INIS scheme, i.e.,

κ?F = κ?INIS ≈ 0.541 < κ?AF ≈ 0.753 < 1 < 1.441 ≈ κ?IN,

even though it still outperforms the standard inexact Newton (IN) method.

5. Applications and numerical results. This section motivates the practical
applicability of the INIS-type optimization method, either with or without adjoint
computation, respectively, in Algorithm 2 or 3. For this purpose, let us introduce
simultaneous direct optimal control methods for the popular class of dynamic opti-
mization problems which typically have the form in (1), where the functions f(·), g(·),
and h(·) are twice continuously differentiable and the Jacobian matrix gz is invert-
ible. Similar to before, this discussion omits the presence of inequality constraints
even though the above results on local Newton-type convergence can be extended.
This will be illustrated based on numerical results for the chain mass example [49].

5.1. Direct optimal control. In direct optimal control [10], one applies a first-
discretize-then-optimize type of approach where one first discretizes the continuous
time optimal control problem (OCP) such that one can subsequently solve an NLP
of the form in (1). In case of direct collocation [5], such a discrete-time OCP problem
can, for example, read as

min
X,U,K

N−1∑
i=0

li(xi, ui) + lN (xN )(33a)

s.t. 0 = ci(xi, ui,Ki), i = 0, . . . , N − 1,(33b)
0 = x0 − x̂0,(33c)
0 = xi +BiKi − xi+1, i = 0, . . . , N − 1,(33d)

with differential states xi ∈ Rnx , control inputs ui ∈ Rnu , and collocation variables
Ki ∈ RqNsnx , in which q is the number of collocation nodes and Ns the amount of
integration steps. In addition, the state X = [x>0 , . . . , x

>
N ]> and control trajectory
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90 RIEN QUIRYNEN, SÉBASTIEN GROS, AND MORITZ DIEHL

U = [u>0 , . . . , u
>
N−1]> and the trajectory of collocation variablesK = [K>0 , . . . ,K

>
N−1]>

are defined. The function li(·) denotes the stage cost and ci : Rnx×Rnu×RnK → RnK

defines the collocation polynomial on each interval i = 0, . . . , N − 1, where N denotes
the number of intervals in the control horizon.

When comparing this OCP to the general NLP formulation in (1), similar to the
detailed discussion in [44], one can relate the variables z = [K>0 , . . . ,K

>
N−1]> and

w = [x>0 , u
>
0 , . . . , u

>
N−1, x

>
N ]>. Given the state and control values in w, the nonlinear

collocation equations (33b) form the function g(·) that defines all variables in z as
required for the problem formulation in (1). The additional equality constraints from
(1c) then correspond to the initial value constraint in (33c) and the continuity con-
straints in (33d). Based on Remark 2.5, note that the Newton-type local convergence
results in this article still hold for inequality constrained optimization problems un-
der certain regularity conditions in a neighborhood of the local minimizer. This will
also be illustrated numerically in subsection 5.3. The Newton-type optimization algo-
rithms in this article can rely on an efficient approximation of the invertible Jacobian
Mi ≈ ∂ci

∂Ki
as discussed in [3, 12, 13, 26, 42] for collocation methods. These collocation

variables could be numerically eliminated in each iteration, based on the constraints
in (33b), resulting in a multiple shooting type method as discussed in [43, 44]. It
is important to note that the sensitivity matrix variable in INIS-type optimization
has a block-diagonal structure here because of the stage-wise definition of the collo-
cation equations in (33b), i.e., Di ∈ RnK×(nx+nu) can be defined for i = 0, . . . , N − 1.
In addition, the conditions in section 4 are satisfied, for example, in the case of a
(nonlinear) least squares type objective in (33a), for which a Gauss–Newton Hessian
approximation can be used. The constraints in (33c) and (33d) are linear in this OCP
formulation, while the nonlinear collocation equations in (33b) can correspond to a
sequence of integration steps for which adjoint differentiation could be avoided in the
AF-INIS optimization algorithm.

Similar to the formulation in [44], we can write the collocation equations in (33b)
for one interval i = 0, . . . , N − 1:

(34) ci(xi, ui,Ki) =

 ci,1(xi,0, ui,Ki,1)
...

ci,Ns(xi,Ns−1, ui,Ki,Ns)

 = 0

for Ns integration steps of a q-stage collocation method. Note that xi,j ∈ Rnx for
j = 1, . . . , Ns denote the intermediate state values, xi,0 = xi, and Ki,j ∈ Rqnx is
defined such that Ki = [K>i,1, . . . ,K

>
i,Ns

]>. This sequential simulation structure in
(34) results in a constraint Jacobian that is block banded, as well as its approximation
Mi ≈ ∂ci

∂Ki
. As discussed in detail in [44], this particular structure can be exploited

by performing a forward and a backward propagation sweep, respectively, for the
condensing and the expansion step of the adjoint-based schemes in Algorithms 1
and 2. In the case of an adjoint-free implementation, based on Algorithm 3, this
procedure instead reduces to a forward propagation sweep.

5.2. ACADO code generation tool. An open-source implementation of the
INIS-type optimization algorithm for the direct collocation based OCP formulation
in (33) is part of the ACADO toolkit [32]. Presented as lifted collocation integrators
in [44], the methods have more specifically been implemented as part of the ACADO
code generation tool. This package can be used to obtain real-time feasible code for
dynamic optimization on embedded control hardware. In particular, it pursues the
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Table 1
Average timing results per Gauss–Newton based SQP iteration on the chain mass problem using

direct collocation (Ns = 3, q = 4), including different numbers of masses nm and states nx.

nm nx Gauss–Newton IN INIS AF-INIS

3 12 5.33 ms 2.40 ms 2.19 ms 1.95 ms
4 18 14.79 ms 5.43 ms 4.76 ms 4.29 ms
5 24 34.04 ms 10.71 ms 9.39 ms 7.96 ms
6 30 62.08 ms 18.73 ms 14.88 ms 12.71 ms
7 36 106.57 ms 36.09 ms 21.93 ms 20.06 ms

export of efficient C-code based on the real-time iteration (RTI) scheme for nonlinear
MPC (NMPC) [21, 33]. This online algorithm is based on sequential quadratic pro-
gramming (SQP) to solve the nonlinear optimization problem within direct multiple
shooting [10]. Regarding the INIS-type implementation following Algorithms 2 and 3,
tailored Jacobian approximations are used for collocation methods, based on either
simplified or single Newton-type iterations as presented in [42]. As discussed earlier in
section 4.1, a multiplier-free Hessian approximation such as in the Generalized Gauss–
Newton method [8] is used for the adjoint-free variant (AF-INIS). The standard INIS
algorithm can rely on any approximation technique, including an exact Hessian based
approach [37]. Similar to the implementation described in Algorithms 2 and 3, con-
densing and expansion techniques are used to obtain multiple shooting structured
subproblems in each iteration of the SQP algorithm [44]. Tailored convex solvers such
as qpOASES [23], qpDUNES [24], and HPMPC [25] can be used to solve these subproblems,
especially in the presence of inequality constraints.

5.3. Numerical results: Chain of masses. We consider the chain mass op-
timal control problem from [44, 49]. The objective is to return a chain of nm masses
connected with springs to its steady state, starting from a perturbed initial configu-
ration. The mass at one end is fixed, while the control input u ∈ R3 to the system
is the direct force applied to the mass at the other end of the chain. The state of
each free mass xj := [ pj>

vj> ]> ∈ R6 for j = 1, . . . , nm − 1 consists of its position
and velocity, such that the dynamic system can be described by the concatenated
state vector x(t) ∈ R6(nm−1). More details on the resulting model equations can be
found in [49]. The OCP problem formulation is adopted from [44]. In addition to the
constraints in (33), this OCP includes simple bounds on the control inputs and the
path constraint that the chain should not hit a wall placed close to the equilibrium
state. The ACADO code generation tool is used to generate an SQP type algorithm to
solve the resulting inequality constrained optimization problem. Since the stage cost
in the objective (33a) represents minimizing the control effort in the least squares
sense, a Gauss–Newton based Hessian approximation will be used in this numerical
case study. In addition, each SQP subproblem is solved using the parametric active-
set solver qpOASES [23] in combination with a condensing technique to numerically
eliminate the state variables [10].

Table 1 presents average timing results per Gauss–Newton based SQP iteration
of the automatic generated solver using the ACADO toolkit, for different numbers of
masses nm.2 Note that the IN, INIS, and AF-INIS schemes correspond to the pro-
posed implementations in Algorithms 1, 2, and 3, based on the lifted collocation

2All numerical simulations are carried out on a standard computer, equipped with an Intel i7-
3720QM processor, using a 64-bit version of Ubuntu 14.04 and the g++ compiler version 4.8.4.
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Fig. 3. Convergence results of the Gauss–Newton based SQP method with different inexact
Newton-type techniques for the chain mass optimal control problem using nm = 4 masses.

integrators as presented in [44]. On the other hand, the exact Gauss–Newton method
in this case is based on a direct solution of the QP subproblem, corresponding to
the linearized KKT conditions (6) including a Gauss–Newton Hessian approximation.
The table shows that the use of inexact Jacobian approximations, tailored for collo-
cation methods [42], can considerably reduce the computational effort over an exact
implementation. More specifically, the single Newton implementation from [27] has
been used for the four-stage Gauss collocation scheme (q = 4). A speedup of about
factor 5 can be observed for the INIS-type scheme on this particular example. Fig-
ure 3 illustrates the convergence results for the SQP method, based on these different
Newton-type optimization techniques. The figure shows a simulation result for which
the inexact Newton (IN) scheme still results in local convergence, even though the
contraction rate can be observed to be considerably slower than both of the variants
of the proposed INIS algorithm.

Note that the Gauss–Newton based Hessian approximation does not depend on
the multipliers for the equality constraints, but the convergence of both the adjoint-
based IN and INIS scheme in Algorithms 1 and 2 does depend on the initialization of
these Lagrange multipliers unlike the adjoint-free (AF-INIS) variant. For simplicity,
these multipliers have been initialized using zero values to obtain the numerical results
in this case study. This difference in convergence behavior can also be observed in Fig-
ure 3. Even though the convergence for both INIS-type variants is close to that for the
Newton-type method on the forward problem of this example, the contraction result
in Theorem 3.2 cannot generally be extended to the AF-INIS algorithm for nonlinear
optimization as discussed in section 4.3. The results for the exact Gauss–Newton
method have been included mainly as a reference. It namely induces a relatively high
computational cost as illustrated by Table 1, especially in cases where only rather low
accuracy results are sufficient.

6. Conclusions. This article presented a novel family of optimization algo-
rithms, based on inexact Newton-type iterations with iterated sensitivities (INIS).
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Unlike standard inexact Newton methods, this technique is shown to preserve the
local contraction properties of the forward problem, based on a specific Jacobian
approximation for the corresponding equality constraints. More specifically, local
convergence for the Newton-type method on the forward problem is shown to be nec-
essary and, under mild conditions, even sufficient for the asymptotic contraction of
the corresponding INIS-type optimization algorithm. The article presents how this
INIS algorithm can be implemented efficiently, resulting in a computational cost close
to that of the standard inexact Newton implementation. In addition, an adjoint-
free (AF-INIS) variant is proposed and its local convergence properties are studied.
This alternative approach can be preferable whenever the algorithm can be carried out
independently of the current values for the multipliers corresponding to the equality
constraints. Finally, an open-source implementation of these INIS-type techniques for
simultaneous direct optimal control has been presented as part of the ACADO toolkit.
Theoretical results are illustrated using toy examples of optimization problems, in
addition to the benchmark case study of the optimal control for a chain of masses.
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[27] S. González-Pinto, S. Pérez-Rodŕıguez, and J. I. Montijano, Implementation of high-
order implicit Runge-Kutta methods, Comput. Math. Appl., 41 (2001), pp. 1009–1024.

[28] A. Griewank, Evaluating derivatives, principles and techniques of algorithmic differentiation,
Front. Appl. Math. 19, SIAM, Philadelphia, 2000.

[29] A. Griewank and A. Walther, On constrained optimization by adjoint based quasi-Newton
methods, Optim. Methods Softw., 17 (2002), pp. 869–889.

[30] M. Heinkenschloss and L. Vicente, Analysis of inexact trust-region SQP algorithms, SIAM
J. Optim., 12 (2001), pp. 283–302.

[31] B. Houska and M. Diehl, A quadratically convergent inexact SQP method for optimal control
of differential algebraic equations, Optim. Control Appl. Methods, 34 (2013), pp. 396–414.

[32] B. Houska, H. J. Ferreau, and M. Diehl, ACADO toolkit – An open source framework for
automatic control and dynamic optimization, Optimal Control Appl. Methods, 32 (2011),
pp. 298–312.

[33] B. Houska, H. J. Ferreau, and M. Diehl, An auto-generated real-time iteration algorithm
for nonlinear MPC in the microsecond range, Automatica, 47 (2011), pp. 2279–2285.

[34] H. Jaeger and E. Sachs, Global convergence of inexact reduced SQP methods, Optim. Methods
Softw., 7 (1997), pp. 83–110.
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