
THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Throughput and energy efficiency of

lock-free data structures: Execution

Models and Analyses

ARAS ATALAR

Division of Networks and Systems

Department of Computer Science and Engineering

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2018

Throughput and energy efficiency of lock-free data structures: Execution Models

and Analyses

Aras Atalar

Copyright c© Aras Atalar, 2018.

ISBN: 978-91-7597-783-6

Doktorsavhandlingar vid Chalmers tekniska högskola

Ny series nr 4464

ISSN: 0346-718X

Technical report 161D

Department of Computer Science and Engineering

Distributed Computing and Systems Group

Division of Networks and Systems

Chalmers University of Technology

SE-412 96 GOTHENBURG, Sweden

Phone: +46 (0)31-772 10 00

Author e-mail: aaras@chalmers.se

Printed by Chalmers Reproservice

Gothenburg, Sweden 2018

Throughput and energy efficiency of lock-free data structures:

Execution Models and Analyses

Aras Atalar

Division of Networks and Systems, Chalmers University of Technology

ABSTRACT

Concurrent data structures are key program components to harness the avail-

able parallelism in multi-core processors. Lock-free algorithmic implementa-

tions of concurrent data structures offer high scalability and possess desirable

properties such as immunity to deadlocks, convoying and priority inversion. In

this thesis, we develop analytical tools to model and analyze the throughput and

energy consumption of concurrent lock-free data structures. We start our study

with a general class of lock-free data structures. Then, we target more special-

ized designs for lock-free queues. Finally, we focus on the search data struc-

tures that possess different characteristics compared to previously mentioned

data structures.

Performance of lock-free data structures: This thesis contributes to the

problem of making ends meet between theoretical bounds and actual measured

throughput. As the first step, we consider a general class of lock-free data struc-

tures and propose three analytical frameworks with different flavors. Analyses

of this class also cover efficient implementations of a set of fundamental data

structures that suffer from inherent sequential bottlenecks. We model the ex-

ecutions and examine the impact of contention on the throughput of these al-

gorithms. Our analyses lead to optimization methods on memory management

and back-off strategies.

Performance and energy efficiency of lock-free queues: We take a step

further to model the throughput of lock-free operations and their interaction.

Considering shared queues, as a key paradigm for data sharing, operations (En-

queue, Dequeue) access the opposite ends of a queue. Same type of operations

might contend with each other on a non-empty queue. However, all types of

operations are subject to interaction when the queue is empty. We first decorre-

ii

late the throughput of dequeuers’ and enqueuers’ into several uncorrelated basic

throughputs, and reconstruct the main throughputs as a function of these basic

throughputs. Besides, we model the power dissipation and integrate it with the

throughput estimations to extract the energy consumption of applications that

utilize lock-free queues.

Performance of lock-free search data structures: Lock-free designs that

utilize fine-grained synchronization have produced efficient implementations of

search data structures. These designs reveal different characteristics compared

to the previous set of lock-free data structures with inherent sequential bottle-

necks. We introduce a new way of modeling and analyzing the throughput of

search data structures under stationary and memoryless access patterns.

Keywords: Concurrency, Lock-free, Data Structures, Parallel Computing, Performance,

Throughput, Energy Efficiency, Modeling, Analysis

List of publications

This thesis is based on the work contained in the following publications and

their extended versions. Result I, II, IV (that are presented in this thesis) are

extended versions of the first, second, and fourth articles that are listed below,

respectively. Result III is the work presented in the third article that is detailed

below.

⊲ Aras Atalar, Paul Renaud-Goud and Philippas Tsigas, “Analyzing

the Performance of Lock-Free Data Structures: A Conflict-Based

Model”, In the Proceedings of 29th International Symposium on

Distributed Computing (DISC 2015), pages 341-355, Springer 2015.

⊲ Aras Atalar, Paul Renaud-Goud and Philippas Tsigas, “How Lock-

free Data Structures Perform in Dynamic Environments: Mod-

els and Analyses”, In the Proceedings of the 20th International

Conference on Principles of Distributed Systems (OPODIS 2016),

pages 1-17, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik

2016.

⊲ Aras Atalar, Anders Gidenstam, Paul Renaud-Goud and Philip-

pas Tsigas, “Modeling Energy Consumption of Lock-Free Queue

Implementations”, In the Proceedings of 29th IEEE International

Parallel and Distributed Processing Symposium (IPDPS 2015), pages

229-238, IEEE Press 2015.

iii

iv LIST OF PUBLICATIONS

⊲ Aras Atalar, Paul Renaud-Goud and Philippas Tsigas, “Lock-Free

Search Data Structures: Throughput Modeling with Poisson Pro-

cesses”, Under Submission.

The following results have also been achieved during my PhD studies and they

are not part of the thesis:

⊲ Christoph W. Kessler, Lu Li, Aras Atalar and Alin Dobre, “XPDL:

Extensible Platform Description Language to Support Energy Mod-

eling and Optimization”, In the Proceedings of 44th International

Conference on Parallel Processing Workshops (ICPPW 2015), pages

51-60, IEEE Computer Society 2015.

⊲ Adones Rukondo, Aras Atalar and Philippas Tsigas, “2D-Stack:

A scalable lock-free stack design that continuously relaxes seman-

tics for better performance”, In the Proceedings of 37th ACM Sym-

posium on Principles of Distributed Computing (PODC, Brief An-

nouncement), pages 407-409, ACM 2018.

Acknowledgments

First of all, I would like to thank my supervisor Philippas Tsigas for his encour-

agement and guidance. This thesis would not have been possible without his

support.

I thank the members of my graduate committee: Peter Demaschke, Agneta

Nilsson, and Marina Papatriantafilou, for their kind support and help.

I am honored to have Guy Blelloch as my opponent and sincere thanks to

the members of my grading committee: Dan Alistarh, Bengt Jonsson, Alessia

Milani, Ioannis Sourdis.

I want to thank my former mentors and advisors: Etkin Abi, Cevdet Aykanat,

Gokhan Erbay, Michael Gerndt, Michael Rauh, Isaias Urena and Paul Renaud-

Goud.

I am grateful to the Swedish Research Council for funding me and to EX-

CESS Project and its members from whom I have gained a lot.

I thank my friends that I had the chance to work with: Ivan, Anders, Fazeleh,

Lazaros, Adones, Lu, Ali, and Paul. Thanks to my officemates: Vincenzo,

Nasser, Hannah and special thanks to my roommate Thomas.

I would like to thank former and current members of the DCS group and de-

partment for the excellent work environment: Babis, Eva, Marianne, Rebecca,

Peter, Rolf, Magnus, Elad, Olaf, Tomas, Bapi, Valentin, Bashr, Thomas Jr.,

Iosif, Ioannis, Zhang, Nhan, Giorgos, Alijoscha, Bei, Elena, Boel, Evangelis,

Stavros, Madhavan, Prajith, Stefano, Albin, Amir, Petros and Chloi and to all

youngsters that have joined recently and to all experienced members.

Last but not least, I would like to thank my parents and my family for their

v

vi ACKNOWLEDGMENTS

support, unconditional love and more.

Aras Atalar

Göteborg, September 2018

Contents

Abstract i

List of publications iii

Acknowledgments v

I INTRODUCTION 1

1 Introduction 3

1.1 Synchronization Techniques 7

1.1.1 Blocking Synchronization 7

1.1.2 Non-Blocking Synchronization 8

1.1.3 Atomic Primitives . 9

1.2 Multi-core Architectures . 10

1.3 Lock-free Data Structures . 13

1.3.1 Design Techniques . 14

1.3.2 Throughput . 17

1.3.3 Energy Consumption 20

1.3.4 Execution Models and Analyses 22

1.4 Contributions . 24

Bibliography . 27

vii

viii CONTENTS

II RESULTS 33

2 RESULT I - Analyzing the Performance of Lock-Free Data Struc-

tures: A Conflict-Based Model 37

2.1 Introduction . 38

2.2 Related Work . 40

2.3 Problem Statement . 41

2.3.1 Running Program and Targeted Platform 41

2.3.2 Examples and Issues 44

2.4 Execution without hardware conflict 47

2.4.1 Setting . 47

2.4.2 Cyclic Executions . 51

2.4.3 Throughput Bounds 63

2.5 Expansion and Complete Throughput Estimation 68

2.5.1 Expansion . 68

2.5.2 Throughput Estimate 70

2.5.3 Several Retry Loops 71

2.6 Experimental Evaluation . 74

2.6.1 Setting . 75

2.6.2 Synthetic Tests . 76

2.6.3 Treiber’s Stack . 79

2.6.4 Shared Counter . 80

2.6.5 DeleteMin in Priority List 82

2.6.6 Enqueue-Dequeue on a Queue 83

2.6.7 Discussion . 85

2.6.8 Back-Off Tuning . 87

2.7 Conclusion . 88

Bibliography . 89

3 RESULT II - How Lock-free Data Structures Perform in Dynamic

Environments: Models and Analyses 93

3.1 Introduction . 94

3.2 Related Work . 97

CONTENTS ix

3.3 Preliminaries . 99

3.3.1 System Settings . 99

3.3.2 Execution Description 101

3.3.3 Our Approaches . 102

3.4 Average-based Approach . 105

3.4.1 Contended System . 105

3.4.2 Non-contended System 108

3.4.3 Unified Solving . 109

3.5 Constructive Approach . 112

3.5.1 Process . 112

3.5.2 Expansion . 113

3.5.3 Formalization . 116

3.6 Experiments . 128

3.6.1 Setting . 128

3.6.2 Basic Data Structures 129

3.6.3 Towards Advanced Data Structure Designs 133

3.6.4 Applications . 141

3.7 Conclusion . 147

Bibliography . 148

4 RESULT III - Modeling Energy Consumption of Lock-Free Queue

Implementations 153

4.1 Introduction . 154

4.2 Related work . 157

4.3 Framework . 158

4.3.1 Synthetic Benchmark 158

4.3.2 General Power Model 159

4.3.3 Notations and Setting 160

4.4 Throughput Estimation . 161

4.4.1 Throughput Decomposition Principles 161

4.4.2 Basic Throughputs . 163

4.4.3 Combining Basic Throughputs 165

x CONTENTS

4.4.4 Instantiating the Throughput Model 168

4.4.5 Results . 171

4.5 Power Estimation . 173

4.5.1 CPU Power . 173

4.5.2 Memory and Uncore Power 175

4.5.3 Instantiating the Power Model 176

4.5.4 Results . 177

4.6 Towards Realistic Applications 178

4.6.1 Description of Mandelbrot Set Application 178

4.6.2 Mandelbrot Prediction 179

4.7 Conclusion . 182

Bibliography . 183

5 RESULT IV - Lock-Free Search Data Structures: Throughput Mod-

eling with Poisson Processes 189

5.1 Introduction . 190

5.2 Related Work . 193

5.3 Problem Statement . 194

5.4 Framework . 195

5.4.1 Event Distributions . 195

5.4.2 Validity of Poisson Process Hypothesis 197

5.4.3 Impacting Factors . 198
5.4.4 Solving Process . 200

5.5 Throughput Estimation . 201

5.5.1 Traversal Latency . 201

5.5.2 Latency vs. Throughput 207

5.6 Instantiating the Throughput Model 207

5.6.1 Linked List . 208

5.6.2 Hash Table . 209
5.6.3 Skip List . 210

5.6.4 Binary Tree . 213

5.7 Experimental Evaluation . 220

5.7.1 Setting . 220

CONTENTS xi

5.7.2 Search Data Structures 221

5.8 Applications: to Pad or not to Pad 240

5.9 Conclusion . 243

Bibliography . 246

III CONCLUSION 249

6 Conclusion and Future Work 251

xii CONTENTS

List of Figures

1.1 Semantics of Atomic Primitives 10

1.2 Memory access reordering . 12

1.3 Treiber Stack Push Operation 16

2.1 Thread procedure . 42

2.2 Execution with one wasted retry, and one inevitable failure . . 43

2.3 Execution with minimum number of failures 43

2.4 Expansion . 45

2.5 Gaps . 50

2.6 Lemma 2 configuration . 51

2.7 Lemma 3 configuration . 56

2.8 Lemma 4 configuration . 61

2.9 Thread procedure with several retry loops 72

2.10 Synthetic program . 77

2.11 Multiple retry loops with 8 threads 78

2.12 Pop on Treiber’s stack . 79

2.13 Increment on a shared counter 81

2.14 DeleteMin on a priority list 82

2.15 Enqueue-Dequeue on Michael and Scott queues 83

2.16 Consecutive Fails Frequency 86

2.17 Comparison of back-off schemes for Poisson Distribution . . . 87

2.18 Comparison of back-off schemes for constant pw 88

xiii

xiv LIST OF FIGURES

3.1 Thread procedure . 102

3.2 Success period . 102

3.3 Highly-contended execution 114

3.4 Possible executions . 119

3.5 Synthetic program with exponentially distributed parallel work

130

3.6 Synthetic program with parallel work following Poisson 131

3.7 Synthetic program with Constant parallel work 132

3.8 Treiber’s Stack . 134

3.9 Enqueue on MS Queue . 139

3.10 Operations on deque . 141

3.11 Performance impact of our back-off tunings 142

3.12 Back-off Tuning on Treiber’s Stack 143

3.13 Performance of memory management mechanisms 145

3.14 Adaptive MM with varying mean pw 146

4.1 Thread procedures . 158

4.2 Key legend of the graphs . 160

4.3 Cyclic execution under low intra-contention 164

4.4 Intra-contention frontier . 164

4.5 Enqueue throughput with pwd = 7 172

4.6 Enqueue throughput with pwd = 50 173

4.7 Dequeue throughput with pwd = 7 174

4.8 Dynamic memory power at f = 3.4 GHz 177

4.9 Mandelbrot Execution Time 182

5.1 Generic framework . 194

5.2 Poisson Process Modeling - Search Only 198

5.3 Poisson Process Modeling - 50/50 Search/Update 199

5.4 Skip List Events: Read Event Probability 211

5.5 Skiplist Events: CAS Event Probability 212

5.6 Binary Tree CAS Probability 218

5.7 LL Uniform distribution for key selection 223

LIST OF FIGURES xv

5.8 LL Zipf distribution for key selection 224

5.9 LL asymmetric update rates, uniform distribution for key se-

lection . 225

5.10 HT Uniform distribution for key selection, with load factor=2 . 227

5.11 HT Uniform distribution for key selection, with load factor=4 . 228

5.12 HT Uniform distribution for key selection, with load factor=8 . 229

5.13 HT Zipf distribution for key selection, with load factor=2 . . . 230

5.14 HT asymmetric update operations, Uniform distribution for

key selection, with load factor=4 231

5.15 Skiplist Uniform distribution for key selection 233

5.16 Skiplist Zipf distribution for key selection 234

5.17 Skiplist asymmetric update rates, uniform distribution for key

selection . 235

5.18 BST Uniform distribution for key selection 237

5.19 BST Zipf distribution for key selection 238

5.20 BST asymmetric update rates, uniform distribution for key se-

lection . 239

5.21 Packed nodes for Hash Table, with load factor=2 244

5.22 Packed nodes for Linked List 245

xvi LIST OF FIGURES

Part I

INTRODUCTION

1
Introduction

Moore’s Law [1] suggested an exponential growth in the number of transistors

per unit area on the integrated circuits. Doubling the transistor density every

year allowed vendors to implement more complicated designs that can switch

state in shorter time periods. For almost 40 years, increasing the clock fre-

quency of a processor was the way to improve the performance. However, it

was unlikely to maintain this exponential growth in the longer term.

In the last two decades, we observed a shift from single-core chips to multi-

core chips as it became infeasible to increase the clock frequency and com-

plexity of a single core. The main triggers of this shift were the need to: (i)

reduce power consumption and eliminate cooling-related issues; (ii) tolerate

the high off-chip memory latency with concurrent accesses; (iii) decrease the

circuit complexity of cores; (iv) expel some physical limitations regarding the

3

4 CHAPTER 1. INTRODUCTION

transistor size and the wire lengths.

Hardware vendors have changed their objective from increasing the core

performance to increasing the chip performance [2]. They employ more and

more cores on a single chip where individual cores might need to collaborate to

exploit available computing power.

Naturally, these developments in hardware pose new challenges for applica-

tions utilizing the hardware. Applications have to be developed to harness the

available computing power in an effective way which brought out the multi-core

programming challenge. Today, multi-core processors are exploited by a broad

spectrum of devices ranging from supercomputers to a vast number of smart-

phones through almost all personal computers. Therefore, small improvements

on the software might lead to significant outcomes.

Multi-core processors are composed of multiple computing units that we

will refer to as processors (interchangeably cores). The execution entities that

are running on processors will be referred to as processes (interchangeably

threads) in the context of this thesis. Multiple processors can execute com-

putations simultaneously which will be referred to as parallelism, and the over-

lapping execution of processes introduces concurrency, where the execution of

processes can interleave and influence the behavior of each other [3]. None of

these concepts implies another. For example, the execution of a process can be

interleaved by the other concurrent processes that are scheduled on the same

sequential processor or multiple processors can run independent tasks in par-

allel without the possibility of influencing each other. In this thesis, we study

the performance of programs that are executed on multi-core shared memory

system, in the settings with both parallelism and concurrency.

In the multi-core parallel programming model, multiple processes collabo-

rate in order to complete tasks, each executing a program asynchronously [4]

(i.e. the execution can be halted and the execution of instructions can be de-

layed). The processes communicate, if needed, by accessing shared objects in

the shared memory. In the course of a computation, processes access shared ob-

jects in a sequence of atomic events in which some subsequence of the events

might need to occur or look like they occur atomically. However, events from

5

multiple processes can interleave each other in concurrent executions. If not

synchronized, some of these interleavings might lead to inconsistencies. Con-

sider the case with two processes that want to increment a shared counter. A

process reads the counter and writes back the incremented value. It can be ob-

served that some interleavings of these four events would lead to an inconsistent

state in which the counter seems to be incremented only once. To avoid this,

some consistent order of the events on the shared objects can be enforced by

synchronization.

Synchronization techniques define the way of accessing shared objects by

adhering to some correctness (safety) and progress (liveness) guarantees. In

simple terms, the correctness guarantee states that something bad does not hap-

pen and the progress guarantee states that something good keeps happening [4].

In the sequential setting, operations on the object are defined by the pre- and

post-conditions, that also constitute the intended behavior, namely the sequen-

tial specification (correctness) of the object. Unsurprisingly, many correctness

properties in the concurrent setting, where actions on the shared object from dif-

ferent actors can be interleaved, are based on the equivalence to some sequential

behavior of the object, e.g. Linearizability [5], Sequential Consistency [6]. In

simplified terms, linearizability requires that there exists a legal sequential exe-

cution (a legal total order with respect to sequential specification) that preserves

the irreflexive partial order of the real concurrent execution. For each process,

an invocation on the object is followed by the response. Let inv.op and res.op

denote the invocation and response times of an operation op in the concurrent

execution, where every invocation has a corresponding response. The irreflex-

ive partial order ≺ on the set of operations O that are executed by any process

is given by: ∀(a, b) ∈ O2, a ≺ b ⇔ inv.b > res.a. Linearizability is widely

adopted as a correctness guarantee for the concurrent data structures [4]. How-

ever, the correctness guarantees are only meaningful if they come together with

some progress guarantees as it is trivial to be correct without performing any

action.

The progress guarantees can be split into two categories; blocking and non-

blocking that lead to blocking and non-blocking synchronization mechanism,

6 CHAPTER 1. INTRODUCTION

respectively. The distinction can be stated simply as follows: in blocking syn-

chronization, a process can block another hence the delay of a process can delay

others, whereas in non-blocking synchronization, the delay of a process cannot

delay others [4]. We will provide technical information about the taxonomy and

possible implementations of non-blocking and blocking synchronization mech-

anisms in the following sections.

We can use an analogy with a conversation, where a shared conversation

object evolves with the contribution of multiple agents. Due to the interleav-

ing possibility, people indeed employ synchronization mechanisms generally to

keep the shared object in a correct state (no misunderstandings) while allowing

progress (some understanding should keep happening). The conventional way

for this is to adopt a blocking approach. People talk one after the other, waiting

for the talking person to finish and then ask for the token to continue. However,

this approach might have some limitations. For example, a less important topic

could be discussed while a more important one has to wait because it is blocked

by the less important one. Alternatively, the phone of the talking person might

ring, and others need to wait for the phone call to finish even though the orig-

inal conversation has nothing to do with the phone call. On the other hand,

optimistic people apply non-blocking approaches where people start and keep

talking because they believe that their ideas will be understood eventually. In

these cases, it could be quite tricky to satisfy the correctness and progress con-

ditions, and other techniques have to be applied such as repetition. Although it

is clear that non-blocking approaches eliminate the limitations of their block-

ing counterparts, their efficiency is poorly understood. The efficiency of talking

styles could be evaluated according to different metrics, e.g. throughput (the

number of expressed ideas in a unit of time) and total energy consumed during

the discussion.

This thesis considers the throughput and energy consumption of the lock-

free (non-blocking) synchronization mechanisms in shared memory multi-core

systems, by focusing on the concurrent data structures. The thesis is organized

into three parts: Introduction, Results and Conclusion. We provide background

information in the first part. Section 1.1 examines the basics of the blocking

1.1. SYNCHRONIZATION TECHNIQUES 7

and non-blocking synchronization mechanisms, also discusses the atomic prim-

itives that are needed to build such mechanisms. Section 1.2 briefly explains the

relevant architectural features of modern multi-core processors. Section 1.3 dis-

cusses the lock-free data structures: design techniques, important performance

metrics, performance models and analyses. Lastly, the contributions of this the-

sis are addressed in Section 1.4. Research articles are presented in the second

part of the thesis and we conclude with the conclusion and future work.

1.1 Synchronization Techniques

1.1.1 Blocking Synchronization

A common way to implement synchronization is to use blocking approaches

that are based on the notion of critical section. Critical sections are often imple-

mented with the help of locks that mark the code blocks that need to possess the

property: mutual exclusion. The mutual exclusion property ensures the correct-

ness of the shared objects, by guaranteeing that the owner of the lock will not be

disturbed by other lock-seekers. To implement a synchronization mechanism, it

should be coupled at least with the deadlock-freedom property to satisfy some

progress guarantees. The definitions of mutual exclusion and deadlock freedom

property are given below:

• Mutual Exclusion [4]: at most one process can execute the concerned

code block at a time.

• Deadlock Freedom [7]: if there exists a process that tries forever to en-

ter its critical section execution, then there exists an infinite number of

critical section executions.

Generally speaking, the blocking approaches are relatively more straight-

forward to implement. However, they have some inherent limitations mainly

originating from the dependency of lock-seeker processes to the lock-owner. A

crucial drawback is that blocking approaches cannot tolerate the failure of a sin-

gle process. If a process fails while holding a lock, it might inhibit the system

8 CHAPTER 1. INTRODUCTION

progress by blocking the other processes that request to execute the correspond-

ing critical section. Another undesired effect is priority inversion where a low

priority task holds a lock that a high priority task needs. Think of the following

situation. The high priority task yields its quanta to the low priority task so that

it can finish its critical section and release the lock. Then, a medium priority

task comes, preempts the low priority task and executes before the high prior-

ity task. Finally, the deadlock possibility should be considered when multiple

locks are used. This could be painful especially during the integration of differ-

ent components of large-scale software. Therefore, non-blocking approaches

might be preferable.

1.1.2 Non-Blocking Synchronization

The synchronization mechanism regulates the accesses to the shared object and

the term non-blocking reflects the nature of an attempt to access the shared ob-

ject. It states that an attempt to access or modify the shared object cannot block

or be blocked by another process, regardless of the state of the system. How-

ever, it does not specify the outcome of the attempt. Non-blocking mechanisms

can be classified according to the progress guarantees that they provide, as fol-

lows:

• Wait-Free Synchronization [8]: A synchronization technique is wait-free

if it ensures that every process will continue to make progress in the face

of arbitrary delay (or even failure) of other processes.

• Lock-Free Synchronization [9]: A synchronization technique is lock-free

if it ensures only that some process always makes progress.

• Obstruction-free Synchronization [10]: A synchronization technique is

obstruction-free if it guarantees progress for any process that eventually

executes in isolation.

The stronger the progress guarantee, the more complex the synchroniza-

tion mechanism gets. Wait-free solutions are generally computationally costly.

1.1. SYNCHRONIZATION TECHNIQUES 9

Obstruction-free solutions are weak concerning the guarantees in a concurrent

environment. Roughly speaking, lock-freedom is located around the sweet spot

of this trade-off, which explains the attention it has received in the industrial

applications, e.g. Intel’s Threading Building Blocks Framework [11], Java

concurrency package [12], Microsoft .NET Framework [13].

1.1.3 Atomic Primitives

Implementing a synchronization mechanism (in the asynchronous multi-core

systems) based on only atomic reads and writes are either impractical (because

of space and time complexity, e.g. Bakery algorithm [14]) or even impossible

for many types of synchronization [4]. To overcome these limitations, multi-

core architectures often provide atomic primitives that atomically conduct a set

of operations, i.e. such that an intermediate state during the execution of the

instruction cannot be observed. These primitives can be used to synchronize

processes efficiently.

Atomic primitives can be classified according to their consensus number [8],

which is as a measure of their power. The consensus number specifies the max-

imum number of processes for which the primitive (together with read/write

registers) can solve the wait-free consensus problem, where each process must

agree on an input value after a finite number of its own steps [15]. Wait-free

consensus is critical because it allows processes, that are communicating asyn-

chronously, to keep a consistent view of the shared objects. Atomic instructions,

with a large enough consensus number, can be used to modify the shared object

by having a wait-free consensus on each step of the progress. The semantics of

some widely used atomic instructions are provided in Figure 1.1.

In [8], it has been shown that a primitive cannot be implemented by other

primitives with lower consensus numbers. Compare-And-Swap has an infinite

consensus number, and it can be used to construct wait-free implementation of

any abstract data type. Although it is very convenient for implementing non-

blocking synchronization mechanisms, it should still be used with care since

its redundant usage can lead to performance degradations. Another limitation

10 CHAPTER 1. INTRODUCTION

Compare-And-Swap (var, old, new)

if var = old then

var ← new

return true

else

return false

Test-And-Set (var)

if var = 0 then

var ← 1

return true

else

return false

Fetch-And-Add (var, value)

old← var

var ← var + value

return old

Figure 1.1: Semantics of Atomic Primitives

is that it suffers from the ABA problem. A variable value was read to be A

and was given as the old value parameter to the Compare-And-Swap. Then,

the value is changed to B and then back to A again by concurrent operations.

Compare-And-Swap cannot distinguish this configuration from a configuration

without any modification by concurrent operations. Consequently, the success-

ful Compare-And-Swap might lead to a state that is not intended by design.

This limitation is often overcome through memory management schemes in the

context of concurrent data structures.

1.2 Multi-core Architectures

Multi-core processors are composed of multiple independent computational

processors (cores), each of them can execute a program asynchronously and

communicate with the other cores through the shared memory. To obtain better

performance, shared memory is often organized in a hierarchy where the main

memory, residing at the top, is supported by a set of shared and/or private caches

that are located closer to the cores for faster access. Modern multi-core proces-

1.2. MULTI-CORE ARCHITECTURES 11

sors show a great variety in the organization and properties of these components

in terms of the size of memory/caches modules, memory hierarchy depth, ac-

cess policies, number of cores, number of sockets, number of memory modules

and the access latencies of these modules by different cores (could be uniform

or non-uniform), etc.. Here, two critical issues need to be addressed from the

synchronization perspective.

The first one is the cache coherency protocol (e.g. MESIF [16]) that as-

sures the consistency of the copies of the data (in the unit of cache lines) in

the multiple partially shared and private caches. In many cases, the protocol is

represented with a state machine where each copy of the cache line is assigned

to a state. The cache coherency protocol plays the lead role in the implementa-

tion, hence the latency of the atomic primitives. It enforces exclusive ownership

of the target cache line by the core (through invalidation of the other copies if

needed) during the execution of the atomic primitive. Therefore, the latency of

the atomic primitives is determined based on the state of the target cache line

copies and their locations in the memory hierarchy [17]. Assume Core 0 has

a cache line in exclusive state in its private cache. Then, it would be cheaper

for Core 0 to execute an atomic primitive on the cache line compared to Core 1

because Core 1 first needs to fetch and invalidate the copy in Core 0’s private

cache to bring the cache line to exclusive state in its private cache. The latency

of this cache coherency communication between local caches of Core 0 and

Core 1 depends on the location of the Core 0 and Core 1. For instance, this

latency is higher for the cores that reside in different sockets compared to the

ones that reside in the same socket in a NUMA architecture. It is possible to

build cost models for many architectures which is necessary for our purposes

because the cost of the memory events have a direct impact on the throughput

and the energy consumption of lock-free data structures.

The second issue is the memory consistency model of the multi-core pro-

cessor. Sequential consistency [6] is a natural option since the memory access

ordering strictly follows the program order for each core. Nevertheless, for per-

formance reasons, it is common to relax this model and allow reordering of

some memory accesses, only if they are referencing to different locations in the

12 CHAPTER 1. INTRODUCTION

memory. Total Store Order (TSO) memory model allows loads to be moved

ahead of stores. As explained in [18], this can be done by employing store

buffers. For example, a store operation that experiences a huge stall time (e.g.

due to the state of the cache line, the data needs to be fetched from a remote

location), can be recorded to the store buffer and the execution can continue

with the next read access that completes in a short time interval. Later on, when

the cache line arrives, the data can be copied from the store buffer to the cache

line. In this way, one can take advantage of the reordering to overlap the stall

with other operations. This optimization does not create any problem for the

sequential programs but might lead to undesirable behavior for the concurrent

ones. We consider the program in Figure 1.2: if no reordering can take place,

two zeros cannot be observed in the output. By contradiction, if this happens,

then “print a” should occur before “a←1”, meaning that “b←1” occurred be-

fore “print b”, which is impossible. However, this situation might happen with

the reordering of memory accesses: Process 0 waits for b, and in the meantime,

prints a, and Process 1 prints b while waiting for a.

a, b← 0

Process 0

b← 1

print a

Process 1

a← 1

print b

Figure 1.2: Memory access reordering

Memory fence instructions are provided by multi-core processors to ensure

the completion of the pending memory accesses for a core before the initiation

of the following accesses. While implementing synchronization mechanisms,

these memory fences can be used to overcome the reordering issue together

with the consideration of the memory consistency model. In return, memory

fences could decrease significantly performance as they do eliminate optimiza-

tion possibilities. But the behavior of the program becomes more evident with

them, which facilitates the performance predictions.

1.3. LOCK-FREE DATA STRUCTURES 13

1.3 Lock-free Data Structures

Data structures organize the data in a way to allow efficient access. Concur-

rent ones also allow multiple processes to share data and communicate asyn-

chronously. For some applications, this type of communication can be use-

ful. For example, it allows for overlapping the communication and computation

phases of different processes which might reduce the communication overhead

if the overhead is a function of the number of processes that are communicating

simultaneously. Also, it can help parallel applications to dynamically distribute

and balance the load by eliminating the need to wait for the slowest process

(e.g. work stealing with deques [19], producer/consumer design pattern with

concurrent queues [20]).

Concurrent data structure operations are designed by employing synchro-

nization mechanisms which determines the associated correctness and progress

properties. As mentioned before, an operation can be classified as blocking or

non-blocking based on the progress guarantees that it provides.

Lock-based operations are blocking, and they rely on the mutual exclusion

property for correctness. Critical sections mark the code blocks that need to be

executed atomically and traditionally are protected by locks. There are two

main approaches to implement lock-based concurrent data structures. As a

coarse-grained approach, a process can lock the whole data structure to operate

in isolation. However, this approach might block some concurrent operations

unnecessarily. A coarse-grained lock can delay the progress of concurrent op-

erations even if they operate on disjoint parts of the data structure or serialize

some steps of the operations that do not need to be executed in isolation. Fine-

grained approaches avoid this wastefulness by locking possibly the minimum

amount of shared resources for the minimum amount of time. Hence, they lead

to more efficient data structure designs. Although it is easier to implement and

reason about lock-based data structures compared to non-blocking data struc-

tures, lock-based approaches suffer from the limitations that are mentioned in

Section 1.1.

We have categorized the non-blocking methods in Section 1.1.2 based on

14 CHAPTER 1. INTRODUCTION

the level of established progress guarantees. Obstruction-free designs provide

progress guarantees that are insufficient for a concurrent environment. On the

other end of the spectrum, wait-free designs might exhibit insufficient perfor-

mance metrics to satisfy strong progress guarantees. Lock-free data structures

designs are generally efficient and scalable. Also, lock-free algorithms often

exhibit wait-free progress guarantees in practice [21]. These facts highlight the

convenience of lock-free data structures for practical usage.

1.3.1 Design Techniques

Lock-free implementations employ optimistic conflict control and guarantee

system-wide progress. In contrast to pessimistic lock-based approaches, pro-

cesses do not signal their presence before the operation, work independently

and check at the end whether their independent work is invalidated. As a result,

delays occur only if there is an actual conflict between concurrent processes.

For example, an inactive preempted process cannot delay another process which

is possible when one relies on mutual exclusion.

Three steps form the basic block to design a lock-free data structure oper-

ation: accessing the concurrent data structure to determine its state, preparing

the desired changes to the concurrent data structure locally and trying to ap-

ply them to the shared state in an atomic way (thanks to an atomic primitive).

When included in a retry loop, the basic block can be repeated until the desired

changes are applied to the concurrent data structure.

Similar to the coarse- and fine-grained locking approaches, lock-free data

structures are designed in many different ways. Universal constructions are

design techniques that can transform any sequential object into a safe concurrent

object. As a coarse-grained approach, one can always rely on the universal

construction described by Herlihy in [9], where it is shown that any abstract

data type can get a lock-free implementation based on a single retry loop that

applies the whole operation with a single successful atomic primitive.

In simple terms, the construction is realized in three steps: a process (i)

accesses (via a shared pointer) to the object; (ii) copies the object and applies

1.3. LOCK-FREE DATA STRUCTURES 15

the sequential operation to the copied object; (iii) tries to apply the changes

to the shared state by updating the shared pointer to the updated copy with an

atomic primitive, and repeats the three steps until the third step is successful

which happens only if the shared pointer is not updated by another process

between step one and three. This approach introduces two problems for the

large objects. It is inefficient to copy a large object, and the potential parallelism

might be inhibited because the updates can conflict even if they modify the

disjoint parts of the copied object (i.e. the implementation is not disjoint-access

parallel [22]). Although this construction emphasizes mostly the computability

aspect in asynchronous concurrent environments, it can be used as a basis to

design efficient implementations of some fundamental abstract data types that

have inherent sequential bottlenecks. This can be done by updating only a small

portion (memory words that host the bottleneck) of the data structure while the

old and new versions are sharing the untouched portion of the data structure.

A popular example is Treiber’s lock-free stack [23]. Its operations (push

and pop) are realized with a single retry loop, both following a very similar

structure. Figure 1.3 provides the structure of the push operation of Treiber’s

stack. The stack is formed of a linked list of nodes where the top variable

points to the first node. A push operation takes a new node as its parameter

and appends it to the top of the stack. One can observe the three steps: (i)

read the top pointer to determine the first element of the stack; (ii) prepare the

new desired state locally by setting next field of the new node to the address

of the first element; (iii) try to commit this state as the new state of the data

structure with a Compare-And-Swap (CAS) on the top pointer to update it with

the address of the new element. These steps are repeated in a retry loop until a

successful CAS, whose failure would imply the existence of another successful

concurrent operation.

For some other abstract data types, more practical designs apply the basic

block in multiple, finer steps that gradually carry the data structure to the de-

sired state. As in the fine-grained locking, this reduces the conflicts between

different operations and provide better performance. However, it is harder to

obtain the lock-free progress guarantee property when the operations are com-

16 CHAPTER 1. INTRODUCTION

Push (newNode)

while (! success)

oldNode ← top

newNode.next ← oldNode

success ← CAS(top, oldNode, newNode)

Figure 1.3: Treiber Stack Push Operation

pleted in multiple steps. The strategy here is to leave a sign to the other pro-

cesses regarding the state of the operation after each step so that they can take

action accordingly in order to guarantee the system-wide progress. Having en-

countered an incomplete operation a process might (i) ignore and start its own

operation, if possible; (ii) try to help (often not a selfless type of help) the in-

complete operation before executing its own operation; (iii) try to merge the

incomplete operation with its own operation at hand.

For example, one can think of Delete operation on the lock-free skip list [24].

This operation might require updates on multiple pointers in order to entirely

detach the deleted element from the skip list. All these updates are not applied

atomically but gradually each leaving a sign regarding the state of the opera-

tion. First, the element is logically deleted with a mark. This mark leaves a

sign to other processes so that they can determine the state of the incomplete

operation in case they are operating in the vicinity of the deleted element. This

knowledge allows them to avoid modifications that would lead to inconsistent

states and take action (help for the next steps of the incomplete delete operation

or ignore if possible) accordingly. In the same vein, the remaining steps of the

operation are gradually executed until the element is completely detached from

the skip list.

Loosely speaking, helping might create focal contention points, and ignor-

ing might introduce additional work [25]. Some combination of these tech-

niques is often used to design efficient lock-free data structure operations de-

pending on the data structure type or the usage context. There are numerous

lock-free implementations of various abstract data types with different design

1.3. LOCK-FREE DATA STRUCTURES 17

choices: skip lists [24, 26], binary trees [27, 28], stacks [23, 29, 30], queues [20,

31–34], vectors [35], bags [36], deques [37, 38], priority queues [39, 40], hash

tables [41, 42], linked lists [43, 44]. This variety complicates the gathering of

lock-free data structures under a unified generic design.

1.3.2 Throughput

A common metric for measuring the performance of lock-free data structure

is throughput, defined as the number of successful operations per unit of time.

For generic lock-free algorithms, the execution time of a single operation can-

not be bounded. It is then more natural to consider sequences of operations

instead, since all the operations in the sequence will not encounter bad exe-

cutions. In this context, the performance is often measured with the average

system throughput over a sequence of operations.

We are interested in the throughput of concurrent lock-free data structures,

and the underlying impacting factors that drives this throughput. These impact-

ing factors are viable for the performance of all lock-free data structures that

we consider in this thesis, but the significance of these impacting factors differs

based on the characteristics of the data structure and on the context they are

used in.

Retry loop and hardware conflicts: Lock-free operations cannot be blocked

but some parts of an operation can be repeated due to the existence of conflict-

ing concurrent operations within the retry loops. Under high contention, retry

loop conflicts occur, and this retry loop conflicts might lead to a second type of

conflict, that we refer to as hardware conflicts. Retry loops contain atomic prim-

itives that can stall other memory accesses (atomic primitives, read/write that

access the same memory word) while getting executed. When multiple atomic

primitives are issued in the same time interval, they serialize (the latency of

memory accesses expands due to stall time) and this leads to significant perfor-

mance degradation.

Under high contention but in the absence of hardware conflicts, failing retry

loop iterations introduce additional useless work to the failing (repeating) pro-

18 CHAPTER 1. INTRODUCTION

cess but they often do not decrease the system performance. This is because

two successful retry loop iterations cannot overlap in time and the successful

one cannot be obstructed by failing retry loop iterations if there are no hard-

ware conflicts. Therefore, increasing the number of processes in the retry loop

would merely increase the number of failed retry loop iterations, but would not

harm the system performance. However, hardware conflicts do not only intro-

duce useless work (through waiting time) to the failing process but also harm

the system performance. Think of a sequence of serialized Compare-And-Swap

instructions: while a process will operate a successful Compare-And-Swap (due

to the progress guarantee), the rest of the processes in the retry loop are doomed

to failure. If they are scheduled to execute their Compare-And-Swap when the

possibly successful one is pending, the system performance is reduced. Failing

Compare-And-Swaps do not change the content of the memory word but only

obstruct the successful one. This impact can escalate with the increase in the

number of processes in the retry loop. It gets harder to get out of the retry loop

for a successful process (i.e. the ratio failing/successful Compare-And-Swap in-

creases), and the additional delay of the successful operation leaves more space

for new processes to arrive at the retry loop, that increases the contention fur-

ther. This interplay might create hot spots.

In such cases, back-off strategies can be used to convert this harmful work

(failing Compare-And-Swap) to a harmless but useless one. Failing processes

can back-off, instead of retrying, to let the others succeed with less blockage.

The back-off would increase the system performance, but its amount should be

tuned since a small amount might be ineffective and large amount might lead to

an underutilization of the resources.

Lock-free data structures that have inherent sequential bottlenecks are more

prone to retry loop conflicts, thus to hardware conflicts. For such data struc-

tures, accesses are concentrated on a small number of memory words. For

example, a plain stack is accessed via its top pointer by all of its operations—in

the same way, queue operations access either the head or the tail of the queue.

Regardless of the size of the stack (the number of elements inside), all operation

accesses the top pointer. This characteristic might lead to contention in the form

1.3. LOCK-FREE DATA STRUCTURES 19

of hot spots whose severity is determined by the number and access rate of the

processes that are performing the operations.

Number of Loads/Stores and Cache Misses: Previously mentioned fac-

tors (retry loop conflicts and hardware conflicts) are specific to use cases with

high concurrency. There are also performance impacting factors that are not

related to concurrency and appear both in sequential and concurrent executions.

For example, consider a binary tree (or a skip list, a hash table) that might lead

to accesses on a large number of different memory words over a sequence of

operations. Even in the absence of concurrency-related conflicts, one needs to

estimate the number of memory word accesses per operation and connected to

this, in the practical domain, the cache capacity misses. This estimation might

not be trivial for some data structures like a binary tree, in contrast to simpler

data structures such as stacks or queues.

On the bright side, this characteristic (accesses are not concentrated on a

small number memory words) might turn out to be an advantage in the concur-

rent executions (i.e. leading to a good scalability) because the processes might

spread to different shared memory words (for example to the different branches

of a binary tree); this reduces the possibility of retry loop and hardware con-

flicts, and in turn, the possibility of hot spots. If we assume that the num-

ber of memory words is much bigger than the number of processes (excluding

extremely imbalanced access patterns), the retry loops and hardware conflicts

would have a negligible impact on the performance of such data structures.

This does not mean that these data structures are immune to contention since

every modification still requires a consensus. This consensus leads, on the logi-

cal side, to a consistent view of the lock-free data structure that is accessed and

modified by multiple processes concurrently in a non-blocking manner. On the

practical side, achieving this consensus and spreading the information during

and after its achievement impacts performance of all processes in the system.

This impact is merely small compared to the other mentioned impacts.

The struggle of processes executing the same retry loop is often viewed as

the major source of contention when they try to propose different values for

the same consensus object within the same time frame (which leads to retry

20 CHAPTER 1. INTRODUCTION

loop conflicts and hardware conflicts). The impact of contention on the learn-

ers (the processes that read the modified memory word) is less apparent since

the contenting events may not occur close in time. More clearly, consider two

consecutive accesses to a memory word j by a process i that happen at time t0

and t1, respectively. For the access at t1, process i would experience a coher-

ence cache miss if memory word j is modified by another process in between

t0 and t1. Search data structures, e.g. hash tables, skip lists, trees, contain

multiple consensus objects (nodes), and this characteristic leverages the impact

of the retry loop contention against the coherence contention on the learners

dramatically.

Through this thesis, we address these performance impacting factors in var-

ious configurations. We focus on the retry loop conflicts (and their subsequent

performance impactor hardware conflicts) for data structures that have sequen-

tial bottlenecks (e.g. stack, queue, priority queue, counter). We set parameters

for our models to analyze the congestion points so as to cover a large set of

possible lock-free data structure designs, contention levels, and use cases. For

search data structures, we focus on the main impacting factors, the most sig-

nificant of which are the number of memory accesses, capacity and coherency

cache misses. We construct a model based on these impacting factors and show

that it can be initiated with different abstract data types (e.g. skip list, hash

table, binary tree).

1.3.3 Energy Consumption

Energy consumption has recently become a vital optimization criterion, for sev-

eral reasons [45]. For example, the electricity cost for the operation and the

cooling of data centers has reached to a significant amount. Fixed battery ca-

pacity is a constraint for mobile devices. Moreover, ecological footprints of data

centers, supercomputers, personal and mobile devices necessitate a balance be-

tween low energy use and high performance.

Energy consumption is obtained by the time-integral of power consumption

that is classically split into two parts; static and dynamic. The switching activity

1.3. LOCK-FREE DATA STRUCTURES 21

of the transistors, based on the characteristics of the executed program, leads to

the dynamic part of the power dissipation. On the other hand, the static part

originates from the leakage effects that also exist when the transistors do not

change state, hence it is independent of the executed program.

At the hardware level, modern multi-core processors employ several low

power techniques to reduce the energy consumption. When the system is idle,

the dynamic part of the power is negligible. Power gating technique can be used

to minimize the static leakage part of the power. Computing units can be put to

power saving states (sleep states) and can be activated back when needed. For

an active system, computing units can be put into different operation states by

changing the clock frequency. Dynamic Voltage and Frequency Scaling (DVFS)

is the main technique to reduce the power dissipation of active systems. The

convexity of the dynamic power curve with respect to clock frequency suggests

that one can obtain better energy efficiency by reducing the frequency (coupled

with the voltage) of the hardware components with a sacrifice from the execu-

tion time. Thus, a null clock frequency and infinite execution time would be

the most energy efficient configuration when the dynamic part of the power is

considered. However, the static part of the power eliminates this option as it

might cancel out the gains with the extended execution time.

Time complexity models have facilitated the design of efficient algorithms.

Similarly, power models can be a crucial step towards energy efficient algo-

rithms for multi-core systems. Combined with the performance models, they

can also shed light on the previously mentioned optimization problems.

In this thesis, we present a power model for multi-core systems and show

how to integrate it with our throughput model to obtain energy efficiency (en-

ergy consumption per operation) of lock-free queue designs. Also, we have

validated the power model with a more extensive set of lock-free data structures

but these results [46–49] are not included in the thesis.

22 CHAPTER 1. INTRODUCTION

1.3.4 Execution Models and Analyses

It is common to model asynchronous executions by assuming an adversarial

scheduler whose capabilities can vary depending on the context of study. This

approach is convenient for the impossibility results and reasoning about the

correctness properties of algorithms [4], but it leads to worst case bounds when

the contention, connected to this performance, is analyzed. In the literature,

complexity models have been proposed for contention in asynchronous shared

memory systems. In [50], stall time, that is induced by memory operations that

access to the same memory location at the same time interval (harware con-

flicts), is analyzed by assuming an adversarial scheduler. Both retry loop and

hardware conflicts are considered in [51]. To capture the cost of contention,

the total amount of work is bounded for an n-process lock-free update proto-

col where a process successfully updates a location once and returns from the

protocol. In this study, the impact of exponential back-off is also analyzed.

In addition, amortized analysis techniques have been exploited [27, 43] to

address the concurrency-related issues since the execution time of an individual

lock-free operation cannot be bounded by definition. The failed attempts in the

retry loops can be amortized by the successful ones, due to the fundamental

property which states that a failed retry implies a successful concurrent retry.

These analysis parameters can be set with a measure of contention to bound

the average time complexity of the successful operations. Some common con-

tention measures are:

• Point Contention [52]: maximum number of operations that are executed

concurrently at any point during the execution interval of the operation

• Interval Contention [53]: number of operations whose execution interval

overlaps with the execution interval of a given operation

The contention measure (that frames retry loop and hardware conflicts un-

der a single contention cost) is often bounded by considering the worst case.

However, the worst-case behavior is not enough to express the performance

that we observe in practice. A tighter estimate of contention is needed because

1.3. LOCK-FREE DATA STRUCTURES 23

the worst case is reached only if the concurrent operations access the same part

of the data structure at the same time.

Close to the practical domain, the expected system and individual opera-

tion latencies are analyzed for a general class of lock-free algorithms under a

uniform stochastic scheduler [21].

These theoretical analyses for the time complexity of lock-free data struc-

tures target the asymptotic behaviors in terms of number of processes. Also,

empirical studies [54, 55] have been conducted to understand the throughput

and energy efficiency. These empirical studies help to grasp the complicated in-

teraction between software and hardware. However, there is a lack of analytical

results that target the performance of lock-free data structures, that is observed

in practice, with the consideration of the underlying hardware. This thesis aims

to bridge the gap between theoretical bounds and actual measured performance.

In this thesis, we model and analyze the performance and energy efficiency

of lock-free data structures on top of real hardware platforms. The modeling

phase transforms the system, that constitutes lock-free program and machine,

into an execution model, and the analysis of the model yields numeric values for

the metrics of interest (e.g. throughput, cache misses, energy efficiency). This

process is iterated throughout this thesis to tackle different types of lock-free

data structures and different use cases, in which impacting factors might vary.

We start the process with the abstractions of the lock-free program and the

machine that are characterized by a set of parameters. Then, the system is

mapped to an execution model (e.g. cyclic pattern, Markov chain, Poisson pro-

cess, queueing model in steady states under low and high contention, a system

of mathematical equations) which retains the initial parameters. Both of these

steps are aligned with the identified, significant performance impacting factors

because we aim at representing the actual behavior of the system under a reason-

able model complexity. During this process, we might ignore memory manage-

ment calls if they are not costly, some type of hardware or algorithmic conflicts,

and events when they are improbable. We collect the evidence regarding the

insignificance of these details through empirical observations (benchmarking,

performance counters). In a second phase, we analyze the execution model to

24 CHAPTER 1. INTRODUCTION

estimate (or sometimes bound) the main performance metrics: throughput and

power consumption, that can be merged to obtain the energy efficiency. Finally,

we validate our models with both synthetic tests and examples picked from ap-

plication domains, for a range of lock-free data structures. To the best of our

knowledge, we attempt for the first time to model and analyze the performance

of lock-free data structures on such a broad domain and obtain estimates that

are close to what is observed in practice.

An analytical framework can be useful in many ways. In the first place, it

can explain observations and provide an understanding of the phenomena that

drive the performance of lock-free data structures. It can identify the issues and

bottlenecks in a design which in turn facilitates design decisions.

Secondly, it can be used to rank alternative lock-free data structure designs.

We have mentioned in the previous sections that a vast variety of lock-free data

structure designs exist. Different lock-free data structure designs can outper-

form each other in different configurations, which makes it difficult to conduct

a fair comparison. Sometimes strengths or limitations of the data structures are

hidden, thus unnoticeable even by their creators because they only appear in

some configurations of the domain that it is often not possible to sufficiently

cover empirically. An analytical framework can reveal the merits of data struc-

tures and provide a fair comparison by covering the whole configuration do-

main.

Last but not least, it can help the tuning process of the data structure related

parameters. On this last point, lock-free data structures come with specific pa-

rameters, e.g. back-off, padding, and memory management related parameters,

and become competitive only after picking carefully their values, which often

involves a costly brute force approach. This can be replaced, or at least driven,

by an analytical estimation of the performance.

1.4 Contributions

This thesis proposes analytical approaches to model and analyze the throughput

and energy consumption of concurrent lock-free data structures. The contribu-

1.4. CONTRIBUTIONS 25

tions of this thesis to the field of concurrent lock-free data structures can be

summarized under three headers:

Performance of a general class of lock-free data structures (Paper I and

II): We present new ways of modeling and analyzing the performance of a gen-

eral class of lock-free algorithms. We rely on the universal construction [9]

and use this basic structure that is based on a single retry loop to model the

lock-free data structures. A sequence of operations that are interleaved by ap-

plication specific code abstracts the usage pattern of a lock-free data structure,

by a thread. In this context, the performance metric (throughput) is defined as

the average number of successful operations on the data structure per unit of

time, by any thread.

We emphasize two impacting factors that rule the performance: (i) stall time

due to the serialization of atomic primitives; (ii) number of failed retry loop it-

erations. We analyze these factors through a set of hardware and algorithmic

parameters, and the impact of the latency of application specific work (which

regulates the access frequency of the threads to the data structure) is under-

lined. We propose three analytical frameworks. We first target the cases where

the latency of application specific code is a constant and we address it with a

deterministic model (Paper I). The last two frameworks are based on stochastic

models (Paper II). On the one hand, we address accurately cases where the la-

tency is instantiated with exponential distribution through an execution model

relying on Markov chains. On the other hand, we provide a generic approach

that can be used for any latency distribution thanks to an approach based on

queueing theory results. In addition, we exploit our frameworks to design a

new back-off mechanism, to optimize memory management related parame-

ters and to compare different lock-free data structures while covering the whole

contention domain.

Performance and Energy Efficiency of Lock-Free Queues (Paper III):

Our main contribution is to provide a generic high-level model for the perfor-

mance and power dissipation of applications that rely heavily on the utilization

of concurrent queues.

We have already mentioned that any sequential data structure can be trans-

26 CHAPTER 1. INTRODUCTION

formed into a lock-free linearizable concurrent data structure based on a single

retry loop that applies the whole operation with a single successful atomic prim-

itive. However, this approach might be far from being practical for some data

structures. Due to performance concerns, lock-free data structure operations

often possess more intricate designs. In this study, we want to have a broader

relevance when dealing with these intricate operation designs and when threads

are allowed to execute these different types of operations concurrently. We rely

on an abstract model and calibrate it with samples from the solution space. This

approach contrasts with the previously mentioned studies (Paper I and II) in

which the execution models are more refined, and no samples from the solu-

tion space are used. We study lock-free queues and examine the interference

between operations through the state of the queue (mostly empty or not empty).

Based on their local and global interaction, we model the dequeuers’ throughput

and enqueuers’ throughput focusing on the possible steady-state behaviors.

To model power dissipation, we first split the total power into static, acti-

vation and dynamic parts, the latter only depending on the actual instructions

being executed. We further decompose these parts according to the hardware

components (memory, CPU, uncore) and characterize their power consumption

based on the rate of hardware events.

We instantiate our models using a very limited amount of application spe-

cific information, thanks to our performance model. Finally, we validate our

models using several lock-free queue implementations through both synthetic

tests and code from the application domain.

Performance of Lock-Free Search Data Structures (Paper IV): We study

the throughput performance of concurrent lock-free search data structures. Search

data structures possess different characteristics compared to the set of data

structures that we studied formerly. In this study, we target the use cases where

search data structures are utilized through a sequence of operations which are

generated with a memoryless and stationary access pattern (i.e. for each oper-

ation in the sequence, the probability of selecting a specific key and a specific

type are constants).

Search data structures are composed of basic blocks (nodes) that are linked

BIBLIOGRAPHY 27

to each other in a way that provides efficient operations. Each thread executes a

sequence of operations, and each operation triggers read and modify events on

a subset of blocks. Hence, the throughput is ruled by the number of events in

an operation and the latencies of these events.

The primary challenge in predicting throughput is that the latency of each

event mainly depends on the state of the caches at the time when it is triggered.

The state of caches is changing due to events that are triggered by the opera-

tions of multiple threads. Accordingly, the latency of an event is determined

by the ordering of the events on the timeline. Considering a given block, two

point distributions define the location of the events on the timeline. For each

block, we use Poisson processes to model these point distributions relying on

the properties of our access pattern and the rareness of events. Superposition

and thinning properties of Poisson processes help us to deal with the interaction

of threads. Knowing the probabilistic ordering of the events from single and

multiple threads, we are able to estimate the throughput.

The validation of our model is conducted through several fundamental lock-

free search data structures such as a hash table, linked list, skip list and binary

tree. We rely then on this performance modeling to achieve performance opti-

mization by analyzing the influence of possible memory alignment strategies.

By aligning blocks to cache lines, the false sharing possibility can be eliminated

at the expense of increasing the memory footprint of the search data structure.

In this study, we also shed light on this trade-off in the context of search data

structures.

Bibliography

[1] Gordon Earle Moore, “Cramming more components onto integrated circuits,” Pro-

ceedings of the IEEE, vol. 86, pp. 82–85, 1998.

[2] Geoff Lowney, “Why intel is designing multi-core processors,” in Proceedings

of the ACM Symposium on Parallelism in Algorithms and Architectures (SPAA).

2006, p. 113, ACM.

28 CHAPTER 1. INTRODUCTION

[3] Aaron Turon, Understanding and Expressing Scalable Concurrency, Ph.D. thesis,

College of Computer and Information Science, Northeastern University, 2013.

[4] Maurice Herlihy and Nir Shavit, The art of multiprocessor programming, Morgan

Kaufmann, 2008.

[5] Maurice Herlihy and Jeannette M. Wing, “Linearizability: A correctness condi-

tion for concurrent objects,” ACM Transactions on Programming Languages and

Systems (TOPLAS), vol. 12, no. 3, pp. 463–492, 1990.

[6] Leslie Lamport, “How to make a correct multiprocess program execute correctly

on a multiprocessor,” IEEE Transactions on Computers (TC), vol. 46, no. 7, pp.

779–782, 1997.

[7] Leslie Lamport, “The mutual exclusion problem: partii - statement and solutions,”

Journal of the ACM (JACM), vol. 33, no. 2, pp. 327–348, 1986.

[8] Maurice Herlihy, “Wait-free synchronization,” ACM Transactions on Program-

ming Languages and Systems (TOPLAS), vol. 13, no. 1, pp. 124–149, 1991.

[9] Maurice Herlihy, “A methodology for implementing highly concurrent objects,”

ACM Transactions on Programming Languages and Systems (TOPLAS), vol. 15,

no. 5, pp. 745–770, 1993.

[10] Maurice Herlihy, Victor Luchangco, and Mark Moir, “Obstruction-free synchro-

nization: Double-ended queues as an example,” in Proceedings of the IEEE Inter-

national Conference on Distributed Computing Systems (ICDCS). 2003, pp. 522–

529, IEEE Computer Society.

[11] “Intel’s threading building blocks framework,” https://www.

threadingbuildingblocks.org/, Accessed: 2016-01-20.

[12] “Java concurrency package,” https://docs.oracle.com/javase/7/

docs/api/java/util/concurrent/package-summary.html, Ac-

cessed: 2016-01-20.

[13] “Microsoft .net framework,” http://www.microsoft.com/net, Accessed:

2016-01-20.

[14] Leslie Lamport, “A new solution of dijkstra’s concurrent programming problem,”

Communications of the ACM, vol. 17, no. 8, pp. 453–455, 1974.

[15] James Aspnes, Wait-Free Consensus, Ph.D. thesis, Carnegie-Mellon University,

1992.

BIBLIOGRAPHY 29

[16] John L. Hennessy and David A. Patterson, Computer Architecture - A Quantitative

Approach, 5th Edition, Morgan Kaufmann, 2012.

[17] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis, “Everything you always

wanted to know about synchronization but were afraid to ask,” in Proceedings of

the ACM Symposium on Operating Systems Principles (SOSP). 2013, pp. 33–48,

ACM.

[18] Paul E. Mckenney, “Memory barriers: a hardware view for software hackers,”

2009.

[19] Robert D. Blumofe and Charles E. Leiserson, “Scheduling multithreaded compu-

tations by work stealing,” Journal of the ACM (JACM), vol. 46, no. 5, pp. 720–748,

1999.

[20] Anders Gidenstam, Håkan Sundell, and Philippas Tsigas, “Cache-aware lock-

free queues for multiple producers/consumers and weak memory consistency,” in

Proceedings of the International Conference on Principle of Distributed Systems

(OPODIS). 2010, pp. 302–317, Springer.

[21] Dan Alistarh, Keren Censor-Hillel, and Nir Shavit, “Are lock-free concurrent algo-

rithms practically wait-free?,” in Proceedings of the ACM Symposium on Theory

of Computing (STOC). 2014, pp. 714–723, ACM.

[22] Amos Israeli and Lihu Rappoport, “Disjoint-access-parallel implementations of

strong shared memory primitives,” in Proceedings of the ACM Symposium on

Principles of Distributed Computing (PoDC). 1994, pp. 151–160, ACM.

[23] R. Kent Treiber, Systems programming: Coping with parallelism, International

Business Machines Incorporated, Thomas J. Watson Research Center, 1986.

[24] Håkan Sundell and Philippas Tsigas, “Fast and lock-free concurrent priority queues

for multi-thread systems,” Journal of Parallel and Distributed Computing (JPDC),

vol. 65, no. 5, pp. 609–627, 2005.

[25] Joel Gibson and Vincent Gramoli, “Why non-blocking operations should be self-

ish,” in Proceedings of the International Symposium on Distributed Computing

(DISC). 2015, pp. 200–214, Springer.

[26] Keir Fraser, Practical lock-freedom, Ph.D. thesis, University of Cambridge, UK,

2004.

30 CHAPTER 1. INTRODUCTION

[27] Bapi Chatterjee, Nhan Nguyen Dang, and Philippas Tsigas, “Efficient lock-free

binary search trees,” in Proceedings of the ACM Symposium on Principles of Dis-

tributed Computing (PoDC). 2014, pp. 322–331, ACM.

[28] Aravind Natarajan and Neeraj Mittal, “Fast concurrent lock-free binary search

trees,” in Principles and Practice of Parallel Programming (PPoPP). 2014, pp.

317–328, ACM.

[29] D. Hendler, N. Shavit, and L. Yerushalmi, “A Scalable Lock-Free Stack Algo-

rithm,” Journal of Parallel and Distributed Computing (JPDC), vol. 70, no. 1, pp.

1–12, 2010.

[30] Danny Hendler, Nir Shavit, and Lena Yerushalmi, “A scalable lock-free stack

algorithm,” Journal of Parallel and Distributed Computing (JPDC), vol. 70, no. 1,

pp. 1–12, 2010.

[31] Moshe Hoffman, Ori Shalev, and Nir Shavit, “The baskets queue,” in Proceedings

of the International Conference on Principle of Distributed Systems (OPODIS).

2007, pp. 401–414, Springer.

[32] Mark Moir, Daniel Nussbaum, Ori Shalev, and Nir Shavit, “Using elimination to

implement scalable and lock-free fifo queues,” in Proceedings of the ACM Sympo-

sium on Parallelism in Algorithms and Architectures (SPAA). 2005, pp. 253–262,

ACM.

[33] Philippas Tsigas and Yi Zhang, “A simple, fast and scalable non-blocking con-

current FIFO queue for shared memory multiprocessor systems,” in Proceedings

of the ACM Symposium on Parallelism in Algorithms and Architectures (SPAA).

2001, pp. 134–143, ACM.

[34] Maged M. Michael and Michael L. Scott, “Simple, fast, and practical non-blocking

and blocking concurrent queue algorithms,” in Proceedings of the ACM Symposium

on Principles of Distributed Computing (PoDC). 1996, pp. 267–275, ACM.

[35] Ivan Walulya and Philippas Tsigas, “Scalable lock-free vector with combining,” in

2017 IEEE International Parallel and Distributed Processing Symposium, IPDPS

2017, Orlando, FL, USA, May 29 - June 2, 2017. 2017, pp. 917–926, IEEE Com-

puter Society.

[36] Håkan Sundell, Anders Gidenstam, Marina Papatriantafilou, and Philippas Tsigas,

“A lock-free algorithm for concurrent bags,” in Proceedings of the ACM Sympo-

sium on Parallelism in Algorithms and Architectures (SPAA). 2011, pp. 335–344,

ACM.

BIBLIOGRAPHY 31

[37] Maged M. Michael, “Cas-based lock-free algorithm for shared deques,” in Euro-

Par COnference. 2003, pp. 651–660, Springer.

[38] Håkan Sundell and Philippas Tsigas, “Lock-free deques and doubly linked lists,”

Journal of Parallel and Distributed Computing (JPDC), vol. 68, no. 7, pp. 1008–

1020, 2008.

[39] Jonatan Lindén and Bengt Jonsson, “A skiplist-based concurrent priority queue

with minimal memory contention,” in Proceedings of the International Conference

on Principle of Distributed Systems (OPODIS). 2013, pp. 206–220, Springer.

[40] Nir Shavit and Itay Lotan, “Skiplist-based concurrent priority queues,” in Proceed-

ings of the International Parallel and Distributed Processing Symposium (IPDPS).

2000, pp. 263–268, IEEE Computer Society.

[41] Nhan Nguyen and Philippas Tsigas, “Lock-free cuckoo hashing,” in Proceedings

of the IEEE International Conference on Distributed Computing Systems (ICDCS).

2014, pp. 627–636, IEEE Computer Society.

[42] Maged M. Michael, “High performance dynamic lock-free hash tables and list-

based sets,” in Proceedings of the ACM Symposium on Parallelism in Algorithms

and Architectures (SPAA). 2002, pp. 73–82, ACM.

[43] Mikhail Fomitchev and Eric Ruppert, “Lock-free linked lists and skip lists,” in Pro-

ceedings of the ACM Symposium on Principles of Distributed Computing (PoDC).

2004, pp. 50–59, ACM.

[44] Timothy L. Harris, “A pragmatic implementation of non-blocking linked-lists,”

in Proceedings of the International Symposium on Distributed Computing (DISC).

2001, vol. 2180 of Lecture Notes in Computer Science, pp. 300–314, Springer.

[45] Jack J. Dongarra and Peter H. Beckman, “The international exascale software

roadmap,” International Journal of High Performance Computing Applications

(IJHPCA), vol. 25, no. 1, pp. 3–60, 2011.

[46] Phuong Ha, Vi Ngoc-Nha Tran, Ibrahim Umar, Philippas Tsigas, Anders Giden-

stam, Paul Renaud-Goud, Ivan Walulya, and Aras Atalar, “Models for energy con-

sumption of data structures and algorithms,” CoRR, vol. abs/1801.09992, 2018.

[47] Phuong Hoai Ha, Vi Ngoc-Nha Tran, Ibrahim Umar, Aras Atalar, Anders Giden-

stam, Paul Renaud-Goud, and Philippas Tsigas, “White-box methodologies, pro-

gramming abstractions and libraries,” CoRR, vol. abs/1801.08761, 2018.

32 CHAPTER 1. INTRODUCTION

[48] Phuong Ha, Vi Ngoc-Nha Tran, Ibrahim Umar, Aras Atalar, Anders Gidenstam,

Paul Renaud-Goud, Philippas Tsigas, and Ivan Walulya, “Power models, en-

ergy models and libraries for energy-efficient concurrent data structures and al-

gorithms,” CoRR, vol. abs/1801.10556, 2018.

[49] Phuong Hoai Ha, Vi Ngoc-Nha Tran, Ibrahim Umar, Aras Atalar, Anders Giden-

stam, Paul Renaud-Goud, Philippas Tsigas, and Ivan Walulya, “D2.4 report on

the final prototype of programming abstractions for energy-efficient inter-process

communication,” CoRR, vol. abs/1802.03013, 2018.

[50] Cynthia Dwork, Maurice Herlihy, and Orli Waarts, “Contention in shared memory

algorithms,” Journal of the ACM (JACM), vol. 44, no. 6, pp. 779–805, 1997.

[51] Naama Ben-David and Guy E. Blelloch, “Analyzing contention and backoff in

asynchronous shared memory,” in Proceedings of the ACM Symposium on Prin-

ciples of Distributed Computing, PODC 2017, Washington, DC, USA, July 25-27,

2017, 2017, pp. 53–62.

[52] Hagit Attiya and Arie Fouren, “Algorithms adapting to point contention,” Journal

of the ACM (JACM), vol. 50, no. 4, pp. 444–468, 2003.

[53] Yehuda Afek, Gideon Stupp, and Dan Touitou, “Long lived adaptive splitter and

applications,” Journal of Distributed Computing, vol. 15, no. 2, pp. 67–86, 2002.

[54] Vincent Gramoli, “More than you ever wanted to know about synchronization:

synchrobench, measuring the impact of the synchronization on concurrent algo-

rithms,” in Principles and Practice of Parallel Programming (PPoPP). 2015, pp.

1–10, ACM.

[55] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis, “Asynchronized con-

currency: The secret to scaling concurrent search data structures,” in Proceedings

of the International Conference on Architectural Support for Programming Lan-

guages and Operating Systems (ASPLOS). 2015, pp. 631–644, ACM.

Part II

RESULTS

RESULT I

Aras Atalar, Paul Renaud-Goud and Philippas Tsigas

Analyzing the Performance of Lock-Free Data
Structures: A Conflict-Based Model

In the Proceedings of 29th International Symposium on Distributed Computing

(DISC 2015)

pages 341-355, Springer-Verlag 2015.

2
RESULT I - Analyzing the

Performance of Lock-Free Data

Structures: A Conflict-Based Model

Abstract

This paper considers the modeling and the analysis of the performance of lock-

free concurrent data structures. Lock-free designs employ an optimistic conflict

control mechanism, allowing several processes to access the shared data object

at the same time. They guarantee that at least one concurrent operation finishes

in a finite number of its own steps regardless of the state of the operations.

Our analysis considers such lock-free data structures that can be represented as

linear combinations of fixed size retry loops.

37

38 CHAPTER 2. RESULT I

Our main contribution is a new way of modeling and analyzing a general

class of lock-free algorithms, achieving predictions of throughput that are close

to what we observe in practice. We emphasize two kinds of conflicts that shape

the performance: (i) hardware conflicts, due to concurrent calls to atomic prim-

itives; (ii) logical conflicts, caused by simultaneous operations on the shared

data structure.

We show how to deal with these hardware and logical conflicts separately,

and how to combine them, so as to calculate the throughput of lock-free algo-

rithms. We propose also a common framework that enables a fair comparison

between lock-free implementations by covering the whole contention domain,

together with a better understanding of the performance impacting factors. This

part of our analysis comes with a method for calculating a good back-off strat-

egy to finely tune the performance of a lock-free algorithm. Our experimental

results, based on a set of widely used concurrent data structures and on abstract

lock-free designs, show that our analysis follows closely the actual code behav-

ior.

2.1 Introduction

Lock-free programming provides highly concurrent access to data and has been

increasing its footprint in industrial settings. Providing a modeling and an anal-

ysis framework capable of describing the practical performance of lock-free

algorithms is an essential, missing resource necessary to the parallel program-

ming and algorithmic research communities in their effort to build on previous

intellectual efforts. The definition of lock-freedom mainly guarantees that at

least one concurrent operation on the data structure finishes in a finite number

of its own steps, regardless of the state of the operations. On the individual op-

eration level, lock-freedom cannot guarantee that an operation will not starve.

The goal of this paper is to provide a way to model and analyze the prac-

tically observed performance of lock-free data structures. In the literature, the

common performance measure of a lock-free data structure is the throughput,

i.e. the number of successful operations per unit of time. It is obtained while

2.1. INTRODUCTION 39

threads are accessing the data structure according to an access pattern that inter-

leaves local work between calls to consecutive operations on the data structure.

Although this access pattern to the data structure is significant, there is no con-

sensus in the literature on what access to be used when comparing two data

structures. So, the amount of local work (that we will refer as parallel work for

the rest of the paper) could be constant ([1, 2]), uniformly distributed ([3], [4]),

exponentially distributed ([5], [6]), null ([7, 8]), etc. More questionably, the

average amount is rarely scanned, which leads to a partial covering of the con-

tention domain.

We propose here a common framework enabling a fair comparison between

lock-free data structures, while exhibiting the main phenomena that drive per-

formance, and particularly the contention, which leads to different kinds of con-

flicts. As this is the first step in this direction, we want to deeply analyze the

core of the problem, without impacting factors being diluted within a proba-

bilistic smoothing. Therefore, we choose a constant local work, hence constant

access rate to the data structures. In addition to the prediction of the data struc-

ture performance, our model provides a good back-off strategy, that achieves

the peak performance of a lock-free algorithm.

Two kinds of conflict appear during the execution of a lock-free algorithm,

both of them leading to additional work. Hardware conflicts occur when con-

current operations call atomic primitives on the same memory location: these

calls collide and conduct to stall time, that we name here expansion. Logical

conflicts take place if concurrent operations overlap: because of the lock-free

nature of the algorithm, several concurrent operations can run simultaneously,

but usually only one retry can logically succeed. We show that the additional

work produced by the failures is not necessarily harmful for the system-wise

performance.

We then show how throughput can be computed by connecting these two

key factors in an iterative way. We start by estimating the expansion probabilis-

tically, and emulate the effect of stall time introduced by the hardware conflicts

as extra work added to each thread. Then we estimate the number of failed

operations, that in turn lead to additional extra work, by computing again the

40 CHAPTER 2. RESULT I

expansion on a system setting where those two new amounts of work have been

incorporated, and reiterate the process; the convergence is ensured by a fixed-

point search.

We consider the class of lock-free algorithms that can be modeled as a

linear composition of fixed size retry loops. This class covers numerous ex-

tensively used lock-free designs such as stacks [9] (Pop, Push), queues [1]

(Enqueue, Dequeue), counters [4] (Increment, Decrement) and priority

queues [8] (DeleteMin).

To evaluate the accuracy of our model and analysis framework, we per-

formed experiments both on synthetic tests, that capture a wide range of pos-

sible abstract algorithmic designs, and on several reference implementations of

extensively studied lock-free data structures. Our evaluation results reveal that

our model is able to capture the behavior of all the synthetic and real designs

for all different numbers of threads and sizes of parallel work (consequently

also contention). We also evaluate the use of our analysis as a tool for tuning

the performance of lock-free code by selecting the appropriate back-off strategy

that will maximize throughput by comparing our method against widely known

back-off policies, namely linear and exponential.

The rest of the paper is organized as follows. We discuss related work in

Section 2.2, then the problem is formally described in Section 2.3. We con-

sider the logical conflicts in the absence of hardware conflicts in Section 2.4. In

Section 2.5, we firstly show how to compute the expansion, then combine hard-

ware and logical conflicts to obtain the final throughput estimate. We describe

the experimental results in Section 3.6.

2.2 Related Work

Anderson et al. [10] evaluated the performance of lock-free objects in a single

processor real-time system by emphasizing the impact of retry loop interfer-

ence. Tasks can be preempted during the retry loop execution, which can lead

to interference, and consequently to an inflation in retry loop execution due

to retries. They obtained upper bounds for the number of interferences under

2.3. PROBLEM STATEMENT 41

various scheduling schemes for periodic real-time tasks.

Intel [11] conducted an empirical study to illustrate performance and scal-

ability of locks. They showed that the critical section size, the time interval

between releasing and re-acquiring the lock (that is similar to our parallel sec-

tion size) and number of threads contending the lock are vital parameters.

Failed retries do not only lead to useless effort but also degrade the per-

formance of successful ones by contending the shared resources. Alemany et

al. [12] have pointed out this fact, that is in accordance with our two key fac-

tors, and, without trying to model it, have mitigated those effects by designing

non-blocking algorithms with operating system support.

Alistarh et al. [13] have studied the same class of lock-free structures that

we consider in this paper. The analysis is done in terms of scheduler steps, in a

system where only one thread can be scheduled (and can then run) at each step.

If compared with execution time, this is particularly appropriate to a system

with a single processor and several threads, or to a system where the instructions

of the threads cannot be done in parallel (e.g. multi-threaded program on a

multi-core processor with only read and write on the same cache line of the

shared memory). In our paper, the execution is evaluated in terms of processor

cycles, strongly related to the execution time. In addition, the “parallel work”

and the “critical work” can be done in parallel, and we only consider retry-loops

with one Read and one CAS, which are serialized. In addition, they bound the

asymptotic expected system latency (with a big O, when the number of threads

tends to infinity), while in our paper we estimate the throughput (close to the

inverse of system latency) for any number of threads.

2.3 Problem Statement

2.3.1 Running Program and Targeted Platform

In this paper, we aim at evaluating the throughput of a multi-threaded algo-

rithm that is based on the utilization of a shared lock-free data structure that

relies on a single retry loop which applies the whole operation with a single

42 CHAPTER 2. RESULT I

Procedure AbstractAlgorithm

1 Initialization();

2 while ! done do

3 Parallel_Work();

4 while ! success do

5 current← Read(AP);

6 new← Critical_Work(current);

7 success← CAS(AP, current, new);

Figure 2.1: Thread procedure

successful atomic primitive. Such a program can be abstracted by the Pro-

cedure AbstractAlgorithm (see Figure 3.1) that represents the skeleton of the

function which is called by each spawned thread. It is decomposed in two main

phases: the parallel section, represented on line 2, and the retry loop, from

line 3 to line 6. A retry starts at line 4 and ends at line 6.

As for line 1, the function Initialization shall be seen as an abstraction of

the delay between the spawns of the threads, that is expected not to be null,

even when a barrier is used. We then consider that the threads begin at the exact

same time, but have different initialization times.

The parallel section is the part of the code where the thread does not access

the shared data structure; the work that is performed inside this parallel section

can possibly depend on the value that has been read from the data structure,

e.g. in the case of processing an element that has been dequeued from a FIFO

(First-In-First-Out) queue.

In each retry, a thread tries to modify the data structure, and does not exit

the retry loop until it has successfully modified the data structure. It does that

by firstly reading the access point AP of the data structure, then according to

the value that has been read, and possibly to other previous computations that

occurred in the past, the thread prepares the new desired value as an access

point of the data structure. Finally, it atomically tries to perform the change

2.3. PROBLEM STATEMENT 43

Cycle

T0

T1

T2

T3

Figure 2.2: Execution with one wasted retry, and one inevitable failure

Cycle

T0

T1

T2

T3

Figure 2.3: Execution with minimum number of failures

through a call to the Compare-And-Swap (CAS) primitive. If it succeeds, i.e. if

the access point has not been changed by another thread between the first Read

and the CAS, then it goes to the next parallel section, otherwise it repeats the

process. The retry loop is composed of at least one retry, and we number the

retries starting from 0, since the first iteration of the retry loop is actually not a

retry, but a try.

We analyze the behavior of AbstractAlgorithm from a throughput perspec-

tive, which is defined as the number of successful data structure operations per

unit of time. In the context of Procedure AbstractAlgorithm, it is equivalent to

the number of successful CASs.

The throughput of the lock-free algorithm, that we denote by T , is impacted

by several parameters.

• Algorithm parameters: the amount of work inside a call to Parallel_Work

(resp. Critical_Work) denoted by pw (resp. cw).

• Platform parameters: Read and CAS latencies (rc and cc respectively),

44 CHAPTER 2. RESULT I

and the number P of processing units (cores). We assume homogeneity

for the latencies, i.e. every thread experiences the same latency when

accessing an uncontended shared data, which is achieved in practice by

pinning threads to the same socket.

2.3.2 Examples and Issues

We first present two straightforward upper bounds on the throughput, and de-

scribe the two kinds of conflict that keep the actual throughput away from those

upper bounds.

2.3.2.1 Immediate Upper Bounds

Trivially, the minimum amount of work rlw(-) in a given retry is rlw(-) =

rc + cw + cc, as we should pay at least the memory accesses and the critical

work cw in between.

Thread-wise: A given thread can at most perform one successful retry ev-

ery pw + rlw(-) units of time. In the best case, P threads can then lead to a

throughput of P/(pw + rlw(-)).

System-wise: By definition, two successful retries cannot overlap, hence

we have at most 1 successful retry every rlw(-) units of time.

Altogether, the throughput T is bounded by

T ≤ min

(
1

rc + cw + cc
,

P

pw + rc + cw + cc

)
, i.e.

T ≤
{

1
rc+cw+cc

if pw ≤ (P − 1)(rc + cw + cc)
P

pw+rc+cw+cc
otherwise.

(2.1)

2.3.2.2 Conflicts

Logical conflicts Equation 2.1 expresses the fact that when pw is small enough,

i.e. when pw ≤ (P − 1)rlw(-), we cannot expect that every thread performs a

2.3. PROBLEM STATEMENT 45

successful retry every pw + rlw(-) units of time, since it is more than what the

retry loop can afford. As a result, some logical conflicts, hence unsuccessful

retries, will be inevitable, while the others, if any, are called wasted.

However, different executions can lead to different numbers of failures,

which end up with different throughput values. Figures 2.2 and 2.3 depict two

executions, where the black parts are the calls to Initialization, the blue parts

are the parallel sections, and the retries can be either unsuccessful — in red

— or successful — in green. We experiment different initialization times, and

observe different synchronizations, hence different numbers of wasted retries.

After the initial transient state, the execution depicted in Figure 2.3 comprises

only the inevitable unsuccessful retries, while the execution of Figure 2.2 con-

tains one wasted retry.

We can see on those two examples that a cyclic execution is reached after

the transient behavior; actually, we show in Section 2.4 that, in the absence of

hardware conflicts, every execution will become periodic, if the initialization

times are spaced enough. In addition, we prove that the shortest period is such

that, during this period, every thread succeeds exactly once. This finally leads

us to define the additional failures as wasted, since we can directly link the

throughput with this number of wasted retries: a higher number of wasted retries

implying a lower throughput.

Read & cw
Previously

expanded CAS
Expansion

CAS

Figure 2.4: Expansion

Hardware conflicts The requirement of atomicity compels the ownership of

the data in an exclusive manner by the executing core. This fact prohibits con-

current execution of atomic instructions if they are operating on the same data.

Therefore, overlapping parts of atomic instructions are serialized by the hard-

46 CHAPTER 2. RESULT I

ware, leading to stalls in subsequently issued ones. For our target lock-free algo-

rithm, these stalls that we refer to as expansion become an important slowdown

factor in case threads interfere in the retry loop. As illustrated in Figure 2.4,

the latency for CAS can expand and cause remarkable decreases in throughput

since the CAS of a successful thread is then expanded by others; for this reason,

the amount of work inside a retry is not constant, but is, generally speaking, a

function depending on the number of threads that are inside the retry loop.

2.3.2.3 Process

We deal with the two kinds of conflicts separately and connect them together

through the fixed-point iterative convergence.

In Section 2.5.1, we compute the expansion in execution time of a retry,

noted e, by following a probabilistic approach. The estimation takes as input

the expected number of threads inside the retry loop at any time, and returns

the expected increase in the execution time of a retry due to the serialization of

atomic primitives.

In Section 2.4, we are given a program without hardware conflicts described

by the size of the parallel section pw(+) and the size of a retry rlw(+). We

compute upper and lower bounds on the throughput T , the number of wasted

retries w, and the average number of threads inside the retry loop Prl. Without

loss of generality, we can normalize those execution times by the execution time

of a retry, and define the parallel section size as pw(+) = q + r, where q is a

non-negative integer and r is such that 0 ≤ r < 1. This pair (together with the

number of threads P) constitutes the actual input of the estimation.

Finally, we combine those two outcomes in Section 2.5.2 by emulating ex-

pansion through work not prone to hardware conflicts and obtain the full esti-

mation of the throughput.

2.4. EXECUTION WITHOUT HARDWARE CONFLICT 47

2.4 Execution without hardware conflict

We show in this section that, in the absence of hardware conflicts, the execu-

tion becomes periodic, which eases the calculation of the throughput. We start

by defining some useful concepts: (f, P)-cyclic executions are special kind of

periodic executions such that within the shortest period, each thread performs

exactly f unsuccessful retries and 1 successful retry. The well-formed seed is

a set of events that allows us to detect an (f, P)-cyclic execution early, and the

gaps are a measure of the quality of the synchronization between threads. The

idea is to iteratively add threads into the game and show that the periodicity is

maintained. Theorem 1 establishes a fundamental relation between gaps and

well-formed seeds, while Theorem 2 proves the periodicity, relying on the dis-

joint cases of Lemma 2, 3, and 4. Finally, we exhibit upper and lower bounds

on throughput and number of failures, along with the average number of threads

inside the retry loop.

2.4.1 Setting

2.4.1.1 Initial Restrictions

Remark 1. Concerning correctness, we assume that the reference point of the

Read and the CAS occurs when the thread enters and exits any retry, respec-

tively.

Remark 2. We do not consider simultaneous events, so all inequalities that

refer to time comparison are strict, and can be viewed as follows: time instants

are real numbers, and can be equal, but every event is associated with a thread;

also, in order to obtain a strict order relation, we break ties according to the

thread numbers (for instance with the relation <).

2.4.1.2 Notations and Definitions

We recall that P threads are executing the pseudo-code described in Proce-

dure AbstractAlgorithm, one retry is of unit-size, and the parallel section is

of size pw(+) = q + r, where q is a non-negative integer and r is such that

48 CHAPTER 2. RESULT I

0 ≤ r < 1. Considering a thread Tn which succeeds at time Sn; this thread

completes a whole retry in 1 unit of time, then executes the parallel section of

size pw(+), and attempts to perform again the operation every unit of time, until

one of the attempt is successful.

Definition 1. An execution with P threads is called (C, P)-cyclic execution if

and only if (i) the execution is periodic, i.e. at every time, every thread is in the

same state as one period before, (ii) the shortest period contains exactly one

successful attempt per thread, (iii) the shortest period is 1 + q + r + C.

Definition 2. Let S = (Ti, Si)i∈J0,P−1K, where Ti are threads and Si ordered

times, i.e. such that S0 < S1 < · · · < SP−1. S is a seed if and only if for all

i ∈ J0, P − 1K, Ti does not succeed between S0 and Si, and starts a retry at Si.

We define f (S) as the smallest non-negative integer such that S0 + 1 + q +

r + f (S) > SP−1 + 1, i.e. f (S) = max (0, ⌈SP−1 − S0 − q − r⌉). When S
is clear from the context, we denote f (S) by f .

Definition 3. S is a well-formed seed if and only if for each i ∈ J0, P − 1K,

the execution of thread Ti contains the following sequence: a successful retry

starting at Si, the parallel section, f unsuccessful retries, then a successful

retry.

Those definitions are coupled through the two natural following properties:

Property 1. Given a (C, P)-cyclic execution, any seed S including P consec-

utive successes is a well-formed seed, with f (S) = C.

Proof. Choosing any set of P consecutive successes, we are ensured, by the

definition of a (f, P)-cyclic execution, that for each thread, after the first suc-

cess, the next success will be obtained after f failures. The order will be pre-

served, and this shows that a seed including our set of successes is actually a

well-formed seed.

Property 2. If there exists a well-formed seed in an execution, then after each

thread succeeded once, the execution coincides with an (f, P)-cyclic execution.

2.4. EXECUTION WITHOUT HARDWARE CONFLICT 49

Proof. By the definition of a well-formed seed, we know that the threads will

first succeed in order, fails f times, and succeed again in the same order. Con-

sidering the second set of successes in a new well-formed seed, we observe that

the threads will succeed a third time in the same order, after failing f times. By

induction, the execution coincides with an (f, P)-cyclic execution.

Together with the seed concept, we define the notion of gap that we will

use extensively in the next subsection. The general idea of those gaps is that

within an (f, P)-cyclic execution, the period is higher than P × 1, which is

the total execution time of all the successful retries within the period. The

difference between the period (that lasts 1 + q + r + f) and P , reduced by r

(so that we obtain an integer), is referred as lagging time in the following. If

the threads are numbered according to their order of success (modulo P), as the

time elapsed between the successes of two given consecutive threads is constant

(during the next period, this time will remain the same), this lagging time can

be seen in a circular manner (see Figure 2.5): the threads are represented on a

circle whose length is the lagging time increased by r, and the length between

two consecutive threads is the time between the end of the successful retry of

the first thread and the start of the successful retry of the second one. More

formally, for all (n, k) ∈ J0, P − 1K
2, we define the gap G

(k)
n between Tn and

its kth predecessor based on the gap with the first predecessor:
{
∀n ∈ J1, P − 1K ; G

(1)
n = Sn − Sn−1 − 1

G
(1)
0 = S0 + q + r + f − SP−1

,

which leads to the definition of higher order gaps:

∀n ∈ J0, P − 1K ; ∀k > 0 ; G(k)
n =

n∑

j=n−k+1

G
(1)
j mod P .

For consistency, for all n ∈ J0, P − 1K, G
(0)
n = 0.

Equally, the gaps can be obtained directly from the successes: for all k ∈
J1, P − 1K,

G(k)
n =

{
Sn − Sn−k − k if n > k

Sn − SP +n−k + 1 + q + r + f − k otherwise
(2.2)

50 CHAPTER 2. RESULT I

P−1∑

n=0

G(1)
n

T0

T1

T2

TP−1

G
(1)
1

G
(1)
2

G
(2)
0

Figure 2.5: Gaps

Note that, in an (f, P)-cyclic execution, the lagging time is the sum of all

first order gaps, reduced by r.

Now we extend the concept of well-formed seed to weakly-formed seed.

Definition 4. Let S = (Ti, Si)i∈J0,P−1K be a seed.

S is a weakly-formed seed for P threads if and only if: (Ti, Si)i∈J0,P−2K

is a well-formed seed for P − 1 threads, and the first thread succeeding after

TP−2 is TP−1.

Property 3. Let S = (Ti, Si)i∈J0,P−1K be a weakly-formed seed.

Denoting f = f
(

(Ti, Si)i∈J0,P−2K

)
, for each n ∈ J0, P − 1K, G

(f)
n < 1.

Proof. We have SP−2 + 1 < SP−1 < Rf
0 , and if we note indeed G̃

(k)
n the gaps

within (Ti, Si)i∈J0,P−2K, the previous well-formed seed with P − 1 threads, we

know that for all n ∈ J1, P − 2K, G̃
(1)
n = G

(1)
n , and G

(1)
P−1 + G

(1)
0 = G̃

(1)
0 ,

which leads to G
(k)
n ≤ G̃

(k)
n , for all n ∈ J0, P − 1K and k; hence the weaker

property.

2.4. EXECUTION WITHOUT HARDWARE CONFLICT 51

T0

T1

T2

Figure 2.6: Lemma 2 configuration

2.4.2 Cyclic Executions

Theorem 1. Given a seed S = (Ti, Si)i∈J0,P−1K, S is a well-formed seed if

and only if for all n ∈ J0, P − 1K, 0 ≤ G
(f)
n < 1.

Proof. Let S = (Ti, Si)i∈J0,P−1K be a seed.

(⇐) We assume that for all n ∈ J0, P − 1K, 0 < G
(f)
n < 1, and we first show

that the first successes occur in the following order: T0 at S0, T1 at S1, . . . ,

TP−1 at SP−1, T0 again at Rf
0 . The first threads that are successful executes

their parallel section after their success, then enters their second retry loop: from

this moment, they can make the first attempt of the threads, that has not been

successful yet, fail. Therefore, we will look at which retry of which already

successful threads could have an impact on which other threads.

We can notice that for all n ∈ J0, P − 1K, if the first success of Tn occurs at

Sn, then its next attempts will potentially occur at Rk
n = Sn + 1 + q + r + k,

where k ≥ 0. More specifically, thanks to Equation 2.2, for all n ≤ f , Rk
n =

SP +n−f + G
(f)
n + k. Also, for all k ≤ f − n,

Rk
n − SP +n−f+k = − (SP +n−f+k − SP +n−f − k) + G(f)

n

= G(f)
n −G

(k)
P +n−f+k

Rk
n − SP +n−f+k = G(f−k)

n , (2.3)

and this implies that if k > 0,

SP +n−f+k −Rk−1
n = 1−G(f−k)

n . (2.4)

52 CHAPTER 2. RESULT I

We know, by hypothesis, that 0 < G
(f−k)
n < 1, equivalently 0 < 1 −

G
(f−k)
n < 1. Therefore Equation 2.3 states that if a thread Tn′ starts a successful

attempt at SP +n−f+k, then this thread will make the kth retry of Tn fail, since

Tn enters a retry while Tn′ is in a successful retry. And Equation 2.4 shows that,

given a thread Tn′ starting a new retry at SP +n−f+k, the only retry of Tn that

can make Tn′ fail on its attempt is the (k − 1)th one. There is indeed only one

retry of Tn that can enter a retry before the entrance of Tn′ , and exit the retry

after it.

T0 is the first thread to succeed at S0, because no other thread is in the retry

loop at this time. Its next attempt will occur at R0
0, and all thread attempts that

start before SP−f (included) cannot fail because of T0, since it runs then the

parallel section. Also, since all gaps are positive, the threads T1 to TP−f will

succeed in this order, respectively starting at times S1 to SP−f .

Then, using induction, we can show that TP−f+1, . . . , TP−1 succeed in this

order, respectively starting at times SP−f+1, . . . , SP−1. For j ∈ J0, f − 1K,

let (Pj) be the following property: for all n ∈ J0, P − f + jK, Tn starts a

successful retry at Sn. We assume that for a given j, (Pj) is true, and we

show that it implies that TP−f+j+1 will succeed at SP−f+j+1. The successful

attempt of TP−f+j at SP−f+j leads, for all j′ ∈ J0, jK, to the failure of the

j′th retry of Tj−j′ (explanation of Equation 2.3). But for each Tj′ , this attempt

was precisely the one that could have made TP−f+j+1 fail on its attempt at

SP−f+j+1 (explanation of Equation 2.3). Given that all threads Tn, where

n > P − f + j + 1, do not start any retry loop before SP−f+j+1, TP−f+j+1

will succeed at SP−f+j+1. By induction, (Pj) is true for all j ∈ J0, f − 1K.

Finally, when TP−1 succeeds, it makes the (f − 1 − n)th retry of Tn fail,

for all n ∈ J0, f − 1K; also the next potentially successful attempt for Tn is

at Rf−n
n . (Naturally, for all n ∈ Jf, P − 1K, the next potentially successful

attempt for Tn is at R0
n.)

We can observe that for all n < P , j ∈ J0, P − 1− nK, and all k ≥ j,

Rk−j
n+j −Rk

n = Sn+j + k − j − (Sn + k)

Rk−j
n+j −Rk

n = G
(j)
n+j , (2.5)

2.4. EXECUTION WITHOUT HARDWARE CONFLICT 53

hence for all n ∈ J1, fK, Rf−n
n −Rf

0 = G
(n)
n > 0.

Rf−n
n −Rf

0 = G(n)
n > 0.

As we have as well, for all n ∈ Jf + 1, P − 1K, R0
n > R0

f , we obtain that

among all the threads, the earliest possibly successful attempt is Rf
0 . Following

TP−1, T0 is consequently the next successful thread in its f th retry.

To conclude this part, we can renumber the threads (Tn+1 becoming now Tn

if n > 0, and T0 becoming TP−1), and follow the same line of reasoning. The

only difference is the fact that TP−1 (according to the new numbering) enters

the retry loop f units of time before SP−1, but it does not interfere with the

other threads, since we know that those attempts will fail.

There remains the case where there exists n ∈ J0, P − 1K such that G
(f)
n =

0. This implies that f = 0, thus we have a well-formed seed.

(⇒) We prove now the implication by contraposition; we assume that there

exists n ∈ J0, P − 1K such that G
(f)
n > 1 or G

(f)
n < 0, and show that S is not a

well-formed seed.

We assume first that an f th order gap is negative. As it is a sum of 1st order

gaps, then there exists n′ such that G
(1)
n′ is negative; let n′′ be the highest one.

If n′′ > 0, then either the threads T0, . . . , Tn′′−1 succeeded in order at their

0th retry, and then Tn′′−1 makes Tn′′ fail at its 0th retry (we have a seed, hence

by definition, Sn′′−1 < Sn′′ , and G
(1)
n′′ < 0, thus Sn′′−1 < Sn′′ < Sn′′−1 + 1

), or they did not succeed in order at their first try. In both cases, S is not a

well-formed seed.

If n′′ = 0, let us assume that S is a well-formed seed. Let also a new seed

be S ′ = (Ti, S′i)i∈J0,P−1K, where for all n ∈ J0, P − 2K, S′n+1 = Sn, and

S′0 = SP−1− (q + 1 + f + r). Like S, S ′ is a well-formed seed; however, G
(1)
1

is negative, and we fall back into the previous case, which shows that S ′ is not

a well-formed seed. This is absurd, hence S is not a well-formed seed.

We assume now that every gap is positive and choose n0 defined by: n0 =

min{n ; ∃k ∈ J0, P − 1K /G
(k)
n+k > 1}, and f0 = min{k ; G

(k)
n0+k > 1}:

54 CHAPTER 2. RESULT I

among the gaps that exceed 1, we pick those that concern the earliest thread,

and among them the one with the lowest order.

Let us assume that threads T0, . . . , TP−1 succeed at their 0th retry in this

order, then T0, . . . , Tn0
complete their second successful retry loop at their

f th retry, in this order. If this is not the case, then S is not a well-formed

seed, and the proof is completed. According to Equation 2.5, we have, on

the one hand, Rf0−1
n0+1 − Rf0

n0
= G

(1)
n0+1, which implies Rf0

n0+1 − 1 − Rf0
n0

=

G
(1)
n0+1, thus Rf

n0+1 − (Rf
n0

+ 1) = G
(1)
n0+1; and on the other hand, R0

n0+f0
−

Rf0
n0

= G
(f0)
n0+f0

implying Rf−f0

n0+f0
−
(
Rf

n0
+ 1
)

= G
(f0)
n0+f0

−1. As we know that

G
(f0)
n0+f0

−G
(1)
n0+1 = G

(f0−1)
n0+f0

< 1 by definition of f0 (and n0), we can derive that

Rf
n0+1−(Rf

n0
+1) > Rf−f0

n0+f0
−(Rf

n0
+1). We have assumed that Tn0

succeeds

at its f th retry, which will end at Rf
n0

+ 1. The previous inequality states then

that Tn0+1 cannot be successful at its f th retry, since either a thread succeeds

before Tn0+f0
and makes both Tn0+f0

and Tn0+1 fail, or Tn0+f0
succeeds and

makes Tn0+1 fail. We have shown that S is not a well-formed seed.

Lemma 1. Assuming r 6= 0, if a new thread is added to an (f, P)-cyclic exe-

cution, it will eventually succeed.

Proof. Let R0
P be the time of the 0th retry of the new thread, that we number

TP . If this retry is successful, we are done; let us assume now that this retry is

a failure, and let us shift the thread numbers (for the threads T0, . . . , TP−1) so

that T0 makes TP fail on its first attempt. We distinguish two cases, depending

on whether G
(P)
0 > R0

P − S0 or not.

We assume that G
(P)
0 > R0

P −S0. We know that n 7→ G
(n)
n is increasing on

J0, P − 1K and that G
(0)
0 = 0, hence let n0 = min{n ∈ J0, P − 1K ; G

(n)
n >

R0
P −S0}. For all k ∈ J0, n0K, we have Rk

P −Sk = k+R0
P −(G

(k)
k +S0 +k) =

R0
P − S0 − G

(k)
k hence Rk

P − Sk > 0 and Rk
P − Sk < R0

P − S0 < 1. This

shows that T0, . . . , Tn0
, because of their successes at S0, . . . , Sn0

, successively

make 0th, . . . , nth
0 retries (respectively) of TP fail. The next attempt for TP

is at Rn0+1
P , which fulfills the following inequality: Rn0+1

P − (Sn0
+ 1) <

2.4. EXECUTION WITHOUT HARDWARE CONFLICT 55

Sn0+1 − (Sn0
+ 1) since

Rn0+1
P − Sn0+1 = (n0 + 1 + R0

P)− (G
(n0+1)
n0+1 + S0 + n0 + 1)

Rn0+1
P − Sn0+1 < 0.

Tn0+1 should have been the successful thread, but TP starts a retry before

Sn0+1, and is therefore succeeding.

We consider now the reverse case by assuming that G
(P)
0 < R0

P −S0. With

the previous line of reasoning, we can show that T0, . . . , TP−1, because of

their successes at S0, . . . , SP−1, successively make 0th, . . . , (P − 1)th retries

(respectively) of TP fail. Then we are back in the same situation when T0 made

TP fail for the first time (T0 makes TP fail), except that the success of T0 starts

at S′0 = S0 + G
(P)
0 . As G

(P)
0 = q + r + f −P > 0 and q, f and P are integers,

we have that G
(P)
0 ≥ r. By the way, if we had G

(P)
0 > r, we would have

G
(P)
0 ≥ 1+r > R0

P −S0, which is absurd. S0 makes indeed R0
P fail, therefore

G
(P)
0 should be less than 1. Consequently, we are ensured that G

(P)
0 = r. We

define

k0 =

⌊
R0

P − S0

r

⌋
;

also, for every k ∈ J1, k0K, r < R0
P − (S0 + k× r) and r > R0

P − (S0 + (k0 +

1)× r): the cycle of successes of T0, . . . , TP−1 is executed k0 times. Then the

situation is similar to the first case, and TP will succeed.

Lemma 2. Let S be a weakly-formed seed, and f = f
(

(Ti, Si)i∈J0,P−2K

)
. If,

for all n ∈ J0, P − 1K, G
(f+1)
n < 1, then there exists later in the execution a

well-formed seed S ′ for P threads such that f (S ′) = f + 1.

Proof. The proof is straightforward; S is actually a well-formed seed such that

f (S) = f + 1. Since Rf
0 − SP−1 < G

(1)
0 < 1, the first success of T0 after the

success of TP−1 is its f + 1th retry.

56 CHAPTER 2. RESULT I

T0

T1

T2

T3

Figure 2.7: Lemma 3 configuration

Lemma 3. Let S be a weakly-formed seed, and f = f
(

(Ti, Si)i∈J0,P−2K

)
.

If G
(f+1)
f > 1, and if the second success of TP−1 does not occur before the

second success of Tf−1, then we can find in the execution a well-formed seed

S ′ for P threads such that f (S ′) = f .

Proof. Let us first remark that, by the definition of a weakly-formed seed, all

threads will succeed once, in order. Then two ordered groups of threads will

compete for each of the next successes, until Tf−1 succeeds for the second

time.

Let e be the smallest integer of Jf, P − 1K such that the second success of

Te occurs after the second success of Tf−1. Let then S1 and S2 be the two

groups of threads that are in competition, defined by

S1 = {Tn ; n ∈ J0, f − 1K}
S2 = {Tn ; n ∈ Jf, e− 1K}

For all n ∈ J0, e− 1K, we note

rank (n) =

{
G

(n+1)
n if Tn ∈ S1

G
(n+1)
n − 1 if Tn ∈ S2

.

We define σ, a permutation of J0, e− 1K that describes the reordering of the

threads during the round of the second successes, such that, for all (i, j) ∈
J0, e− 1K

2, σ (i) < σ (j) if and only if rank (i) < rank (j).

2.4. EXECUTION WITHOUT HARDWARE CONFLICT 57

We also define a function that will help in expressing the σ−1 (k)’s:

m2 : J0, e− 1K −→ Jf, e− 1K

k 7−→ max {ℓ ∈ Jf, e− 1K ; Tℓ ∈ S2 ; σ (ℓ) ≤ k}
.

We note that rank
∣∣
J0,f−1K

is increasing, as well as rank
∣∣
Jf,e−1K

. This shows

that #{Tℓ ∈ S2 ; σ (ℓ) ≤ k} = m2 (k)− (f − 1). Consequently, if Tσ−1(k) ∈
S2, then

m2 (k) = #{Tℓ ∈ S2 ; σ (ℓ) ≤ k}+ f − 1

= #{Tℓ ∈ S2 ; ℓ ≤ σ−1 (k)}+ f − 1

= σ−1 (k)− f + 1 + f − 1

m2 (k) = σ−1 (k) .

Conversely, if Tσ−1(k) ∈ S1, among {Tσ(n) ; n ∈ J0, kK}, there are exactly

m2 (k)− f + 1 threads in S2, hence

σ−1 (k) = k + 1− (m2 (k)− f + 1)− 1 = f + k −m2 (k)− 1.

In both cases, among {Tσ(n) ; n ∈ J0, kK}, there are exactly m2 (k)−f +1

threads in S2, and m1 (k) = k − (m2 (k)− f) threads in S1.

We prove by induction that after this first round, the next successes will be,

respectively, achieved by Tσ−1(0), Tσ−1(1), . . . , Tσ−1(e−1). In the following,

by “kth success”, we mean kth success after the first success of TP−1, starting

from 0, and the Rj
i ’s denote the attempts of the second round.

Let (PK) be the following property: for all k ≤ K, the kth success is

achieved by Tσ−1(k) at R
f+k−σ−1(k)
σ−1(k) . We assume (PK) true, and we show that

the (K + 1)th success is achieved by Tσ−1(K+1) at R
f+K+1−σ−1(K+1)
σ−1(K+1) .

We first show that if Tσ−1(K) ∈ S1, then

R
m1(K)−1
m2(K)+1 > R

f+K−σ−1(K)
σ−1(K) > R

m1(K)
m2(K). (2.6)

58 CHAPTER 2. RESULT I

On the one hand,

R
f+K−σ−1(K)
σ−1(K) = K − σ−1 (K) + Rf

σ−1(K)

= K − σ−1 (K) + Rf
0 + σ−1 (K) + G

(σ−1(K))
σ−1(K)

= K + SP−1 + 1 + G
(1)
0 + G

(σ−1(K))
σ−1(K)

R
f+K−σ−1(K)
σ−1(K) = K + SP−1 + 1 + G

(σ−1(K)+1)
σ−1(K) .

On the other hand,

R
f+K−m2(K)
m2(K) = (m2 (K)− f) + R

K−(m2(K)−f)
f + G

(m2(K)−f)
m2(K)

= (m2 (K)− f) + K − (m2 (K)− f) + R0
f

+ G
(m2(K)−f)
m2(K)

= (m2 (K)− f) + K − (m2 (K)− f) + SP−1

+ 1 + (G
(f+1)
f − 1) + G

(m2(K)−f)
m2(K)

R
f+K−m2(K)
m2(K) = K + SP−1 + 1 + G

(m2(K)+1)
m2(K) − 1.

Therefore,

R
f+K−σ−1(K)
σ−1(K) −R

m1(K)
m2(K) = R

f+K−σ−1(K)
σ−1(K) −R

f+K−m2(K)
m2(K)

= G
(σ−1(K)+1)
σ−1(K) −

(
G

(m2(K)+1)
m2(K) − 1

)

R
f+K−σ−1(K)
σ−1(K) −R

m1(K)
m2(K) = rank

(
σ−1 (K)

)
− rank (m2 (K)) .

In a similar way, we can obtain that if Tσ−1(K) ∈ S2, then

R
m2(K)
m1(K) > R

f+K−σ−1(K)
σ−1(K) > R

m2(K)+1
m1(K)−1. (2.7)

In addition, we recall that if Tσ−1(K) ∈ S2, σ−1 (K) = m2 (K), thus the

second inequality of Equation 2.6 becomes an equality, and if Tσ−1(K) ∈ S1,

σ−1 (K) = f + K −m2 (K)− 1, hence the second inequality of Equation 2.7

becomes an equality.

2.4. EXECUTION WITHOUT HARDWARE CONFLICT 59

Now let us look at which attempt of other threads Tσ−1(K) made fail. From

now on, and until explicitly said otherwise, we assume that Tσ−1(K) ∈ S1.

According to Equation 2.6, we have

R
m1(K)−1
m2(K)+1 > R

f+K−σ−1(K)
σ−1(K) > R

m1(K)
m2(K)

R
m1(K)−j
m2(K)+j −R

m1(K)−1
m2(K)+1 < R

m1(K)−j
m2(K)+j −R

f+K−σ−1(K)
σ−1(K) < R

m1(K)−j
m2(K)+j −R

m1(K)
m2(K)

G
(j−1)
m2(K)+j < R

m1(K)−j
m2(K)+j −R

f+K−σ−1(K)
σ−1(K) < G

(j)
m2(K)+j

This holds for every j ∈ J1, m1 (K)K, implying j ≤ f , since there could

not be more than f threads in S1. Therefore, as by assumptions gaps of at most

f th order are between 0 and 1,

0 < R
m1(K)−j
m2(K)+j −R

f+K−σ−1(K)
σ−1(K) < 1;

showing that the success of Tσ−1(K) makes thread Tm2(K)+j fail on its attempt

at R
m1(K)−j
m2(K)+j , for all j ∈ J1, m1 (K)K.

Since Tσ−1(K) ∈ S1, σ−1 (K) = m1 (K)− 1. Also, for all

j ∈ J0, f − 1−m1 (K)K,

R
m2(K)−j
m1(K)+j −R

f+K−σ−1(K)
σ−1(K) = R

m2(K)−j
m1(K)+j −R

m2(K)+1
m1(K)−1

=
(

R
m2(K)−j
m1(K)−1 + (j + 1) + G

(j+1)
m1(K)+j

)

−
(

R
m2(K)−j
m1(K)−1 + (j + 1)

)

R
m2(K)−j
m1(K)+j −R

f+K−σ−1(K)
σ−1(K) = G

(j+1)
m1(K)+j

As a result, Tσ−1(K) makes Tm1(K)+j fail on its attempt at R
m2(K)−j
m1(K)+j , for all

j ∈ J0, f − 1−m1 (K)K, and the next attempt will occur at R
m2(K)−j+1
m1(K)+j .

Altogether, the next attempt after the end of the success of Tσ−1(K) for

Tm1(K)+j is R
m2(K)−j+1
m1(K)+j , for j ∈ J0, f − 1−m1 (K)K, and for Tm2(K)+j is

R
m1(K)−j+1
m2(K)+j , for all j ∈ J1, m1 (K)K.

Additionally, a thread will begin a new retry loop, the 0th retry being at

R0
m2(K)+m1(K)+1 = R0

f+K+1. We note that f + K + 1 could be higher than

P − 1, referring to a thread whose number is more than P − 1. Actually,

60 CHAPTER 2. RESULT I

if n > P − 1, Rj
n refers to the jth retry of Trank(n−P +1), after its first two

successes.

The two heads, i.e. the two smallest indices, of S1 ∩ σ−1 (JK + 1, e− 1K)

and S2 ∩ σ−1 (JK + 1, e− 1K) will then compete for being successful. Indeed,

within S1, for j ∈ J0, f − 1−m1 (K)K,

R
m2(K)−j+1
m1(K)+j −R

m2(K)+1
m1(K) = G

(j)
m1(K)+j > 0,

thus if someone succeeds in S1, it will be Tm1(K). In the same way, for all

j ∈ J1, m1 (K) + 1K,

R
m1(K)−j+1
m2(K)+j −R

m1(K)
m2(K)+1 = G

(j−1)
m2(K)+j > 0,

meaning that if someone succeeds in S2, it will be Tm2(K)+1.

Let us compare now those two candidates:

R
m2(K)+1
m1(K) −R

m1(K)
m2(K)+1 = m2 (K) + 1− f + SP−1 + m1 (K) + G

(m1(K)+1)
m1(K)

−
(

m1 (K) + R0
f + m2 (K) + 1− f + G

(m2(K)+1−f)
m2(K)+1

)

= SP−1 − 1 + G
(m1(K)+1)
m1(K)

−
(

SP−1 + G
(f+1)
f − 1 + G

(m2(K)+1−f)
m2(K)+1

)

= G
(m1(K)+1)
m1(K) −

(
G

(m2(K)+2)
m2(K)+1 − 1

)

R
m2(K)+1
m1(K) −R

m1(K)
m2(K)+1 = rank (m1 (K))− rank (m2 (K) + 1) .

By definition, σ−1 (K + 1) is either m1 (K) or m2 (K)+1 and corresponds

to the next successful thread. We can follow the same line of reasoning in the

case where Tσ−1(K) ∈ S2 and prove in this way that (PK+1) is true.

(P0) is true, and the property spreads until (Pe−1), where all threads of

S1 and S2 have been successful, in the order ruled by σ−1, i.e. Tσ−1(0), . . . ,

Tσ−1(e−1). And before those successes the threads Te, . . . , TP−1 have been

successful as well. The seed composed of those successes is a well-formed

seed. Given a thread, the gap between this thread and the next one in the new

order could indeed not be higher than the gap in the previous order with its next

2.4. EXECUTION WITHOUT HARDWARE CONFLICT 61

T0

T1

T2

T3

Figure 2.8: Lemma 4 configuration

thread. Also the f th order gaps remain smaller than 1. And as Te succeeds

the second time after f failures, it means that the new seed S ′′ is such that

f (S ′′) = f .

Lemma 4. Let S be a weakly-formed seed, and f = f
(

(Ti, Si)i∈J0,P−2K

)
. If

G
(f+1)
f > 1 and if the second success of TP−1 occurs before the second success

of Tf−1, then we can find in the execution a well-formed seed S ′ for P threads

such that f (S ′) = f .

Proof. Until the second success of TP−1, the execution follows the same pattern

as in Lemma 3. Actually, the case invoked in the current lemma could have been

handled in the previous lemma, but it would have implied tricky notations, when

we referred to Trank(n−P +1). Let us deal with this case independently then, and

come back to the instant where TP−1 succeeds for the second time.

We had 0 < R0
f−1−SP−1 = G

(f)
f−1 < 1. For the thread Tσ(j) to succeed at

its kth retry after the first success of TP−1 and before Tf−1, it should necessary

fill the following condition: j +1 < Rk
σ(j)−SP−1 < j +1+G

(f)
f−1. This holds

also for the second success of TP−1, which implies that P ′ < SP−1 + 1 + q +

r + h− SP−1 < P ′ + G
(f)
f−1, where h is the number of failures of TP−1 before

its second success and P ′ is the number of successes between the two successes

of TP−1. As G
(f)
f−1 < 1, and q, P ′ and h are non-negative integers, we have

r < G
(f)
f−1 and h = P ′ − 1− q.

To conclude, as any gap at any order is less than the gap between the two

successes of TP−1, which is r < 1, we found a well-formed seed for P ′ threads.

62 CHAPTER 2. RESULT I

Finally any other thread will eventually succeed (see Lemma 1). We can

renumber the threads such that TP ′ is the first thread that is not in the well-

formed seed to succeed, and the threads of the well-formed seed succeeded

previously as T0, . . . , TP ′−1. As explained before, for all (k, n) ∈ J0, P ′ − 1K
2,

G
(k)
n < G

(n)
n = r. With the new thread, the first order gaps are changed by

decomposing G
(1)
0 into G

(1)
P ′ and the new G

(1)
0 . All gaps can only be decreased,

hence we have a new well-formed seed for P ′+1 threads. We repeat the process

until all threads have been encountered, and obtain in the end S ′, a well-formed

seed with P threads such that f (S ′) = P − 1 − q, which is an optimal cyclic

execution.

Still, as Tf succeeds between two successes of TP−1 that are separated by

r, we had, in the initial configuration: G
(P−1−f)
P−1 < r. As, in addition, we have

both G
(f)
f−1 < 1 and G

(1)
f < 1, we conclude that the lagging time was initially

less than 2 + r. By hypothesis, we know that G
(f+1)
f > 1, which implies that,

before the entry of the new thread, the lagging time was 1 + r. In the final

execution with one more thread, the lagging time is r and we have one more

success in the cycle, thus f (S ′) = f .

Theorem 2. Assuming r 6= 0, if a new thread is added to an (f, P − 1)-

cyclic execution, then all the threads will eventually form either an (f, P)-cyclic

execution, or an (f + 1, P)-cyclic execution.

Proof. According to Lemma 1, the new thread will eventually succeed. In addi-

tion, we recall that Properties 1 and 2 ensure that before the first success of the

new thread, any set of P − 1 consecutive successes is a well-formed seed with

P−1 threads. We then consider a seed (we number the threads accordingly, and

number the new thread as TP−1) such that the success of the new thread occurs

between the success of TP−2 and T0; we obtain in this way a weakly-formed

seed S = (Tn, Sn)n∈J0,P−1K&. We differentiate between two cases.

Firstly, if for all n ∈ J0, P − 1K, G
(f+1)
n < 1, according to Lemma 2, we

can find later in the execution a well-formed seed S ′ for P threads such that

f (S ′) = f + 1, hence we reach eventually an (f + 1, P)-cyclic execution.

Let us assume now that this condition is not fulfilled. There exists n0 ∈

2.4. EXECUTION WITHOUT HARDWARE CONFLICT 63

J0, P − 1K such that G
(f+1)
n0 > 1. We shift the thread numbers, such that n0

is now f , and we have then G
(f+1)
f > 1. Then two cases are feasible. If

the second success of TP−1 occurs before the second success of Tf−1, then

Lemma 3 shows that we will reach an (f, P)-cyclic execution. Otherwise, from

Lemma 3, we conclude that an (f, P)-cyclic execution will still occur.

2.4.3 Throughput Bounds

Firstly we calculate the expression of throughput and the expected number of

threads inside the retry loop (that is needed when we gather expansion and

wasted retries). Then we exhibit upper and lower bounds on both throughput

and the number of failures, and show that those bounds are reached. Finally, we

give the worst case on the number of wasted retries.

Lemma 5. In an (f, P)-cyclic execution, the throughput is

T =
P

q + r + 1 + f
. (2.8)

Proof. By definition, the execution is periodic, and the period lasts q+r+1+f

units of time. As P successes occur during this period, we end up with the

claimed expression.

Lemma 6. In an (f, P)-cyclic execution, the average number of threads Prl in

the retry loop is given by

Prl = P × f + 1

q + r + f + 1
.

Proof. Within a period, each thread spends f +1 units of time in the retry loop,

among the q + r + f + 1 units of time of the period, hence the Lemma.

Lemma 7. The number of failures is not less than f (-), where

f (-) =

{
P − q − 1 if q ≤ P − 1

0 otherwise
, and, T ≤

{
P

P +r if q ≤ P − 1
P

q+r+1 otherwise.

(2.9)

64 CHAPTER 2. RESULT I

Proof. According to Equation 2.8, the throughput is maximized when the num-

ber of failures is minimized. In addition, we have two lower bounds on the

number of failures: (i) f ≥ 0, and (ii) P successes should fit within a period,

hence q + 1 + f ≥ P . Therefore, if P − 1 − q < 0, T ≤ P/(q + r + 1 + 0),

otherwise,

T ≤ P

q + r + 1 + P − 1− q
=

P

P + r
.

Remark 3. We notice that if q > P − 1, the upper bound in Equation 2.9 is

actually the same as the immediate upper bound described in Section 2.3.2.1.

However, if q ≤ P − 1, Equation 2.9 refines the immediate upper bound.

Lemma 8. The number of failures is bounded by

f ≤ f (+) =

⌊
1

2

(
(P − 1− q − r) +

√
(P − 1− q − r)2 + 4P

)⌋
,

and accordingly, the throughput is bounded by

T ≥ P

q + r + 1 + f (+)
.

Proof. We show that a necessary condition so that an (f, P)-cyclic execution,

whose lagging time is ℓ, exists, is f × (ℓ + r) < P . According to Property 1,

any set of P consecutive successes is a well-formed seed with P threads. Let S
be any of them. As we have f failures before success, Theorem 1 ensures that

for all n ∈ J0, P − 1K, G
(f)
n < 1. We recall that for all n ∈ J0, P − 1K, we also

have G
(P)
n = ℓ + r.

On the one hand, we have

P−1∑

n=0

G(f)
n =

P−1∑

n=0

n∑

j=n−f+1

G
(1)
j mod P

= f ×
P−1∑

n=0

G(1)
n

P−1∑

n=0

G(f)
n = f × (ℓ + r).

2.4. EXECUTION WITHOUT HARDWARE CONFLICT 65

On the other hand,
∑P−1

n=0 G
(f)
n <

∑P−1
n=0 1 = P .

Altogether, the necessary condition states that f×(ℓ+r) < P , which can be

rewritten as f×(q+1+f−P +r) < P . The proof is complete since minimizing

the throughput is equivalent to maximizing the number of failures.

Lemma 9. For each of the bounds defined in Lemmas 7 and 8, there exists an

(f, P)-cyclic execution that reaches the bound.

Proof. According to Lemmas 7 and 8, if an (f, P)-cyclic execution exists, then

the number of failures is such that f (-) ≤ f ≤ f (+). We show now that this

double necessary condition is also sufficient. We consider f such that f (-) ≤
f ≤ f (+), and build a well-formed seed S = (Ti, Si)i∈J0,P−1K.

For all n ∈ J0, P − 1K, we define Si as

Sn = n×
(

q + 1 + f − P + r

P
+ 1

)
.

We first show that f (S) = f .

By definition, f (S) = max (0, ⌈SP−1 − S0 − q − r⌉), we have then;

f (S) = max

(
0,

⌈
(P − 1)×

(
q + 1 + f − P + r

P
+ 1

)
− q − r

⌉)

= max

(
0,

⌈
(P − 1− q − r) + (q + 1 + f − P + r)− q + 1 + f − P + r

P

⌉)

f (S) = max

(
0,

⌈
f − q + 1 + f − P + r

P

⌉)
.

Firstly, we know that q +1+f−P ≥ 0, thus if f = 0, then the second term

of the maximum is not positive, and f (S) = 0 = f . Secondly, if f > 0, then

according to Lemma 7, (q + 1 + f − P + r)/P < 1/f ≤ 1. As we also have

(q+1+f−P +r)/P ≥ 0, we conclude that f (S) =
⌈
f − q+1+f−P +r

P

⌉
= f .

66 CHAPTER 2. RESULT I

Additionally, for all n ∈ J0, P − 1K,

G(f)
n =

{
Sn − Sn−f − f if n > f

Sn − SP +n−f + 1 + q + r otherwise

=





n×
(

q+1+f−P +r
P + 1

)

−(n− f)×
(

q+1+f−P +r
P + 1

)
− f

n×
(

q+1+f−P +r
P + 1

)

−(P + n− f)×
(

q+1+f−P +r
P + 1

)
+ 1 + q + r

=





f × q+1+f−P +r
P

−(P − f)− (q + 1 + f − P + r)+

f × q+1+f−P +r
P + 1 + q + r

G(f)
n = f × w + r

P

As w ≥ 0 and f ≥ 0, G
(f)
n > 0. Since f ≤ f (+), G

(f)
n < 1. Theorem 1 implies

that S is a well-formed seed that leads to an (f, P)-cyclic execution.

We have shown that for all f such that f (-) ≤ f ≤ f (+) there exists an

(f, P)-cyclic execution; in particular there exist an (f (+), P)-cyclic execution

and an (f (-), P)-cyclic execution.

Corollary 1. The highest possible number of wasted repetitions is
⌈√

P − 1
⌉

and is achieved when P = q + 1.

Proof. The highest possible number of wasted repetitions w̃(P) with P threads

is given by

w̃(P) = f (+) − f (-) =

⌊
1

2

(
−a(P) +

√
a(P)2 + 4P

)
− f (-)

⌋
.

Let a and h be the functions respectively defined as a(P) = q + 1−P + r,

which implies a′(P) = −1, and h(P) = (−a(P) +
√

a(P)2 + 4P)/2− f (-),

so that w̃(P) = ⌊h(P)⌋.

2.4. EXECUTION WITHOUT HARDWARE CONFLICT 67

Let us first assume that a(P) > 0. In this case, q ≥ P − 1, hence f (-) = 0.

We have

2h′(P) = 1 +
−2a(P) + 4

2
√

a(P)2 + 4P

2h′(P) = 2× 2− a(P) +
√

a(P)2 + 4P

2
√

a(P)2 + 4P

Therefore, h′(P) is negative if and only if
√

a(P)2 + 4P < a(P)−2. It cannot

be true if a(P) < 2. If a(P) ≥ 2, then the previous inequality is equivalent to

a(P)2 + 4P < a(P)2 − 4a(P) + 4, which can be rewritten in q + 1 + r < 1,

which is absurd. We have shown that h is increasing in]0, q + 1].

Let us now assume that a(P) ≤ 0. In this case, q < P − 1, hence f (-) =

P − q − 1, and h(P) =
(

a(P) +
√

a(P)2 + 4P
)

/2− r. Assuming h′(P) to

be positive leads to the same absurd inequality q +1+ r < 1, which proves that

h is decreasing on [q + 2, +∞[.

Also, the maximum number of wasted repetitions is achieved as P = q + 1

or P = q + 2. Since

h(q+1) =
1

2

(
−r +

√
r2 + 4P

)
>

1

2

(
−(r + 1) +

√
r2 + 4P

)
= h(q+2),

the maximum number of wasted repetitions is w̃(q + 1). In addition,

1

2

(
−r +

√
4P
)

< h(q + 1) <
1

2

(
−r +

√
r2 +

√
4P
)

√
P − r

2
< h(q + 1) <

√
P

√
P − 1 ≤ h(q + 1) <

√
P

We conclude that the maximum number of wasted repetitions is
⌈√

P − 1
⌉

.

68 CHAPTER 2. RESULT I

2.5 Expansion and Complete Throughput Estima-

tion

2.5.1 Expansion

Interference of threads does not only lead to logical conflicts but also to hard-

ware conflicts which impact the performance significantly. We model the be-

havior of the cache coherency protocols which determine the interaction of

overlapping Reads and CASs. By taking MESIF [14] as basis, we come up

with the following assumptions. When executing an atomic CAS, the core gets

the cache line in exclusive state and does not forward it to any other requesting

core until the instruction is retired. Therefore, requests stall for the release of

the cache line which implies serialization. On the other hand, ongoing Reads

can overlap with other operations. As a result, a CAS introduces expansion only

to overlapping Read and CAS operations that start after it, as illustrated in Fig-

ure 2.4. As a remark, we ignore memory bandwidth issues which are negligible

for our study.

Furthermore, we assume that Reads that are executed just after a CAS do

not experience expansion (as the thread already owns of the data), which takes

effect at the beginning of a retry following a failing attempt. Thus, read ex-

pansions need only to be considered before the 0th retry. In this sense, read

expansion can be moved to parallel section and calculated in the same way as

CAS expansion is calculated.

To estimate expansion, we consider the delay that a thread can introduce,

provided that there is already a given number of threads in the retry loop. The

starting point of each CAS is a random variable which is distributed uniformly

within an expanded retry. The cost function d provides the amount of delay that

the additional thread introduces, depending on the point where the starting point

of its CAS hits. By using this cost function we can formulate the expansion

increase that each new thread introduces and derive the differential equation

below to calculate the expansion of a CAS.

Lemma 10. The expansion of a CAS operation is the solution of the following

2.5. EXPANSION AND COMPLETE THROUGHPUT ESTIMATION 69

system of equations:





e′ (Prl) = cc ×
cc
2 + e (Prl)

rc + cw + cc + e (Prl)

e
(

P
(0)
rl

)
= 0

,

where P
(0)
rl is the

point where

expansion begins.

Proof. We compute e (Prl + h), where h ≤ 1, by assuming that there are al-

ready Prl threads in the retry loop, and that a new thread attempts to CAS during

the retry, within a probability h.

e (Prl + h) = e (Prl) + h×
∫ rlw(+)

0

d (t)

rlw(+)
dt

= e (Prl) + h×
(∫ rc+cw−cc

0

d (t)

rlw(+)
dt

+

∫ rc+cw

rc+cw−cc

d (t)

rlw(+)
dt

+

∫ rc+cw+e(Prl)

rc+cw

d (t)

rlw(+)
dt

+

∫ rlw(+)

rc+cw+e(Prl)

d (t)

rlw(+)
dt
)

= e (Prl) + h×
(∫ rc+cw

rc+cw−cc

t

rlw(+)
dt

+

∫ rc+cw+e(Prl)

rc+cw

cc

rlw(+)
dt
)

e (Prl + h) = e (Prl) + h×
cc2

2 + e (Prl)× cc

rlw(+)

This leads to
e (Prl + h)− e (Prl)

h
=

cc2

2 + e (Prl)× cc

rlw(+)
. When mak-

ing h tend to 0, we finally obtain

e′ (Prl) = cc ×
cc
2 + e (Prl)

rc + cw + cc + e (Prl)
.

70 CHAPTER 2. RESULT I

2.5.2 Throughput Estimate

It remains to combine hardware and logical conflicts in order to obtain the final

upper and lower bounds on throughput. We are given as an input the expected

number of threads Prl inside the retry loop. We firstly compute the expansion

accordingly, by solving numerically the differential equation of Lemma 17. As

explained in the previous subsection, we have pw(+) = pw + e, and rlw(+) =

rc + cw + e + cc. We can then compute q and r, that is the input set (together

with the total number of threads P) of the method described in Section 2.4.

Assuming that the initialization times of the threads are spaced enough, the

execution will superimpose an (f, P)-cyclic execution. Thanks to Lemma 6,

we can compute the average number of threads inside the retry loop, that we

note by hf (Prl). A posteriori, the solution is consistent if this average number

of threads inside the retry loop hf (Prl) is equal to the expected number of

threads Prl that has been given as an input.

Several (f, P)-cyclic executions belong to the domain of the possible out-

comes, but we are interested in upper and lower bounds on the number of fail-

ures f . We can compute them through Lemmas 7 and 8, along with their corre-

sponding throughput and average number of threads inside the retry loop. We

note by h(+)(Prl) and h(-)(Prl) the average number of threads for the lowest

number of failures and highest one, respectively. Our aim is finally to find P
(-)
rl

and P
(+)
rl , such that h(+)(P

(+)
rl) = P

(+)
rl and h(-)(P

(-)
rl) = P

(-)
rl . If several so-

lutions exist, then we want to keep the smallest, since the retry loop stops to

expand when a stable state is reached.

Note that we also need to provide the point where the expansion begins. It

begins when we start to have failures, while reducing the parallel section. Thus

this point is 2(P − 1)rlw(-) (resp. (P − 1)rlw(-)) for the lower (resp. upper)

bound on the throughput.

Theorem 3. Let (xn) be the sequence defined recursively by x0 = 0 and

xn+1 = h(+)(xn). If pw ≥ rc + cw + cc, then

P
(+)
rl = lim

n→+∞
xn.

2.5. EXPANSION AND COMPLETE THROUGHPUT ESTIMATION 71

Proof. First of all, the average number of threads belongs to]0, P [, thus for

all x ∈ [0, P], 0 < h(+)(x) < P . In particular, we have h(+)(0) > 0, and

h(+)(P) < P , which proves that there exist one fixed point for h(+).

In addition, we show that h(+) is a non-decreasing function. According to

Lemma 6,

h(+)(Prl) = P × 1 + f (-)

q + r + f (-) + 1
,

where all variables except P depend actually on Prl. We have

q =

⌊
pw + e

rlw(-) + e

⌋
and r =

pw + e

rlw(-) + e
− q,

hence, if pw ≥ rlw(-), q and r are non-increasing as e is non-decreasing, which

is non-decreasing with Prl. Since f (-) is non-decreasing as a function of q, we

have shown that if pw ≥ rlw(-), h(+) is a non-decreasing function.

Finally, the proof is completed by the theorem of Knaster-Tarski.

The same line of reasoning holds for h(-) as well. As a remark, w point out

that when pw < rlw(-), we scan the interval of solution, and have no guarantees

about the fact that the solution is the smallest one; still this corresponds to very

extreme cases.

2.5.3 Several Retry Loops

We consider here a lock-free algorithm that, instead of being a loop over one

parallel section and one retry loop, is composed of a loop over a sequence of

alternating parallel sections and retry loops. We show that this algorithm is

equivalent to an algorithm with only one parallel section and one retry loop, by

proving the intuition that the longest retry loop is the only one that fails and

hence expands.

2.5.3.1 Problem Formulation

In this subsection, we consider an execution such that each spawned thread runs

Procedure Combined in Figure 2.9. Each thread executes a linear combination

72 CHAPTER 2. RESULT I

of S independent retry loops, i.e. operating on separate variables, interleaved

with parallel sections. We note now as rlw
(+)
i and pw

(+)
i the size of a retry of the

ith retry loop and the size of the ith parallel section, respectively, for each i ∈
J1, SK. As previously, qi and ri are defined such that pw

(+)
i = (qi +ri)×rlw

(+)
i ,

where qi is a non-negative integer and ri is smaller than 1.

The Procedure Combined executes the retry loops and parallel sections in a

cyclic fashion, so we can normalize the writing of this procedure by assuming

that a retry of the 1st retry loop is the longest one. More precisely, we consider

the initial algorithm, and we define i0 as

i0 = min argmaxi∈J1,SK rlw
(+)
i .

We then renumber the retry loops such that the new ordering is i0, . . . , S, 1, . . . ,

i0 − 1, and we add in Initialization the first parallel sections and retry loops on

access points from 1 to i0 — according to the initial ordering.

One success at the system level is defined as one success of the last CAS,

and the throughput is defined accordingly. We note that in steady-state, all retry

loops have the same throughput, so the throughput can be computed from the

throughput of the 1st retry loop instead.

Procedure Combined

1 Initialization();

2 while ! done do

3 for i← 1 to S do

4 Parallel_Work(i);

5 while ! success do

6 current← Read(AP[i]);

7 new← Critical_Work(i,current);

8 success← CAS(AP, current, new);

Figure 2.9: Thread procedure with several retry loops

2.5. EXPANSION AND COMPLETE THROUGHPUT ESTIMATION 73

2.5.3.2 Wasted Retries

Lemma 11. Unsuccessful retry loops can only occur in the 1st retry loop.

Proof. We note (tn)n∈[1,+∞[the sequence of the thread numbers that succeeds

in the 1st retry loop, and (sn)n∈[1,+∞[the sequence of the corresponding time

where they exit the retry loop. We notice that by construction, for all n ∈
[1, +∞[, sn < sn+1. Let, for i ∈ J2, SK and n ∈ [1, +∞[, (Pi,n) be the

following property: for all i′ ∈ J2, iK, and for all n′ ∈ J1, nK, the thread Ttn′

succeeds in the ith retry loop at its first attempt.

We assume that for a given (i, n), (Pi+1,n) and (Pi,n+1) is true, and show

that (Pi+1,n+1) is true. As the threads Ttn
and Ttn+1 do not have any failure in

the first i retry loops, their entrance time in the i + 1th retry loop is given by

sn +

i∑

i′=1

(rlw
(+)
i′ + pw

(+)
i′) + pw

(+)
i+1 = X1 and

sn+1 +

i∑

i′=1

(rlw
(+)
i′ + pw

(+)
i′) + pw

(+)
i+1 = X2,

respectively. Thread Ttn
does not fail in the i + 1th retry loop, hence exits at

X1 + rlw
(+)
i+1 < X1 + rlw

(+)
1 < X2.

As the previous threads Tn−1, . . . , T1 exits the ith retry loop before Tn, and next

threads Tn′ , where n′ > n + 1, enters this retry loop after Tn+1, this implies

that the thread Ttn+1
succeeds in the i + 1th retry loop at its first attempt, and

(Pi+1,n+1) is true.

Regarding the first thread that succeeds in the first retry loop, we know that

he successes in any retry loop since there is no other thread to compete with.

Therefore, for all i ∈ J2, SK, (Pi,1) is true. Then we show by induction that

all (P2,n) is true, then all (P3,n), etc., until all (PS,n), which concludes the

proof.

74 CHAPTER 2. RESULT I

Theorem 4. The multi-retry loop Procedure Combined is equivalent to the Pro-

cedure AbstractAlgorithm, where

pw(+) = pw
(+)
1 +

S∑

i=2

(
pw

(+)
i + rlw

(+)
i

)
and rlw(+) = rlw

(+)
1 .

Proof. According to Lemma 11 there is no failure in other retry loop than the

first one; therefore, all retry loops have a constant duration, and can thus be

considered as parallel sections.

2.5.3.3 Expansion

The expansion in the retry loop starts as threads fail inside this retry loop. When

threads are launched, there is no expansion, and Lemma 11 implies that if

threads fail, it should be inside the first retry loop, because it is the longest

one. As a result, there will be some stall time in the memory accesses of this

first retry loop, i.e. expansion, and it will get even longer. Failures will thus

still occur in the first retry loop: there is a positive feedback on the expansion

of the first retry loop that keeps this first retry loop as the longest one among

all retry loops. Therefore, in accordance to Theorem 4, we can compute the

expansion by considering the equivalent single-retry loop procedure described

in the theorem.

2.6 Experimental Evaluation

We validate our model and analysis framework through successive steps, from

synthetic tests, capturing a wide range of possible abstract algorithmic designs,

to several reference implementations of extensively studied lock-free data struc-

ture designs that include cases with non-constant parallel work and critical

work.

2.6. EXPERIMENTAL EVALUATION 75

2.6.1 Setting

We have conducted experiments on an Intel ccNUMA workstation system. The

system is composed of two sockets, that is equipped with Intel Xeon E5-2687W

v2 CPUs with frequency band 1.2-3.4. GHz The physical cores have private L1,

L2 caches and they share an L3 cache, which is 25 MB. In a socket, the ring

interconnect provides L3 cache accesses and core-to-core communication. Due

to the bi-directionality of the ring interconnect, uncontended latencies for intra-

socket communication between cores do not show significant variability.

Our model assumes uniformity in the CAS and Read latencies on the shared

cache line. Thus, threads are pinned to a single socket to minimize non-uniformity

in Read and CAS latencies. In the experiments, we vary the number of threads

between 4 and 8 since the maximum number of threads that can be used in the

experiments are bounded by the number of physical cores that reside in one

socket.

As mentioned before, the latencies of CAS and Read are parameters of our

model. We used the methodology described in [15] to measure latencies of

these operations in a benchmark program by using two threads that are pinned

to the same socket. The aim is to bring the cache line into the state used in our

model. Our assumption is that the Read is conducted on an invalid line. For

CAS, the state of the cache line is assumed to be forward, shared or invalid. For

any of these states of the cache line, CAS requests it for exclusive ownership,

that compels invalidation in other cores, which in turn incurs a two-way com-

munication. Thus, the latency of CAS does not show negligible variability with

respect to the possible states of the cache line that we have assumed, as also

revealed in our latency benchmarks.

As for the computation cost, the work inside the parallel section (whose

latency is denoted by pw) is implemented by a dummy for-loop of Pause in-

structions. For synthetic tests, the critical work inside the retry loop (whose

latency is denoted by cw) is also implemented in the same way.

In all figures, y-axis provides the throughput, which is the number of suc-

cessful operations completed per millisecond. Parallel work latency (pw) is

represented on x-axis in cycles. The critical work latency (cw) is given at the

76 CHAPTER 2. RESULT I

top of the graphs. Number of threads that execute the algorithm is often given at

the top of the graphs or otherwise at the captions. The graphs contain the high

and low estimates that we derive in this work (see Section 2.4), corresponding

to the lower and upper bound on the wasted retries respectively, and an addi-

tional curve that shows the average of them. They are referred to as "Model

Low", "Model High" and "Model Average" in the figures. Also, figures include

a curve that provides the results of real measurements that are conducted on the

system that is mentioned before, and this curve is referred to as "Real Measure-

ments".

2.6.2 Synthetic Tests

2.6.2.1 Single retry loop

For the evaluation of our model, we first create synthetic tests that emulate

different design patterns of lock-free data structures (value of cw) and different

application contexts (value of pw). As described in the previous subsection,

in the Procedure AbstractAlgorithm, the amount of work in both the parallel

section and the retry loop are implemented as dummy loops, whose costs are

adjusted through the number of iterations in the loop.

Generally speaking, in Figure 2.10, we observe two main behaviors: when

pw is high, the data structure is not contended, and threads can operate without

failure (unsuccessful retries). When pw is low, the data structure is contended,

and depending on the size of cw (that drives the expansion) a steep decrease in

throughput or just a roughly constant bound on the performance is observed.

The position of the experimental curve between the high and low estimates,

depends on cw. It can be observed that the experimental curve mostly tends

upwards as cw gets smaller, possibly because the serialization of the CASs helps

the synchronization of the threads.

Another interesting fact is the waves appearing on the experimental curve,

especially when the number of threads is low or the critical work big. This

behavior is originating because of the variation of r with the change of parallel

work, a fact that is captured by our analysis.

2.6. EXPERIMENTAL EVALUATION 77

cw = 1600
threads = 4

cw = 1600
threads = 6

cw = 1600
threads = 8

cw = 600
threads = 4

cw = 600
threads = 6

cw = 600
threads = 8

cw = 200
threads = 4

cw = 200
threads = 6

cw = 200
threads = 8

cw = 100
threads = 4

cw = 100
threads = 6

cw = 100
threads = 8

cw = 50
threads = 4

cw = 50
threads = 6

cw = 50
threads = 8

0 5000 10000 15000 20000 0 10000 20000 30000 0 10000 20000 30000 40000

0 2500 5000 7500 10000 0 5000 10000 15000 0 5000 10000 15000 20000

0 1000 2000 3000 4000 5000 0 2000 4000 6000 0 2500 5000 7500 10000

0 1000 2000 3000 0 2000 4000 0 2000 4000 6000

1000 2000 3000 0 1000 2000 3000 4000 0 2000 4000 6000
4000

6000

8000

10000

12000

5000

7000

9000

11000

4000

6000

8000

2000

3000

4000

1000

1500

4000

6000

8000

10000

12000

5000

7000

9000

11000

4000

6000

8000

2000

3000

4000

1000

1500

4000

6000

8000

10000

12000

5000

7000

9000

11000

4000

6000

8000

2000

3000

4000

1000

1500

Parallel Work (cycles)

T
h
ro

u
g
h
p
u
t
(o

p
s
/m

s
e
c
)

Case Model Low Model High Model Average Real Measurements

Figure 2.10: Synthetic program

2.6.2.2 Several retry loops

We have created experiments by combining several retry loops (See section 2.5.3),

each operating on an independent variable which is aligned to a cache line. In

78 CHAPTER 2. RESULT I

cw1=50 cw1=200 cw1=400 cw1=1000

c
w

2
=

5
0

c
w

2
=

4
0
0

c
w

2
=

1
0
0
0

0 2000 4000 6000 0 2500 5000 7500 100000 5000 10000 150000 10000 20000 30000

0

10

20

30

40

0

5

10

15

0.0

2.5

5.0

7.5

Parallel Work + Small Retry Loop (cycles)

Norm. Success
Fails RL1/Success

Fails RL2/Success
Total Fails / Success

Model Low
Model High

Model Average

Figure 2.11: Multiple retry loops with 8 threads

Figure 2.11, we provide results for synthetic tests that are generated as a linear

combination of two different retry loops.

The amount of critical works in the retry loop 1 and 2 are given at the top

and right side of the figures. The latency of parallel work executed after retry

loop 1 and 2 are equal. Here, x-axis provides the parallel work latency plus

the latency of the small retry loop. This is because we expect no failures in

the small retry loop (See Lemma 11), therefore, we assume that its latency is

a part of the latency of conflict-free parallel work. The distribution of fails in

the retry loops are illustrated and all throughput curves are normalized with a

factor of 175 (to be easily seen in the same graph). Fails per success values are

not normalized and a success is obtained after completing all retry loops.

Results are compared with the model for the single retry loop case where the

single retry loop is equal to the longest retry loop, while the other retry loops are

2.6. EXPERIMENTAL EVALUATION 79

part of the parallel section. In Figure 2.11, we observe that fails indeed mostly

happen in the longest retry loop and our estimates for single retry loop capture

the behavior of the linear combination of retry loops.

2.6.3 Treiber’s Stack

cw = 900
threads = 6

cw = 1200
threads = 6

cw = 1500
threads = 6

cw = 50
threads = 6

cw = 300
threads = 6

cw = 600
threads = 6

0 5000 10000 15000 20000 0 5000 10000150002000025000 0 10000 20000 30000

0 1000 2000 3000 4000 0 2500 5000 7500 0 5000 10000 15000

2000

3000

4000

1000

1500

2000

2000

3000

4000

5000

6000

7000

1000

1500

2000

2500

4000

6000

8000

10000

12000

1000

1500

2000

2500

3000

Parallel Work (cycles)

T
h
ro

u
g
h
p
u
t
(o

p
s
/m

s
e
c
)

Case Model Low Model High Model Average Real Measurements

Figure 2.12: Pop on Treiber’s stack

The lock-free stack by Treiber [9] is one of the most studied efficient data

structures. Pop and Push both contain a retry loop, such that each retry starts

with a Read and ends with CAS on the shared top pointer. In order to validate

our model, we start by using Pops. From a stack which is initiated with many

elements, threads continuously pop elements for a given amount of time. We

count the total number of pop operations per millisecond. Each Pop first reads

the top pointer and gets the next pointer of the first element to obtain the address

of the second element in the stack, before attempting to CAS with the address of

the second element. The access to the next pointer of the first element occurs in

80 CHAPTER 2. RESULT I

between the Read and the CAS. Thus, it represents the work in retry loop (cw).

This memory access can possibly introduce a costly cache miss depending on

the locality of the popped element.

To validate our model with different cw values, we make use of this costly

cache miss possibility. We allocate a contiguous chunk of memory and align

each element to a cache line. Then, we initialize the stack by pushing ele-

ments from contiguous memory either with a single or large stride to disable

the prefetcher. When we measure the latency of cw in Pop for single and large

stride cases, we obtain the values that are approximately 50 and 300 cycles, re-

spectively. As a remark, 300 cycles is the cost of an L3 miss in our system when

it is serviced from the local main memory module. To create more test cases

with larger cw, we extended the stack implementation to pop multiple elements

with a single operation. Thus, each access to the next element could introduce

an additional L3 cache miss while popping multiple elements. By doing so, we

created cases in which each thread pops 2, 3, etc. elements, and cw goes to 600,

900, etc. cycles, respectively.

In Figure 2.12, comparison of the experimental results from Treiber’s stack

and our model is provided. The trend in the curves are similar to synthetic

tests with corresponding cw, except the peak points are slightly higher. This

is presumably happening as a result of cache effects which reduce the gaps

between successes. More precisely but still speculatively, a thread experiences

an L3 cache miss and starts to fetch the data from memory. After a while,

another thread experience the same miss on the same memory location but the

data is already on its way. This aligns the threads and reduces the gaps between

successes. The performance tends to the high estimate curve which represents

the case with small gaps that leads to better throughput.

2.6.4 Shared Counter

In [4], the authors have implemented a “scalable statistics counters” relying

on the following idea: when contention is low, the implementation is a regu-

lar concurrent counter with a CAS; when the counter starts to be contended,

2.6. EXPERIMENTAL EVALUATION 81

cw = 0
threads = 4

0 1000 2000 3000 4000 5000

5000

10000

15000

Parallel Work (cycles)T
h

ro
u

g
h

p
u

t
(o

p
s
/m

s
e

c
)

Case
Model Low
Model High

Model Average
Real Measurements

(a) 4 threads

cw = 0
threads = 6

0 2000 4000
4000

8000

12000

16000

Parallel Work (cycles)T
h

ro
u

g
h

p
u

t
(o

p
s
/m

s
e

c
)

Case
Model Low
Model High

Model Average
Real Measurements

(b) 6 threads

cw = 0
threads = 8

0 2000 4000
5000

7500

10000

12500

15000

Parallel Work (cycles)T
h

ro
u

g
h

p
u

t
(o

p
s
/m

s
e

c
)

Case
Model Low
Model High

Model Average
Real Measurements

(c) 8 threads

Figure 2.13: Increment on a shared counter

it switches to a statistical implementation, where the counter is actually incre-

mented less frequently, but by a higher value. One key point of this algorithm

is the switch point, which is decided thanks to the number of failed increments;

our model can be used by providing the peak point of performance of the reg-

ular counter implementation as the switch point. We then have implemented a

shared counter which is basically a Fetch-and-Increment using a CAS, and com-

pared it with our analysis. The result is illustrated in Figure 2.13, and shows that

the parallel section size corresponding to the peak point is correctly estimated

using our analysis. The trend in the curves and their causes are similar to the

ones that are mentioned for the synthetic tests.

82 CHAPTER 2. RESULT I

cw = 50
threads = 4

1000 2000 3000 4000
2500

5000

7500

10000

12500

Parallel Work (cycles)T
h

ro
u

g
h

p
u

t
(o

p
s
/m

s
e

c
)

Case
Model Low
Model High

Model Average
Real Measurements

(a) 4 threads

cw = 50
threads = 6

1000 2000 3000 4000 5000

5000

7500

10000

12500

Parallel Work (cycles)T
h

ro
u

g
h

p
u

t
(o

p
s
/m

s
e

c
)

Case
Model Low
Model High

Model Average
Real Measurements

(b) 6 threads

cw = 50
threads = 8

2000 4000 6000 8000

5000

7500

10000

12500

Parallel Work (cycles)T
h

ro
u

g
h

p
u

t
(o

p
s
/m

s
e

c
)

Case
Model Low
Model High

Model Average
Real Measurements

(c) 8 threads

Figure 2.14: DeleteMin on a priority list

2.6.5 DeleteMin in Priority List

We have applied our model to DeleteMin of the skiplist based priority queue

designed in [8]. DeleteMin traverses the list from the beginning of the lowest

level, finds the first node that is not logically deleted, and tries to delete it by

marking. If the operation does not succeed, it continues with the next node.

Physical removal is done in batches when reaching a threshold on the number

of deleted prefixes, and is followed by a restructuring of the list by updating

the higher level pointers, which is conducted by the thread that is successful in

redirecting the head to the node deleted by itself.

We consider the last link traversal before the logical deletion as critical

work, as it continues with the next node in case of failure. The rest of the

traversal is attributed to the parallel section as the threads can proceed concur-

rently without interference. We measured the average cost of a traversal under

2.6. EXPERIMENTAL EVALUATION 83

low contention. In addition, the average cost of restructuring is also included in

the parallel section since it is executed infrequently.

We initialize the priority queue with a large set of elements. As illustrated in

Figure 2.14, the smallest pw value is not zero as the average cost of traversal and

restructuring is intrinsically included. The peak point is in the estimated place

but the curve does not go down sharply under high contention. This presumably

occurs as the traversal might require more than one steps (link access) after a

failed attempt, which creates a back-off effect.

2.6.6 Enqueue-Dequeue on a Queue

cw = 225
threads = 4

0 2000 4000 6000
2000

4000

6000

Parallel Work (cycles)T
h

ro
u

g
h

p
u

t
(o

p
s
/m

s
e

c
)

Case
Model Low
Model High

Model Average
Real Constant

Real Poisson

(a) 4 threads

cw = 225
threads = 6

0 2000 4000 6000 8000

3000

4000

5000

6000

7000

Parallel Work (cycles)T
h

ro
u

g
h

p
u

t
(o

p
s
/m

s
e

c
)

Case
Model Low
Model High

Model Average
Real Constant

Real Poisson

(b) 6 threads

cw = 225
threads = 8

0 3000 6000 9000 12000
2000

3000

4000

5000

6000

7000

8000

Parallel Work (cycles)T
h

ro
u

g
h

p
u

t
(o

p
s
/m

s
e

c
)

Case
Model Low
Model High

Model Average
Real Constant

Real Poisson

(c) 8 threads

Figure 2.15: Enqueue-Dequeue on Michael and Scott queues

In order to demonstrate the validity of the model with several retry loops,

and that the results covers a wider spectrum of application and designs from

the ones we focused in our model, we studied the following setting: the threads

84 CHAPTER 2. RESULT I

share a queue, and each thread enqueues an element, executes the parallel sec-

tion, dequeues an element, and reiterates. We consider the queue implemen-

tation by Michael and Scott [1], that is usually viewed as the reference queue

while looking at lock-free queue implementations.

Dequeue operations fit immediately into our model but Enqueue opera-

tions need an adjustment due to the helping mechanism. Note that without this

helping mechanism, a simple queue implementation would fit directly, but we

also want to show that the model is malleable, i.e. the fundamental behavior

remains unchanged even if we divert slightly from the initial assumptions. We

consider an equivalent execution that catches up with the model, and use it to

approximate the performance of the actual execution of Enqueue.

Enqueue is composed of two steps. Firstly, the new node is attached to the

last node of the queue via a CAS, that we denote by CASA, leading to a transient

state. Secondly, the tail is redirected to point to the new node via another CAS,

that we denote by CASB, which brings back the queue into a steady state.

A new Enqueue can not proceed before the two steps of previous suc-

cess are completed. The first step is the linearization point of operation and

the second step could be conducted by a different thread through the helping

mechanism. In order to start a new Enqueue, concurrent Enqueues help the

completion of the second step of the last success if they find the queue in the

transient state. Alternatively, they try to attach their node to the queue if the

queue is in the steady state at the instant of check. This process continues until

they manage to attach their node to the queue via a retry loop in which state is

checked and corresponding CAS is executed.

The flow of an Enqueue is determined by this state checks. Thus, an En-

queue could execute multiple CASB (successful or failing) and multiple CASA

(failing) in an interleaved manner, before succeeding in CASA at the end of the

last retry. If we assume that both states are equally probable for a check in-

stant which will then end up with a retry, the number of CAS s that ends up

with a retry are expected to be distributed equally among CASA and CASB for

each thread. In addition, each thread has a successful CASA (which linearizes

2.6. EXPERIMENTAL EVALUATION 85

the Enqueue) and a CASB at the end of the operation which could either be

successful or failed by a concurrent helper thread.

The model can be applied by attributing CASA-CASB couple to a single

retry loop iteration and represent it as a larger retry loop since the successful

couple can not overlap with another successful one and all overlapping ones

fail. With a straightforward extension of the expansion formula, we accomodate

the CASA in the critical work which can also expand, and use CASB as the CAS

of our model.

In addition, we take one step further outside the analysis by including a new

case, where the parallel section follows a Poisson distribution, instead of being

constant. pw is chosen as the mean to generate Poisson distribution instead

of taking it constant. The results are illustrated in Figure 2.15. Our model

provides good estimates for the constant pw and also reasonable results for

the Poisson distribution case, although this case deviates from (/extends) our

model assumptions. The advantage of regularity, which brings synchronization

to threads, can be observed when the constant and Poisson distributions are

compared. In the Poisson distribution, the threads start to fail with larger pw,

which smoothes the curve around the peak of the throughput curve.

2.6.7 Discussion

In this subsection we discuss the adequacy of our model, specifically the cyclic

argument, to capture the behavior that we observe in practice. Figure 2.16 il-

lustrates the frequency of occurrence of a given number of consecutive fails,

together with average fails per success values and the throughput values, nor-

malized by a constant factor so that they can be seen on the graph. In the

background, the frequency of occurrence of a given number of consecutive fails

before success is presented. As a remark, the frequency of 6+ fails is plotted

together with 6. We expect to see a frequency distribution concentrated around

the average fails per success value, within the bounds computed by our model.

While comparing the distribution of failures with the throughput, we could

conjecture that the bumps come from the fact that the failures spread out. How-

86 CHAPTER 2. RESULT I

cw = 4000

threads = 6

0 10000 20000 30000 40000

0

2

4

6

8

Parallel Work (cycles)

Case Average Fails per Success Model Average Normalized Throughput

0.25 0.50 0.75
Consecutive Fail Frequency

Figure 2.16: Consecutive Fails Frequency

ever, our model captures correctly the throughput variations and thus strips

down the right impacting factor. The spread of the distribution of failures indi-

cates the violation of a stable cyclic execution (that takes place in our model),

but in these regions, r actually gets close to 0, as well as the minimum of all

gaps. The scattering in failures shows that, during the execution, a thread is

overtaken by another one. Still, as gaps are close to 0, the imaginary execution,

in which we switch the two thread IDs, would create almost the same perfor-

mance effect. This reasoning is strengthened by the fact that the actual average

number of failures follows the step behavior, predicted by our model. This

shows that even when the real execution is not cyclic and the distribution of

failures is not concentrated, our model that results in a cyclic execution remains

a close approximation of the actual execution.

2.6. EXPERIMENTAL EVALUATION 87

2.6.8 Back-Off Tuning

cw = 225
threads = 8

0 2500 5000 7500

3000

4000

5000

6000

7000

Parallel Work (cycles)

T
h
ro

u
g
h
p
u
t
(o

p
s
/m

s
e
c
)

Type Exponential
Linear

New
None

Value 0
1

2
4

8
16

(a) 8 threads

cw = 225
threads = 4

1000 2000 3000 4000 5000
2000

4000

6000

8000

10000

Parallel Work (cycles)

T
h
ro

u
g
h
p
u
t
(o

p
s
/m

s
e
c
)

Type Exponential
Linear

New
None

Value 0
1

2
4

8
16

(b) 4 threads

Figure 2.17: Comparison of back-off schemes for Poisson Distribution

Together with our analysis comes a natural back-off strategy: we estimate

the pw corresponding to the peak point of the average curve, and when the

parallel section is smaller than the corresponding pw, we add a back-off in the

parallel section, so that the new parallel section is at the peak point.

We have applied exponential, linear and our back-off strategy to the En-

queue/Dequeue experiment specified above. Our back-off estimate provides

good results for both types of distribution. In Figure 2.17 (where the values

of back-off are steps of 115 cycles), the comparison is plotted for the Poisson

distribution, which is likely to be the worst for our back-off. Our back-off strat-

egy is better than the other, except for very small parallel sections, but the other

back-off strategies should be tuned for each value of pw.

We obtained the same shapes while removing the distribution law and con-

sidering constant values. The results are illustrated in Figure 2.18.

88 CHAPTER 2. RESULT I

cw = 225
threads = 8

0 2500 5000 7500

3000

4000

5000

6000

7000

Parallel Work (cycles)

T
h
ro

u
g
h
p
u
t
(o

p
s
/m

s
e
c
)

Type Exponential
Linear

New
None

Value 0
1

2
4

8
16

(a) 8 threads

cw = 225
threads = 4

1000 2000 3000 4000 5000
2000

4000

6000

8000

Parallel Work (cycles)

T
h
ro

u
g
h
p
u
t
(o

p
s
/m

s
e
c
)

Type Exponential
Linear

New
None

Value 0
1

2
4

8
16

(b) 4 threads

Figure 2.18: Comparison of back-off schemes for constant pw

2.7 Conclusion

In this paper, we have modeled and analyzed the performance of a general class

of lock-free algorithms, and have so been able to predict the throughput of such

algorithms, on actual system executions. The analysis rely on the estimation of

two impacting factors that lower the throughput: on the one hand, the expan-

sion, due to the serialization of the atomic primitives that take place in the retry

loops; on the other hand, the wasted retries, due to a non-optimal synchroniza-

tion between the running threads. We have derived methods to calculate those

parameters, along with the final throughput estimate, that is calculated from a

combination of these two previous parameters. As a side result of our work,

this accurate prediction enables the design of a back-off technique that per-

forms better than other well-known techniques, namely linear and exponential

back-offs.

As a future work, we envision to enlarge the domain of validity of the model,

in order to cope with data structures whose operations do not have constant

retry loop, as well as the framework, so that it includes more various access

patterns. The fact that our results extend outside the model we consider allows

us to be optimistic on impacting factors introduced in this work. Finally, we

BIBLIOGRAPHY 89

also foresee studying back-off techniques that would combine a back-off in

the parallel section (for lower contention) and in the retry loops (for higher

robustness).

Bibliography

[1] Maged M. Michael and Michael L. Scott, “Simple, fast, and practical non-blocking

and blocking concurrent queue algorithms,” in Proceedings of the ACM Symposium

on Principles of Distributed Computing (PoDC). 1996, pp. 267–275, ACM.

[2] Nir Shavit and Itay Lotan, “Skiplist-based concurrent priority queues,” in Proceed-

ings of the International Parallel and Distributed Processing Symposium (IPDPS).

2000, pp. 263–268, IEEE Computer Society.

[3] Danny Hendler, Nir Shavit, and Lena Yerushalmi, “A scalable lock-free stack

algorithm,” Journal of Parallel and Distributed Computing (JPDC), vol. 70, no. 1,

pp. 1–12, 2010.

[4] Dave Dice, Yossi Lev, and Mark Moir, “Scalable statistics counters,” in Pro-

ceedings of the ACM Symposium on Parallelism in Algorithms and Architectures

(SPAA). 2013, pp. 43–52, ACM.

[5] J. D. Valois, “Implementing Lock-Free Queues,” in Proceedings of International

Conference on Parallel and Distributed Systems (ICPADS), December 1994, pp.

64–69.

[6] Kristijan Dragicevic and Daniel Bauer, “A survey of concurrent priority queue al-

gorithms,” in Proceedings of the International Parallel and Distributed Processing

Symposium (IPDPS). 2008, pp. 1–6, IEEE.

[7] Alex Kogan and Maurice Herlihy, “The future(s) of shared data structures,” in Pro-

ceedings of the ACM Symposium on Principles of Distributed Computing (PoDC).

2014, pp. 30–39, ACM.

[8] Jonatan Lindén and Bengt Jonsson, “A skiplist-based concurrent priority queue

with minimal memory contention,” in Proceedings of the International Conference

on Principle of Distributed Systems (OPODIS). 2013, pp. 206–220, Springer.

[9] R. Kent Treiber, Systems programming: Coping with parallelism, International

Business Machines Incorporated, Thomas J. Watson Research Center, 1986.

90 CHAPTER 2. RESULT I

[10] James H. Anderson, Srikanth Ramamurthy, and Kevin Jeffay, “Real-time com-

puting with lock-free shared objects,” ACM Transactions on Computer Systems

(TOCS), vol. 15, no. 2, pp. 134–165, 1997.

[11] Intel, “Lock scaling analysis on Intel R© Xeon R© processors,” Tech. Rep. 328878-

001, Intel, 2013.

[12] Juan Alemany and Edward W. Felten, “Performance issues in non-blocking syn-

chronization on shared-memory multiprocessors,” in Proceedings of the ACM Sym-

posium on Principles of Distributed Computing (PoDC). 1992, pp. 125–134, ACM.

[13] Dan Alistarh, Keren Censor-Hillel, and Nir Shavit, “Are lock-free concurrent algo-

rithms practically wait-free?,” in Proceedings of the ACM Symposium on Theory

of Computing (STOC). 2014, pp. 714–723, ACM.

[14] James R. Goodman and Herbert Hing Jing Hum, “Mesif: A two-hop cache co-

herency protocol for point-to-point interconnects,” Tech. Rep., University of Auck-

land, 2009.

[15] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis, “Everything you always

wanted to know about synchronization but were afraid to ask,” in Proceedings of

the ACM Symposium on Operating Systems Principles (SOSP). 2013, pp. 33–48,

ACM.

RESULT II

Aras Atalar, Paul Renaud-Goud and Philippas Tsigas

How Lock-free Data Structures Perform in Dynamic
Environments: Models and Analyses

In the Proceedings of the 20th International Conference on Principles of

Distributed Systems, OPODIS 2016

pages 1-17, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik 2016.

3
RESULT II - How Lock-free Data

Structures Perform in Dynamic

Environments: Models and Analyses

Abstract

In this paper we present two analytical frameworks for calculating the perfor-

mance of lock-free data structures. Lock-free data structures are based on retry

loops and are called by application-specific routines. In contrast to previous

work, we consider in this paper lock-free data structures in dynamic environ-

ments. The size of each of the retry loops, and the size of the application rou-

tines invoked in between, are not constant but may change dynamically. The

new frameworks follow two different approaches. The first framework, the sim-

93

94 CHAPTER 3. RESULT II

plest one, is based on queuing theory. It introduces an average-based approach

that facilitates a more coarse-grained analysis, with the benefit of being ignorant

of size distributions. Because of this independence from the distribution nature

it covers a set of complicated designs. The second approach, instantiated with

an exponential distribution for the size of the application routines, uses Markov

chains, and is tighter because it constructs stochastically the execution, step by

step.

Both frameworks provide a performance estimate which is close to what we

observe in practice. We have validated our analysis on (i) several fundamental

lock-free data structures such as stacks, queues, deques and counters, some of

them employing helping mechanisms, and (ii) synthetic tests covering a wide

range of possible lock-free designs. We show the applicability of our results

by introducing new back-off mechanisms, tested in application contexts, and

by designing an efficient memory management scheme that typical lock-free

algorithms can utilize.

3.1 Introduction

During the last two decades, lock-free data structures have received a lot of at-

tention in the literature, and have been accepted in industrial applications, e.g.

in the Intel’s Threading Building Blocks Framework [1], the Java concurrency

package [2] and the Microsoft .NET Framework [3]. Lock-free implementa-

tions provide indeed a way out of several limitations of their lock-based coun-

terparts, in robustness, availability and programming flexibility. Last but not

least, the advent of multi-core processors has pushed lock-freedom on top of

the toolbox for achieving scalable synchronization.

Naturally, the development of lock-free data structures was accompanied

by studies on the performance of such data structures, in order to characterize

their scalability. Having no guarantee on the execution time of an individual

operation, the time complexity analyses of lock-free algorithms have turned to-

wards amortized analyses. The so-called amortized analyses are thus interested

in the worst-case behavior over a sequence of operations, which can be seen as

3.1. INTRODUCTION 95

a worst-case bound on the average time per operation. In order to cover var-

ious contention environments, the time complexity of the algorithms is often

parametrized by different contention measures, such as point [4], interval [5] or

step [6] contention. Nonetheless these investigations are targeting worst-case

asymptotic behaviors. There is a lack of analytical results in the literature ca-

pable of describing the execution of lock-free algorithms on top of a hardware

platform, and providing predictions that are close to what is observed in prac-

tice. Asymptotic bounds are particularly useful to rank different algorithms,

since they rely on a strong theoretical background, but the presence of poten-

tially high constants might produce misleading results. Yet, an absolute predic-

tion of the performance can be of great importance by constituting the first step

for further optimizations.

The common measure of performance for data structures is throughput, de-

fined as the number of operations on the data structure per unit of time. To this

end, this performance measure is usually obtained by considering an algorithm

that strings together a pure sequence of calls to an operation on the data struc-

ture. However, when used in a more realistic context, the calls to the operations

are mixed with application-specific code (that we call here parallel work). For

instance, in a work-stealing environment designed with deques, a thread ba-

sically runs one of the following actions: pushing a new-generated task in its

deque, popping a task from a deque or executing a task. The modifications on

the deques are thus interleaved with deque-independent work. There exist some

papers that consider in their experiments local computations between calls to

operations during their respective evaluations, but the amount of local computa-

tions follows a given distribution varying from paper to paper, e.g. constant [7],

uniform [8], exponential [9].

In this work, we derive a general approach for unknown distributions of the

size of the application-specific code, as well as a tighter method when it follows

an exponential distribution.

As for modeling the data structure itself, we use as a basis the universal

construction described by Herlihy in [10], where it is shown that any abstract

data type can get such a lock-free implementation, which relies on one retry

96 CHAPTER 3. RESULT II

loop. Moreover, we have particularly focused our experiments on data struc-

tures that have inherent sequential bottlenecks (stack, queue, shared counter,

deque). Coming back to amortized analyses, the time complexity of an op-

eration is often expressed as a contention-free time complexity added with a

contention overhead. In this paper, we want to model and analyze the impact of

contention. Loosely speaking, the data structures with inherent sequential bot-

tlenecks have lightweight operations (i.e. low contention-free complexity) and

they are prone to high contention overheads. In contrast, the data structures that

present natural parallelism, or that employ contention alleviation techniques,

provide heavyweight operations (i.e. high contention-free complexity) and be-

have differently, compared to the previous ones, under contention. Our analyses

examine this trade-off and then facilitate conscious decisions in the data struc-

tures design and use.

We propose two different approaches that analyze the performance of such

data structures. On the one hand, we derive an average-based approach invoking

queuing theory, which provides the throughput of a lock-free algorithm without

any knowledge about the distribution of the parallel work. This approach is flex-

ible but allows only a coarse-grained analysis, and hence a partial knowledge

of the contention that stresses the data structure. On the other hand, we ex-

hibit a detailed picture of the execution of the algorithm when the parallel work

is instantiated with an exponential distribution, through a second complemen-

tary approach. We prove that the multi-threaded execution follows a Markovian

process and a Markov chain analysis allows us to pursue and reconstruct the

execution, and to compute a more accurate throughput.

We finally show several ways to use our analyses and we evaluate the valid-

ity of our ideas by experimental results. Those two analysis approaches give a

good understanding of the phenomena that drive the performance of a lock-free

data structure, at a high-level for the average-based approach, and at a detailed

level for the constructive method. Moreover, our results provide a common

framework to compare different implementations of a data structure, in a fair

manner. We also emphasize that there exist several concrete paths to apply

our analyses. To this end, based on the knowledge about the application at

3.2. RELATED WORK 97

hand, we implement two back-off strategies. We show the applicability of these

strategies by tuning a Delaunay triangulation application [11] and a streaming

pipeline component which is fed with trade exchange workloads [12]. These

experiments reveal the validity of our analyses in the application domain, under

non-synthetic workloads and diverse access patterns. We confirm the benefits of

our theoretical results by designing a new adaptive memory management mech-

anism for lock-free data structures in dynamic environments which surpasses

the traditional scheme and which is such that the loss in performance, when

compared to a static data structure without memory management, is largely

leveraged. This memory management mechanism is based on the analyses pre-

sented in this paper.

The rest of the paper is organized as follows: we start by presenting related

work in Section 5.2, then we define the algorithm and the platform that we

consider, together with concepts that are common to our both approaches in

Section 3.3. The average-based approach is described in Section 3.4, while the

constructive analysis is exposed in Section 3.5, and both methods are evaluated

in the experiment part that is presented in Section 3.6.

3.2 Related Work

Approaches that are based on Markov chains and queueing theory, are com-

monly employed to analyze the performance of parallel programs in concurrent

environments. Yu et al. [13] have provided an analytical model to estimate the

mean transaction completion time for the transactional memory systems. They

make use of a continuous-time Markov chain queuing model to analyze the

execution of transactions, in which they formulate the state transition rates by

considering the arrival rate, the service time for the transactions together with

other parameters such as conflict rate that statistically quantifies the spatial (in-

tersecting data set) and temporal (overlapped time) aspects of conflicts. In [14],

Al-Bahra has mentioned Little’s Law as an appropriate tool to understand the

effects of contention on serialized resources for synchronization paradigms.

Closer to our work, Alistarh et al. [15] have studied the same class of lock-

98 CHAPTER 3. RESULT II

free data structures that we consider in this paper. They show initially that the

lock-free algorithms are statistically wait-free and going further they exhibit

upper bounds on the performance. Their analysis is done in terms of scheduler

steps, in a system where only one thread can be scheduled (and can then run) at

each step. If compared with execution time, this is particularly appropriate to

a system where the instructions of the threads cannot be done in parallel (e.g.

multi-threaded program on a multi-core processor with only writes on the same

cache line of the shared memory). In our paper, the execution is evaluated in

terms of processor cycles, strongly related to the execution time. In addition,

the “parallel work” and the “critical work” can be done in parallel. Also, they

bound the asymptotic expected system latency (with a big O, when the number

of threads tends to infinity), while in our paper we estimate the throughput

(close to the inverse of system latency) for any number of threads.

Comparing to our previous work: In [16], we illustrate the performance

impacting factors and the model we use to cover a subset of lock-free structures

that we consider in this paper. In the former paper, the analysis is built upon

properties that arise only when the sizes of the critical work and the parallel

work are constant. There, we show that the execution is not memoryless due

to the natural synchrony provided by the retry loops; at the end of the line, we

prove that the execution is cyclic and use this property to bound the rate of failed

retries.

Here, we provide two new approaches which serve different purposes. In

the first approach, we relax the assumptions regarding the critical work and

parallel work parameters, that we respectively use to model the data structure

operations and the application specific code from which the data structure op-

erations are called. The first approach relies on the expected values of the size

of the critical work and the parallel work. This allows us to cover, compared

to our previous analysis, more advanced lock-free data structure operations, see

Section 3.6.3. Also, we can analyze the data structures running on a larger va-

riety of application specific environments, thanks to the relaxed assumption on

the size of the parallel work. The second approach provides a tight analysis

when the parallel work follows an exponential distribution. We can observe a

3.3. PRELIMINARIES 99

significant decrease in the performance when the parallel work is initiated with

exponential distribution in comparison to the cases where the parallel work is

constant as in our previous work, see Section 3.6.2.1. The tight analyses, in our

previous work and the second approach presented in this paper, reveal for the

first time an analytical understanding of this phenomenon.

This paper is complementary to the previous work, not only because of the

difference in the analysis tools, the extensive set of data structures and the ap-

plication specific environments that it considers but also because they together

exhibit the impact of the size distributions of the parallel work on the perfor-

mance of lock-free data structures.

3.3 Preliminaries

We describe in this section the structure of the algorithm that is covered by

our model. We explain how to analyze the execution of an instance of such

an algorithm when executed by several threads, by slicing this execution into a

sequence of adjacent success periods, where a success period is an interval of

time during which exactly one operation returns. Each of the success periods is

further split into two by the first access to the data structure in the considered

retry loop. This execution pattern reflects fundamental phases of both analyses,

whose first steps and general direction are outlined at the end of the section.

3.3.1 System Settings

All threads call Procedure AbstractAlgorithm (see Figure 3.1) when they are

spawned. So each thread follows a simple though expressive pattern: a se-

quence of calls to an operation on the data structure, interleaved with some

parallel work during which the thread does not try to modify the data struc-

ture. For instance, it can represent a work-stealing algorithm, as described in

the introduction.

The algorithm is decomposed in two main sections: the parallel section,

represented on line 2, and the retry loop (which represents one operation on the

100 CHAPTER 3. RESULT II

shared data structure) from line 3 to line 6. A retry starts at line 4 and ends at

line 6. The outer loop that goes from line 1 to line 6 is designated as the work

loop.

In each retry, a thread tries to modify the data structure and does not exit the

retry loop until it has successfully modified the data structure. It firstly reads the

access point AP of the data structure, then, according to the value that has been

read, and possibly to other previous computations that occurred in the past, the

thread prepares, during the critical work, the new desired value as an access

point of the data structure. Finally, it atomically tries to perform the change

through a call to the CAS primitive. If it succeeds, i.e. if the access point has

not been changed by another thread between the first Read and the CAS, then

it goes to the next parallel section, otherwise it repeats the process. The retry

loop is composed of at least one retry (and the first iteration of the retry loop is

strictly speaking not a retry, but a try).

We denote by cc the execution time of a CAS when the executing thread does

not own the cache line in exclusive mode, in a setting where all threads share a

last level cache. Typically, there exists a thread that touches the data between

two requests of the same thread, therefore this cost is paid at every occurrence

of a CAS. As for the Reads, rc holds for the execution time of a cache miss.

When a thread executes a failed CAS, it immediately reads the same cache line

(at the beginning of the next retry), so the cache line is not missing, and the

execution time of the Read is considered as null. However, when the thread

comes back from the parallel section, a cache miss is paid. To conclude with

the parameters related to the platform, we dispose of P cores, where the CAS

(resp. the Read) latency is identical for all cores, i.e. cc (resp. rc) is constant.

The algorithm is parametrized by two execution times. In the general case,

the execution time of an occurrence of the parallel section (application-specific

section) is a random variable that follows an unknown probability distribution.

In the same way, the execution time of the critical work (specific to a data

structure) can vary while following an unknown probability distribution. The

only provided information is the mean value of those two execution times: cw

for the critical work, and pw for the parallel work. These values will be given

3.3. PRELIMINARIES 101

in units of work, where 1 u.o.w. = 50 cycles.

3.3.2 Execution Description

It has been underlined in [16] that there are two main conflicts that degrade

the performance of the data structures which do not offer a great degree of

parallelism: logical and hardware conflicts.

Logical conflicts occur when there are more than one thread in the retry loop

at a given time (happens typically when the number of threads is high or when

the parallel section is small). At any time, considering only the threads that are

in the retry loop, there is indeed at most one thread whose retry will be success-

ful (i.e. whose ending CAS will succeed), which implies the execution of more

retries for the failing threads. In addition, after a thread executes successfully

its final CAS, the other threads of the retry loop have first to finish their current

retry before starting a potentially successful retry, since they are not informed

yet that their current retry is doomed to failure. This creates some “holes” in

the execution where all threads are executing useless work.

The threads will also experience hardware conflicts: if several threads are

requesting for the same data, so that they can operate a CAS on it, a single thread

will be satisfied. All the other threads will have to wait until the current CAS

is finished, and give a new try when this CAS is done. While waiting for the

ownership of the cache line, the requesting threads cannot perform any useful

work. This waiting time is referred to as expansion.

We now refine the description of the execution of the algorithm. The time-

line is initially decomposed into a sequence of success periods that will define

the throughput. A success period is an interval of time of the execution that (i)

starts after a successful CAS, (ii) contains a single successful CAS, (iii) finishes

after this successful CAS. As explained in the previous subsection, to be suc-

cessful in its retry, a thread has first to access the data structure, then modify it

locally, and finally execute a CAS, while no other thread performs changes on

the data structure. That is why each success period is further cut into two main

phases (see Figure 3.2). During the first phase, whose duration is called the

102 CHAPTER 3. RESULT II

Procedure AbstractAlgorithm

1 while ! done do

2 Parallel_Work();

3 while ! success do

4 current← Read(AP);

5 new← Critical_Work(current);

6 success← CAS(AP, current, new);

Figure 3.1: Thread procedure

successful

CAS

useless

work
Access cw expansion

successful

CAS

slack time completion time

success period
can be null

Figure 3.2: Success period

slack time, no thread is accessing the data structure. The second phase, charac-

terized by the completion time, starts with the first access to the data structure

(by any thread). Note that this Access could be either a Read (if the concerned

thread just exited the parallel section) or a failed CAS (if the thread was already

in the retry loop). The next successful CAS will come at least after cw (one

thread has to traverse the critical work anyway), that is why we split the latter

phase into: cw, then expansion, and finally a successful CAS.

3.3.3 Our Approaches

In this work, we propose two different approaches to compute the throughput of

a lock-free algorithm, which we name as average-based and constructive. The

average-based approach relies on queuing theory and is focused on the average

3.3. PRELIMINARIES 103

behavior of the algorithm: the throughput is obtained through the computation

of the expectation of the success period at a random time. As for the construc-

tive approach, it describes precisely the instants of accesses and modifications to

the data structure in each success period: in this way, we are able to deconstruct

and reconstruct the execution, according to observed events. The constructive

approach leads to a more accurate prediction at the expense of requiring more

information about the algorithm: the distribution functions of the critical and

parallel works have indeed to be instantiated.

In both cases, we partition the domain space into different levels of con-

tention (or modes); these partitions are independent across approaches, even

if we expect similarities, but in each case, cover the whole domain space (all

values of critical work, parallel work and number of threads).

3.3.3.1 Average-based Analysis

We distinguish two main modes in which the algorithm can run: contended

and non-contended. In the non-contended mode, i.e. when the parallel work

is large or the number of threads is low, concurrent operations are not likely

to collide. So every retry loop will count a single retry, and atomic primitives

will not delay each other. In the contended mode, any operation is likely to

experience unsuccessful retries before succeeding (logical conflicts), and a retry

will last longer than in the non-contended mode because of the collision of

atomic primitives (hardware conflicts).

Once all the parameters are given, the analysis is centered around the calcu-

lation of a single variable Prl , which represents the expectation of the number

of threads inside the retry loop at a random instant. Based on this variable, we

are able to express the expected expansion e
(
Prl

)
at a random time. As a next

step, we show how this expansion can be used to estimate the expected slack

time st
(
Prl

)
and the expected completion time ct

(
Prl

)
, and at the end, the

expected time of a success period sp
(
Prl

)
.

104 CHAPTER 3. RESULT II

3.3.3.2 Constructive Method

The previous average-based reasoning is founded on expected values at a ran-

dom time, while in the constructive approach, we study each success period

individually, based on the number of threads at the beginning of the considered

success period. So we are able to exhibit more clearly the instants of occur-

rences of the different accesses and modifications to the data structure, and thus

to predict the throughput more accurately.

We rely on the same set of values used in the average-based approach, but

these values are now associated with a given success period. Thus the number

of threads inside the retry loop Prl , as well as the slack time and the completion

time are evaluated at the beginning of each success period. We denote these

times in the same way as in the first approach, but remove the bar on top since

these values are not expectations any more.

The different contention modes do not characterize here the steady-state of

the data structure as in the previous approach but are associated with the cur-

rent success period. Accordingly, the contention can oscillate through different

modes in the course of the execution. First, a success period is not contended

when Prl = 0, i.e. when there is no thread in the retry loop after a successful

CAS. In this case, the first thread that exits the parallel section will be success-

ful, and the Access of the sequence will be a Read. Second, the contention of a

success period is high when at any time during the success period, there exists

a thread that is executing a CAS. In other words, at the end of each CAS, there

is at least one thread that is waiting for the cache line to operate a CAS on it.

This implies that the first access of the success period is a CAS and occurs im-

mediately after the preceding successful CAS: the slack time is null. Third, the

mid-contention mode takes place when Prl > 0, while at the same time, there

are not enough requesting threads to fill the whole success period with CAS’s

(which implies a non-null slack time). Since these requesting threads have syn-

chronized in the previous success period, CAS’s do not collide in the current

success period, and because of that, the expansion is null.

3.4. AVERAGE-BASED APPROACH 105

3.4 Average-based Approach

We propose in this section our coarse-grained analysis to predict the perfor-

mance of lock-free data structures. Our approach utilizes fundamental queuing

theory techniques, describing the average behavior of the algorithm. In turn, we

need only a minimal knowledge about the algorithm: the mean execution time

values cw and pw. As explained in Section 3.3.3.1, the system runs in one of

the two possible modes: either contended or uncontended.

3.4.1 Contended System

We first consider a system that is contended. When the system is contended,

we use Little’s law to obtain, at a random time, the expectation of the success

period, which is the interval of time between the last and the next successful

CAS’s (see Figure 3.2).

The stable system that we observe is the parallel section: threads are enter-

ing it (after exiting a successful retry loop) at an average rate, stay inside, then

leave (while entering a new retry loop). The average number of threads inside

the parallel section is Pps = P − Prl , each thread stays for an average duration

of pw, and in average, one thread is exiting the retry loop every success period

sp
(
Prl

)
, by definition of the success period. According to Little’s law [17], we

have:

Pps = pw × 1

sp
(
Prl

) , i.e.

1

pw
× sp

(
Prl

)
=

1

P − Prl

(3.1)

As explained in Section 3.3.2, we further decompose a success period into

two parts, separated by the first access to the data structure after a successful

CAS. We can then write the average success period as the sum of: (i) the ex-

pected time before some thread starts its Access (the slack time), and (ii) the

expected completion time. We compute these two expectations independently

and gather them into the success period thanks to:

sp
(
Prl

)
= st

(
Prl

)
+ ct

(
Prl

)
. (3.2)

106 CHAPTER 3. RESULT II

When the data structure is contended, a thread is likely to be successful

after some failed retries. Therefore a thread that is successful was already in

the retry loop when the previous successful CAS occurred. This implies that the

Access to the data structure will be due to a failed CAS, instead of a Read.The

time before a thread starts its Access is then the time before a thread finishes its

current critical work since there is a thread currently executing a CAS.

3.4.1.1 Expected Completion time

Since the data structure is contended, numerous threads are inside the retry

loop, and, due to hardware conflicts, a retry can experience expansion: the

more threads inside the retry loop, the longer time between a CAS request and

the actual execution of this CAS. The expectation of the completion time can be

written as:

ct
(
Prl

)
= cc + cw + e

(
Prl

)
+ cc, (3.3)

where e
(
Prl

)
is the expectation of expansion when there are Prl threads inside

the retry loop, in expectation. This expansion can be computed in the same way

as in [16], through the following differential equation:





e′
(
Prl

)
= cc ×

cc
2 + e

(
Prl

)

cc + cw + cc + e
(
Prl

)

e (1) = 0

,

by assuming that the expansion starts as soon as strictly more than 1 thread are

in the retry loop, in expectation.

3.4.1.2 Expected Slack Time

Concerning the slack time, we consider that, at any time, the threads that are

running the retry loop have the same probability to be anywhere in their current

retry. However, when a thread is currently executing a CAS, the other threads

cannot execute as well a CAS. The other threads are thus in their critical work

3.4. AVERAGE-BASED APPROACH 107

or expansion. For every thread, the time before accessing the data structure is

then uniformly distributed between 0 and cw + e
(
Prl

)
.

According to Lemma 12, we conclude that

st
(
Prl

)
=
(
cw + e

(
Prl

))
/(Prl + 1). (3.4)

Lemma 12. Let an integer n, a real positive number a, and n independent

random variables X1, X2, . . . , Xn, uniformly distributed within [0, a[. Let then

X be the random variable defined by: X = mini∈J1,nK Xi. The expectation of

X is:

E (X) =
a

n + 1
.

Proof. Let a positive real number x be such that x < a. We have

P (X > x) = P (∀i : Xi > x)

=
n∏

i=1

P (Xi > x)

P (X > x) =

(
a− x

a

)n

Therefore, the probability distribution of X is given by:

t 7→ n

a

(
a− x

a

)n−1

,

and its expectation is computed through

108 CHAPTER 3. RESULT II

E (X) =
n

a

∫ a

0

x×
(

a− x

a

)n−1

dx

=
n

a

∫ a

0

(a− u)×
(u

a

)n−1

du

=
n

an

∫ a

0

(a− u)× un−1 du

=
n

an

(
a× an

n
− an+1

n + 1

)

E (X) =
a

n + 1
.

3.4.1.3 Expected Success Period

We just have to combine Equations 3.2, 3.3, and 3.4 to obtain the general ex-

pression of the expected success period under contention:

sp
(
Prl

)
=

(
1 +

1

Prl + 1

)(
cw + e

(
Prl

))
+ 2cc,

which leads, according to Equation 3.1, to

1

pw
×
(

Prl + 2

Prl + 1

(
cw + e

(
Prl

))
+ 2cc

)
=

1

P − Prl

. (3.5)

3.4.2 Non-contended System

When the system is not contended, logical conflicts are not likely to happen,

hence each thread succeeds in its retry loop at its first retry. A fortiori, no

hardware conflict occurs. Each thread still performs one success every work

loop, and the success period is given by

sp
(
Prl

)
=

pw + rc + cw + cc

P
. (3.6)

Moreover, a thread spends in average rc + cw + cc units of time in the retry

loop within each work loop. As this holds for every thread, we can obtain the

3.4. AVERAGE-BASED APPROACH 109

following expression for the total average number of threads inside the retry

loop:

Prl =
rc + cw + cc

pw + rc + cw + cc
× P =

rc + cw + cc

sp
(
Prl

) (3.7)

Equation 3.6 also gives rc + cw + cc = P × sp
(
Prl

)
− pw, hence, thanks

to Equation 3.7,

Prl =
P × sp

(
Prl

)
− pw

sp
(
Prl

) , i.e.
sp
(
Prl

)

pw
=

1

P − Prl

, (3.8)

where sp
(
Prl

)
= rc+cw+cc

Prl

.

3.4.3 Unified Solving

It remains to decide whenever the data structure is under contention or not, and

to find the corresponding solution. Concerning the frontier between contended

and non-contended system, we can remark that Equations 3.5 and 3.8 are equiv-

alent if and only if

rc + cw + cc

Prl

=
Prl + 2

Prl + 1

(
cw + e

(
Prl

))
+ 2cc, (3.9)

which leads to Lemma 13.

Lemma 13. The system switches from being non-contended to being contended

at Prl = P
(0)
rl , where

P
(0)
rl =

−(cc + cw − rc) +

√
(cc + cw − rc)

2
+ 4(rc + cw + cc)(cw + 2cc)

2(cw + 2cc)
.

Proof. We show that:

• P
(0)
rl is the unique positive solution of Equation 3.9 if the expansion is set

to 0,

• P
(0)
rl ≤ 1,

110 CHAPTER 3. RESULT II

• there is no solution of Equation 3.9 with a non-null expansion.

If the expansion is set to 0, then Equation 3.9 can be turned into the second

order equation

Prl
2(cw + 2cc) + Prl (cw + cc − rc)− (rc + cw + cc) = 0,

that has a single positive solution: P
(0)
rl .

While instantiating the binomial with Prl = 1, we obtain cw + 2(cc − rc),

which is not negative, since cc ≥ rc in all the architectures that we are aware

of. As the second order equation has also a negative solution, and cw + 2cc

is positive, we have that 1 ≥ P
(0)
rl . This implies that P

(0)
rl is a solution of the

former Equation 3.9: the expansion is indeed a non-decreasing function, thus

0 ≤ e
(

P
(0)
rl

)
≤ e (1) = 0. Still we could have other solutions with a non-null

expansion.

However, Equation 3.9 can be rewritten as:

rc + cw + cc =
Prl + 2

Prl + 1
× Prl ×

(
cw + e

(
Prl

))
+ 2cc. (3.10)

The left-hand side of Equation 3.10 is constant, while the right-hand side is

increasing, which discards any other solution, hence the lemma.

Thanks to Lemma 13, we can unify the success period as:

sp
(
Prl

)
=





(rc + cw + cc) /Prl if Prl ≤ P
(0)
rl(

cw + e
(
Prl

))
× Prl+2

Prl+1
+ 2cc otherwise.

The unified success period obeys to the following equation

sp
(
Prl

)
=

pw

P − Prl

. (3.11)

We show in the following theorem how to compute the throughput esti-

mate; the proof manipulates equations in order to be able to use the fixed-point

Knaster-Tarski theorem.

3.4. AVERAGE-BASED APPROACH 111

Theorem 5. The throughput can be obtained iteratively through a fixed-point

search, as T = (sp (limn→+∞ un))
−1

, where

{
u0 = rc+cw+cc

pw+rc+cw+cc
× P

un+1 =
unsp(un)

pw+unsp(un)
× P for all n ≥ 0.

Proof. Let us note f1
(
Prl

)
= sp

(
Prl

)
×Prl and f2

(
Prl

)
= pw×Prl/(P−Prl);

then Equation 3.11 is equivalent to f1
(
Prl

)
= f2

(
Prl

)
, and we have some

properties on f1 and f2.

Firstly, since x 7→ x(x + 2)/(x + 1) is non-decreasing on [0, +∞[, as

well as the expected expansion, we know that f1 is a non-decreasing function.

Secondly, f2 is increasing on [0, P [, and is bijective from [0, P [to [0, +∞[. We

can thus rewrite Equation 3.11 as:

Prl = f2
−1
(
f1
(
Prl

))
. (3.12)

Moreover, f2
−1 ◦ f1 is a non-decreasing function, as a composition of two non-

decreasing functions. Thirdly, f2
−1 can be obtained through x = f2

(
f2
−1 (x)

)
=

pw × f2
−1 (x) /(P − f2

−1 (x)), which leads to

f2
−1 (x) =

x

pw + x
P.

In addition, we know by construction that if Prl > P
(0)
rl , then

(
cw + e

(
Prl

))
× Prl + 2

Prl + 1
+ 2cc ≥ rc + cw + cc

Prl

. (3.13)

Indeed, on the one hand,

lim
Prl→0+

rc + cw + cc

Prl

= +∞,

and on the other hand, (cw + e
(
Prl

)
) × (Prl + 2)/(Prl + 1) + 2cc remains

bounded. According to Lemma 13, those two functions cross only once, hence

Equation 3.13.

Since sp
(
Prl

)
= (rc + cw + cc)/Prl if Prl ≤ P

(0)
rl , we have sp

(
Prl

)
≥

(rc + cw + cc)/Prl for any Prl , and then

f1
(
Prl

)
≥ rc + cw + cc.

112 CHAPTER 3. RESULT II

Let then

P
(i)
rl =

rc + cw + cc

pw + rc + cw + cc
P.

We have seen that f2
−1 ◦ f1 is a non-decreasing function, hence

f2
−1
(

f1

(
P

(i)
rl

))
≥ f2

−1 (rc + cw + cc)

≥ rc + cw + cc

pw + rc + cw + cc
× P

f2
−1
(

f1

(
P

(i)
rl

))
≥ P

(i)
rl .

Since f2
−1 is bounded, Equation 3.12 admits a solution.

We are interested in the solution whose Prl is minimal since it corresponds

to the first attained solution when the expansion grows, starting from 0. The

current theorem comes then from the application of the Knaster-Tarski theorem.

3.5 Constructive Approach

In this section, we instantiate the probability distribution of the parallel work

with an exponential distribution. We have therefore a better knowledge of the

behavior of the algorithm, particularly in medium contention cases, which al-

lows us to follow a fine-grained approach that studies individually each success-

ful operation together with every CAS occurrence. We provide an elegant and

efficient solution that relies on a Markov chain analysis.

3.5.1 Process

We have seen in Section 3.3.3.2 that we split the contention domain into three

modes: no contention, medium contention or high contention. The main idea

is to start from a configuration with a given number of threads Prl just after a

successful CAS, and describe what will happen until the next successful CAS:

what will be the mode of the next success period, and even more precisely,

which will be the number of threads at the beginning of the next success period.

3.5. CONSTRUCTIVE APPROACH 113

As a basis, we consider the execution that would occur without any other

thread exiting the parallel section (then entering the retry loop); we call this

execution the internal execution. This execution follows the success period

pattern described in Figure 3.2 (with an infinite slack time if the system is not

contended). On top of this basic success period, we inject the threads that can

exit the parallel section, which has a double impact. On the one hand, they

increase the number of threads inside the retry loop for the next success period.

On the other hand, if the first thread that exits the parallel section starts its retry

during the slack time of the success period of the internal execution, then this

thread will succeed its Access, which is a Read, and will shrink the actual slack

time of the current success period.

According to the distribution probability of the arrival of the new threads,

we can compute the probability for the next success period to start with any

number of threads. The expression of this stochastic sequence of success peri-

ods in terms of Markov chains results in the throughput estimate.

3.5.2 Expansion

The expansion, as before, represents the additional time in the execution time

of a retry, due to the serialization of atomic primitives. However, in contrary

to Section 3.4.1.1, we compute here this additional time in the current success

period, according to the number of threads Prl inside the retry loop at the begin-

ning of the success period. The expansion only appears when the success period

is highly contended, i.e. when we can find a continuous sequence of CAS’s all

through the success period.

The expansion is highly correlated with the way the cache coherence pro-

tocol handles the exchange of cache lines between threads. We rely on the

experiments of the research report associated with [15], which show that if sev-

eral threads request for the same cache line in order to operate a CAS, while

another thread is currently executing a CAS, they all have an equal probability

to obtain the cache line when the current CAS is over.

We draw an illustrative example in Figure 3.3. The green CAS’s are success-

114 CHAPTER 3. RESULT II

CAS pw

CAS cw

CAS cw

CAS cw

CAS cw

CAS cw

CAS cw

CAS

Prl − 4

vs

1

Prl − 5

vs

2

Prl − 6

vs

3

Prl threads inside

the retry loop

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

Figure 3.3: Highly-contended execution

ful while the red CAS’s fail. To lighten the picture, we hide what happened for

the threads before they experience a failed CAS. The horizontal dash lines rep-

resent the time where a thread wants to access the data in order to operate a CAS

but has to wait because another thread owns the data in exclusive mode. We can

observe in this example that the first thread that accesses the data structure is

not the thread whose operation returns.

We are given that Prl threads are inside the retry loop at the end of the

previous successful CAS, and we only consider those threads. When such a

thread executes a CAS for the first time, this CAS is unsuccessful. The thread

was in the retry loop when the successful CAS has been executed, so it has read

a value that is not up-to-date anymore. However, this failed CAS will bring the

current version of the value (to compare-and-swap) to the thread, a value that

will be up-to-date until a successful CAS occurs.

So we have firstly a sequence of failed CAS’s until the first thread that oper-

ated its CAS within the current success period finishes its critical work. At this

point, there exists a thread that is executing a CAS. When this CAS is finished,

some threads compete to obtain the cache line. We have two bags of competing

threads: in the first bag, the thread that just ended its critical work is alone,

3.5. CONSTRUCTIVE APPROACH 115

while in the second bag, there are all the threads that were in the retry loop at

the beginning of the success period, and did not operate a CAS yet. The other,

non-competing, threads are running their critical work and do not yet want to

access the data.

As described before, every thread has the same probability to become the

next owner of the cache line. If a thread from the first bag is drawn, then the

CAS will be successful and the success period ends. Otherwise, the CAS is a

failure, and we iterate at the end of this failed CAS. However, the thread that

just failed its CAS is now executing its critical work, and does not request for

a new CAS until this work has been done, thus it is not anymore in the second

bag. In addition, the thread that had executed its CAS after the thread of the first

bag is now back from its critical work and falls into the first bag. The process

iterates until a thread is drawn from the first bag.

As a remark, note that we do not consider threads that are not in the retry

loop at the beginning of the success period since even if they come back from

the parallel section during the success period, their Read will be delayed and

their CAS is likely to occur after the end of the success period.

Theorem 6 gives the explicit formula for the expansion, based on the previ-

ous explanations.

Theorem 6. The expected time between the end of the critical work of the first

thread that operates a CAS in the success period and the beginning of a suc-

cessful CAS is given by:

e (Prl) = ⌈cw/cc⌉cc − cw +

Pcom∑

i=1

i(i− 1)

(Pcom)
i

(Pcom − 1)!

(Pcom − i)!
× cc,

where Pcom = Prl − ⌈cw/cc⌉.

Proof. Let us set the timeline so that at the beginning of the success period, i.e.

just after a successful CAS, we are at t = 0. Firstly, a success cannot start before

t = t0, where t0 = cc + ⌈cw/cc⌉cc. The quickest thread indeed starts a failed

CAS at t = 0 and comes back from critical work at t = cc + cw. It has then

to wait for the current CAS to finish before being able to obtain the cache line.

116 CHAPTER 3. RESULT II

At t = t0, Prl − t0/cc + 1 threads are competing for the data. Among them,

1 thread will lead to a successful CAS, while the Prl − t0/cc other threads will

end up with a failed CAS. If a failed CAS occurs, then at t = t0 + cc, the same

number of threads compete, but now there is one more potential success and

one less potential failure. In the worst case, it will continue until all competing

threads will lead to a successful CAS.

Let Pcom = Prl − t0/cc + 1 the number of threads that are competing at

each round, and let, for all i ∈ J1, PcomK, pi = i/Pcom the probability to draw

a thread that will execute a successful CAS.

The expected number of failed CAS’s that occurs after the first thread comes

back is then given by

E (F) = p1 × 0 + (1− p1)p2 × 1 + · · ·+
(1− p1)(1− p2)× · · · × (1− pPcom−1)× pPcom

× (Pcom − 1).

More formally,

E (F) =

Pcom∑

i=1

i−1∏

j=1

(1− pj)pi × (i− 1)

=

Pcom∑

i=1

i−1∏

j=1

(1− j

Pcom

)
i

Pcom

× (i− 1)

=

Pcom∑

i=1

1

(Pcom)
i

i−1∏

j=1

(Pcom − j)i(i− 1)

E (F) =

Pcom∑

i=1

i(i− 1)

(Pcom)
i

(Pcom − 1)!

(Pcom − i)!

3.5.3 Formalization

The parallel work follows an exponential distribution, whose mean is pw. More

precisely, if a thread starts a parallel section at the instant t1, the probability

3.5. CONSTRUCTIVE APPROACH 117

distribution of the execution time of the parallel section is

t 7→ λe−λ(t−t1)
1[t1,+∞[(t) , where λ =

1

pw
.

This probability distribution is memoryless, which implies that the threads that

are executing their parallel section cannot be differentiated: at a given instant,

the probability distribution of the remaining execution time is the same for all

threads in the parallel section, regardless of when the parallel section began.

For all threads, it is defined by:

t 7→ λe−λt, where λ =
1

pw
.

For the behavior in the retry loop, we rely on the same approximation as

in the previous section, i.e. when a successful thread exits its retry loop, the

remaining execution time of the retry of every other thread that is still in the

retry loop is uniformly distributed between 0 and the execution time of a whole

retry. We have seen that the expectation of this remaining time is the size of

the execution time of a retry divided by the number of threads inside the retry

loop plus one. Here, we assume that a thread will start a retry at this time. This

implies another kind of memoryless property: the behavior of a thread that is in

the retry loop does not depend on the moment that it entered its retry loop.

To tackle the problem of estimating the throughput of such a system, we

use an approach based on Markov chains. We study the behavior of the system

over time, step by step: a state of the Markov chain represents the state of

the system when the current success period began (i.e. just after a successful

CAS) and (thus) the system changes state at the end of every successful CAS.

According to the current state, we are able to compute the probability to reach

any other state at the beginning of the next success period. In addition, the

two memoryless properties render the description of a state easy to achieve: the

number of threads inside the retry loop when the current success begins, indeed

fully characterizes the system.

We recall that Prl is the number of threads inside the retry loop when the

success period begins. The Markov chain is strongly connected with Prl , since

it is composed of P states S0,S1, . . . ,SP−1, where, for all i ∈ J0, P − 1K,

118 CHAPTER 3. RESULT II

the success period is in state Si iff Prl = i. For all (i, j) ∈ J0, P − 1K
2,

P (Si → Sj) denotes the probability that a success characterized by Sj follows

a success in state Si. st (Si → Sj) denotes the slack time that passed while the

system has gone from state Si to state Sj . This slack time can be expressed

based on the slack time st (i) of the internal execution, i.e. the execution that

involves only the i threads of the retry loop and ignores the other threads (see

Section 3.5.1). Recall that we consider that the slack time of the internal exe-

cution with 0 thread is infinite, since no thread will access the data structure. In

the same way, we denote by ct (i) the completion time of the internal execution,

hence ct (i) = cc + cw + e (i) + cc.

We have seen that the level of contention (mode) is determined by Prl , hence

the interval J0, P − 1K can be partitioned into

J0, P − 1K = Inoc ∪ Imid ∪ Ihi,

where the partitions correspond to the different contention levels. So, by defi-

nition, Inoc = {0}, and for all i ∈ Inoc ∪ Imid, e (i) = 0 (see Section 3.3.3.2).

The success period is highly-contended, i.e. we have a continuous sequence

of CAS’s in the success period, if the sum of the execution time of all the CAS’s

that need to be operated exceeds the critical work. Hence Ihi = Jihi, P − 1K,

where

ihi = min{i ∈ J1, P − 1K | (i + 1)× cc > cw}.

In addition, as the sequence of CAS’s is continuous when the contention is high,

the slack time is null when the success period is highly contended, i.e., for all

i ∈ Ihi, st (i) = 0, and a fortiori, st (Si → S⋆) = 0.

Otherwise, the success period is in medium contention, hence we have

Imid = J1, ihi − 1K. Moreover, if i ∈ Imid, st (i) > 0, and e (i) = 0, be-

cause the CAS’s synchronized during the previous success period and will not

collide any more in the current success period.

3.5. CONSTRUCTIVE APPROACH 119

CAS st (i) CAS cw e (i) CAS

0 new thread k + 1 new threads

at least 1
new thread

Read cw e (i) CAS

k new threads

Internal

execution

Eint

Eext

Figure 3.4: Possible executions

3.5.3.1 Transition Matrix

We consider here that the system is in a given state, and we compute the proba-

bility that the system will next reach any other state. Without loss of generality,

we can choose the origin of time such that the current success period begins at

t = 0.

Let us first look at the core cases, i.e. let i ∈ Imid∪Ihi and k ∈ J0, P − i− 1K;

we assume that the system is currently in state Si, and we are interested in the

probability that the system will switch to Si+k at the end of the current state. In

other words, we want to find the probability that, given that the current success

period started when i threads were in the retry loop, the next success period will

begin while i + k threads are in the retry loop.

As the successful thread will exit the retry loop at the end of the current

success period, there is at least one thread that enters the retry loop during the

current success period. Two non-overlapping events can then occur (see Fig-

120 CHAPTER 3. RESULT II

ure 3.4): either the first thread exiting the parallel section starts within [0, st (i) [,

i.e. in the slack time of the internal execution, and this event is written Eext,

or the first thread entering the retry loop starts after t = st (i), and this event is

denoted by Eint. Therefore, we have P (Si → Si+k) = P (Eext) + P (Eint).

First note that Eext cannot happen when the success period is highly con-

tended; in this case, the slack time is indeed null, and we conclude P (Eext) =

0. In addition, we have seen in Section 3.5.2 that external threads, i.e. threads

that are in the parallel section at the beginning of the success period, do not

participate to the game of expansion, so they cannot be successful. Under high-

contention, Eint happens, and the successful CAS that ends the success period

is operated by an internal thread, i.e. a thread that was already in the retry loop

when the success period began.

Under medium contention, Eext can occur. In this case, an external thread

accesses the data structure before any internal thread does. We have also seen

that the expansion is null in medium contention level, thus the external thread

will execute its critical work, and especially its CAS without being delayed; this

implies that the first external thread that accesses the data structure will end

the current success period with the end of its CAS. If however Eint occurs, an

internal thread succeeds, but is not necessarily the first thread that accessed the

data structure during the success period.

The two possible events are pictured in Figure 3.4, where the blue arrows

represent the threads that exit the parallel section. Recall, we aim at computing

the probability to start the next success period with i + k threads inside the

retry loop. We formalize the idea drawn in the figure by using X[a,b[, which

is defined as a random variable indicating the number of threads exiting the

parallel section during the time interval [a, b[. The probability of having Eint is

then given by

P (Eint) =P
(
X[0,st(i)[= 0 | Prl = i at t = 0+

)

× P

(
X[st(i),st(i)+ct(i)[= k + 1 | Prl = i at t = st (i)

+
)

Concerning Eext, we know that if i ∈ Ihi, then P (Eext) = 0. Otherwise, if

3.5. CONSTRUCTIVE APPROACH 121

we denote by t3 the starting time of the first thread that exits the parallel section,

we obtain

P (Eext) =P
(
X[0,st(i)[> 0 | Prl = i at t = 0+

)

× P
(
X[t3,t3+rc+cw+cc[= k | Prl = i + 1 at t = t+

3

)

To simplify the reasoning, and given that the costs of Read and CAS are approx-

imately the same, we approximate t3 + rc + cw + cc with t3 + cc + cw + cc,

leading to

P (Eext) =P
(
X[0,st(i)[> 0 | Prl = i at t = 0+

)

× P
(
X[t3,t3+ct(i+1)[= k | Prl = i + 1 at t = t+

3

)

According to the exponential distribution, given a thread that is in the par-

allel section at t = a, the probability to exit the parallel section within [a, b[

is:

∫ b

a

λe−λ(t−a) dt =

∫ b−a

0

λe−λu du.

It is also the probability, given a thread that is in the parallel section at t = 0, to

exit the retry loop within [0, b− a[. This implies:

P (Eint) =P
(
X[0,st(i)[= 0 | Prl = i at t = 0+

)

× P
(
X[0,ct(i)[= k + 1 | Prl = i at t = 0+

)

and

P (Eext) =P
(
X[0,st(i)[> 0 | Prl = i at t = 0+

)

× P
(
X[0,ct(i)[= k | Prl = i + 1 at t = 0+

)
.

To lighten the notations, let us define

{
ai,k = P

(
X[0,ct(i)[= k | Prl = i at t = 0

)

bi = P
(
X[0,st(i)[= 0 | Prl = i at t = 0

)
.

(3.14)

122 CHAPTER 3. RESULT II

In addition, given a thread that is in the parallel section at t = 0, the proba-

bility to exit the parallel section within [0, b−a[is
∫ b−a

0
λe−λu du. By counting

the number of threads that need to exit the parallel section, we obtain:
{

ai,k =
(

P−i
k

) (
1− e−λct(i)

)k (
e−λct(i)

)P−i−k

bi = (exp (−λst (i)))
P−i

.
(3.15)

Altogether, we have that

P (Si → Si+k) = bi × ai,k+1 + (1− bi)× ai+1,k.

The situation is slightly different if k = −1; in this case, no thread should

exit the parallel section during the slack time and no thread should exit during

the retry of the first thread that accessed the data structure during the success

period neither. This shows that

P (Si → Si−1) = bi × ai,0.

When the success period is not contended, i.e. if i = 0, the slack time of

the execution that ignores external threads can be seen as infinite, hence we can

define b0 = 0 (the probability that a thread exits its parallel section during an

infinite interval of time is 1). As for the ai,k’s, they can be defined in the same

way as earlier.

We have obtained the full transition matrix (Mi,j)(i,j)∈J0,P−1K2 , which is a

triangular matrix, augmented with a subdiagonal:





Mi,i+k = biai,k+1 + (1− bi)ai+1,k if k ∈ J0, P − i− 1K

Mi,i−1 = bi × ai,0 if i > 0

Mi,j = 0 otherwise

Lemma 14. M is a right stochastic matrix.

Proof. First note that, by definition of ai,k, for all i ∈ J0, P − 1K,

P−i∑

k=0

ai,k = 1.

3.5. CONSTRUCTIVE APPROACH 123

If i threads are indeed inside the retry loop at t = 0, then, within [0, st (i) [,

at least 0 thread, and at most P − i threads (inclusive) will exit their parallel

section.

We have first

P−1∑

j=0

M0,j =

P−1∑

k=0

a0+1,k = 1.

In the same way, for all i ∈ J1, P − 1K,

P−1∑

j=0

Mi,j =

P−1−i∑

k=−1

Mi,i+k

= bi × ai,0 +

P−1−i∑

k=0

biai,k+1 + (1− bi)ai+1,k

= bi ×
P−1−i∑

k=−1

ai,k+1 + (1− bi)
P−1−i∑

k=0

ai+1,k

P−1∑

j=0

Mi,j = 1.

Lemma 15. The transition matrix has a unique stationary distribution, which

is the unique left eigenvector of the transition matrix with eigenvalue 1 and sum

of its elements equal to 1.

Proof. Note that the Markov chain is irreducible and aperiodic. Let X ≥ P−1,

i ∈ J0, P − 1K and j ∈ Ji, P − 1K.

P (Sj → Si in X steps) ≥P (Sj → Sj−1 → · · · → Si)

× P (Si → Si)
X−(j−i)

P (Sj → Si in X steps) >0

As

P (Si → Sj in X steps) ≥ P (Si → Sj) > 0,

124 CHAPTER 3. RESULT II

the Markov chain is irreducible. Since S1 is clearly aperiodic, and the chain is

irreducible, the chain is aperiodic as well.

This implies that the Markov chain has a unique stationary distribution,

which is the unique left eigenvector of the transition matrix with eigenvalue

1 and sum of its elements equal to 1.

3.5.3.2 Stationary Distribution

Theorem 7. Given the transition matrix, the stationary distribution can be

found in (P + 1)P − 1 operations.

Proof. As the Markov chain is irreducible, the stationary distribution does not

contend any zero. The space of the left eigenvectors with unit eigenvalue is uni-

dimensional; therefore, for any v0, there exists a vector v = (v0 v1 . . . vP−1),

such that v spans this space.

Let v0 a real number; necessarily, v fulfills v ·M = v, hence for all i ∈
J0, P − 2K

i+1∑

k=0

vkMk,i = vi,

which leads to, for all i ∈ J0, P − 2K:

vi+1 =
1

Mi+1,i

(
(1−Mi,i)vi −

i−1∑

k=0

vkMk,i

)
.

So we obtain the v1, . . . , vP−1 iteratively (we know that Mi+1,i = bi+1 ×
ai+1,0, which is not null), with 2× i + 1 operations needed to compute vi+1.

The elements of the stationary distribution should sum to one, so we start

from any v0, compute the whole vector, and then normalize each element by

their sum, hence the theorem.

3.5.3.3 Slack time and Throughput

In order to compute the final throughput, we have to compute the expecta-

tion of the slack time, when the system goes from state Si to any other state,

3.5. CONSTRUCTIVE APPROACH 125

that we note E (st (Si → S⋆)). Also, we will be able to exhibit a vector s =

(s0, s1, . . . , sP−1) of expected success period, where si is the expectation of

the execution time of the success period if i threads are in the retry loop when

the success period begins:
{

si = E (st (Si → S⋆)) + cc + cw + e (i) + cc if i /∈ Inoc

si = E (st (Si → S⋆)) + rc + cw + cc otherwise.

Finally, the expected throughput (inverse of the success period) is calculated

through

T =
1

v · s ,

where v is the stationary distribution of the Markov chain.

We know already that if i ∈ Ihi, then E (st (Si → Si+k)) = 0.

In the other extreme case, i.e. if i ∈ Inoc, we rely on the following lemma.

Lemma 16. Let an integer n, a real number λ, and n independent random

variables X1, X2, . . . , Xn, following an exponential distribution of mean λ−1.

Let then X be the random variable defined by: X = mini∈J1,nK Xi. The expec-

tation of X is:

E (X) =
1

λn
.

Proof. We have

P (X > x) = P (∀i : Xi > x)

=

n∏

i=1

P (Xi > x)

=

(∫ +∞

x

λe−λt

)n

P (X > x) = e−λnx

Therefore, the probability distribution of X is given by:

t 7→ λne−λnt,

126 CHAPTER 3. RESULT II

and its expectation is computed through

E (X) =

∫ +∞

0

λnte−λnt dt

=
[
e−λntt

]0
+∞

+

∫ +∞

0

e−λnt dt

=

[
1

λn
e−λnt

]0

+∞

E (X) =
1

λn

This proves that

E (st (S0 → S⋆)) =
pw

P
.

Let now i ∈ Imid, and k ∈ J−1, P − i− 1K; we are interested in

E (st (Si → Si+k)). The slack time is less immediate, and we use the following

reasoning. First note that the probability distribution of the first thread exiting

the parallel section is given by t 7→ λ(P − i)e−λ(P−i)t. If this thread comes

back during]0, st (i) [, the time that passed since the beginning of the success

period is the slack time, otherwise, it is st (i) .

E (st (Si → S⋆))

=

∫ st(i)

0

λ(P − i)e−λ(P−i)tt dt +

∫ +∞

st(i)

λ(P − i)e−λ(P−i)tst (i) dt

=
[
e−λ(P−i)tt

]0

st(i)
+

[
1

λ(P − i)
e−λ(P−i)t

]0

st(i)

+ st (i)
[
e−λ(P−i)t

]st(i)

+∞

= −st (i) e−λ(P−i)st(i) +
1− e−λ(P−i)st(i)

λ(P − i)
+ st (i)

(
e−λ(P−i)st(i)

)

3.5. CONSTRUCTIVE APPROACH 127

We conclude that

E (st (Si → S⋆)) =
1− e−

(P −i)st(i)
pw

P − i
pw.

Putting all together, we obtain




E (st (Si → S⋆)) = 1−e
−

(P −i)st(i)
pw

P−i pw if i ∈ Inoc ∪ Imid

E (st (Si → S⋆)) = 0 if i ∈ Ihi.

3.5.3.4 Number of Failed Retries

Another metric to estimate the quality of the model is the number of failed

retries per successful retry. We compute it by counting the number of failed re-

tries within the current success period, where a retry is billed to a given success

period if its failed CAS occurs during this success period. We denote by E (fi)

the expected number of failed CAS during a success period that begins with i

threads, where i ∈ J0, P − 1K.

If the success period is not contended, i.e. if i ∈ Inoc, no failure will occur

since the first CAS of the success period will be a success; hence E (fi) = 0 = i.

If the success period is mid-contended, i.e. if i ∈ Imid, every thread that is

in the retry loop in the beginning of the success period will execute at least one

CAS during this success period, and exactly two if the thread is the successful

one. We know indeed that, even if a thread exits its parallel section during

the slack time, and is then successful, the failed CAS’s will occur before the

thread entering the retry loop executes its successful CAS. As any thread that

exits its parallel section during the success period either is successful at its first

CAS, or does not operate the CAS during the success period, we conclude that:

E (fi) = i.

If the success period is highly contended, i.e. if i ∈ Ihi, then we know

that we have an uninterrupted sequence of failed CAS’s, from the beginning

of the success period to the last ending successful CAS. The expected number

of failed CAS’s is then directly related to the expected duration of the success

period. Recalling that the expansion is given in Theorem 6, we obtain:

E (fi) = 1 +
cw + e (i)

cc
.

128 CHAPTER 3. RESULT II

3.6 Experiments

To validate our analysis results, we use two main types of lock-free algorithms.

In the first place, we consider a set of basic algorithms where operations can be

completed with a single successful CAS. This set of algorithms includes: (i) syn-

thetic designs, that cover the design space of possible lock-free data structures;

(ii) several fundamental designs of data structure operations such as lock-free

stacks [18] (Pop, Push), queues [7] (Dequeue), counters [19] (Increment,

Decrement). As a second step, we consider more advanced lock-free opera-

tions that involve helping mechanisms, and show how to use our analysis in this

context. Finally, in order to highlight the benefits of the analysis framework,

we show how it can be applied to i) determine a beneficial back-off strategy and

ii) optimize the memory management scheme used by a data structure, in the

context of an application.

We also give insights about the strengths of our two approaches. On the

one hand, the constructive approach exhibits better predictions due to the tight

estimation of the failing retries. On the other hand, the average-based approach

is applicable to a broader spectrum of algorithmic designs as it leaves room to

abstract complicated algorithmic designs.

3.6.1 Setting

We have conducted experiments on an Intel ccNUMA workstation system. The

system is composed of two sockets equipped with Intel Xeon E5-2687W v2

CPUs with frequency band 1.2-3.4. GHz The physical cores have private L1,

L2 caches and they share an L3 cache, which is 25 MB. In a socket, the ring

interconnect provides L3 cache accesses and core-to-core communication. Due

to the bi-directionality of the ring interconnect, uncontended latencies for intra-

socket communication between cores do not show significant variability.Our

model assumes uniformity in the CAS and Read latencies on the shared cache

line. Thus, threads are pinned to a single socket to minimize non-uniformity

in Read and CAS latencies. In the experiments, we vary the number of threads

between 4 and 8 since the maximum number of threads that can be used in the

3.6. EXPERIMENTS 129

experiments are bounded by the number of physical cores that reside in one

socket. We show the experimental results with 8 threads.

In all figures, the y-axis shows two metrics: the throughput values (line), i.e.

number of operations completed per second, and the ratio of failing to success-

ful retries (multiplied by 106 for readability and represented by dashed lines),

while the mean of the exponentially distributed parallel work pw is represented

on the x-axis. The number of failures per success in the average-based approach

is computed as Prl − 1 and is described in Section 3.5.3.4 for the constructive

approach.

We have also added a straightforward upper bound as a baseline approach,

which is defined as the minimum of 1/(rc + cw + cc) (two successful retries

cannot overlap) and P/(pw + rc + cw + cc) (a thread can succeed only once in

each work loop).

The estimations, that are derived by our average-based approach, construc-

tive approach and the straightforward upper bound, are referred respectively as:

"Average", ""Constructive" and "Bound" in the figures. The actual measure-

ments are prefixed with the word "Real".

3.6.2 Basic Data Structures

Here, we consider lock-free operations that can be completed with a single suc-

cessful CAS. and provide predictions using both the average-based and the con-

structive approach together with the theoretical upper bound.

3.6.2.1 Synthetic Tests

We first evaluate our models using a set of synthetic tests that have been con-

structed to abstract different possible design patterns of lock-free data structures

(value of cw) and different application contexts (value of pw). The critical work

is either constant, or follows a Poisson distribution; in Figures 3.5, 3.6, 3.7, its

mean value cw is indicated at the top of the graphs. The real measurements that

correspond to these cases is referred as "Real Constant" and "Real Poisson".

In Figure 3.5, parallel work is instantiated with exponential distribution. A

130 CHAPTER 3. RESULT II

steep decrease in throughput, as pw gets low, can be observed for the cases with

low cw, that mainly originates due to expansion. When cw is high, performance

continues to increase when pw decreases, though slightly. The expansion is in-

cw = 20 cw = 30 cw = 40

cw = 10 cw = 12 cw = 16

cw = 5 cw = 6 cw = 8

cw = 1 cw = 2 cw = 3

0 200 400 0 200 400 600 800 0 250 500 750 1000

0 100 200 300 0 100 200 300 0 100 200 300 400

0 50 100 150 200 0 50 100 150 200 0 100 200

0 30 60 90 120 0 50 100 0 50 100 150
0.0e+00

2.5e+06

5.0e+06

7.5e+06

1.0e+07

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

8e+06

0e+00

2e+06

4e+06

6e+06

0e+00

3e+06

6e+06

9e+06

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

0e+00

5e+06

1e+07

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

Parallel Work (units of work)

T
h
ro

u
g
h
p
u
t
(o

p
s
/s

e
c
),

 F
a
ilu

re
s
 (

m
ic

ro
)

Case Average Bound Constructive Real Constant Real Poisson

Metric Throughput Failures

Figure 3.5: Synthetic program with exponentially distributed parallel work

3.6. EXPERIMENTS 131

deed low but the slack time, which appears as a more dominant factor, decreases

as the number of threads inside the retry loop increases.

When looking into the differences between the constructive and the average-

cw = 20 cw = 30 cw = 40

cw = 10 cw = 12 cw = 16

cw = 5 cw = 6 cw = 8

cw = 1 cw = 2 cw = 3

0 200 400 0 200 400 600 800 0 250 500 750 1000

0 100 200 300 0 100 200 300 0 100 200 300 400

0 50 100 150 200 0 50 100 150 200 0 100 200

0 30 60 90 120 0 50 100 0 50 100 150
0.0e+00

2.5e+06

5.0e+06

7.5e+06

1.0e+07

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

8e+06

0e+00

2e+06

4e+06

6e+06

0e+00

3e+06

6e+06

9e+06

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

0e+00

5e+06

1e+07

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

Parallel Work (units of work)

T
h
ro

u
g
h
p
u
t
(o

p
s
/s

e
c
),

 F
a
ilu

re
s
 (

m
ic

ro
)

Case Average Bound Constructive Real Constant Real Poisson

Metric Throughput Failures

Figure 3.6: Synthetic program with parallel work following Poisson

132 CHAPTER 3. RESULT II

based approach: the average-based approach estimations come out to be less

accurate for mid-contention cases as it only differentiates between contended

and non-contended modes. In addition, it fails to capture the failing retries

cw = 20 cw = 30 cw = 40

cw = 10 cw = 12 cw = 16

cw = 5 cw = 6 cw = 8

cw = 1 cw = 2 cw = 3

0 200 400 0 200 400 600 800 0 250 500 750 1000

0 100 200 300 0 100 200 300 0 100 200 300 400

0 50 100 150 200 0 50 100 150 200 0 100 200

0 30 60 90 120 0 50 100 0 50 100 150
0.0e+00

2.5e+06

5.0e+06

7.5e+06

1.0e+07

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

8e+06

0e+00

2e+06

4e+06

6e+06

0e+00

3e+06

6e+06

9e+06

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

0e+00

5e+06

1e+07

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

Parallel Work (units of work)

T
h
ro

u
g
h
p
u
t
(o

p
s
/s

e
c
),

 F
a
ilu

re
s
 (

m
ic

ro
)

Case Average Bound Constructive Real Constant Real Poisson

Metric Throughput Failures

Figure 3.7: Synthetic program with Constant parallel work

3.6. EXPERIMENTS 133

when measured throughput starts to deviate from the theoretical upper bound,

as pw gets lower. In contrast, the constructive approach provides high accuracy

in all metrics for almost every case.

We have also run the same synthetic tests with a parallel work that follows a

Poisson distribution (Figure 3.6) or is constant (Figure 3.7), in order to observe

the impact of the distribution nature of the parallel work. Compared to the expo-

nential distribution, a better throughput is achieved with a Poisson distribution

on the parallel work. The throughput becomes even better with a constant paral-

lel work, since the slack time is minimized due to the synchronization between

the threads, as explained in [16]. One can observe this from the difference in

start point of failures (with respect to the x-axis) which is also remarkable. Our

constructive approach fails to capture the failures in these cases since it is spe-

cialized for the exponential distribution.

3.6.2.2 Treiber’s Stack

The lock-free stack by Treiber [18] is a fundamental data structure that provides

Pop and Push operations. To Pop an element, the top pointer is read and the

next pointer of the initial element is obtained. The latter pointer will be the new

value of the CAS that linearizes the operation. So, accessing the next pointer

of the topmost element represents cw as it takes place between the Read and

the CAS. We initialize the stack by pushing elements with or without a stride

from a contiguous chunk of memory. By this way, we are able to introduce both

costly or not costly cache misses. We also vary the number of elements popped

at the same time to obtain different cw; the results, with different cw values are

illustrated in Figure 3.8. The results follow a similar trend with the synthetic

tests; therefore we skip the discussion to avoid replication.

3.6.3 Towards Advanced Data Structure Designs

Advanced lock-free operations generally require multiple pointer updates that

cannot be done with a single CAS. One way to design such operations, in a

lock-free manner, is to use helping mechanisms: an inconsistency will be fixed

134 CHAPTER 3. RESULT II

cw = 18 cw = 24 cw = 30

cw = 1 cw = 6 cw = 12

0 100 200 300 400 500 0 200 400 600 0 200 400 600

0 50 100 0 50 100 150 200 250 0 100 200 300

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

0e+00

2e+06

4e+06

6e+06

0e+00

5e+06

1e+07

0e+00

2e+06

4e+06

6e+06

Parallel Work (units of work)

T
h
ro

u
g
h
p
u
t
(o

p
s
/s

e
c
),

 F
a
ilu

re
s
 (

m
ic

ro
)

Metric Throughput Failures

Case Average Bound Constructive Real

Figure 3.8: Treiber’s Stack

eventually by some thread. Here we consider two data structures that apply

immediate helping, the queue from [7] and the deque designed in [20]. In the

queue experiment (Figure 3.9), we run the Enqueue operation on the queue

with and without memory management; in the deque experiment, each thread

is dedicated to an end of the deque (equally distributed), while we vary the

proportion of push operations (colors in Figure 3.10).

Here, we consider data structures that apply immediate helping, where threads

help for the completion of a recently linearized operation until the data struc-

ture comes into a stable state in which a new operation can be linearized. The

crucial observation is that the data structure goes through multiple stages in a

round robin fashion. The first stage is the one where the operation is linearized.

The remaining ones are the stages in which other threads, that execute another

3.6. EXPERIMENTS 135

operation, might help for the completion of the linearized operation, before at-

tempting to linearize their own operations. Thus, the success period (ignoring

the slack time) can be seen as the sum of the execution time of these stages, each

ending with a CAS that updates a pointer. The CAS in the first stage might be

expanded by the threads that are competing for the linearization of their opera-

tion, and consequent CAS’s might be expanded by the helper threads, which are

still trying to help an already completed operation. Also, there might be slack

time before the start of the first stage as the other stages will start immediately

due to the thread that has completed the previous stage.

Although it is hard to stochastically reconstruct the executions with Markov

chains, our average-based approach provides the flexibility required to estimate

the performance by plugging the expected success period, given the number of

threads inside the retry loop, into the Little’s Law. As the impacting factors are

similar, we estimate the success period in the same vein as in Section 3.4; with

a minor adaptation of the expansion formula and by slightly adapting the slack

time estimation based on the same arguments.

3.6.3.1 Expected Expansion for the Advanced Data Structures

Consider an operation such that, the success period (ignoring the slack time)

is composed of S stages (denoted by Stage1, . . . , StageS) where each stage

represents a step towards the completion of the operation. Let CAS i denote

the CAS operation at the end of the Stagei. From a system-wide perspective,

{CAS1, . . . , CASS} is the set of CAS’s that have to be successfully and consec-

utively executed to complete an operation, assuming all threads are executing

the same operation. This design enforces that CAS i can be successful only if

the last successful CAS is a CAS i−1. And, CAS1 can be successful only if

the last successful CAS is a CASS . In other words, another operation can not

linearize before the completion of the linearized but incomplete operation.

Now, let ei denote the expected expansion of CAS i. If the data structure is

in the stable state (i.e. is in Stage1, where a new operation can be linearized),

then we have to consider the probability, for all threads except one, to expand

the successful CAS1 which linearizes the operation. After the linearization, this

136 CHAPTER 3. RESULT II

operation will be completed in the remaining stages where again the successful

CAS’s at the end of the stages are subject to the same expansion possibility

by the threads in the retry loop, as they might be still trying to help for the

completion of the previously completed operation.

Similar to the [16], we assume that any thread that is in the retry loop with

probability h, can launch CAS i that might expand the successful CAS i. We

consider, the starting point of a failing CAS i is a random variable which is

distributed uniformly within the retry loop, which is composed of expanded

stages of the operation. This is because an obsolete thread can launch a CAS i,

regardless of the stage in which the data structure is in (equally, regardless of

the last successful CAS). Due to the uniformity assumption, the expansion for

the successful CAS’s in all stages, would be equal. Similar to the [16], we

estimate the expansion ei by considering the impact of a thread that is added to

the retry loop. Let the cost function delayi provide the amount of delay that the

additional thread introduces, depending on the point where the starting point

of its CAS i hits. By using these cost functions, we can formulate the total

expansion increase that each new thread introduces and derive the differential

equation below to calculate the expected total expansion in a success period,

where e
(
Prl

)
=
∑S

i=1 ei

(
Prl

)
. Note that, we assume that the expansion starts

as soon as strictly more than 1 thread are in the retry loop, in expectation.

Lemma 17. The expansion of a CAS operation is the solution of the following

system of equations, where rlw =
∑S

i=1 rlwi =
∑S

i=1(rci + cwi + cci):





e′
(
Prl

)
= cc × S × cc

2 + e
(
Prl

)

rlw + e
(
Prl

)

e
(

P
(0)
rl

)
= 0

,
where P

(0)
rl is the point that

expansion begins.

Proof. We compute e
(
Prl + h

)
, where h ≤ 1, by assuming that there are al-

ready Prl threads in the retry loop, and that a new thread attempts to CAS during

the retry, within a probability h. For simplicity, we denote ai
j = (

∑i−1
j=1 rlwj +

ej(Prl)) + rci + cwi.

3.6. EXPERIMENTS 137

e
(
Prl + h

)

= e
(
Prl

)
+ h×

S∑

i=1

∫ rlw(+)

0

delayi (ti)

rlw(+)
dti

= e
(
Prl

)
+ h×

S∑

i=1

(∫ ai
j−cc

0

delayi (ti)

rlw(+)
dti +

∫ ai
j

ai
j
−cc

delayi (ti)

rlw(+)
dti

+

∫ ai
j+ei

(
Prl

)

ai
j

delayi (ti)

rlw(+)
dti +

∫ rlw(+)

ai
j
+ei

(
Prl

) delayi (ti)

rlw(+)
dti

)

= e
(
Prl

)
+ h×

S∑

i=1

(∫ ai
j

ai
j
−cc

ti

rlw(+)
dti +

∫ ai
j+ei

(
Prl

)

ai
j

cc

rlw(+)
dti

)

= e
(
Prl

)
+ h× (

∑S
i=1

cc2

2) + e
(
Prl

)
× cc

rlw(+)

This leads to

e (Prl + h)− e
(
Prl

)

h
=

S × cc2

2 + e
(
Prl

)
× cc

rlw(+)
.

When making h tend to 0, we finally obtain

e′
(
Prl

)
= cc × S × cc

2 + e
(
Prl

)

rlw + e
(
Prl

) .

In addition, if a set Sk of CAS’s are operating on the same variable vark,

then CAS i ∈ Sk can be expanded by the CASj ∈ Sk. In this case, we can ob-

tain ek

(
Prl

)
by using the reasoning above. The calculation simply ends up as

follows: Consider the problem as if no CAS shares a variable and denote expan-

sion in Stagei with ei

(
Prl

)(old)
. Then, ek

(
Prl

)
=
∑

CASi∈Sk
ei

(
Prl

)(old)
.

3.6.3.2 Expected Slack Time for the Advanced Data Structures

We assume here the slack time can only occur after the completion of an oper-

ation (i.e. before stage 1), as the other stages are expected to start immediately

138 CHAPTER 3. RESULT II

due to the thread that completes the previous stage. Similar to Section 3.4.1.2,

we consider that, at any time, the threads that are running the retry loop have

the same probability to be anywhere in their current retry. Thus, a thread can

be in any stage just after the successful CAS that completes the operation. So,

we need to consider the thread which is closest to the end of its current stage

when the operation is completed. We denote the execution time of the expanded

retry loop with rlw(+) and the number of stages with S. For a thread execut-

ing Stagei when the operation completes, the time before accessing the data

structure is then uniformly distributed between 0 and rlw
(+)
i .

Here, we take another assumption and consider all stages can be completed

in the same amount of time (i.e. for all (i, j) in {1, . . . , S}2, rlw
(+)
i = rlw

(+)
j =

rlw(+)/S). This assumption does not diverge much from the reality and pro-

vides a reasonable approximation. With these assumption and using Lemma 12,

we conclude that:

st
(
Prl

)
=

rlw(+)

S × (Prl + 1)
. (3.16)

3.6.3.3 Enqueue on Michael-Scott Queue

As a first step, we consider the Enqueue operation of the MS queue to validate

our approach. This operation requires two pointer updates leading to two stages,

each ending with a CAS. The first stage, that linearizes the operation, updates the

next pointer of the last element to the newly enqueued element. In the next and

last stage, the queue’s head pointer is updated to point to the recently enqueued

element, which could be done by a helping thread, that brings the data structure

into a stable state. Here, we determine the cw by subtracting the rc and cc from

the non-contended cost of Enqueue operation.

We estimate the expansion in the success period as described above and

throughput as explained in Section 3.4. The results for the Enqueue experi-

ments where all threads execute Enqueue are presented in Figure 3.9. Without

memory management, the operation provides better performance because cw

value is smaller in this case. With the injection of memory management in-

3.6. EXPERIMENTS 139

No MM With MM

0 100 200 300 0 100 200 300

0e+00

2e+06

4e+06

6e+06

8e+06

0

2500000

5000000

7500000

Parallel Work (units of work)T
h

ro
u

g
h

p
u

t
(o

p
s
/s

e
c
),

 F
a

ilu
re

s
 (

m
ic

ro
)

Case Average Bound Real

Metric Throughput Failures

Figure 3.9: Enqueue on MS Queue

structions, retry loop size grows and performance decreases. Our average-based

approach manages to capture the performance in both cases with satisfactory

precision.

3.6.3.4 Deque

We consider the deque designed in [20]. PushLeft and PushRight (resp.

PopLeft and PopRight) operations are exactly the same, except that they op-

erate on the different ends of the deque. The status flags, which depict the

state of the deque, and the pointers to the leftmost element and the rightmost

element are together kept in a single double-word variable, so-called Anchor,

which could be modified by a double-word CAS atomically.

A PopLeft operation linearizes and even completes in one stage that ends

with a double-word CAS that just sets the left pointer of the anchor to the second

element from left.

A PushLeft operation takes three stages to complete. In the first stage,

the operation is linearized by setting the left pointer of the Anchor to the new

element and at the same time changing the status flags to “left unstable”, to

indicate the status of the incomplete but linearized PushLeft operation. In the

140 CHAPTER 3. RESULT II

second stage, the left pointer of the leftmost element is redirected to the recently

pushed element. In the third stage, a CAS is executed on Anchor to bring the

deque status flags into “stable state”. Every operation can help an incomplete

PushLeft or PushRight until the deque comes into the stable state; in this state,

the other operations can attempt to linearize anew.

As noticed, the first and the third stage execute a CAS on the same variable

(Anchor) so it is possible to delay the third stage of the success period by ex-

ecuting a CAS in the first stage. This implies that the expansion in stage one

should also be considered when the delay in the third stage is considered, and

the other way around. This can be done by summing expansion estimates of the

stages that run the CAS on the same variable and using this expansion value in

all these stages. Again, it just requires simple modifications in the expansion

formula by keeping assumptions unchanged.

We first run pop-only and push-only experiments where dedicated threads

operate on both ends of the deque, in a half-half manner. We provide predictions

by plugging the slightly modified expansion estimate, as explained above, into

the average-based approach. Then, we take one step further and mix the opera-

tions, assigning the threads inequally among push and pop operations. And, we

obtain estimates for them by simply taking the weighted average (depending on

the number of threads running each operation) of the success period of pop-only

and push-only experiments, with the corresponding pw value.

In Figure 3.10, results are illustrated; they are satisfactory for the push-only

and pop-only cases. For the mixed-case experiments, the results are mixed: our

analysis follows the trend and becomes less accurate when the pw gets lower,

as experimental curves tend toward push-only success period. This, presum-

ably, happens because the first stage of a PushLeft (or PushRight) operation

is shorter than the first stage of a PopLeft (or PopRight) operation. This brings

indeed an advantage to push operations, under contention: they have higher

chances to linearize before pop operations after the data structure comes into

the stable state. It also provides an interesting observation which highlights the

lock-free nature of operations: it is improbable to complete a pop operation if

numerous threads try to push, due to the difference of work inside the first stage

3.6. EXPERIMENTS 141

2e+06

4e+06

6e+06

8e+06

0 50 100 150 200 250

Parallel Work (units of work)

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

e
c
)

Case Average Bound Real

Push 0%
12.5%

25%
50%

75%
87.5%

100%

Figure 3.10: Operations on deque

of their retry loop.

3.6.4 Applications

3.6.4.1 Back-off Optimizations

When the parallel work is known, we can deduce from our analysis a simple

and efficient back-off strategy: as we are able to estimate the value for which

the throughput is maximum, we just have to back-off for the time difference

between the peak pw and the actual pw. In Figure 3.12, we compare, on a syn-

thetic workload, this constant back-off strategy against widely known strategies,

namely exponential and linear, where the back-off amount increases exponen-

tially or linearly after each failing retry loop starting from a 115 cycles step size.

In Figure 3.11, we apply our constant back-off on a Delaunay triangulation ap-

plication [11], provided with several workloads. The application uses a stack in

two phases, whose first phase pushes elements on top of the stack without delay.

We are able to estimate a corresponding back-off time, and we plot the results

by normalizing the execution time of our back-offed implementation with the

execution time of the initial implementation.

142 CHAPTER 3. RESULT II

4 threads 6 threads 8 threads

0.9

1.0

1.1

1.2

1.3

1.4

s3 s6 s50 s3 s6 s50 s3 s6 s50

Dataset

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

Back−off on Trade Agg.
4 threads 6 threads 8 threads

0.80

0.85

0.90

0.95

1.00

bike r1 r2 bike r1 r2 bike r1 r2

Dataset

N
o
rm

a
liz

e
d
 E

xe
c
u
ti
o
n
 T

im
e

Back−off on Delaunay Tri.

Figure 3.11: Performance impact of our back-off tunings

A measure or an estimate of pw is not always available (and could change

over time, see next section), therefore we propose also an adaptive strategy: we

incorporate in the data structure a monitoring routine that tracks the number of

failed retries, employing a sliding window. As our analysis computes an esti-

mate of the number of failed retries as a function of pw, we are able to estimate

the current pw, and hence the corresponding back-off time like previously.

We test our adaptive back-off mechanism on a workload originated from [12],

where global operators of exchanges for financial markets gather data of trades

with a microsecond accuracy. We assume that the data comes from several

streams, each of them being associated with a thread. All threads enqueue the

elements that they receive in a concurrent queue, so that they can be later aggre-

gated. We extract from the original data a trade stream distribution that we use

to generate similar streams that reach the same thread; varying the number of

streams to the same thread leads to different workloads. The results, represented

as the normalized throughput (compared to the initial throughput) of trades that

3.6. EXPERIMENTS 143

are enqueued when the adaptive back-off is used, are plotted in Figure 3.11. For

any number of threads, the queue is not contended on workload s3, hence our

improvement is either small or slightly negative. On the contrary, the workload

s50 contends the queue and we achieve very significant improvement.

5.0e+06

7.5e+06

1.0e+07

0 50 100

Parallel Work (units of work)

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

e
c
)

Value 0 2 8 32

Type Exp. Linear None Ours

Figure 3.12: Back-off Tuning on Treiber’s Stack

3.6.4.2 Memory Management Optimization

Memory Management (MM) is an inseparable part of dynamic concurrent data

structures. In contrary to lock-based implementations, a node that has been

removed from a lock-free data structure can still be accessed by other threads,

e.g. if they have been delayed. Collective decisions are thus required in order

to reclaim a node in a safe manner. A well-known solution to deal with this

problem is the hazard pointers technique [21].

A traditional design to implement this technique works as follows. Each

thread Ti, maintains two lists of nodes: Ni contains the nodes that Ti is cur-

rently accessing, and Di stores the nodes that have been removed from the data

structure by Ti. Once a threshold on the size of Di is reached, Ti calls a rou-

tine that: (i) collects the nodes that are accessed by any other thread, i.e. Nj

144 CHAPTER 3. RESULT II

for j 6= i (collection phase), and (ii) for each element in Di, checks whether

someone is accessing the element, i.e. whether it belongs to ∪j 6=iNj , and if not,

reclaims it (reclamation phase).

The primary goal of our adaptive MM scheme is to distribute this extra-

work (harmful under low-contention) in a way that the loss in performance

is largely leveraged, knowing that additional work can be an advantage under

high-contention (see the previous section). The optimization is based on two

main modifications. First, the granularity has to be finer, since the additional

quantum that the back-off mechanism uses, has to be rather small (hundreds

of cycles for a queue). Second, we need to track the contention level on the

data structure in order to be able to inject the work at a proper execution point.

Then, the memory management execution can be delayed under low-contention

and take place under high-contention in the right amount to obtain the peak

performance.

Fine-grain Memory Management Scheme: We divide the routine (and fur-

ther the phases) of the traditional MM mechanism into quanta (equally-sized

chunks).One quantum of the collection phase is the collection of the list of one

thread, while three nodes are reclaimed during one quantum of the reclamation

phase. The traditional MM scheme was parameterized by a threshold based on

the number of the removed nodes; the fine-grain MM scheme is parameterized

by the number of quanta that are executed at each call.

We apply different MM schemes on the Dequeue operation of the Michael-

Scott queue, and plot the results in Figure 3.13. We initialize the queue with

enough elements. Threads execute Dequeue, which returns an element, then

call the MM scheme. On the left side, we compare a pure queue (without MM),

a queue with the traditional MM (complete reclamation once in a while) and a

queue with fine-grain MM (according to the numbers of quanta that are executed

at each call, given by "Parameter" in the legend which is effective only for fine-

grain MM). Note that the performance of the traditional MM is also subject to

the tuning of the threshold parameter. We have tested and kept only the best

parameter on the studied domain. First, unsurprisingly, we can observe that the

pure queue outperforms the others as its cw is lower (no need to maintain the

3.6. EXPERIMENTS 145

list of nodes that a thread is accessing). Second, as the fine-grain MM is called

after each completed Dequeue, adding a constant work, the MM can be seen

as a part of the parallel work. We highlight this idea on the second experiment

(on the right side). We first measure the work done in a quantum. It follows

that, for each value of the granularity parameter, we are able to estimate the

effective parallel work as the sum of the initial pw and the work added by the

fine-grain MM. Finally, we run the queue with the fine-grain MM, and plot the

measured throughput, according to the effective parallel work, together with our

two approaches instantiated with the effective pw. The graph shows the validity

of the model estimations for all values of the granularity parameter.

Adaptive Memory Management Scheme: We build the adaptive MM scheme

on top of the fine-grain MM mechanism by adding a monitoring routine that

tracks the number of failed retry loops, employing a sliding windows. Given a

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
● ● ● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

Parallel work: initial Parallel work: effective

0 25 50 75 1000 50 100

0e+00

3e+06

6e+06

9e+06

Parallel Work (units of work)

T
h
ro

u
g
h
p
u
t
(o

p
s
/s

e
c
),

 F
a
ilu

re
s
 (

m
ic

ro
)

Parameter ● 0 1 2 4

Metric Throughput Failures

Case Average
Bound

Constructive
Adaptive

No MM
Traditional

Figure 3.13: Performance of memory management mechanisms

146 CHAPTER 3. RESULT II

●
● ●

●
●

● ● ● ● ● ● ● ● ● ● ●

●
● ● ●

●
● ● ● ● ● ● ● ● ● ● ●

●

● ●

●

●

●

●
●

●
●

● ●
●

●
● ●

●

●

●

●

●

●
●

●
● ● ●

●
●

● ● ●

●

● ●

●

●

●

●
●

●
●

● ●
● ● ● ●

●

●

●

●

●

●
●

●
● ●

● ●
●

● ●
●

●

● ●

●

●

●
●

●
●

●
● ●

● ●
● ●

●

● ●

●

●

●

●
●

●
●

● ●
● ● ● ●

●

●
●

●

●

●

●

●
●

●
●

●
● ● ● ●

●

●

●

●

●

●

●
●

●
● ● ●

● ● ● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●

● ●
●

●
●

●
●

●
●

●
●

●

●
● ●

●

●
●

●
●

●
●

●

●
● ●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ● ●

●

●
● ●

●
●

●
●

●

●
●

●

●
●

●
●

●

●

● ●
●

●
●

●

●
●

●
●

●
●

● ●

●

●

●
●

●

●

●
●

●
●

●
●

●
●

● ●

●

●
● ●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●
●

●
●

● ●
● ●

●
● ● ●

●
●

● ● ●
●

● ● ●
● ● ● ●

● ● ●

●

●

● ●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

● ●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●

●

●
●

●
●

●

●
●

●
●

●

●

●
●

●

●
●

●
●

●
●

●

●
●

● ●

●

●

● ●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

● ●
●

●

●
●

● ●

●
●

●
●

●

●

●

●

● ●
●

●

●

●
●

●
●

●

●
●

●
●

●

●

● ●
●

●

●
●

●
●

●
●

●
●

●
●

Steps per period: 2 Steps per period: 10 Steps per period: 100

P
e

rio
d

: 5
P

e
rio

d
: 1

0
P

e
rio

d
: 2

5
P

e
rio

d
: 5

0
P

e
rio

d
: 2

5
0

100 200 100 200 100 200

1e+07

2e+07

3.0e+06

5.0e+06

7.0e+06

9.0e+06

1.1e+07

3e+06

5e+06

7e+06

9e+06

4e+06

6e+06

8e+06

1e+07

4e+06

6e+06

8e+06

1e+07

Maximum Parallel Work (units of work)

T
h
ro

u
g
h
p
u
t
(o

p
s
/s

e
c
),

 F
a
ilu

re
s
 (

m
ic

ro
)

Metric ● Throughput Failures

Case Adaptive Traditional

Figure 3.14: Adaptive MM with varying mean pw

granularity parameter and a number of failed retry loops, we are able to estimate

the parallel work and the throughput, hence we can decide a change in the

granularity parameter to reach the peak performance. Note that one can avoid

memory explosion by specifying a threshold like the traditional implementation

3.7. CONCLUSION 147

in case the application provides a durable low contention; in the worst case, it

performs like the traditional MM.

Numerous scientific applications are built upon a pattern of alternating phases,

that are communication- or computation-intensive. If the application involves

data structures, it is expected that the rate of the modifications to the data struc-

tures is high in the data-oriented phases, and conversely. These phases could be

clearly separated, but the application can also move gradually between phases.

The rate of modification to a data structure will anyway oscillate periodically

between two extreme values. We place ourselves in this context, and evaluate

the two MMs accordingly. The parallel work still follows an exponential distri-

bution of mean pw, but pw varies in a sinusoidal manner with time, in order to

emulate the numerical phases. More precisely, pw is a step approximation of a

sine function. Thus, two additional parameters rule the experiment: the period

of the oscillating function represents the length of the phases, and the number

of steps within a period depicts how continuous are the phase changes.

In Figure 3.14, we compare our approach with the traditional implementa-

tion for different periods of the sine function, on the Dequeue of the Michael-

Scott queue [7]. The adaptive MM, that relies on the analysis presented in this

paper, outperforms the traditional MM because it provides an advantage both

under low contention due to the costless (since delayed) invocation of the MM

and under high contention due to the back-off effect.

3.7 Conclusion

In this paper we have presented two analyses for calculating the performance

of lock-free data structures in dynamic environments. The first analysis has its

roots in queuing theory, and gives the flexibility to cover a large spectrum of

configurations. The second analysis makes use of Markov chains to exhibit a

stochastic execution; it gives better results, but it is restricted to simpler data

structures and exponentially distributed parallel work. We have evaluated the

quality of the prediction on basic data structures like stacks, as well as more

advanced data structures like optimized queues and deques. Our results can

148 CHAPTER 3. RESULT II

be directly used by algorithmicians to gain a better understanding of the per-

formance behavior of different designs, and by experimentalists to rank imple-

mentations within a fair framework. We have also shown how to use our results

to tune applications using lock-free codes. These tuning methods include: (i)

the calculation of simple and efficient back-off strategies whose applicability is

illustrated in application contexts; (ii) a new adaptative memory management

mechanism that acclimates to a changing environment.

The main differences between the data structures of this paper and linked

lists, skip lists and trees occur when the size of the data structure grows. With

large sizes, the performance is dominated by the traversal cost that is ruled by

the cache parameters. The reduction in the size of the data structure decreases

the traversal cost which in turn increases the probability of encountering an

on-going CAS operation that delays the threads which traverse the link. The

expansion, which can additionally be supported unfavorably by helping mecha-

nisms, appears then as the main performance degrading factor. While the anal-

ysis becomes easier for high degrees of parallelism (large data structure size),

being able to describe the behavior of lock-free data structures as the degree of

parallelism changes constitutes the main challenge of our future work.

Bibliography

[1] “Intel’s threading building blocks framework,” https://www.

threadingbuildingblocks.org/, Accessed: 2016-01-20.

[2] “Java concurrency package,” https://docs.oracle.com/javase/7/

docs/api/java/util/concurrent/package-summary.html, Ac-

cessed: 2016-01-20.

[3] “Microsoft .net framework,” http://www.microsoft.com/net, Accessed:

2016-01-20.

[4] Hagit Attiya and Arie Fouren, “Algorithms adapting to point contention,” Journal

of the ACM (JACM), vol. 50, no. 4, pp. 444–468, 2003.

[5] Yehuda Afek, Gideon Stupp, and Dan Touitou, “Long lived adaptive splitter and

applications,” Journal of Distributed Computing, vol. 15, no. 2, pp. 67–86, 2002.

BIBLIOGRAPHY 149

[6] Hagit Attiya, Rachid Guerraoui, and Petr Kouznetsov, “Computing with reads

and writes in the absence of step contention,” in Proceedings of the International

Symposium on Distributed Computing (DISC). 2005, pp. 122–136, Springer.

[7] Maged M. Michael and Michael L. Scott, “Simple, fast, and practical non-blocking

and blocking concurrent queue algorithms,” in Proceedings of the ACM Symposium

on Principles of Distributed Computing (PoDC). 1996, pp. 267–275, ACM.

[8] Danny Hendler, Nir Shavit, and Lena Yerushalmi, “A scalable lock-free stack

algorithm,” Journal of Parallel and Distributed Computing (JPDC), vol. 70, no. 1,

pp. 1–12, 2010.

[9] J. D. Valois, “Implementing Lock-Free Queues,” in Proceedings of International

Conference on Parallel and Distributed Systems (ICPADS), December 1994, pp.

64–69.

[10] Maurice Herlihy, “Wait-free synchronization,” ACM Transactions on Program-

ming Languages and Systems (TOPLAS), vol. 13, no. 1, pp. 124–149, 1991.

[11] Tanmay Gangwani, Adam Morrison, and Josep Torrellas, “CASPAR: breaking

serialization in lock-free multicore synchronization,” in Proceedings of the Inter-

national Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS). 2016, pp. 789–804, ACM.

[12] “Daily trades from 2015-08-05,” http://www.nyxdata.com/

Data-Products/Daily-TAQ#155, Accessed: 2016-05-05.

[13] Xiao Yu, Zhengyu He, and Bo Hong, “A queuing model-based approach for the

analysis of transactional memory systems,” Concurrency and Computation: Prac-

tice and Experience, vol. 25, no. 6, pp. 808–825, 2013.

[14] Samy Al-Bahra, “Nonblocking algorithms and scalable multicore programming,”

Communications of the ACM, vol. 56, no. 7, pp. 50–61, 2013.

[15] Dan Alistarh, Keren Censor-Hillel, and Nir Shavit, “Are lock-free concurrent algo-

rithms practically wait-free?,” in Proceedings of the ACM Symposium on Theory

of Computing (STOC). 2014, pp. 714–723, ACM.

[16] Aras Atalar, Paul Renaud-Goud, and Philippas Tsigas, “Analyzing the perfor-

mance of lock-free data structures: A conflict-based model,” in Proceedings of the

International Symposium on Distributed Computing (DISC). 2015, pp. 341–355,

Springer.

150 CHAPTER 3. RESULT II

[17] John D. C. Little, “A proof for the queuing formula: L= λ w,” Operations research,

vol. 9, no. 3, pp. 383–387, 1961.

[18] R. Kent Treiber, Systems programming: Coping with parallelism, International

Business Machines Incorporated, Thomas J. Watson Research Center, 1986.

[19] Dave Dice, Yossi Lev, and Mark Moir, “Scalable statistics counters,” in Pro-

ceedings of the ACM Symposium on Parallelism in Algorithms and Architectures

(SPAA). 2013, pp. 43–52, ACM.

[20] Maged M. Michael, “Cas-based lock-free algorithm for shared deques,” in Euro-

Par COnference. 2003, pp. 651–660, Springer.

[21] Maged M. Michael, “Hazard pointers: Safe memory reclamation for lock-free

objects,” IEEE Transactions on Parallel and Distributed Systems (TPDS), vol. 15,

no. 6, pp. 491–504, 2004.

RESULT III

Aras Atalar, Anders Gidenstam, Paul Renaud-Goud and Philippas Tsigas

Modeling Energy Consumption of Lock-Free Queue
Implementations

In the Proceedings of the 2015 IEEE International Parallel and Distributed

Processing Symposium (IPDPS 2015)

pages 229-238, IEEE Press 2015.

4
RESULT III - Modeling Energy

Consumption of Lock-Free Queue

Implementations

Abstract

This paper considers the problem of modeling the energy behavior of lock-free

concurrent queue data structures. Our main contribution is a way to model the

energy behavior of lock-free queue implementations and parallel applications

that use them. Focusing on steady state behavior we decompose energy be-

havior into throughput and power dissipation which can be modeled separately

and later recombined into several useful metrics, such as energy per operation.

Based on our models, instantiated from synthetic benchmark data, and using

153

154 CHAPTER 4. RESULT III

only a small amount of additional application specific information, energy and

throughput predictions can be made for parallel applications that use the respec-

tive data structure implementation. To model throughput we propose a generic

model for lock-free queue throughput behavior, based on a combination of the

dequeuers’ throughput and enqueuers’ throughput. To model power dissipation

we commonly split the contributions from the various computer components

into static, activation and dynamic parts, where only the dynamic part depends

on the actual instructions being executed. To instantiate the models a synthetic

benchmark explores each queue implementation over the dimensions of proces-

sor frequency and number of threads. Finally, we show how to make predictions

of application throughput and power dissipation for a parallel application using

a lock-free queue requiring only a limited amount of information about the ap-

plication work done between queue operations. Our case study on a Mandelbrot

application shows convincing prediction results.

4.1 Introduction

Lock-free implementations of data structures is a scalable approach for design-

ing concurrent data structures. Lock-free data structures offer high concurrency

and immunity to deadlocks and convoying, in contrast to their blocking counter-

parts. Concurrent FIFO queue data structures are fundamental data structures

that are key components in applications, algorithms, run-time and operating

systems. The producer/consumer pattern, e.g., is a common approach to par-

allelizing applications where threads act as either producers or consumers and

synchronize and stream data items between them using a shared collection. A

concurrent queue, a.k.a. shared “first-in, first-out” or FIFO buffer, is a shared

collection of elements which supports at least the basic operations Enqueue

(adds an element) and Dequeue (removes the oldest element). Dequeue re-

turns the element removed or, if the queue is empty, NULL. A large number

of lock-free (and wait-free) queue implementations have appeared in the liter-

ature, e.g. [1–6] being some of the most influential or most efficient results.

Each implementation of a lock-free queue has obviously its strong and weak

4.1. INTRODUCTION 155

points so the impact on performance and energy when choosing one particular

implementation for any given situation may not be obvious.

As the number of known implementations of lock-free concurrent queues

is growing, it is of great interest to describe a framework within which the

different implementations can be ranked, according to the parameters that char-

acterize the situation. A brute force approach could achieve this by running the

implementations on hand on the whole domain of study, gathering and com-

paring measurements. This would yield high accuracy, but at a tremendous

cost, since the domain is likely to be large. Additionally, it would only bring

a limited understanding on the phenomena that drive the behavior of the queue

implementations. Therefore, we propose generic models for predicting the be-

havior of lock-free queues under steady state usage. The models are instantiated

for the queue implementations and machine on hand using empirical data from

a limited number of points in the domain.

The implementations can be ranked according to a plethora of metrics. Tra-

ditionally, performance in terms of throughput has been the main metric. Fur-

thermore, the notion of energy efficiency has now extended into every nook and

cranny of Information Technology, at any scale, from the Exascale machines

that need huge improvements in terms of power dissipation to be feasible [7],

to the small electronic devices where the battery lifetime is a critical issue.

We decompose the energy behavior of queues, and subsequently applica-

tions, into two components: (i) throughput and (ii) power dissipation. We

model these components separately. The predicted throughput and power dis-

sipation can be recombined into the energy-efficiency metric energy per queue

operation, which is the ratio between power dissipation and queue throughput.

When modeling an application, this metric can be extended to energy per unit

of application work. Further, plotting energy per operation or unit of work ac-

cording to throughput allows exploration of the Pareto-optimal frontier of the

energy−performance bi-criteria optimization problem for the queues or the ap-

plication.

Lock-free queue data structures generally offer twofold parallelism: en-

queuers and dequeuers modify only their respective ends of the queue, and

156 CHAPTER 4. RESULT III

compete mostly with operations of the same kind. Nonetheless, when the queue

is close to empty, both ends point to the same part of the queue, then enqueue

and dequeue operations have to be synchronized, and every operation impacts

the behavior of any other.

Concerning the queue as a whole, a successful event can be seen as the

dequeue of a non-NULL item, since this event implies that the item has been

enqueued and dequeued. Also, the throughput of the queue is naturally defined

as the number of such events per unit of time, which is a meaningful perfor-

mance criterion for queues.

In this work, we focus on queues that are in a steady state, i.e. such that

the rate of each operation attempt is constant. Then, the throughput T of the

queue is the minimum between the throughput of all dequeues Td , even those

returning NULL, and throughput of enqueues Te. Indeed, if Te > Td , then the

queue grows and the throughput is determined by the dequeuers, which cannot

obtain any NULL items; and if Te ≤ Td , then the queue is mostly empty and

NULL items are dequeued, but the throughput is determined by the enqueuers.

Despite this decomposition, enqueuers’ and dequeuers’ throughput are still

correlated when the queue is mostly empty. In addition, the interactions be-

tween them are rather asymmetric, as in broad terms, an enqueue can be de-

layed by any concurrent dequeue, while for a dequeue, concurrent enqueues

will cease to disturb it as they move away from the dequeue end.

Based on these facts, we decorrelate the throughput into several uncorre-

lated and basic throughputs, and reconstitute the main throughput by combining

them. Among the advantages of this process, we earn a better understanding of

the performance (as the basic throughputs are meaningful), and we reduce the

number of measurements needed to instantiate the model on the whole domain

of study.

The domain of study that we envision here can be viewed as the Cartesian

product of four sets: (i) number of threads accessing the queue, (ii) CPU fre-

quencies, (iii) a range of dequeue access rates, (iv) a range of enqueue access

rate. The cardinality of the first two sets is at most a few tens, while the last

two are continuous sets that are not even bounded. In this paper, thanks to the

4.2. RELATED WORK 157

removal of the dependencies between throughputs, we are able to instantiate the

model with only a few data points, while the model covers the whole intervals.

Finally, this decomposition also eases the study of power dissipation, where

we reuse the same ideas as in the throughput estimation part.

The rest of the paper is organized as follows. Section 4.2 discusses related

work. Section 4.3 introduces our modeling framework for lock-free concur-

rent queues. Section 4.4 describes how the throughput of lock-free concurrent

queues is modeled, while Section 4.5 describes how the power dissipation is

modeled. In Section 4.6 we develop a method to model parallel applications

using the queue models and apply it to an application for computing the Man-

delbrot set. Finally, Section 4.7 concludes this paper.

4.2 Related work

Hunt et al. [8] measured the performance and energy use of lock-free and lock-

based implementations of FIFO queues, double-ended queues and sorted singly

linked lists. The results from the lock-free and lock-based implementations are

compared and also analyzed using captured hardware performance counters,

e.g. instruction count, user/system time, L1 cache miss ratio and branch mis-

prediction rate. Gautham et al. [9] compared the performance and energy use

of locks and software transactional memory in benchmarks from the STAMP

benchmark suite.

A variety of models have been proposed to estimate power dissipation,

based on different approaches. PMC (Performance Monitoring Counters) based

power models, build upon event selection and statistical correlation, draw con-

siderable amount of attention. Using this approach, Contreras et al. [10] esti-

mated CPU and memory power. Wang et al. [11] provided a two level power

model for multiprocessors, which uses frequency and IPC (Instructions Per Cy-

cle) as the only PMC event. Isci et al. [12] described a technique to estimate per-

component power dissipation for CPU using PMCs and used this to determine

phases of a program. Tiwari et al. [13] created an instruction level power model.

They determined a base cost for each instruction type with micro-benchmarks

158 CHAPTER 4. RESULT III

Procedure Enqueuer

1 while ! done do

2 el← Parallel_Work(pwe);

3 Enqueue(el);

Procedure Dequeuer

1 while ! done do

2 el← Dequeue();

3 Parallel_Work(pwd);

Figure 4.1: Thread procedures

and tried to clarify the inter-instruction impacts to estimate power dissipation of

compositions. Ge and Cameron [14] provided a power-aware speedup model.

They decompose the program into phases according to the degree of available

parallelism and on/off-chip access ratios that is used to capture the impact of

frequency scaling and process count. Choi et al. [15] introduced a roofline

model which is parameterized with the maximum throughputs, operation en-

ergy and power cap values. They bound the throughput with the power cap,

since energy consumption per unit of time depends on throughput, and extract

the parameters’ values using regression.

As seen above there exist some empirical studies on energy/power con-

sumption of lock-free data structures and a huge variety of power models but

we are not aware of any energy model targeting lock-free data-structures. In

this study, we aim to begin filling this gap by providing a detailed analysis of

power and performance of lock-free queues.

4.3 Framework

4.3.1 Synthetic Benchmark

4.3.1.1 Skeleton

We run the synthetic benchmark composed of the two functions described in

Figure 4.1, starting with an empty queue. Half of the threads are assigned to

be enqueuers while the remaining ones are dequeuers. We disable logical cores

(hyper-threading) and map different threads into different cores, also the num-

ber of threads never exceeds the number of cores. In addition, the mapping is

4.3. FRAMEWORK 159

done in the following way: when adding an enqueuer/dequeuer pair, they are

both mapped on the most filled but non-full socket.

The parallel sections (Parallel_Work) shall be seen as a processing activ-

ity, pre-processing for the enqueuers before they enqueue an item, and post-

processing on an item from the queue for the dequeuers. We assume that mem-

ory accesses in the parallel sections are negligible, and represent the parallel

sections as sequences of bunches of pause instructions in the benchmark; we

note pwe (resp. pwd) the number of bunches of 90 pauses (which corresponds

to 1000 cycles) that compose the parallel work in the enqueuer (resp. dequeuer).

From a high-level perspective, Enqueue and Dequeue operations follow

a retry loop pattern: a thread reads an access point to the data structure, works

locally with this view of the data structure, possibly performs memory manage-

ment actions and prepares the new desired value as an access point of the data

structure. Finally, it atomically tries to perform the change through a call to

the Compare-and-Swap primitive. If it succeeds, i.e. if the access point has not

been changed by another thread between the first read and the Compare-and-

Swap, then it goes to the next parallel section, otherwise it repeats the process.

4.3.1.2 Queue Implementations

We study some of the most well-known and studied lock-free and linearizable

queues in the literature, as implemented in NOBLE [16]. The legend depicted

in Figure 4.2 will be used throughout the paper. The aim of this work is still

to predict the behavior of any lock-free queue algorithm and not only the ones

mentioned above. These algorithms are used to validate the model that we

present in the following sections.

4.3.2 General Power Model

The power is split into three elements: the static part is the cost of turning the

machine on, the activation part incorporates a fixed cost for each socket and

each core in use, and the dynamic part is a supplementary cost that depends on

the running application.

160 CHAPTER 4. RESULT III

● Val [1] ● MS [2] ● TZ [3]

● Moi [4] ● Hof [5] ● Gid [6]

● Actual Prediction

Figure 4.2: Key legend of the graphs

In accordance with the RAPL energy counters [17–19], we further decom-

pose each part per-component, for memory, CPU, and uncore (denoted by a

superscript M, C and U, respectively):

P =
∑

X∈{M,C,U}

(
P (stat,X) + P (active,X) + P (dyn,X)

)
.

We assume that we already know the platform characteristics, i.e. all static

and active powers (they can be obtained as explained for instance in the com-

panion research report [20]), and we try to find the application-specific dynamic

powers. In order to keep the formulas readable, in the following, we denote by

P (X) the dynamic power P (dyn,X).

4.3.3 Notations and Setting

We denote by n the number of running threads that call the same operation, and

by f the clock frequency of the cores (we only consider the case where all cores

share the same clock frequency).

We recall that pwe (resp. pwd) is the amount of work in the parallel section

of an enqueuer (resp. dequeuer), as the number of bunches of 90 pauses. For

a given queue implementation, we denote by cwe (resp. cwd) the amount of

work in one try of the retry loop of the Enqueue (resp. Dequeue) operation.

Associated with these amounts of work, we define, for o ∈ {d, e}, the average

execution time of the parallel section (resp. the retry loop and a single try of the

retry loop) related to operation o as t (PSo) (resp. t (RLo) and t (SLo)).

4.4. THROUGHPUT ESTIMATION 161

In the same way, for o ∈ {d, e}, we denote by P
(X)
o (resp. P

(X)
o,PS and

P
(X)
o,RL) the dynamic power dissipated by component X in (resp. the parallel

section related to and the retry loop related to) operation o.

Finally, for o ∈ {d, e}, we denote by ro the ratio of the time that a thread

spends in the retry loop, while it is associated with operation o.

In Sections 4.4 and 4.5, in order to keep expressions as simple as possible,

we define one unit of time as λ sec, where λ is the execution time of 90 × f

pauses (as the pause instructions are perfectly scalable with clock frequency, λ

is constant). Throughput is expressed in number of operations per unit of time,

i.e. per λ secs. Finally, we derive the power in Watts.

All experiments and their underlying predictions are done on a platform

composed of a dual-socket Intel R© Xeon R© processor, with eight cores per socket.

The sizes of L3, L2 and L1 caches are 25 MB, 256 kB and 32 kB, respectively.

We run the implementations at the two extreme frequencies 1.2 GHz and

3.4 GHz, for all possible even total numbers of threads, from 2 to 16, i.e. for

n ∈ {1, . . . , 8}.

4.4 Throughput Estimation

4.4.1 Throughput Decomposition Principles

We recall that the throughput of the queue is defined as:

T = min (Te, Td) ,

where Te and Td are the enqueuers’ and dequeuers’ throughput, respectively.

As we are in steady state, one operation o is performed every t (PSo) +

t (RLo) unit of time by each thread, and n threads attempt to concurrently exe-

cute o, hence the general expression of the throughput To:

To =
n

t (PSo) + t (RLo)
.

We have seen that the parallel sections of the benchmark are full of pauses,

thus the time t (PSo) spent in a given parallel section is straightforwardly given

162 CHAPTER 4. RESULT III

by t (PSo) = pwo/f . The execution time of dequeue and enqueue operations is

more problematic, for two main reasons. Primo, because of the lock-free nature

of the implementations. As the number of retries is unknown, the time spent in

the function call is not trivially computable. Secundo, when the activity on the

queue is high, the threads compete for accessing a shared data, and they stall

before actually being able to access the data. We name this as the expansion, as

it leads to an increase in the execution time of a single try of the retry loop.

The contention on the queue is twofold. At any time, and even if it could

be negligible, threads that perform the same operation disturb each other, since

they try to access the same shared data. In addition, when the queue is mostly

empty, enqueuers and dequeuers try to access the same data, then interference

occurs; enqueuers make dequeuers stall and vice versa. We call the former case

intra-contention, and the latter one inter-contention.

As expected, we have noticed a marked difference between the execution

time of a dequeue operation returning NULL and one that returns a queue item,

i.e. whether the queue was empty or contained at least one item. That is why we

decompose Td into throughput of dequeue on empty queue T (+)
d (that returns

a NULL item), and dequeue on non-empty queue T (-)
d (that does not return

NULL).

Further, the impact of inter-contention on dequeue operations is negligible

compared to the impact of the queue being empty; therefore we ignore inter-

contention for dequeues.

In contrast, the queue being empty does not notably change the execution

time of the enqueue operation, while dequeue operations can impact the behav-

ior of concurrent enqueue operations greatly when the queue is close to empty.

Hence, we split Te into the enqueue throughput T (+)
e when the queue is not

inter-contended, and the enqueue throughput T (-)
e when the queue experiences

the maximum possible inter-contention.

These basic throughputs fulfill the two following inequalities: T (+)
d ≥ T (-)

d

and T (+)
e ≥ T (-)

e .

Thanks to this separation into the four basic throughput cases T (+)
d , T (-)

d ,

T (+)
e and T (-)

e , we earn a better understanding of the factors that influence the

4.4. THROUGHPUT ESTIMATION 163

general throughput, and we deinterlace their dependencies, which dramatically

decreases the number of points in the parallel section sizes set where we need

to take measurements for our modeling. More precisely, by construction, T (+)
d

and T (-)
d do not indeed depend on pwe, while T (+)

e and T (-)
e do not depend on

pwd . Nonetheless Td (resp. Te) is defined as a barycenter between T (+)
d and

T (-)
d (resp. T (-)

e and T (+)
e), whose weights depend on both pwd and pwe.

In Section 4.4.2, we describe the basic throughputs, we combine them in

Section 4.4.3, then we explain how to instantiate the parameters of the model in

Section 4.4.4, and finally exhibit results in Section 4.4.5.

4.4.2 Basic Throughputs

We aim in this section at estimating the throughput T (b)
o of one of the basic op-

erations described in the previous subsection, where o ∈ {e, d} and b ∈ {+,-}.
We assume that T (b)

o depends only on pwo, in addition to the tacit dependen-

cies on the clock frequency, number of threads and queue implementation. We

denote by cw
(b)
o the amount of work in a single try of the retry loop related to

operation o in case b when the queue is not intra-contended.

4.4.2.1 Low Intra-Contention

We study in this section the low intra-contention case, i.e. when (i) the threads

do not suffer from expansion due to threads that perform the same operation,

and (ii) a success is obtained with a single try of the retry loop. As it appears

in Figure 4.3, we have a cyclic execution, and the length of the shortest cycle

is t (PSo) + t
(

SL(b)
o

)
. Within each cycle, every thread performs exactly one

successful operation, thus the throughput is easy to compute:

T (b)
o =

n

t (PSo) + t
(

SL(b)
o

) =
nf

pwo + cw
(b)
o

. (4.1)

164 CHAPTER 4. RESULT III

Cycle

Retry

Loop Parallel Work

Figure 4.3: Cyclic execution under low intra-contention

4.4.2.2 High Intra-Contention

As explained in Section 4.4.1, in this case, the direct evaluation of the execution

time of a retry loop is more complex, but we have experimentally observed that

the throughput is approximately linear with the expected number of threads

that are in the retry loop at a given time. In addition, this expected number is

almost linear to the amount of work in the parallel section. As a result, a good

approximation of the throughput, in high intra-contention cases, is a function

that is linear with the amount of work in the pwo.

4.4.2.3 Frontier

Figure 4.4: Intra-contention frontier

We now have to estimate whether the queue is highly intra-contended.

There exists a simple lower bound of the amount of work in the parallel

section, such that there exists an execution where the threads are never failing

in their retry loop. We plot in Figure 4.4 an ideal execution with n = 3 threads

4.4. THROUGHPUT ESTIMATION 165

and t (PSo) = (n−1)×t
(

SL(b)
o

)
. In this execution, all threads always succeed

at their first try in the retry loop. Nevertheless, if we shorten the parallel section,

then there is not enough parallel potential any more, and the threads will start

to fail: the queue leaves the low intra-contention state.

In practice, this lower bound (t (PSo) = (n− 1)× t
(

SL(b)
o

)
) is actually a

good approximation for the critical point where the queue switches its state.

4.4.3 Combining Basic Throughputs

We are given parallel sections sizes, and show how to link the throughput of the

four basic operations, with the dequeuers’ and enqueuers’ throughput. There

are two possible states for the queue: either it is mostly empty (i.e. some NULL

items are dequeued), or it gets larger and larger.

In the first case, some of the dequeues will occur on an empty queue. In

1 unit of time, Te items are enqueued. These items are dequeued in Te/T (-)
d

units of time (the queue is non-empty while they are dequeued), which leads to

a slack of 1− Te/T (-)
d , where dequeues of NULL items can take place at a rate

T (+)
d , hence the following throughput formula:

Td =
Te

T (-)
d

× T (-)
d +

(
1− Te

T (-)
d

)
× T (+)

d . (4.2)

Concerning the enqueuers, we use the same assumption on inter-contention

as used on intra-contention in Section 4.4.2.2, saying that the throughput is

linear with the expected number of threads inside the retry loop. Here, the

expected number of threads inside the dequeue operation is proportional to the

ratio rd of the time spent by one dequeuer in its dequeue operation. We do not

know t (RLd), but we know that in average, to complete a successful operation,

a thread needs t (PSd) + t (RLd) units of time, and among this time it will

spend t (PSd) in the parallel section. Therefore

rd = 1− t (PSd) /(t (PSd) + t (RLd)) = 1− Td × pwd

n× f
.

The minimum inter-contention is reached when this ratio is 0, while the maxi-

166 CHAPTER 4. RESULT III

mum is obtained when it is 1, thus:

Te =
Td × pwd

n× f
× T (+)

e +

(
1− Td × pwd

n× f

)
× T (-)

e . (4.3)

In the second case, enqueuers and dequeuers do not access to the same part

of the queue, thus inter-contention does not take place, then Te = T (+)
e , and all

dequeues return a non-NULL item, hence Td = T (-)
d .

The discrimination of these two cases is trivial when enqueuers’ and de-

queuers’ throughput are given: the queue is in the first state (mostly empty) if

and only if Te ≤ Td .

Reversely, if we know the four basic throughputs, and aim at reconstituting

the dequeuers’ and enqueuers’ throughput, several solutions could be consis-

tent.

Theorem 1. Given
(
T (+)

e , T (-)
e , T (+)

d , T (-)
d

)
, there exists a solution (Td , Te)

with a growing queue if and only if T (+)
e > T (-)

d . In addition, this solution is

unique and is such that Te = T (+)
e and Td = T (-)

d .

Proof. (⇒) If the queue is growing, then Te > Td . Moreover, dequeues never

occur on an empty queue, hence Td = T (-)
d , and there is no inter-contention,

thus Te = T (+)
e .

(⇐) Let us assume now that T (+)
e > T (-)

d . Te = T (+)
e and Td = T (-)

d is a valid

solution, such that the queue is growing, since then Te > Td .

By construction, Te ≤ T (+)
e ; if we had another solution such that the queue

grows and Te < T (+)
e , it would mean that enqueues are inter-contended, which

is possible only when the queue is mostly empty. This is absurd, hence the

uniqueness.

Theorem 2. Given
(
T (+)

e , T (-)
e , T (+)

d , T (-)
d

)
, there exists a solution (Td , Te)

with a mostly empty queue if and only if

T (-)
e

T (-)
d

≤ 1− pwd

n× f

(
T (+)

e − T (-)
e

)
. (4.4)

In addition, this solution is unique and is given by Equations 4.3 and 4.2.

4.4. THROUGHPUT ESTIMATION 167

Proof. (⇒) Let a solution with a mostly empty queue. By construction, the

throughputs follow Equations 4.3 and 4.2. As Te is an increasing function ac-

cording to Td (because T (+)
e ≥ T (-)

e), we derive

Te ≥
T (-)

d × pwd

n× f
× T (+)

e +

(
1− T

(-)
d × pwd

n× f

)
× T (-)

e .

The queue is mostly empty, thus the dequeues of non-NULL items have to be

faster than the enqueues, which translates into T (-)
d ≥ Te. The two inequalities

combined show the implication.

(⇐) Let us assume now that Inequality 4.4 is fulfilled. Equation 4.2 can be

rewritten into

Te =
Td − T

(+)
d

1− T
(+)

d

T
(-)

d

.

Let us consider now Te
′ and Te

′′ two functions of Td
′ that fulfill the following

system of equations:





Te
′
(
Td
′
)

=
Td

′−T
(+)

d

1−
T

(+)

d

T
(-)

d

Te
′′
(
Td
′
)

=
Td

′×pwd

n×f × T (+)
e +

(
1− Td

′×pwd

n×f

)
× T (-)

e .

We have Te
′
(
T (+)

d

)
= 0 and Te

′
(
T (-)

d

)
= T (-)

d . According to Inequality 4.4,

we know also that Te
′′
(
T (-)

d

)
≤ T (-)

d . In addition, Te
′′ is a linearly increasing

function of Td
′ and Te

′ a linearly decreasing function of Td
′. This shows that

there exists a unique Td such that Te
′ (Td) = Te

′′ (Td), and if we define Te as

Te = Te
′ (Td) = Te

′′ (Td), the pair (Td , Te) is such that





T (-)
d ≤ Td ≤ T

(+)
d

T (-)
e ≤ Te ≤ T (+)

e

Te ≤ Td

.

This implies that it is a solution with an empty queue, and we have shown that

this solution is unique.

168 CHAPTER 4. RESULT III

Corollary 1. Given
(
T (+)

e , T (-)
e , T (+)

d , T (-)
d

)
, there exists at least one solution

(Td , Te).

Proof. We show that if the inequality of Theorem 1 is not fulfilled, i.e. if T (+)
e ≤

T (-)
d , then the inequality of Theorem 2 is true. We have indeed

T (-)
d ×

(
1− pwd

n× f

(
T (+)

e − T (-)
e

))
− T (-)

e

=T (-)
d ×

(
1− pwd × T

(+)
e

n× f

)
− T (-)

e ×
(

1− pwd × T
(-)

d

n× f

)

≥T (-)
d ×

(
1− pwd × T

(+)
e

n× f

)
− T (+)

e ×
(

1− pwd × T
(-)

d

n× f

)

≥T (-)
d − T (+)

e

T (-)
d ×

(
1− pwd

n× f

(
T (+)

e − T (-)
e

))
− T (-)

e ≥ 0,

which proves the Corollary.

One can notice that if T (+)
e > T (-)

d and Inequality 4.4 are fulfilled and

the queue could be either mostly empty or growing. In this case, we choose,

for each operation, the mean of the two solutions, in order to minimize the

discontinuities.

4.4.4 Instantiating the Throughput Model

We recall that, for all o and b, T (b)
o depends only on pwo, while Te and Td

depend on both pwd and pwe. We denote now by Td(pwd , pwe) (respec-

tively Te(pwd , pwe)) the dequeuers’ (respectively enqueuers’) throughput as

the amount of work in the parallel section of the dequeuers is pwd and en-

queuers’ one is pwe. The estimate of a value is denoted by a hat on top, while

the measured value does not wear the hat.

Let ps = 1, pm = 20 and pb = 1000 be three distinctive amounts of

work, that corresponds to different states of the execution. If pwo = pb, we

can neglect the impact of operation o on the queue, pwo = pm is a low intra-

contention case since the non-expanded critical sections are experimentally less

4.4. THROUGHPUT ESTIMATION 169

than 2 units of time, and pwo = ps corresponds to a highly inter- or intra-

contention case. We note the we cannot use a 0 size as amount of work since

it leads to undesirable results due to the back-to-back effect (a thread does not

allow other threads to access the queue for several consecutive iterations).

4.4.4.1 Low Intra-Contention

The basic throughputs that are not intra-contended can be spawned from cw
(b)
o ,

which we try to estimate here. We pick four points where the basic throughputs

are easy to approximate. We have Td(pm, ps) < Te(pm, ps), as the order of

magnitude of the amounts of work in the retry loops is less than a few units.

For the same reason, at this point, we are in low intra-contention from the de-

queuers’ point of view. Altogether,

Td(pm, ps) = T (-)
d (pm) =

n× f

pm + cw
(-)
d

, hence

̂
cw

(-)
d =

n× f

Td(pm, ps)
− pm.

Then, according to Equation 4.2, we have

nf

pm +
̂
cw

(+)
d

= T (+)
d (pm)

nf

pm +
̂
cw

(+)
d

=
Td(pm, pb)− Te(pm, pb)

1−

(
pm+

̂
cw

(-)

d

)
×Te(pm,pb)

n×f

,

from which we can extract
̂
cw

(+)
d since we know already

̂
cw

(-)
d .

In the same way, we can compute
̂
cw

(+)
e then

̂
cw

(-)
e , by using (pb, pm) and

(ps, pm).

4.4.4.2 High Intra-Contention

We aim here at estimating T (b)
o on a high intra-contention point. ps = 1 and

pm = 20 are such that Td(ps, pm) ≥ Te(ps, pm). According to Equation 4.2,

170 CHAPTER 4. RESULT III

we have

Td(ps, pm) = Te(ps, pm) +


1− Te(ps, pm)

T̂ (-)
d (ps)


× T̂ (+)

d (ps).

In addition, if Td(ps, ps) ≥ Te(ps, ps), then

Td(ps, ps) = Te(ps, ps) +


1− Te(ps, ps)

T̂ (-)
d (ps)


× T̂ (+)

d (ps),

otherwise, Td(ps, ps) = T̂ (-)
d (ps). In both cases, we can find the two unknowns

T̂ (-)
d (ps) and T̂ (+)

d (ps) thanks to the two equations.

This last point is also used in the same way for enqueuers: if Td(ps, ps) ≥
Te(ps, ps), then

Te(ps, ps) =
Td(ps, ps)× ps

n× f
× T̂ (+)

e (ps)

+

(
1− Td(ps, ps)× ps

n× f

)
× T̂ (-)

e (ps),

otherwise, Te(ps, ps) = T̂ (+)
e (ps).

Like previously, we have Td(pm, ps) < Te(pm, ps), hence T̂ (+)
e (ps) =

Te(pm, ps). This implies that in any cases we can compute T̂ (+)
e (ps), but we

do not have access to T̂ (-)
e (ps) if Td(ps, ps) < Te(ps, ps). In this case, the

bottleneck of the queue is likely to be the dequeuers, hence we set the value

T̂ (-)
e (ps) = T̂ (+)

e (ps) by default.

All T̂ (b)
o are then obtained by joining T̂ (b)

o (ps) to the leftmost point of the

low intra-contention part:

4.4. THROUGHPUT ESTIMATION 171

T̂ (b)
o (pwo) =





f

̂
cw

(b)
o

−T̂
(b)

o (ps)

(n−1)
̂
cw

(b)
o −ps

× (pwo − ps) + T̂ (b)
o (ps)

if pwo ≤ (n− 1)
̂
cw

(b)
o

n×f

pwo+
̂
cw

(b)
o

otherwise.

Finally, dequeuers’ and enqueuers’ throughput are reconstituted as explained

in Section 4.4.3: if Equation 4.4 is fullfilled, then they are computed through

Equations 4.2 and 4.3 that can be rewritten as:





T̂d(pwd , pwe) =

T̂
(+)

d
(pwd)+T̂

(-)
e (pwe)

(
1−

T̂
(+)

d
(pw

d
)

T̂
(-)

d
(pw

d
)

)

1−
pw

d
nf

(
T̂

(+)
e (pwe)−T̂

(-)
e (pwe)

)(
1−

T̂
(+)

d
(pw

d
)

T̂
(-)

d
(pw

d
)

)

T̂e(pwd , pwe) =
T̂

d
(pwd ,pwe)×pwd

n×f × T̂ (+)
e (pwe)

+

(
1− T̂d

(pwd ,pwe)×pwd

n×f

)
× T̂ (-)

e (pwe).

Otherwise, T̂d(pwd , pwe) = T̂ (-)
d (pwd) and T̂e(pwd , pwe) = T̂ (+)

e (pwe).

4.4.5 Results

The throughput predictions are plotted in Figures 4.5 and 4.6 for the enqueuers,

and in Figure 4.7 for the dequeuers (the legend is in Figure 4.2). Points are mea-

surements, while lines are predictions. We will follow this rule for all compar-

isons between prediction and measurement. In the actual execution, the queue

goes through a transient state when the amount of work in the parallel section

is near the critical point, but the prediction is not so far from the actual mea-

surements, as illustrated in Figures 4.5 and 4.6. Under intra-contention, some

of the curves get flat, since only one thread can be succeeding at the same time,

172 CHAPTER 4. RESULT III

n=2 n=5 n=8

0

1

2

0

2

4

6

1.2 G
H

z
3.4 G

H
z

10 1000 10 1000 10 1000
Parallel work in enqueue

E
n
q
u
eu

e
th

ro
u
gh

p
u
t

Figure 4.5: Enqueue throughput with pwd = 7

according to the definition of the retry loop. Some curves even decrease be-

cause the successful one is stalled by other failing ones due to serialization of

the atomic primitives, namely expansion. The slope presumably indicates the

density of atomic primitives in retry loops which depends on the algorithm.

The comparison of Figures 4.5 and 4.6 illustrates the impact of inter-contention.

A decrease of the highest point of Te, due to an increase of cwe, can be ob-

served for the more inter-contended case. When cwe increases, some critical

points shift slightly towards the right as the intra-contention starts with a larger

pwe. In Figure 4.7, decomposition of Td is apparent. When enqueue rate is low,

i.e. when pwe is high, Td is ruled by T (+)
d due to majority of NULL dequeues,

and it tends towards T (-)
d when the enqueue rate increases.

Graphs on a wider set of parameters are available in the companion research

report [20], in the form of animated figures.

4.5. POWER ESTIMATION 173

n=2 n=5 n=8

0

1

2

0

2

4

6

1.2 G
H

z
3.4 G

H
z

10 1000 10 1000 10 1000
Parallel work in enqueue

E
n
q
u
eu

e
th

ro
u
gh

p
u
t

Figure 4.6: Enqueue throughput with pwd = 50

4.5 Power Estimation

We recall that we are interested only in the dynamic powers as we assume that

static and activation powers are known.

4.5.1 CPU Power

Firstly, as we map each thread on a dedicated core, there is no interference

between the CPU power of different cores, so we can compute the dynamic

power as

P (C) = n× P (C)
e + n× P

(C)
d . (4.5)

Secondly, we assume that we can segment time and consider that, given a

thread performing operation o, the power dissipated in the retry loop and the

174 CHAPTER 4. RESULT III

n=2 n=5 n=8

0.4

0.8

1.2

1.6

1

2

3

4

1.2 G
H

z
3.4 G

H
z

10 1000 10 1000 10 1000
Parallel work in enqueue

D
eq

u
eu

e
th

ro
u
gh

p
u
t

Figure 4.7: Dequeue throughput with pwd = 7

power dissipated in the parallel section are independent. There only remains to

weight the previous powers by the time spent in each of these regions:

P (C)
o = ro × P

(C)
o,RL + (1− ro)× P

(C)
o,PS . (4.6)

As shown in Section 4.4.3, the ratio can be obtained through

ro = 1− To × pwo

n× f
. (4.7)

Altogether, we obtain the final formula for dynamic CPU power

P (C) = n


 ∑

o∈{e,d}

P
(C)
o,RL +

To × pwo ×
(

P
(C)
o,PS − P

(C)
o,RL

)

n× f


 (4.8)

4.5. POWER ESTIMATION 175

4.5.2 Memory and Uncore Power

We have noticed in [20] that the dynamic memory power is proportional to

the intensity (number of units of memory accessed per unit of time) of main

memory accesses and remote accesses, when the threads read separate places

of the memory.

Here, the data structure does not directly involve the main memory since

we keep its size reasonably bounded (if the queue reaches the maximum size,

we suspend the measurements, empty the queue, and resume), hence the power

dissipation in memory is only due to remote accesses, which only appears as

the threads are spread across sockets (i.e. when n > 4).

Moreover, as the parallel sections are full of pauses, communications can

only take place in the retry loop, and there is no dynamic memory power dissi-

pated in the parallel sections. Concerning the retry loops, we make the follow-

ing assumption: the amount of data accessed per second in a retry loop depends

on the implementation, but given an implementation, once a thread is in the retry

loop, it will always try to access the same amount of data per second. When

the queue is highly intra-contended, if a thread fails then it will retry and will

access the data in the same way as in the previous try; and if there is expansion,

then the thread will still try to access the data for the whole time it is in the retry

loop.

In addition, the dequeuers (and the same line of reasoning holds for the en-

queuers) tries here to access the same data. Therefore either memory requests

are batched together when sent outside the socket, or the Home Agent keeps

track of the previous requests. This implies that the number of threads attempt-

ing to access the data does not impact the dynamic memory power greatly when

the rate of requests is high.

All things considered, as a thread working on operation o spends a fraction

ro of its time inside its retry loop, we obtain that the dynamic memory power

dissipated in the retry loop is proportional to ro (times the amount of data ac-

cessed per unit of time in the retry loop, which is a constant). Hence

P (M) = re × ρ(M)
e + rd × ρ

(M)
d , (4.9)

176 CHAPTER 4. RESULT III

where ρ
(M)
e and ρ

(M)
d are constants.

The dynamic uncore power is computed exactly in the same way as the

dynamic memory power.

4.5.3 Instantiating the Power Model

We use once again ps = 1, pm = 20 and pb = 1000 as three distinctive amounts

of work, that allows easy approximations for the power dissipation expressions.

We have seen that if X ∈ {M, U}, then P (X) = rd × ρ
(X)
d + re ×

ρ
(X)
e , which can be approximated at (pwd , pwe) = (pb, ps) by P (X)(pb, ps) =

re(ps)× ρ
(X)
e , since rd is then nearly 0. It implies that

ρ̂
(X)
e =

P (X)(pb, ps)

1− Te(pb,ps)×ps

n×f

.

We obtain ρ̂
(X)
d similarly at (pwd , pwe) = (ps, pb).

Concerning the dynamic CPU power, we firstly estimate the power dissi-

pated in the parallel sections. According to the implementation, the CPU power

dissipated by the parallel section of enqueuers and dequeuers is the same for

both, and this power does not depend on the amount of work. These restrictions

are not a loss of generality, since the aim here is to study the queue implemen-

tations. It can then be estimated by using (pb, pb), where the ratios ro can be

considered as 0, which leads to

̂
P

(C)
o,PS =

P (C)(pb, pb)

2n
.

We reuse the point (pb, ps), where rd is very close to 0, to derive that

P (C) = n

(
re(ps)×̂

P
(C)
e,RL + (1− re(ps))

̂
P

(C)
e,PS

)
+ n

̂
P

(C)
d,PS ,

which is equivalent to

̂
P

(C)
e,RL =

P (C)(pb, ps)

n
(

1− Te(pb,ps)ps

n×f

) −
(

2

1− Te(pb,ps)ps

n×f

− 1

)
̂
P

(C)
o,PS

4.5. POWER ESTIMATION 177

Once again, we obtain
̂
P

(C)
d,RL with the same line of reasoning at (pwd , pwe) =

(ps, pb).

Finally, P̂ (M) and P̂ (U) (resp. P̂ (C)) are computed by using Equation 4.9

(resp. Equations 4.5 and 4.6), and the estimates of the ratios that are issued

from Section 4.4.

4.5.4 Results

pwe=2 pwe=7 pwe=50 pwe=1000

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

p
w

d
=

2
p
w

d
=

7
p
w

d
=

50
p
w

d
=

1000

2 4 6 8 2 4 6 8 2 4 6 8 2 4 6 8
Number of threads

D
y
n
am

ic
 m

em
or

y
 p

ow
er

Figure 4.8: Dynamic memory power at f = 3.4 GHz

As the retry loop, which is particular to each implementation, is mainly

composed of memory operations, the main difference between the various im-

plementations in terms of power occurs in the dynamic memory power, which

we represent in Figure 4.8 (legend is in Figure 4.2).

Overall, the prediction reacts correctly to the variations of parallel section

sizes, and some specifics of the algorithms are caught, e.g. Hof detached from

178 CHAPTER 4. RESULT III

the others when pwe = 50 or Gid mostly well-predicted both absolutely and

relatively as the less power-dissipating implementation.

One can observe once again the asymmetry between enqueue and dequeue

operations by comparing the power values at (pwd , pwe) = (2, 1000) and

(1000, 2); this asymmetry is predicted by the model, with a lower impact though.

Other power comparisons can be found in the companion research report [20],

along with the results about the last metric, namely energy per operation.

4.6 Towards Realistic Applications

The performance and energy behavior of an application using a lock-free queue

depends on both the application specific code and the implementation of the

data structure. For applications where the queue is used in a steady state man-

ner, predictions can be made using the model instantiated with the synthetic

benchmark, combined with information about the behavior of the application

specific code. What is needed is:

• The size of the parallel work part of the application, both for enqueuers

and dequeuers. These may be distributions rather than single values.

• The dynamic power for these parts (as it may differ from that of the par-

allel work in the synthetic benchmark).

4.6.1 Description of Mandelbrot Set Application

As a case-study we have used an existing application1 that computes and ren-

ders an 8192 × 8192 pixel image of the Mandelbrot set [22] in parallel using

the producer/consumer pattern. The program uses a concurrent queue to com-

municate between two major phases:

• Phase 1 consists of computing the number (with a maximum of 255) of it-

erations for a given set of points within a chosen region of the image. The

results for each region together with its coordinates are then enqueued.

1Previously used for evaluation in [21].

4.6. TOWARDS REALISTIC APPLICATIONS 179

• Phase 2 consists of, for each region dequeued from the queue, computing

the RGB values for each contained point and draw these pixels to the

resulting image.

Half of the threads perform phase 1 and the rest perform phase 2. The size

of each square region is chosen to be one of 16×16, 4×4, or 2×2 pixels which

also determines the amount of work to perform per queue operation and, hence,

the level of contention. Similarly to the synthetic benchmark, the application

uses a dense pinning strategy, pinning producer/consumer pairs to consecutive

pairs of cores.

4.6.2 Mandelbrot Prediction

There are two main differences between the Mandelbrot application and the

synthetic benchmark: (i) the instructions in the parallel section differ; and

(ii) the size of the parallel section for producers varies in Mandelbrot.

Firstly, we need to measure the CPU power dissipation for Mandelbrot; we

cannot expect to be able to predict the power dissipation of any application that

uses a queue without having any knowledge about the power characteristics

of the application. In contrast, memory power dissipation for the computa-

tion intensive Mandelbrot parallel section is negligible in comparison to queue

operations; hence, the dynamic memory power that we have measured and ex-

trapolated in the synthetic benchmark is unchanged.

Secondly, Mandelbrot provides a variety of producer parallel works. To

deal with this, the pixel region is decomposed row-wise in an interleaved man-

ner among producer threads. This decomposition leads to long enough execu-

tion intervals in which the parallel sections of the producer threads are similar

and constant. This is due to the computationally expensive pixels belonging

to the Mandelbrot set being concentrated together in the center of the domain

and surrounded by cheaper pixels which diverge quickly. This characteristic is

congruent with our model where the data structure is used in a steady state man-

ner. Thus, predictions can be made using the instantiated model over a linear

combination of execution intervals.

180 CHAPTER 4. RESULT III

We measure the latency of the computation intensive producer and con-

sumer parallel works for each frequency and contention level (2 × 2, 4 × 4,

16 × 16). For this process, we make use of CPUID, RDTSC and RDTSCP

instructions as specified in [23]. The distribution of parallel works reveals that

there are two main groups for producers, that corresponds to regions belonging

to the Mandelbrot set or not. Concerning 2× 2 contention, due to the wide dis-

tribution, we gather the parallel works into bins of width 10 pauses; the number

of elements in the ith bin is then denoted by size(i) and its average amount of

work by pw
(i)
e . We scale the width of bins linearly with the area of the region

for other contention levels. For the consumers, parallel works are similar for

the whole execution.

To make predictions, we assume that all consumer/producer pair (pwd, pw
(i)
e)

is executed in a steady state during an interval of time. For each frequency,

thread, algorithm and contention of interest, we obtain the throughput T (i) =

T (pwd, pw
(i)
e) and the powers P

(X)
i = P (X)(pwd, pw

(i)
e) for this interval from

the corresponding synthetic benchmark input. The only part of the model, in-

stantiated with the synthetic benchmark that needs to be replaced by an appli-

cation specific entry, is the dynamic CPU power parameter. Then, we combine

intervals to obtain total execution time and average power dissipation. This ac-

cumulation strategy should be applied with care as the synthetic benchmark is

based upon the steady state assumption. An interval which is assumed to take

place with a mostly empty queue, could actually not be in this state due to left-

over items from the previous interval. Although our model is capable of taking

this initial state into consideration and provide metrics accordingly, we assume

that each interval is independent. This approximation is reasonable since the

consumer parallel work corresponds to the producer bin with one of smallest

values, hence a mostly empty queue.

Note that we have implemented a constant back-off equivalent to the con-

sumer parallel work, after dequeuing a NULL item instead of retrying immedi-

ately, because of several advantages. It cannot decrease the performance, since

either the queue is growing, and then the back-off never takes place, or the queue

is mostly empty, and then the producers are the bottleneck of the queue. Con-

4.6. TOWARDS REALISTIC APPLICATIONS 181

versely, it can increase the performance by diminishing the queue contention.

Those motivations drove the design of the synthetic benchmark, that we can

accordingly reuse here.

For each frequency, thread, algorithm and contention configuration, execu-

tion time and power estimates for Mandelbrot application are obtained with the

following equations:

Timetotal =

BinCount∑

i=1

size(i) × λ

T (i)

P (X) =

BinCount∑
i=1

(size(i) × λ
T (i))× P

(X)
i

Timetotal

CPU power estimation is straightforward and memory power results are

very similar to the synthetic benchmark in Figure 4.8, so we just present and

discuss them in [20].

In Figure 4.9, execution time estimates catch the queue algorithm specific

trend for high contention cases, which exhibit a more complicated behavior

than the low contention cases. Also, they reveal the impact of different queue

implementations to overall application performance, which does not appear un-

der low contention. For the highest contention level with region size 2 × 2, an

increasing trend in execution time is observed after 8 threads for many algo-

rithms. The reason is the increasing latency of atomic synchronization primi-

tives originating from two main sources: (i) inter-socket communication, which

starts after 8 threads due to our pinning strategy, and (ii) the increasing serial-

ization (expansion) probability for atomic primitives due to increasing number

of threads that interfere in the retry loop. The ratio of atomic primitives and

the size of queue operations show variations between algorithms which in turn

leads to different behaviors. For the 4 × 4 contention case, the difference be-

tween algorithms can still be observed but the parallel sections are large enough

to avoid interference in the retry loop. Therefore, execution time decreases with

the increasing number of threads. The difference between algorithms is due to

182 CHAPTER 4. RESULT III

Contention=2x2 Contention=4x4 Contention=16x16

25

50

75

10

20

30

1.2 G
H

z
3.4 G

H
z

4 8 12 16 4 8 12 16 4 8 12 16
Total Number of Threads

E
x
ec

u
ti

on
 T

im
e

(s
ec

)

Figure 4.9: Mandelbrot Execution Time

different queue operation sizes which loses its significance gradually with the

decreasing contention level, as observed in low contention cases.

4.7 Conclusion

In this paper we have:

(i) proposed models for predicting the throughput and power behavior of lock-

free concurrent queues under steady state usage;

(ii) shown how these models can be instantiated for the queue implementations

and machine on hand using 10 measurements per frequency and number of

threads via a synthetic benchmark; and

(iii) demonstrated that the energy behavior of a parallel application that uses

a lock-free queue in a steady state manner can be predicted using these mod-

els and only a small amount of queue-implementation-independent empirical

BIBLIOGRAPHY 183

information about the application.

As a future work, it would be of interest to study the strength of the model

that has been presented here by testing it on other applications, in particular on

more memory-intensive ones.

Furthermore, the model can hopefully be extended to several directions.

While staying focused on the queue data structure, lock-based implementations

may be included, and behave in a similar way as their lock-free counterparts.

To conclude, it would be interesting to generalize the model to other data types.

Bibliography

[1] J. D. Valois, “Implementing Lock-Free Queues,” in Proceedings of International

Conference on Parallel and Distributed Systems (ICPADS), December 1994, pp.

64–69.

[2] Maged M. Michael and Michael L. Scott, “Simple, fast, and practical non-blocking

and blocking concurrent queue algorithms,” in Proceedings of the ACM Symposium

on Principles of Distributed Computing (PoDC). 1996, pp. 267–275, ACM.

[3] Philippas Tsigas and Yi Zhang, “A simple, fast and scalable non-blocking con-

current FIFO queue for shared memory multiprocessor systems,” in Proceedings

of the ACM Symposium on Parallelism in Algorithms and Architectures (SPAA).

2001, pp. 134–143, ACM.

[4] Mark Moir, Daniel Nussbaum, Ori Shalev, and Nir Shavit, “Using elimination to

implement scalable and lock-free fifo queues,” in Proceedings of the ACM Sympo-

sium on Parallelism in Algorithms and Architectures (SPAA). 2005, pp. 253–262,

ACM.

[5] Moshe Hoffman, Ori Shalev, and Nir Shavit, “The baskets queue,” in Proceedings

of the International Conference on Principle of Distributed Systems (OPODIS).

2007, pp. 401–414, Springer.

[6] Anders Gidenstam, Håkan Sundell, and Philippas Tsigas, “Cache-aware lock-

free queues for multiple producers/consumers and weak memory consistency,” in

Proceedings of the International Conference on Principle of Distributed Systems

(OPODIS). 2010, pp. 302–317, Springer.

184 CHAPTER 4. RESULT III

[7] Jack J. Dongarra and Peter H. Beckman, “The international exascale software

roadmap,” International Journal of High Performance Computing Applications

(IJHPCA), vol. 25, no. 1, pp. 3–60, 2011.

[8] Nicholas Hunt, Paramjit Singh Sandhu, and Luis Ceze, “Characterizing the per-

formance and energy efficiency of lock-free data structures,” in Workshop on In-

teraction between Compilers and Computer Architectures (INTERACT). 2011, pp.

63–70, IEEE Computer Society.

[9] Ashok Gautham, Kunal Korgaonkar, Patanjali SLPSK, Shankar Balachandran, and

Kamakoti Veezhinathan, “The implications of shared data synchronization tech-

niques on multi-core energy efficiency,” in Workshop on Power-Aware Computing

Systems. 2012, USENIX Association.

[10] Gilberto Contreras and Margaret Martonosi, “Power prediction for intel xscale

processors using performance monitoring unit events,” in Proceedings of Inter-

national Symposium on Low Power Electronics and Design (ISLPED). 2005, pp.

221–226, ACM.

[11] Shinan Wang, Hui Chen, and Weisong Shi, “Span: A software power analyzer for

multicore computer systems,” Sustainable Computing: Informatics and Systems,

vol. 1, no. 1, pp. 23–34, 2011.

[12] Canturk Isci and Margaret Martonosi, “Runtime power monitoring in high-end

processors: Methodology and empirical data,” in International Symposium on

Microarchitecture (MICRO). 2003, pp. 93–104, ACM/IEEE Computer Society.

[13] Vivek Tiwari, Sharad Malik, and Andrew Wolfe, “Power analysis of embedded

software: a first step towards software power minimization,” in Proceedings of the

IEEE/ACM International Conference on Computer-Aided Design (ICCAD). 1994,

pp. 384–390, IEEE Computer Society / ACM.

[14] Rong Ge and Kirk W. Cameron, “Power-aware speedup,” in Proceedings of the

International Parallel and Distributed Processing Symposium (IPDPS). 2007, pp.

1–10, IEEE.

[15] Jee W. Choi, Marat Dukhan, Xing Liu, and Richard W. Vuduc, “Algorithmic time,

energy, and power on candidate HPC compute building blocks,” in Proceedings of

the International Parallel and Distributed Processing Symposium (IPDPS). 2014,

pp. 447–457, IEEE Computer Society.

BIBLIOGRAPHY 185

[16] Håkan Sundell and Philippas Tsigas, “NOBLE: non-blocking programming sup-

port via lock-free shared abstract data types,” SIGARCH Computer Architecture

News, vol. 36, no. 5, pp. 80–87, 2008.

[17] Howard David, Eugene Gorbatov, Ulf R. Hanebutte, Rahul Khanna, and Christian

Le, “RAPL: memory power estimation and capping,” in Proceedings of Inter-

national Symposium on Low Power Electronics and Design (ISLPED). 2010, pp.

189–194, ACM.

[18] Shirley Browne, Jack J. Dongarra, Nathan Garner, George Ho, and Philip Mucci,

“A portable programming interface for performance evaluation on modern proces-

sors,” International Journal of High Performance Computing Applications (IJH-

PCA), vol. 14, no. 3, pp. 189–204, 2000.

[19] Vincent M. Weaver, Matt Johnson, Kiran Kasichayanula, James Ralph, Piotr

Luszczek, Daniel Terpstra, and Shirley Moore, “Measuring energy and power

with PAPI,” in Proceedings of International Conference on Parallel Processing

Workshops (ICPPW). 2012, pp. 262–268, IEEE Computer Society.

[20] Aras Atalar, Anders Gidenstam, Paul Renaud-Goud, and Philippas Tsigas, “Mod-

eling energy consumption of lock-free queue implementations,” Tech. Rep.

2014:15, Chalmers University of Technology, 2014.

[21] Håkan Sundell, Anders Gidenstam, Marina Papatriantafilou, and Philippas Tsigas,

“A lock-free algorithm for concurrent bags,” in Proceedings of the ACM Sympo-

sium on Parallelism in Algorithms and Architectures (SPAA). 2011, pp. 335–344,

ACM.

[22] Benoit B. Mandelbrot, “Fractal aspects of the iteration of z → λz(1 − z) for

complex λ and z,” Annals of the New York Academy of Sciences, vol. 357, pp.

249–259, 1980.

[23] Gabriele Paoloni, “How to benchmark code execution times on Intel R© ia-32 and

ia-64 instruction set architectures,” Tech. Rep. 324264-001, Intel, 2010.

186 CHAPTER 4. RESULT III

RESULT IV

Aras Atalar, Paul Renaud-Goud and Philippas Tsigas

Lock-Free Search Data Structures: Throughput
Modeling with Poisson Processes

Under Submission

5
RESULT IV - Lock-Free Search Data

Structures: Throughput Modeling

with Poisson Processes

Abstract

This paper considers the modeling and the analysis of the performance of

lock-free concurrent search data structures. Our analysis considers such lock-

free data structures that are utilized through a sequence of operations which are

generated with a memoryless and stationary access pattern. Our main contri-

bution is a new way of analysing lock-free search data structures: our execu-

tion model matches with the behavior that we observe in practice and achieves

189

190 CHAPTER 5. RESULT IV

good throughput predictions. Search data structures are formed of linked ba-

sic blocks, usually referred as nodes, that can be accessed by two kinds of

events, characterized by their latencies; (i) CAS events originated as a result

of modifications of the search data structures (ii) Read events originated during

traversals. This type of data structures are usually designed to accommodate a

large number of data nodes, which makes the occurrence of an event on a given

node rare at any given time. The throughput is defined by the number of events

per operation in conjunction with the factors that impact the latencies of these

events. We frame these impacting factors under capacity and coherence cache

misses.

In this context, we model the events as Poisson processes that we can merge

and split to estimate the latencies of the events based on the interleaving of

events from different threads, and in turn estimate the throughput. We have

validated our analysis on several fundamental lock-free search data structures

such as linked lists, hash tables, skip lists and binary trees.

5.1 Introduction

A search data structure is a collection of 〈key, value〉 pairs which are stored in

an organized way to allow efficient search, delete and insert operations. Linked

lists, hash tables, binary trees are some widely known examples. Lock-free im-

plementations of such concurrent data structures are known to be strongly com-

petitive at tackling scalability by allowing processors to operate asynchronously

on the data structure.

Performance (here throughput, i.e. number of operations per unit of time) is

ruled by the number of events in a search data structure operation (e.g. O(logN)

for the expected number of steps in a skip list or a binary tree). The practical

performance estimation requires an additional layer as the cost (latency) of these

events need to be mapped onto the hardware platform; typical values of latency

varies from 4 cycles for an access to the first level of cache, to 350 cycles for

the last level of remote cache. To estimate the latency of events, one needs to

consider the misses, which are sensitive to the interleaving of these events on

5.1. INTRODUCTION 191

the time line. On the one hand, a capacity miss in data or TLB (Translation

Lookaside Buffer) caches with LRU (Least Recently Used) policy arise when

the interleaving of memory accesses evicted a cacheline. On the other hand, the

coherence cache misses arise as a result of the modifications, that are often re-

alized with Compare-and-Swap (CAS) instructions, in the lock-free search data

structure. The interleaving of events that originate from different threads, de-

termine the frequency and severity of these misses, hence the latencies of the

events.

In the literature, there exist many asymptotic analyses on the time complex-

ity of sequential search data structures and amortized analyses for the concur-

rent lock-free variants that involve the interaction between multiple threads. But

they only consider the number of events, ignoring the latency. On the other side,

there are performance analyses that aim to estimate the coherence and capacity

misses for the programs on a given platform, with no view on data structures.

We will mention them in the related work. However, there is a lack of results

that merge these approaches in the context of lock-free data structures to ana-

lytically predict the practical performance.

An analytical performance prediction framework could be useful in many

ways: (i) to facilitate design decisions by providing an extensive understanding;

(ii) to rank different designs in various contexts; (iii) to help the tuning process.

On this last point, lock-free data structures come with specific parameters, e.g.

padding, back-off and memory management related parameters, and become

competitive only after picking their hopefully optimal values.

In this paper, we aim to compute the average throughput of search data

structures for a sequence of operations, generated by a memoryless and station-

ary access pattern. The threads execute the same piece of code on the same

platform, throughput T can be estimated on the long-term as the number of

threads P divided by the expected latency of an operation (subjected to the dis-

tribution of the operations). As the traversal of a search data structure is light

in computation, the latency of an operation is dominated by the memory access

costs to the nodes that belong to the path from the entry of the data structure to

the targeted node.

192 CHAPTER 5. RESULT IV

Therefore, part of this paper is dedicated to the discovery of the route(s)

followed by a thread on its way to reach any node in the data structure. In other

words, what is the sequence of nodes that are accessed when a given node is

targeted by an operation.

As the latency of an operation is the sum of the latency of each memory

access to the nodes that are on the path, we obviously need to estimate the in-

dividual latency of each traversed node. Even if, in the end, we are interested

in the average throughput, this part of the analysis cannot be satisfied with a

high-level approach, where we would ignore which thread accesses which node

across time. For instance, the cache, whose misses are expected to greatly im-

pact throughput, should be taken carefully into account. This can only be done

in a framework from which the interleaving of memory accesses among threads

can be extracted. That is why we model the distribution of the memory accesses

for every thread.

More precisely, a memory access (traversal) can be either the read or the

modification of a node, and two point distributions per node represent the trig-

gering instant of either a Read or a CAS. These point distributions are modeled

as Poisson point processes, since they can be approximated by Bernoulli pro-

cesses, in the context of rare events. Knowing the probabilistic ordering of these

events gives a decisive information that is used in the estimate of the traversal

latency associated with the triggered event. Once this information is grabbed,

we roll back to the expectation of the traversal of a node, then to the expectation

of the latency of an operation.

We validate our approach through a large set of experiments on several lock-

free search data structures based on various algorithmic designs, namely linked

lists, hash tables, skip lists and binary trees. We feed our experiments with

different key distributions, and show that our framework is able to predict and

explain the observed phenomena.

The rest of the paper is organized as follows. We discuss related work in

Section 5.2, then the problem is formulated in Section 5.3. We present the

framework in Section 5.4 and the computation of throughput in Section 5.5. In

Section 5.6, we show how to initiate our model by considering the particularity

5.2. RELATED WORK 193

of different search data structures. Finally, we describe the experimental results

in Sections 5.7 and 5.8.

5.2 Related Work

The search path length of skiplists is analyzed in [1, 2]. In [1], the search path

length is split into vertical and horizontal components, where the horizontal

cost is modeled with the number of right-to-left maximas (which corresponds

to the traversed node) in a sequence of nodes with random heights. In [3–5],

various performance shapers for the randomized trees are studied, such as the

time complexity of operations, the expectation and distribution of the depth of

the nodes based on their keys.

Previously mentioned studies are not concerned with the interaction be-

tween the algorithms and the hardware. The following approaches rely on the

independent reference model (IRM) for memory references and derive theo-

retical results or performance analysis. In [6], data reuse distance patterns are

modeled and then exploited to predict the cache miss ratio. In [7], the exact

cache miss ratio is derived analytically (computationally expensive) for LRU

caches under IRM. As an outcome of this approach, the cache miss ratio of a

static binary tree is estimated by assigning independent reference probababil-

ities to the nodes in [8]. This approach provide satisfactory results and also

revealed that the impact of the degree of set-associativity is negligible for the

cache miss ratios for this scenario.

For the time complexity of lock-free search data structures, asymptotic amor-

tized analyses [9, 10] are conducted since it is not possible to bound the exe-

cution time of a single operation, by definition. Apart from these theoretical

studies, the performance of concurrent lock-free search data structures are stud-

ied and investigated through empirical studies in [11, 12]. In [13], it is shown

experimentally that the conflicts between threads occur very rarely in the con-

text of concurrent search data structures, which is confirmed by our analysis.

194 CHAPTER 5. RESULT IV

Procedure AbstractAlgorithm

1 while ! done do

2 key← SelectKey(keyPMF);

3 operation← SelectOperation(operationPMF);

4 result← SearchDataStructure(key, operation);

Figure 5.1: Generic framework

5.3 Problem Statement

We describe in this section the structure of the algorithm and the system that

is covered by our model. We target a multicore platform where the communi-

cation between threads takes place through asynchronous shared memory ac-

cesses. The threads are pinned to separate cores and call AbstractAlgorithm

(see Figure 5.1) when they are spawned.

A concurrent search data structure is a shared collection of data elements,

each associated with a key, that support three basic operations holding a key as

a parameter. Search (resp. Insert, Delete) operation returns (resp. inserts,

deletes) the element if the associated key is present (resp. absent, present) in

the search data structure, otherwise returns null.

The applications that use a search data structure can be seen as a sequence of

operations on the structure, interleaved by application-specific code containing

at least the key and operation selection, as reflected in AbstractAlgorithm.

The access pattern (i.e. the output of the key and operation selections)

should be considered with care since it plays a decisive role in the through-

put value. An application that always looks for the first element of a linked list

will obviously lead to very high throughput rates. In this study, we consider a

memoryless and stationary key and operation selection process i.e. such that

the probability of selecting a key (resp. an operation type) is a constant.

A search data structure is modeled as a set of basic blocks called nodes,

which either contain a value (valued nodes) or routes towards nodes (router

nodes). W.l.o.g. the key set can be reduced to [1..R], where R is the number

of possible keys. We denote by (Ni)i∈[1..N] the set of N potential nodes, and

5.4. FRAMEWORK 195

by Ki the key associated with Ni. Until further notice (see Section 5.8), we

assume that we have exactly one node per cacheline.

An operation can trigger two types of events in a node. We distinguish

these events as Read and CAS events. The latency of an event is based on the

state of the hardware platform at the time that the event occurs, e.g. the level

of the cache where a node belongs to for a Read request. We summarize the

parameters of our model as follows:

• Algorithm parameters: Expected latency of the application specific-code

(interleaves data structure operations) tapp, expected local computational

cost to traverse a node tcmp, probability mass functions for the key and

operation selection.

• Platform parameters: Cache hit latencies (resp. capacity) from level ℓ:

tdat
ℓ (resp. Cdat

ℓ) for the data caches and ttlb
ℓ (resp. Ctlb

ℓ) for TLB caches;

other memory instruction latencies (that depends on P): tcas for a CAS

execution and trec to recover from an invalid state (Read at an invalid

cache line, that is in Modified state s in another threads local cache);

number of threads P .

5.4 Framework

5.4.1 Event Distributions

We consider first a single thread running AbstractAlgorithm on a data structure

where only search operations happen, and we observe the distribution of the

Read triggering events on a given node Ni. The execution is composed of a

sequence of search operations, where each operation is associated with a set

of traversed nodes, which potentially includes Ni. If we slice the time into

consecutive intervals, where an interval begins with a call to an operation, we

can model the Read events as a Bernoulli process (where a success means that a

Read event on Ni occurs), where the probability of having a Read event during

an interval depends on the associated (key and type) operation (recall that the

operation generating process is stationary and memoryless).

196 CHAPTER 5. RESULT IV

Search data structures have been designed as a way to store large data sets

while still being able to reach any node within a short time: the set of traversed

nodes is then expected to be small in front of the set of all nodes. This implies

that, given an operation, the probability that Ni belongs to the set of traversed

nodes is small. Therefore we can map the Bernoulli process on the timeline

with constant-sized operation interval of length T −1 instead of mapping it with

the actual operation intervals: as the probability of having a Read event within

an operation is small, the duration between two events is big, and this duration

is close to the number of initial intervals within this duration, multiplied by T −1

(with high probability, because of the Central Limit Theorem).

When we increase the scope of the operations to insertion and deletion, the

structure is no longer static and the probability for a node to appear in an interval

is no longer uniform, since it can move inside the data structure. There exists

a long line of research in approximating Bernoulli processes by Poisson point

processes [14–16]. In particular, [17] has dealt with non-uniform Bernoulli

processes. Their error bounds, which are proportional to the success probability,

strengthen the use of Poisson processes in our context: the events on Ni are rare,

thus the probabilities in Bernoulli processes are small and the approximation is

well-conditioned.

Once the Read and CAS triggering events are modeled as Poisson processes

for a single thread, the merge of several Poisson processes models the multi-

thread execution.

Lastly, we specify a point on the dynamicity: since we have insertions and

deletions, nodes can enter and leave the data structure. This is modeled by

the masking random variable Pi which expresses the presence of Ni in the

structure. At a random time, we denote by D the set of nodes that are inside the

data structure, and Pi is set to 1 iff Ni ∈ D. We denote by pi its probability of

success (pi = P [Pi = 1]). Its evaluation will often rely on the probability that

the last update operation on key k was an Insert; we denote it by qk, and

qk =
P
[
Op = opins

k

]

P [Op = opins
k] + P

[
Op = opdel

k

] .

Note that the search data structures contain generally several sentinel nodes

5.4. FRAMEWORK 197

which define the boundaries of the structure and are never removed from the

structure: their presence probability is 1.

For a given node Ni, we denote by λtrav
i (resp. λread

i , λcas
i) the rate of

the events triggering a traversal (resp. Read, CAS) of Ni due to one thread,

when Ni ∈ D. opdel
k (resp. opins

k , opsrc
k) stands for a Delete (resp. Insert,

Search) on node key k. The probability for the application to select opo
k, where

o ∈ {ins, del, src} is denoted by P [Op = opo
k]. opo

k ❀ cas(Ni) (resp. read

(Ni)) means that during the execution of opo
k, a CAS (resp. a Read) occurs on

Ni. Putting all together, we derive the rate of the triggering events:

∀e ∈ {cas, read} :

λe
i =
T
P
×

∑

o∈{ins,del,src}

R∑

k=1

P [Op = opo
k]× P [opo

k ❀ e(Ni) |Ni ∈ D]

(5.1)

Recall for later that Poisson processes have useful properties, e.g. merg-

ing two Poisson processes produces another Poisson process whose rate is the

sum of the two initial rates. This implies especially that the traversal triggering

events follows a Poisson process with rate λtrav
i = λread

i + λcas
i , and that the

read triggering events that originates from P ′ different threads and occurs at Ni

follow a Poisson process with rate P ′ × λread
i .

5.4.2 Validity of Poisson Process Hypothesis

To illustrate the validity of modeling the events as Poisson processes, we exper-

imentally extract the cumulative distribution function of the inter-arrival latency

of Read events that occur on a given node in a skip list and we compare it against

the corresponding exponential distribution (recall that the time between events

in a Poisson process is exponentially distributed).

We consider a search only scenario and 50/50 search/update scenario. Each

thread initially picks a random key and tracks the instants when a node asso-

ciated with the chosen key is traversed during the execution. To facilitate the

198 CHAPTER 5. RESULT IV

Range: 16384, threads=4, Ins−Del:0−0

0.0e+00 5.0e+06 1.0e+07 1.5e+07 2.0e+07
0.00

0.25

0.50

0.75

1.00

t (Inter−arrival Time)

P
[X

 <
 t
]

Tracked Keys key0 key1 key2 key3

(a) Read Events for Skiplist

Range: 16384, threads=4, Ins−Del:0−0

0.0e+00 5.0e+06 1.0e+07 1.5e+07
0.00

0.25

0.50

0.75

1.00

t (Inter−arrival Time)

P
[X

 <
 t
]

Tracked Keys key0 key1 key2 key3

(b) Read Events for Hash Table

Range: 16384, threads=4, Ins−Del:0−0

0.0e+00 5.0e+06 1.0e+07 1.5e+07 2.0e+07
0.00

0.25

0.50

0.75

1.00

t (Inter−arrival Time)

P
[X

 <
 t
]

Tracked Keys key0 key1 key2 key3

(c) Read Events for Binary Tree

Range: 16384, threads=4, Ins−Del:0−0

0.0e+00 5.0e+06 1.0e+07 1.5e+07
0.00

0.25

0.50

0.75

1.00

t (Inter−arrival Time)

P
[X

 <
 t
]

Tracked Keys key0 key1 key2 key3

(d) Read Events for Linked List

Figure 5.2: Poisson Process Modeling - Search Only

recording of the inter-arrival times, we disable the deletion of these particular

keys (deletion is still enabled for any other key).

In Figure 5.2 and Figure 5.3, we illustrate the results, where the dots repre-

sent the experimental measurements and the lines are generated by exponential

distributions. The mean of each distribution is instantiated as the mean of the

experimental measurements. One can observe the grounds a posteriori of our

Poisson process modeling, and the variation of the event rates across keys, issu-

ing from the differences between the node characteristics (key, height, location;

see Section 5.6).

5.4.3 Impacting Factors

We have identified five factors that dominate the traversal latency of a node,

distributed into two sets. On the one hand, the first set of factors only emerges

5.4. FRAMEWORK 199

Range: 16384, threads=4, Ins−Del:25−25

0.0e+00 5.0e+06 1.0e+07 1.5e+07 2.0e+07
0.00

0.25

0.50

0.75

1.00

t (Inter−arrival Time)

P
[X

 <
 t
]

Tracked Keys key0 key1 key2 key3

(a) Read Events for Skiplist

Range: 16384, threads=4, Ins−Del:25−25

0.0e+00 5.0e+06 1.0e+07 1.5e+07 2.0e+07
0.00

0.25

0.50

0.75

1.00

t (Inter−arrival Time)

P
[X

 <
 t
]

Tracked Keys key0 key1 key2 key3

(b) Read Events for Hash Table

Range: 16384, threads=4, Ins−Del:25−25

0.0e+00 5.0e+06 1.0e+07 1.5e+07 2.0e+07
0.00

0.25

0.50

0.75

1.00

t (Inter−arrival Time)

P
[X

 <
 t
]

Tracked Keys key0 key1 key2 key3

(c) Read Events for Binary Tree

Range: 16384, threads=4, Ins−Del:25−25

0.0e+00 5.0e+06 1.0e+07 1.5e+07
0.00

0.25

0.50

0.75

1.00

t (Inter−arrival Time)

P
[X

 <
 t
]

Tracked Keys key0 key1 key2 key3

(d) Read Events for Linked List

Figure 5.3: Poisson Process Modeling - 50/50 Search/Update

in the parallel executions as a result of the coherence issues on the search data

structures. Atomic primitives, such as a CAS, are used to modify the shared

search data structures asynchronously. To execute a CAS in multi-core architec-

tures, the cache coherency protocol enforces exclusive ownership of the target

cacheline by a thread (pinned to a core) through the invalidation of all the other

copies of the cacheline in the system, if needed. One can guess the performance

implications of this process that triggers back and forth communication among

the cores. As the first factor, CAS instruction has a significant latency. The

thread that executes the CAS pays this latency cost. Secondly, any other thread

has to stall until the end of the CAS execution if it attempts to access (read or

modify) the node while the CAS is getting executed. Last and most importantly,

any thread pays a cost to bring a cacheline to a valid state if it attempts to ac-

cess a node that resides in this cacheline and that has been modified by another

200 CHAPTER 5. RESULT IV

thread after its previous access to this node.

On the other hand, the capacity misses in the data and TLB caches are other

performance impacting factors for the node traversals. Consider a cache of

size C (fully associative), assume a node is traversed by a thread at time t and

the next traversal (same thread and node) occurs at time t′. The thread would

experience a capacity miss for the traversal at time t′ if it has traversed at least

C distinct nodes in the interval (t, t′). The same applies for TLB caches where

the references to the distinct pages are counted instead of the nodes.

At a given instant, we denote by Traversei the latency of traversing node

Ni, either due to a Read event or a CAS event, for a given thread. This latency

is the sum of random variables that correspond to the previous respective five

impacting factors:

Traversei = CASexe
i +CASstall

i +CASreco
i +

∑

ℓ

Hitcacheℓ

i +
∑

ℓ

Hittlbℓ

i ,

(5.2)

where, at a random time, CASexe
i is the latency of a CAS, CASstall

i the stall

time implied by other threads executing a CAS on Ni, CASreco
i the time needed

to fetch the data from another modifying thread, Hitcacheℓ

i the latency resulting

from a hit on the data cache in level ℓ, and Hittlbℓ

i the latency coming from a hit

on the TLB cache in level ℓ.

5.4.4 Solving Process

The solving decomposes into three main steps. Firstly, we can notice that Equa-

tion 5.1 exposes 2R+1 unknowns (the 2R access rates and throughput) against

2R equations. To end up with a unique solution, a last equation is necessary.

The first two steps provide a last sufficient equation thanks to Little’s law (see

Section 5.5.2), which links throughput with the expectation of the traversal la-

tency of a node, computed from Sections 5.5.1.1 to 5.5.1.6. We show in these

sections that they can be expressed according to the access rates λread
i and λcas

i .

The last step focuses on the values of the probabilities in Equation 5.1, which

are strongly related with the particular data structure under consideration; they

5.5. THROUGHPUT ESTIMATION 201

are instantiated in Section 5.6.1 (resp. 5.6.2, 5.6.3, 5.6.4) for linked lists (resp.

hash tables, skip lists, binary trees).

5.5 Throughput Estimation

5.5.1 Traversal Latency

Applying expectation to Equation 5.2 leads to E [Traversei] = E [CASexe
i] +

E

[
CASstall

i

]
+E [CASreco

i]+E

[∑
ℓ Hitcacheℓ

i

]
+E

[∑
ℓ Hittlbℓ

i

]
. We express

here each term according to the rates at every node λcas
⋆ and λread

⋆ .

5.5.1.1 CAS Execution

Naturally, among all traversal events, only the events originating from a CAS

event contribute, with the latency tcas of a CAS: E [CASexe
i] = tcas·λcas

i /(λread
i +

λcas
i).

5.5.1.2 Stall Time

A thread experiences stall time while traversing Ni when a thread, among the

(P − 1) remaining threads, is currently executing a CAS on the same node. As

a first approximation, supported by the rareness of the events, we assume that

at most one thread will wait for the access to the node.

Firstly, we obtain the rate of CAS events generated by (P − 1) threads

through the merge of their poisson processes. Consider a traversal of Ni at

a random time; (i) the probability of being stalled is the ratio of time when

Ni is occupied by a CAS of (P − 1) threads, given by: λcas
i (P − 1)tcas; (ii)

the stall time that the thread would experience is distributed uniformly in the

interval [0, tcas]. Then, we obtain: E
[
CASstall

i

]
= λcas

i (P − 1)tcas(tcas/2).

5.5.1.3 Invalidation Recovery

Given a thread, a coherence cache miss occurs if Ni is modified by any other

thread in between two consecutive traversals of Ni. The events that are con-

202 CHAPTER 5. RESULT IV

cerned are: (i) the CAS events from any thread; (ii) the Read events from the

given thread. When Ni is traversed, we look back at these events, and if among

them, the last event was a CAS from another thread, a coherence miss occur:

P [Coherence Miss on Ni] =
λcas

i (P−1)

λcas
i

P +λread
i

. We derive the expected latency of

this factor during a traversal at Nk by multiplying this with the latency penalty

of a coherence cache miss: E [CASreco
i] = P [coherence miss on Ni]× trec.

5.5.1.4 Che’s Approximation

Che’s Approximation is a technique to estimate the hit ratio of a LRU cache,

where the object (nodes for our case) accesses follow IRM (Independent Ref-

erence Model). Che’s approximation is concerned with the capacity misses in

a cache. We apply the approximation to the search data structures to estimate

E

[
Hitcacheℓ

i

]
and E

[
Hittlbℓ

i

]
. In this part, we give a brief discussion on Che’s

Approximation and in the following sections (see 5.5.1.5, 5.5.1.6), we have

shown how we adapt this scheme for our purposes.

IRM is based on the assumption that the object references occur in an infi-

nite sequence from a fixed catalog ofN objects. The probability of referencing

object i at any point in the sequence (denoted by si, where i ∈ [1..N]) is a

constant that does not depend on the reference history and does not vary over

time. Under LRU policy with cache of size Cdat
ℓ and subject to IRM demand

of N objects, an object reference would lead to a capacity miss if at least Cdat
ℓ

unique object references take place after the previous reference to the same ob-

ject. Let a reference to object i (Oi) occurs at time t0, the characteristic time

for the object i is defined by the random variable:

T i
ℓ = inf{t > 0 : Xi(t) = Cdat

ℓ }, where,

Xi(t) =
N∑

j=1,j 6=i

1t0<Oj≤t

5.5. THROUGHPUT ESTIMATION 203

Briefly, Che’s approximation, first combines all T i
ℓ , where i ∈ [1..N] in

a single variable by assuming si is negligible compared to
∑N

j=1 sj and then

approximates T i
ℓ with a constant T dat

ℓ over objects. Consider a sequence of ref-

erences that follows an IRM demand for N objects, with reference probability

si, where i ∈ [1..N]. The characteristic time T dat
ℓ of a cache with size Cdat

ℓ is

the unique solution of the following equation:

Cdat
ℓ =

N∑

i=1

(1− e−siT dat
ℓ)

In [18], they analyze and illustrate the reason behind the accuracy of the ap-

proximations for a quite large spectrum of object reference distributions. Their

argument relies on the random variable X(t) =
∑N

j=1 1t0<Oj≤t, that provides

the number of unique object references that have occured in the interval [0, t].

As the crucial property, X(t) is defined as the sum of independent random vari-

ables. Based on the central limit theorem, they show that a Gaussian approxi-

mation for this sum is quite reasonable, for all t.

Without loss of generality, let an object i is referenced consecutively at time

0 and t. We know that the second reference would be cache miss, in a cache of

size Cdat
ℓ , if X(t) > Cdat

ℓ , where by assumption X(t) is a Gaussion random

variable. The cache hit ratio of cacheline is given by:

hiti
ℓ = 1−

∫ +∞

0

P
[
X(t) > Cdat

ℓ

]
sie
−sitdt (5.3)

Che’s approximation, basically, approximates the cumulative distribution

function of X(t) with a step function that cuts this S-shaped cumulative distri-

bution function at the E [X(t)] =
∑N

i=1(1 − e−sit), denoted by m(t). Thus, it

approximates hiti
ℓ in Equation 5.3 with:

hiti
ℓ ≈ 1−

∫ +∞

0

1m(t)>Cdat
ℓ

sie
−sitdt

= 1−
∫ +∞

0

1t>T dat
ℓ

sie
−sitdt

204 CHAPTER 5. RESULT IV

In this study, we have exploited Che’s approximation to estimate the data

and TLB cache hit ratios with a slight modification by keeping our arguments

along the same lines with the ones presented above.

5.5.1.5 Cache Misses

We consider a data cache at level ℓ of size Cdat
ℓ and compute the hit latency

due to Read events on this cache. We assume that Ni is either present in the

search data structure or not, during the characteristic time of the cache. Read

events at Ni are indeed much more frequent than the removal or insertion of

Ni. This implies that if the characteristic time is long enough to accommodate

the intervals where Ni ∈ D and Ni 6∈ D, then the cache miss ratio of Ni

should be quite low, which would be underestimated due to our assumption.

We can employ the Read rates as popularities, i.e. si = λread
i , and modify

Che’s approximation to discriminate whether, at a random time, Ni is inside the

data structure or not.

We integrate the masking variable Pi into Che’s approximation. We have:

Xcache(t) =
∑N

i=1 Pi10<Oi≤t, where Oi denotes the reference time of Ni. We

can still assume Xcache(t) is gaussian, as a sum of many independent random

variables. We estimate the characteristic time as follows with the linearity of

expectation and the independence of the random variables:

E
[
Xcache(t)

]
=

N∑

i=1

E [Pi10<Oi≤t] =

N∑

i=1

E [Pi]E [10<Oi≤t]

=

N∑

i=1

pi(1− e−λread
i t).

Lastly, we solve the equation for the characteristic time T dat
ℓ of level ℓ cache:∑N

i=1 pi(1− e−λread
i T dat

ℓ) = Cdat
ℓ thanks to a fixed-point approach. After com-

puting T dat
ℓ , we estimate the cache hit ratio (on level ℓ) of Ni: 1− e−λread

i T dat
ℓ .

5.5. THROUGHPUT ESTIMATION 205

5.5.1.6 Page Misses

In this paragraph, we aim at computing the page hit ratio of Ni for the TLB

cache at level ℓ of size Ctlb
ℓ . The total numberM of pages that are used by the

search data structure can be regulated by a parameter of the memory manage-

ments scheme (frequency of recycling attempts for the deleted nodes), as the

total number of nodes is a function of R. Different from the cachelines (cor-

responding to the nodes), we can safely assume that a page accommodates at

least a single node that is present in the structure at any time.

We cannot apply straightforwardly Che’s approximation since the page ref-

erence probabilities are unknown. However, we are given the cacheline refer-

ence probabilities si = λread
i for i ∈ [1..N] and we assume that N cachelines

are mapped uniformly toM pages, [1..N] → [1..M], N > M. Under these

assumptions, we know that the resulting page references would follow IRM

because aggregated Poisson processes form again a poisson process.

We follow the same line of reasoning as in the cache miss estimation. First,

we consider a set of Bernoulli random variables (Y j
i), leading to a success if

Ni is mapped into page j, with probability pi/M (hence Y j
i does not depend

on j). Under IRM, we can then express the page references as point processes

with rate rj =
∑N

i=1 Y j
i si, for all j ∈ [1..M].

Similar to the previous section, we denote the time of a reference to page

j with Oj and we define the random variable Xpage(t) =
∑M

j=1 10<Oj≤t and

206 CHAPTER 5. RESULT IV

compute its expectation:

E [Xpage(t)] =

M∑

j=1

E
[
10<Oj≤t

]
=

M∑

j=1

E
[
1− e−rjt

]

=

M∑

j=1

E

[
1− e−

∑
N

i=1
Y j

i
λread

i t

]

=

M∑

j=1

(
1−

N∏

i=1

E

[
e−Y j

i
λread

i t
])

=

M∑

j=1

(
1−

N∏

i=1

(
M− pi

M +
pie
−λread

i t

M

))

=M
(

1−
N∏

i=1

(
M− pi

M +
pie
−λread

i t

M

))
,

Assuming Xpage(t) is Gaussian as it is sum of many independent random

variables, we solve the following equation for the constant T tlb
ℓ (characteristic

time of a TLB cache of size C): E
[
Xpage(T tlb

ℓ)
]

= Ctlb
ℓ .

Lastly, we obtain the TLB hit rate for Ni by relying on the average Read

rate of the page that Ni belongs to; we should add to the contributions of Ni,

the references to of the nodes that belong to the same page as Ni. Then follows

the TLB hit ratio: 1− e−ziT tlb
ℓ , where

zi = λread
i + E




N∑

j=1,j 6=i

Y k
j λread

j


 = λread

i +

N∑

j=1,j 6=i

pjλread
j /M.

5.5.1.7 Interactions

To be complete, we mention the interaction between impacting factors and

the possibility of latency overlaps in the pipeline. Firstly, the traversal la-

tency of different nodes cannot overlap due to the semantic dependency for

the linked nodes. For a single node traversal, the latency for cas execution

and stall time cannot overlap with any other factor. We consider inclusive

data and TLB caches. It is not possible to have a cache hit on level l, if the

5.6. INSTANTIATING THE THROUGHPUT MODEL 207

cache on level l − 1 is hit, and we do not consider any cost for the data cache

hit if invalidation recovery (coherence) cost is induced (i.e. E

[
Hitcacheℓ

i

]
=

(1− P [coherence miss])(P [hit cachel]− P [hit cachel−1])tdat
ℓ).

5.5.2 Latency vs. Throughput

In the previous sections, we have shown how to compute the expected traversal

latency for a given node. There remains to combine these traversal latencies

in order to obtain the throughput of the search data structure. Given Ni ∈ D,

the average arrival rate of threads to Ni is λtrav
i = λread

i + λcas
i . Thus the

average arrival rate of threads to Ni is: piλ
trav
i . It can then be passed to Little’s

Law [19], which states that the expected number of threads (denoted by ti)

traversing Ni obeys to ti = piλ
trav
i E [Traversei]. The equation holds for

any node in the search data structure, and for the application call occurring in

between search data structure operations. Its expected latency is a parameter

(E [Traverse0] = tapp) and its average arrival rate is equal to the throughput

(λtrav
0 = T). Then, we have:

∑N
i=0 ti =

∑N
i=0(piλ

trav
i E [Traversei]), where

λtrav
i and E [Traversei] are linear functions of T . We also know

∑N
i=0 ti = P

as the threads should be executing some component of the program. We define

constants with ai, bi, ci for i ∈ [0..N]. And, we represent λtrav
i = aiT and

E [Traversei] = biT + ci and we obtain the following second order equation:∑N
i=0(piaibi)T 2 +

∑N
i=0(piaici)T − P = 0. This second order equation has

a unique positive solution that provides the expected throughput, T .

5.6 Instantiating the Throughput Model

In this section, we show how to initialize our model with widely known lock-

free search data structures, that have different operation time complexities. In

order to obtain a throughput estimate for a structure, we need to compute the

rates λread
⋆ and λcas

⋆ , and P [opo
k ❀ e(Ni) |Ni ∈ D], i.e. the probability that, at

a random time, an operation of type o on key k leads to a memory instruction

of type e on node Ni, knowing that Ni is in the data structure. For the ease

208 CHAPTER 5. RESULT IV

of notation, nodes will sometimes be doubly or triply indexed, and when the

context is clear, we will omit |Ni ∈ D in the probabilities.

We first estimate the throughput of linked lists and hash tables, on which

we can directly apply our method, then we move on more involved search data

structure, namely skip lists and binary trees, that need a particular attention.

5.6.1 Linked List

We start with the lock-free linked list implementation of Harris [20]. All op-

erations in the linked list start with the search phase in which the linked list is

traversed until a key. At this point all operations terminate except the successful

update operations that proceed by modifying a subset of nodes in the structure

with CAS instructions. The structure contains only valued node and two sen-

tinel nodes N0 and NR+1, so that N = R+ 2 and for all i ∈ [1..R], Ni holds

key i, i.e. Ki = i.

First, we need to compute the probabilities of triggering a Read event and

CAS event on a node, given that the node is in the search data structure, for all

operations of type t ∈ {Insert, Delete, Search} targeted to key k.

At a random time, Nk, for k ∈ [1..R], is in the linked list iff the last up-

date operation on key k is an insert: pk = qk, by definition of qk. More-

over, when Nk is in the structure (condition that we omit in the notation),

opt
k′ reads Nk, either if Nk is before Nk′ , or if it is just after Nk′ . Formally,

P [opo
k′ ❀ read(Nk)] = 1 if k ≤ k′ and P [opo

k′ ❀ read(Nk)] =
∏k−1

i=k′(1−pi)

if k > k′.

CAS events can only be triggered by successful Insert and Delete opera-

tions. A successful Insert operation, targeted to Nk′ , is realized with a CAS

that is executed on Nk, where k = sup{ℓ < k′ : Nℓ ∈ D}. The probability of

success, which conditions the CAS’s, follows from the presence probabilities:

P
[
opins

k′ ❀ cas(Nk)
]

=





0, if k ≥ k′

k′∏

i=k+1

(1− pi), if k < k′

5.6. INSTANTIATING THE THROUGHPUT MODEL 209

P
[
opdel

k′ ❀ cas(Nk)
]

=





1, if k = k′

0, if k > k′

pk′

k′−1∏

i=k+1

(1− pi), if k < k′

5.6.2 Hash Table

We analyze here a chaining based hash table where elements are hashed to B

buckets implemented with the lock-free linked list of Harris [20]. The structure

is parametrized with a load factor lf which determines B through B = R/lf .

The hash function h : k 7→ ⌈k/lf ⌉maps the keys sequentially to the buckets, so

that, after including the sentinel nodes (2 per bucket), we can doubly index the

nodes: Nb,k is the node in bucket b with key k, where b ∈ [1..B] and k ∈ [1..lf]

(the last bucket may contain less elements).

P
[
opo

b′,k′ ❀ read
(
Nb,k

)]
=





0, if b′ 6= b

1, if b′ = b and k′ ≥ k
k−1∏

j=k′

(1− pb,j), if b′ = b and k′ < k

P
[
opins

b′,k′ ❀ cas
(
Nb,k

)]
=





0, if b′ 6= b or k′ ≤ k
k′∏

j=k+1

(1− pb,j), if b′ = b and k′ > k

P
[
opdel

b′,k′ ❀ cas
(
Nb,k

)]
=





0, if b′ 6= b or k′ < k

1, if b′ = b and k′ = k

pb,k′

k′−1∏

j=k+1

(1− pb,j), if b′ = b and k′ > k

In the previous two data structures, we do observe differences in the traver-

sal rate from node to node, but the node associated with a given key does not

show significant variation in its traversal rate during the course of the execution:

inside the structure, the number of nodes preceding (and following) this node

210 CHAPTER 5. RESULT IV

is indeed rather stable. In the next two data structures, node traversal rates can

change dramatically according to node characteristics, that may include its posi-

tion in the structure. In a skip list, a node Ni containing key Ki with maximum

height will be traversed by any operation targeting a node with a higher key.

However, Ni can later be deleted and inserted back with the minimum height;

the operations that traverse it will then be extremely rare. The same reasoning

holds when comparing an internal node with key Ki of a binary tree located at

the root or close to the leaves.

As explained before, an accurate cache miss analysis cannot be satisfied

with average access rates. Therefore, the information on the possible significant

variations of rates should not be diluted into a single access rate of the node.

To avoid that, we pass the information through virtual nodes: a node of the

structure is divided into a set of virtual nodes, each of them holding a different

flavor of the initial node (height of the node in the skip list or subtree size in

the binary tree). The virtual nodes go through the whole analysis instead of

the initial nodes, before we extract the average behavior of the system hence

throughput.

5.6.3 Skip List

There exist various lock-free skip list implementations and we study here the

lock-free skip list [21]. Skip lists offer layers of linked lists. Each layer is

a sparser version of the layer below where the bottom layer is a linked list

that includes all the elements that are present in the search data structure. An

element that is present in the layer at height h appears in layer at height h + 1

with a fixed appearance probability (1/2 for our case) up to some maximum

layer hmax that is a parameter of the skip list.

Skip list implementations are often realized by distinguishing two type of

nodes: (i) valued nodes reside at the bottom layer and they hold the key-value

pair in addition to the two pointers, one to the next node at the bottom layer and

one to the corresponding routing node (could be null); (ii) routing nodes are

used to route the threads towards the search key. Being coupled with a valued

5.6. INSTANTIATING THE THROUGHPUT MODEL 211

Search (key=k’)

key=-∞ key=k key=k’ key=+∞

Node

Node
Data

Routing

height>2

Figure 5.4: Skip List Events: Read Event Probability

node, a routing node does not replicate the key-value pair. Instead, only a set of

pointers, corresponding to the valued node containing the next key in different

layers, are packed together in a single routing node (that fits in a cacheline with

high probability). Every Read event in a routing node is preceded by a Read in

the corresponding valued node.

We denote by N rou
k,h the routing node containing key k, whose set of point-

ers is of height h, where h ∈ [1..hmax]. A valued node containing the key

k is denoted by Ndat
k,h when connected to N rou

k,h (h = 0 if there is no routing

node). Furthermore, there are four sentinel nodes Ndat
0,hmax

, N rou
0,hmax

, Ndat
R+1,hmax

,

N rou
R+1,hmax

. The presence probabilities result from the coin flips (bounded

by hmax): for z ∈ {dat, rou}, pz
k,h = 2−(h+1)qk if h < hmax , pz

k,h =

qk −
∑hmax−1

ℓ=0 pz
k,ℓ otherwise.

By decomposing into three cases, we compute the probability that an oper-

ation opo
k′ of type o ∈ {ins, del, src}, targeted to k′, causes a Read triggering

event at N z
k,h when N z

k,h ∈ D. Let assume first that k′ > k. The operation trig-

gers a Read event at node N z
k,h if for all (x, y) such that y > h and k < x ≤ k′,

Nz
x,y is not present in the skip list (i.e. in Figure 5.4, no node in the skip list

overlaps with the red frame). Let assume now k′ < k. The occurrence of a Read

event requires that: for all (x, y) such that y ≥ h and k′ ≤ x < k, N z
x,y , is not

present in the structure. Lastly, a Read event is certainly triggered if k′ = k.

212 CHAPTER 5. RESULT IV

Insert (key=k’)

key=-∞ key=k key=k’ key=+∞

Routing

Data

Node

Node

Figure 5.5: Skiplist Events: CAS Event Probability

The final formula is given by:

P
[
op

o
k′ ❀ read

(
N

z
k,h

)]
=





∏k′

x=k+1

(
1 −

(∑hmax

y=h+1
pz

x,y

))
, if k ≤ k′

∏k−1

x=k′

(
1 −

(∑hmax

y=h
pz

x,y

))
, if k > k′

Next, we apply a similar approach for CAS events. In Figure 5.5, we illus-

trate an example. A CAS event occurs at the green pointer, as a result of the re-

moval (or insertion) of Kk if there is no node in the red frame. For all node and

operation couples, P
[
opo

k′ ❀ cas
(

N z
k,h

)]
is simply obtained in those lines.

The insertion of an element with Kk′ introduces Nz
k′,h with probability

2−(h+1) if h ∈ [1..hmax − 1], and 1 −∑hmax−1
i=0 2−(h+1) when the maximum

height. The data node is linked to the list at the bottom layer with a CAS that is

executed on the previous data node. If a routing node is introduced, it is linked

to lists at h different layers, thus leads to h CAS instructions that are applied on

the other nodes.

The deletion of an element is composed of two phases. The first phase is

to mark the data node, Ndat
k′,h and the pointers in the routing node with height

k′, if it exists. If the height of the routing node is more than one, it is possible

that multiple CAS intructions are executed on the same routing node. But, we

only consider the first one. The latency and also the effect of remaining ones

would be negligible, as they are applied on the same cacheline one after each

5.6. INSTANTIATING THE THROUGHPUT MODEL 213

other. This repetitive behavior guarentees that the cacheline has already been

exclusively owned before the next CAS instructions run. To recall, this is con-

sistent with our assumption that an event can occur at most once per operation

on a node. The second phase of deletion operation follows the same path with

the insertion operation. Simply, a CAS, on the previous node, is executed for

each layer that the data and routing nodes span.

We have denoted the success probability of an Insert operation with qk′ =
P[op=opInsert

k′]
P[op=opInsert

k′]+P[op=opDelete
k′]

. Also, the factor 2−(h+1) provides the probability of

the insertion of a routing node with height h, coupled with its data node. Based

on the non-existence of any node that overlaps with the area that is enclosed

with the red frame in Figure 5.5, we obtain:

P
[
opins

k′ ❀ cas
(
Nz

k,h

)]
=





(1− qk′)(
∑hmax

h=0 2−(h+1)(
∏k′−1

x=k+1(1− (
∑hmax

y=h pz
x,y)))), if k < k′

0, if k ≥ k′

P
[
opdel

k′ ❀ cas
(
Nz

k,h

)]
=





1, if k = k′

qk′(
∑hmax

h=0 2−(h+1)(
∏k′−1

x=i+1(1− (
∑hmax

y=h pz
x,y)))), if k < k′

0, if k > k′

5.6.4 Binary Tree

We show here how to estimate the throughput of external binary trees. They

are composed of two types of nodes: internal nodes route the search towards

the leaves (routing nodes) and store just a key, while leaves, referred as external

nodes contain the key-value pair (valued node). We use the external binary

tree of Natarajan [22] to initialize our model. The search traversal starts and

continues with a set of internal nodes and ends with an external node. We

denote by N int
k (resp. Next

k) the internal (resp. external) node containing key

214 CHAPTER 5. RESULT IV

k, where k ∈ [1..R]. The tree contains two sentinel internal nodes that reside at

the top of the tree (hence are traversed by all operation): N int
−1 and N int

0 .

Our first aim is to find the paths followed by any operation through the bi-

nary tree, in order to obtain the access triggering rates, thanks to Equation 5.1.

Binary trees are more complex than the previous structures since the order of

the operations impact the positioning of the nodes. The random permutation

model proposes a framework for randomized constructions in which we can de-

velop our model. Each key is associated with a priority, which determines its

insertion order: the key with the highest priority is inserted first. The perfor-

mance characteristics of the randomized binary trees are studied in [4]. In the

same vein, we compute the traversal probability of the internal node with key k

in an operation that targets key k′.

Lemma 18. Given an external binary tree, the probability of traversing N int
k

in an operation that targets key Kk′ is given by: (i) 1/f(k, k′) if k′ ≥ k; (ii)

1/(f(k′, k) − 1) if k′ < k, where f(x, y) provides the number internal nodes

whose keys are in the interval [x, y].

Proof. N int
k would be traversed if it is on the search path to the external node

with key k′. Given k′ ≥ k, this happens iff N int
k has the highest priority among

the internal nodes in the interval [k, k′]. This interval contains f(k, k′) internal

nodes, thus, the probability of N int
k to possess the highest priority is 1/f(k, k′).

Similarly, if k′ < k, then N int
k is traversed iff it has the highest priority in the

interval (k′, k]. Hence, the lemma.

Even if in the binary tree, nodes are inserted and deleted an infinite number

of times, Lemma 18 can still be of use. The number of internal nodes in the

interval [k, k′] (or (k′, k] if k′ < k) is indeed a random variable which is the

sum of independent Bernoulli random variables that models the presence of the

nodes. As a sum of many independent Bernoulli variables, the outcome is ex-

pected to have low variations because of its asymptotic normality. Therefore,

we replace this random variable with its expected value and stick to this approx-

imation in the rest of this section. The number of internal nodes in any interval

come out from the presence probabilities: pz
k = qk, where z ∈ {int, ext}.

5.6. INSTANTIATING THE THROUGHPUT MODEL 215

In an operation is targeted to key k′, a single external node is traversed (if

any): Next
k′ , if present, else the external node with the biggest key smaller than

k′, if it exists, else the external node with the smallest key. Then, we have:

P
[
opo

k′ ❀ read
(
N int

k

)]
=

{
1/(1 +

∑k−1
i=k′+1 pint

i), if k > k′

1/(1 +
∑k′

i=k+1 pint
i), if k ≤ k′

,

P
[
opo

k′ ❀ read
(
Next

k

)]
=





1, if k = k′
∏k′

i=k+1(1− pext
i), if k < k′∏k−1

i=1 (1− pext
i), if k > k′

These probabilities finally lead to the computation of the Read (resp. CAS)

rates λread
z,k (resp. λcas

z,k) of Nz
k , where z ∈ {int, ext}, that will be used in the

last following step.

We focus now on the Read rate of the internal nodes. We have found the av-

erage behavior of each node in the previous step; however, the node can follow

different behaviors during the execution since the Read rate of N int
k depends on

the size of the subtree whose root is N int
k , which is expected to vary with the

update operations on the tree. We dig more into this and reflect these variations

by decomposing N int
k into Hk virtual nodes, N int

k,h, where h ∈ [1..Hk]. We

define the Read rate λread
int,k,h of these virtual nodes as a weighted sum of the

initial node rate thanks the two equations pint
k =

∑Hk

h=1 pint
k,h and pint

k λread
int,k =∑Hk

h=1 pint
k,hλread

int,k,h.

We connect the virtual nodes to the initial nodes in two ways. On the one

hand, one can remark that the Read rate is proportional to the subtree size:

λread
int,k,h ∝ hλread

int,k. On the other hand, based on the probability mass function

of the random variable Subk representing the size of the subtree rooted at N int
k ,

we can evaluate the weight of the virtual nodes: pint
k,h = pint

k P [Subk = h].

We have computed λread
int,k. These values reflect the average behaviour along

the whole execution. However, the average behavior is not enough to com-

putethe traversal latency accurately for the internal nodes. In the execution,

there are different time intervals where λread
int,k show significant variation depend-

ing on the part of the tree that it is located. For instance, it is quite improbable

216 CHAPTER 5. RESULT IV

to observe a cache miss at N int
k when it is positioned at the root of the tree. One

would observe a very high rate of traversals with low latency in this case, which

decreases the expected traversal latency of N int
k significantly. An accurate es-

timation for the cache misses requires the consideration of this particularity of

the binary tree. To approximate the impact of this variation, we split N int
k into

a number (let Hk denotes this number for N int
k) of independent virtual nodes

(in the lines of independent reference model), each representing the behavior of

N int
k with a different Read rate. The virtual node, with Read rate λread

int,k,h, is

denoted by Nk
h,int. We will obtain the Read rates λread

int,k,h and presence proba-

bilities pint
k,h for these virtual nodes by requiring that the average behaviors are

still valid: pint
k =

∑Hk

h=1 pint
k,h and pint

k λread
int,k =

∑Hk

h=1 pint
k,hλread

int,k,h.

Theorem 1. For an external binary tree with N internal nodes, generated with

the random permutation of insertions, the probability mass function of the size

of the subtree (the random variable concerns only the number of the internal

nodes and denoted by Subk) that is rooted at N int
k is given by: P [Subk = N] =

1/N and P [Subk = s] = O(1/s2).

Proof. It is clear that P [Subk = N] = 1/N since it occurs iff N int
k has the

highest priority among all internal nodes. For the rest, we consider four different

cases. Let σk denotes the index of N int
k in the permutation of the sequence of

N internal nodes that are arranged in the ascending order based on their keys.

(i) σk + s ≤ N and σk − s ≥ 1: then there exist s distinct pairs of

(N int
j , N int

i) such that σi − σj = s + 1 and σj < σk < σi. Given a pair

of such (N int
j , N int

i), Subk = s if the priorities of N int
j and N int

i are higher

than the priorities of all N int
x , such that σj < σx < σi and also N int

k has a

higher priority than all N int
y 6=k such that σj < σy < σi. This (N int

k is the root

of subtree that includes all N int
y , such that σj < σy < σi) can happen with

probability, 2
(s+2)(s+1)s . There exist s such non-overlapping cases. We have,

P [Subk = s] = 2
(s+1)(s+2) .

(ii) σk+s > N and σk−s ≥ 1: then there exist a N int
i such that σi = N−s.

Subk = s if N int
i has higher priority than all N int

x , such that σi < σx ≤ N

and N int
k has higher priority than all N int

y , such that σi < σy 6=k ≤ N . This can

5.6. INSTANTIATING THE THROUGHPUT MODEL 217

happen with probability, 1
(s+1)s . In addition, there can be at least 0 and at most

s−1 distinct pairs of (N int
j , N int

i) such that σi−σj = s+1 and σj < σk < σi.

We have: 1
(s+1)s ≤ P [Subk = s] ≤ 1

(s+1)s + 2(s−1)
(s+1)(s+2)s .

(iii) σk + s ≤ N and σk− s < 1: The bound at (ii) applies to this case also.

(iv) σk+s > N and σk−s < 1: then there exist a N int
i such that σi = N−s

and a N int
j such that σj = s + 1. In addition, there can be at least 0 and at most

s − 2 distinct pairs of nodes (N int
j , N int

i) such that σi − σj = s + 1 and

σj < σk < σi. Similar to (i) and (ii), we obtain and sum the probabilities lead

to Subk = s. We have: 2
(s+1)s ≤ P [Subk = s] ≤ 2

(s+1)s + 2(s−2)
(s+1)(s+2)s

We start with an observation. The Read rate of N int
k is proportional to the

size of the subtree that is rooted at N int
k . Given a binary tree of N internal

nodes, the size of the subtree can vary in the interval [1, N], which means that

we can have Hk = N different Read rate levels (λread
int,k,h) associated with their

presence probabilities pint
k,h = pint

k P [Subk = h]. Relying on Theorem 1, one

can observe that P [Subk = h] do not variate much from c1/(h+1)2 for the ma-

jority of different values of h and k. Therefore, we approximate P [Subk = h] ≈
c1/(h + 1)2, with a single constant c1 for all k and h < Hk. We know,∑Hk

h=1 P [Subk = h] = 1 and P [Subk = Hk] = 1/Hk. So, we obtain c1 ≈ 2 by

solving the equation
∫ N

h=2
(c1/h2)dh = (N−1)/N . We set pint

k,h = pint
k (2/(h+

1)2) and pint
k,Hk

= pint
k /Hk. Assuming λread

int,k,h = c2hλread
int,k (Read rates are

proportional to the subtree size), we require pint
k λread

int,k =
∑Hk

h=1 pint
k,hλread

int,k,h,

which leads to λread
int,k ≈ c2 +

∫Hk

h=2
(2/h2)c2(h − 1)λread

int,kdh. We solve and

obtain c2 ≈ 1/(2 ln Hk). We set λread
int,k,h = hλread

int,k/(2 ln Hk), for the virtual

internal nodes.

Now, we consider the CAS events. Delete and Insert operation start with

the search phase. Insert operation finalize with a CAS executed at the grandpar-

ent internal node of the inserted external key. Delete operation contains three

CAS; (i) one at the grandparent internal node of the deleted external key; (ii) two

that are executed consecutively at the parent node of the external key. Thus, we

consider them as a single CAS instruction, since the second of the consecutive

ones has a negligible cost because the cacheline has already been exclusively

owned by the thread.

218 CHAPTER 5. RESULT IV

Case 1 Case 2 Case 3 Case 4

Figure 5.6: Binary Tree CAS Probability

Similar to Read events, we first find the rate of CAS events for N int
k and

split these events to virtual nodes by requiring the average behavior is still valid:

pint
k λcas

int,k =
∑Hk

h=1 pint
k,hλcas

int,k,h. To determine the target of CAS event, we need

to determine the probability of an internal node N int
k to be the grandparent or

parent of the targetted Next
k′ . We examine four different cases as illustrated in

Figure 5.6. Given that we are in the first case, we look for the probability that

N int
k , k′ < k, to possess the smallest or second smallest key, that is bigger than

k′, among the internal nodes that are present in the tree. Such internal nodes

with the smallest key and the second smallest key corresponds to the parent and

grandparent of Next
k′ , respectively. For case 1, it is possible that the grandparent

node is the node which has the xth, x > 1, smallest key that is bigger than

i, that is present in the tree. But this probability decreases exponentially as x

increases. That is why, we have attributed the CAS events that takes place at

the granparent node to the node with second smallest key that is bigger than k′.

For case 2, the parent corresponds to the smallest key that is bigger than k′ and

the grandparent corresponds to the biggest key that is smaller than k′, that are

present in the tree.

Formally, let P B
k′ = {i : i ≥ k′, N int

i ∈ D} and P S
k′ = {i : i < k′, N int

i ∈
D}. For the first case, we are interested in the probability that N int

k is the grand-

parent or parent node of Next
k′ . These are given by P

[
k = sup{P S

k′ − sup{P S
k′}}

]

and P
[
k = sup{P S

k′}
]

respectively. For the second case, we are interested in

P
[
k = sup{P S

k′}
]

and P
[
k = inf{P B

k′ }
]
. The third and fourth cases follows

5.6. INSTANTIATING THE THROUGHPUT MODEL 219

the same lines as they are the flipped versions of the case one and two. For

all non-sentinel nodes, we have pint
k = p. First, we compute the following

probabilities:

For k ≥ k′ we have: (these probabilities are zero if k < k′)

P
[
k = sup{P S

k′ − sup{P S
k′}}

]
= p(k′ − i)(1− p)(k′−k−1)

P
[
k = sup{P S

k′}
]

= (1− p)(k′−k)

And for k < k′: (these probabilities are zero if k ≥ k′)

P
[
k = inf{P B

k′ }
]

= (1− p)(k−k′−1)

P
[
k = inf{P B

k′ − inf{P B
k′ }}

]
= p(k − k′ − 1)(1− p)(k−k′−2)

Based on Lemma 18 (assuming a constant tree size), we obtain the expected

number of internal nodes that route the search to its left child (ck′,l) and right

child(ck′,r) for an operation that is targetted to key = k′. On this route, we

compute the probability of a random node to be the left (right) child of its parent,

with lk′ = ck′,l/(ck′,l + ck′,r) (and similarly r=ck′,r/(ck′,l + ck′,r)). And, we

estimate the probability of observing a case at a random time by using these

values (i.e. l2
k′ for Case 1, lk′rk′ for Case 2). And finally, we obtain:

P
[
opdel

k′ ❀ cas
(
N int

k

)]
=pint

k′ (l2
k′P
[
k = inf{P B

k′ − inf{P B
k′ }}

]

+ lk′(rk′ + 1)P
[
k = inf{P B

k′ }
]

+ rk′(lk′ + 1)P
[
k = sup{P S

k′}
]

+ r2
k′P
[
k = sup{P S

k′ − sup{P S
k′}}

]
)

P
[
opins

k′ ❀ cas
(
N int

k

)]
=(1− pint

k′)(l2
k′P
[
k = inf{P B

k′ − inf{P B
k′ }}

]

+ lk′rk′P
[
k = inf{P B

k′ }
]

+ rk′ lk′P
[
k = sup{P S

k′}
]

+ r2
k′P
[
k = sup{P S

k′ − sup{P S
k′}}

]
)

220 CHAPTER 5. RESULT IV

Lastly, we split the CAS events to the virtual nodes. CAS events can happen

at the internal nodes only when they are in the last two levels of the tree (or

similarly when the size of the subtree that is rooted at the concerned internal

node is in the interval [1, 3]). We required the average behaviour to be valid

and set λcas
int,k,x = pint

k λcas
int,k/(pint

k,1 + pint
k,2 + pint

k,3),∀x ∈ {1, 2, 3}. For the

cases where the operation key selection follows a zipf distribution, there exist

a small region of the tree that the most operations concentrate. The update

operations concentrate to that region so that the nodes are expected to change

levels frequently. This means that the impact of invalidation recovery factor

can be seen while the node is at an level. For this impacting factor, for zipf

distribution, we split the events to virtual nodes evenly, ∀h, λcas
int,k,h = λcas

int,k.

5.7 Experimental Evaluation

We validate our model through a set of well-known lock-free search data struc-

ture designs, mentioned in the previous section. We stress the model with vari-

ous access patterns and number of threads to cover various scenarios where the

data structures could be exploited. For the key selection process, we vary the

key ranges and the distribution: from uniform (i.e. the probability of targeting

any key is constant for each operation) to zipf (with α = 1.1 and the probability

to target a key decreases with the value of the key). Regarding the operation

types, we start with various balanced update ratios, i.e. such that the ratio of

Insert (among all operations: Search, Delete, Insert) is equal to the ratio of

Delete. Then, we also consider asymmetric cases where the ratio of Insert

and Delete operations are not equal, which changes the expected size of the

structure.

5.7.1 Setting

We have conducted experiments on an Intel ccNUMA workstation system. The

system is composed of two sockets, each containing eight physical cores. The

system is equipped with Intel Xeon E5-2687W v2 CPUs. Threads are pinned

5.7. EXPERIMENTAL EVALUATION 221

to separate cores. One can observe the performance change when number of

threads exceeds 8, which activates the second socket.

In all the figures, y-axis provides the throughput, while the number of threads

is represented on x-axis. The dots provide the results of the experiments and the

lines provide the estimates of our framework. The key range of the data struc-

ture is given at the top of the figures and the percentage of update operations

are color coded.

We instantiate all the algorithm and architecture related latencies, follow-

ing the methodologies described in [23, 24]. In line with these studies, we

observed that the latencies of tcas and trec are based on thread placement.

We distinguish two different costs for tcas according to the number of active

sockets. Similarly, given a thread accessing to a node Ni, the recovery la-

tency is low (resp. high), denoted by trec
low (resp. trec

high), if the modification

has been performed by a thread that is pinned to the same (resp. another)

socket. Before the execution, we measure both trec
low and trec

high , and instanti-

ate trec with the average recovery latency, computed in the following way for a

two-socket chip. For s ∈ {1, 2}, we denote by Ps the number of threads that are

pinned to socket numbered s. By taking into account all combinations, we have

trec = (P1(P1trec
low +P2trec

high)+P2(P2trec
low +P1trec

high))/P 2. Since P = P1+P2,

we obtain trec = trec
low + 2(P1/P)(1− P1/P)(trec

high − trec
low).

For the data structure implementation, we have used ASCYLIB library [12]

that is coupled with an epoch based memory management mechanism which

introduces negligible latency.

5.7.2 Search Data Structures

5.7.2.1 Linked List

Figures 5.7, 5.8 and 5.9 illustrates the results for the lock-free linked list, for

various scenarios that are described before (see 5.7).

Independent Reference Model assumes that the occurrence patterns of events

at the different nodes follow independent Poisson processes. However, the se-

quence of node accesses in an linked list operation reveals a high degree of

222 CHAPTER 5. RESULT IV

dependence, implying that the Poisson processes for the different nodes are

indeed dependent. Also, we hypothesize the set of traversed nodes in an op-

eration is small in front of the set of all nodes, which leads to the rareness of

events, that makes the Poisson process approximation for Bernoulli processes

well-conditioned. All these imply that linked list might not be expressed in the

model. However, we still involve linked list in our study to see what happens

when we diverge from our modeling assumptions.

In figures, we observe that our approach indeed fail (underestimate) to cap-

ture the capacity cache misses. This is revealed clearly in the cases in which

the expected size of the linked list is around the cache sizes. It is not apparent

for some cases since the underestimation does not impact the outcome if the

cache miss ratio is already low. On the other hand, Compare-and-Swap related

impacting factors are estimated accurately.

For a given node, the capacity cache miss estimation requires a collective

approach that involves all the nodes. In contrast, Compare-and-Swap related

impacting factors (coherence misses) are estimated based on the events on the

concerned node. The sequence of events in a node follow approximately a

Poisson process (See Section 5.4.2) even the processes in different nodes are

dependent. This is the reason why our approach manages to provide better

estimations in the cases where the modification related factors dominate the

performance. This can be observed when the curves with different update rates

(colors) diverge from each other, implying the significance of the modifications

on the performance.

We believe these partially negative results create a reference point to evalu-

ate the accuracy of estimations for the other data structures.

5.7. EXPERIMENTAL EVALUATION 223

Range: 32768 Range: 65536

Range: 4096 Range: 8192 Range: 16384

Range: 512 Range: 1024 Range: 2048

Range: 64 Range: 128 Range: 256

4 8 12 16 4 8 12 16

4 8 12 16 4 8 12 16 4 8 12 16

4 8 12 16 4 8 12 16 4 8 12 16

4 8 12 16 4 8 12 16 4 8 12 16

2e+07

4e+07

6e+07

8e+07

2e+06

4e+06

6e+06

1e+05

2e+05

3e+05

4e+05

5.0e+07

1.0e+08

1.5e+08

4.0e+06

8.0e+06

1.2e+07

1.6e+07

250000

500000

750000

1000000

1250000

20000

40000

60000

80000

0e+00

1e+08

2e+08

3e+08

1e+07

2e+07

3e+07

1e+06

2e+06

50000

100000

150000

Number of Threads

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

e
c
)

Ins − Del 0 − 0
0.5 − 0.5

5 − 5
10 − 10

15 − 15
25 − 25

40 − 40
50 − 50

Figure 5.7: LL Uniform distribution for key selection

224 CHAPTER 5. RESULT IV

Range: 32768 Range: 65536

Range: 4096 Range: 8192 Range: 16384

Range: 512 Range: 1024 Range: 2048

Range: 64 Range: 128 Range: 256

4 8 12 16 4 8 12 16

4 8 12 16 4 8 12 16 4 8 12 16

4 8 12 16 4 8 12 16 4 8 12 16

4 8 12 16 4 8 12 16 4 8 12 16

1e+07

2e+07

3e+07

4e+07

5e+07

1e+06

2e+06

3e+06

50000

100000

150000

200000

2.5e+07

5.0e+07

7.5e+07

1.0e+08

2500000

5000000

7500000

2e+05

4e+05

6e+05

10000

20000

30000

40000

5.0e+07

1.0e+08

1.5e+08

5.0e+06

1.0e+07

1.5e+07

2.0e+07

400000

800000

1200000

1600000

25000

50000

75000

100000

Number of Threads

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

e
c
)

Ins − Del 0 − 0
0.5 − 0.5

5 − 5
10 − 10

15 − 15
25 − 25

40 − 40
50 − 50

Figure 5.8: LL Zipf distribution for key selection

5.7. EXPERIMENTAL EVALUATION 225

Range: 16384 Range: 32768 Range: 65536

Range: 2048 Range: 4096 Range: 8192

Range: 256 Range: 512 Range: 1024

Range: 32 Range: 64 Range: 128

4 8 12 16 4 8 12 16 4 8 12 16

4 8 12 16 4 8 12 16 4 8 12 16

4 8 12 16 4 8 12 16 4 8 12 16

4 8 12 16 4 8 12 16 4 8 12 16

2.5e+07

5.0e+07

7.5e+07

0e+00

1e+07

2e+07

3e+07

0e+00

1e+06

2e+06

3e+06

0

50000

100000

150000

200000

3e+07

6e+07

9e+07

1e+07

2e+07

3e+07

4e+07

0e+00

2e+06

4e+06

6e+06

8e+06

0e+00

1e+05

2e+05

3e+05

4e+05

3.0e+07

6.0e+07

9.0e+07

1.2e+08

2e+07

4e+07

6e+07

0.0e+00

5.0e+06

1.0e+07

1.5e+07

0e+00

5e+05

1e+06

Number of Threads

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

e
c
)

Ins − Del 6 − 18 18 − 6 20 − 60 30 − 10 60 − 20

Figure 5.9: LL asymmetric update rates, uniform distribution for key selection

226 CHAPTER 5. RESULT IV

5.7.2.2 Hash Table

Figure 5.10, 5.11 and 5.12 illustrates the results for the lock-free hash table with

different load factor values (number of slots per bucket) where the key selection

process is initiated with uniform distribution. Figure 5.13 shows the results of

a case where the selection process follows the Zipf distribution. Lastly, Fig-

ure 5.14 reveals the results for asymmetric delete and insert operation ratios

where the key selection is done with the uniform distribution.

One can see that the performance drops as the update rate increases, due

to the impact of CAS related factors. This impact magnifies with the activation

of the second socket (more than eight threads) since the events become more

costly. When there is no update operation, the performance scales linearly with

the number of threads. This is also observed when the percentage of updates

are low. However, we lose this scalability especially in the regions where the

number of threads is more than eight because of the impact of coherence misses,

e.g. a thread encounters invalidated nodes (with a high recovery latency) more

frequently in its traversal. Also, performance decreases as the key range of hash

table increases because of capacity cache misses.

These effects are captured accurately by our framework, and our estimates

follow the real behavior almost for all cases that we consider.

5.7. EXPERIMENTAL EVALUATION 227

Range: 32768 Range: 65536 Range: 131072

Range: 4096 Range: 8192 Range: 16384

Range: 512 Range: 1024 Range: 2048

Range: 64 Range: 128 Range: 256

4 8 12 16 4 8 12 16 4 8 12 16

4 8 12 16 4 8 12 16 4 8 12 16

4 8 12 16 4 8 12 16 4 8 12 16

4 8 12 16 4 8 12 16 4 8 12 16

1e+08

2e+08

3e+08

4e+08

5e+08

1e+08

2e+08

3e+08

4e+08

5e+08

1e+08

2e+08

3e+08

4e+08

1e+08

2e+08

3e+08

2e+08

4e+08

6e+08

1e+08

2e+08

3e+08

4e+08

5e+08

1e+08

2e+08

3e+08

4e+08

1e+08

2e+08

3e+08

2e+08

4e+08

6e+08

1e+08

2e+08

3e+08

4e+08

5e+08

1e+08

2e+08

3e+08

4e+08

1e+08

2e+08

3e+08

Number of Threads

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

e
c
)

Ins − Del 0 − 0
0.5 − 0.5

5 − 5
10 − 10

15 − 15
25 − 25

40 − 40
50 − 50

Figure 5.10: HT Uniform distribution for key selection, with load factor=2

228 CHAPTER 5. RESULT IV

Range: 32768 Range: 65536 Range: 131072

Range: 4096 Range: 8192 Range: 16384

Range: 512 Range: 1024 Range: 2048

Range: 64 Range: 128 Range: 256

4 8 12 16 4 8 12 16 4 8 12 16

4 8 12 16 4 8 12 16 4 8 12 16

4 8 12 16 4 8 12 16 4 8 12 16

4 8 12 16 4 8 12 16 4 8 12 16

1e+08

2e+08

3e+08

4e+08

5e+08

1e+08

2e+08

3e+08

4e+08

1e+08

2e+08

3e+08

1e+08

2e+08

3e+08

1e+08

2e+08

3e+08

4e+08

5e+08

1e+08

2e+08

3e+08

4e+08

1e+08

2e+08

3e+08

1e+08

2e+08

3e+08

2e+08

4e+08

6e+08

1e+08

2e+08

3e+08

4e+08

5e+08

1e+08

2e+08

3e+08

4e+08

1e+08

2e+08

3e+08

Number of Threads

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

e
c
)

Ins − Del 0 − 0
0.5 − 0.5

5 − 5
10 − 10

15 − 15
25 − 25

40 − 40
50 − 50

Figure 5.11: HT Uniform distribution for key selection, with load factor=4

5.7. EXPERIMENTAL EVALUATION 229

Range: 32768 Range: 65536 Range: 131072

Range: 4096 Range: 8192 Range: 16384

Range: 512 Range: 1024 Range: 2048

Range: 64 Range: 128 Range: 256

4 8 12 16 4 8 12 16 4 8 12 16

4 8 12 16 4 8 12 16 4 8 12 16

4 8 12 16 4 8 12 16 4 8 12 16

4 8 12 16 4 8 12 16 4 8 12 16

1e+08

2e+08

3e+08

4e+08

5e+08

1e+08

2e+08

3e+08

4e+08

1e+08

2e+08

5.0e+07

1.0e+08

1.5e+08

2.0e+08

2.5e+08

1e+08

2e+08

3e+08

4e+08

5e+08

1e+08

2e+08

3e+08

4e+08

1e+08

2e+08

3e+08

5.0e+07

1.0e+08

1.5e+08

2.0e+08

2.5e+08

1e+08

2e+08

3e+08

4e+08

5e+08

1e+08

2e+08

3e+08

4e+08

1e+08

2e+08

3e+08

5.0e+07

1.0e+08

1.5e+08

2.0e+08

2.5e+08

Number of Threads

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

e
c
)

Ins − Del 0 − 0
0.5 − 0.5

5 − 5
10 − 10

15 − 15
25 − 25

40 − 40
50 − 50

Figure 5.12: HT Uniform distribution for key selection, with load factor=8

230 CHAPTER 5. RESULT IV

Range: 32768 Range: 65536 Range: 131072

Range: 4096 Range: 8192 Range: 16384

Range: 512 Range: 1024 Range: 2048

Range: 64 Range: 128 Range: 256

4 8 12 16 4 8 12 16 4 8 12 16

4 8 12 16 4 8 12 16 4 8 12 16

4 8 12 16 4 8 12 16 4 8 12 16

4 8 12 16 4 8 12 16 4 8 12 16

1e+08

2e+08

3e+08

4e+08

5e+08

1e+08

2e+08

3e+08

4e+08

5e+08

1e+08

2e+08

3e+08

4e+08

1e+08

2e+08

3e+08

4e+08

1e+08

2e+08

3e+08

4e+08

5e+08

1e+08

2e+08

3e+08

4e+08

5e+08

1e+08

2e+08

3e+08

4e+08

1e+08

2e+08

3e+08

4e+08

1e+08

2e+08

3e+08

4e+08

5e+08

1e+08

2e+08

3e+08

4e+08

5e+08

1e+08

2e+08

3e+08

4e+08

1e+08

2e+08

3e+08

4e+08

Number of Threads

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

e
c
)

Ins − Del 0 − 0
0.5 − 0.5

5 − 5
10 − 10

15 − 15
25 − 25

40 − 40
50 − 50

Figure 5.13: HT Zipf distribution for key selection, with load factor=2

5.7. EXPERIMENTAL EVALUATION 231

Range: 32768 Range: 65536 Range: 131072

Range: 4096 Range: 8192 Range: 16384

Range: 512 Range: 1024 Range: 2048

Range: 64 Range: 128 Range: 256

4 8 12 16 4 8 12 16 4 8 12 16

4 8 12 16 4 8 12 16 4 8 12 16

4 8 12 16 4 8 12 16 4 8 12 16

4 8 12 16 4 8 12 16 4 8 12 16

5.0e+07

1.0e+08

1.5e+08

2.0e+08

5.0e+07

1.0e+08

1.5e+08

2.0e+08

2.5e+08

5.0e+07

1.0e+08

1.5e+08

2.0e+08

5.0e+07

1.0e+08

1.5e+08

2.0e+08

5.0e+07

1.0e+08

1.5e+08

2.0e+08

5.0e+07

1.0e+08

1.5e+08

2.0e+08

2.5e+08

5.0e+07

1.0e+08

1.5e+08

2.0e+08

2.5e+08

5.0e+07

1.0e+08

1.5e+08

2.0e+08

5.0e+07

1.0e+08

1.5e+08

2.0e+08

5.0e+07

1.0e+08

1.5e+08

2.0e+08

5.0e+07

1.0e+08

1.5e+08

2.0e+08

2.5e+08

5.0e+07

1.0e+08

1.5e+08

2.0e+08

Number of Threads

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

e
c
)

Ins − Del 5 − 35 10 − 30 20 − 60 30 − 10 60 − 20

Figure 5.14: HT asymmetric update operations, Uniform distribution for key selection,

with load factor=4

232 CHAPTER 5. RESULT IV

5.7.2.3 Skip List

Figure 5.15, 5.16 and 5.17 illustrates the results for the lock-free skip list, for

various scenarios that are described before (see 5.7), where the estimations often

closely follow the real behavior. In Figure 5.17, we observe that our estimation

show some deviation from the real behavior when the key range is small, and

Delete ratio is higher than Insert. For such cases, the expected size of search

data structure tends to be very small which might lead to inaccuracies. Also,

when the update rate is very high and the key selection is made with the Zipf

distribution, we overestimate the performance, presumably because we ignore

the retry loop conflicts that might appear in such extreme cases to some extent.

The events on some nodes (such as the nodes with the maximum height or

also applies to the root of a tree) are not in the lines of our model (rareness

and independent reference). However, this does not lead to inaccuracies in per-

formance estimations. These nodes reveal very high read rates; therefore they

almost always occupy the lowest level cache, and any modification on them is

observed almost instantly by other threads before any other modification takes

place. Even the interarrival times of events in such nodes are not approximately

exponentially distributed, the traversal latency of them is estimated accurately.

Once the average traversal frequency is also estimated accurately too (we do),

such nodes do not lead to inaccuracies. Also, this does not influence the ca-

pacity miss ratio estimation of other nodes since such nodes are few and, as

mentioned before, they have a very high read rate which makes their cache res-

idence predictable by any approach.

5.7. EXPERIMENTAL EVALUATION 233

Range: 32768 Range: 65536 Range: 131072

Range: 4096 Range: 8192 Range: 16384

Range: 512 Range: 1024 Range: 2048

Range: 64 Range: 128 Range: 256

4 8 12 16 4 8 12 16 4 8 12 16

4 8 12 16 4 8 12 16 4 8 12 16

4 8 12 16 4 8 12 16 4 8 12 16

4 8 12 16 4 8 12 16 4 8 12 16
0e+00

1e+08

2e+08

4.0e+07

8.0e+07

1.2e+08

1.6e+08

2e+07

4e+07

6e+07

8e+07

1e+07

2e+07

3e+07

4e+07

5e+07

0e+00

1e+08

2e+08

3e+08

5.0e+07

1.0e+08

1.5e+08

2.0e+08

3e+07

6e+07

9e+07

2e+07

4e+07

6e+07

0e+00

1e+08

2e+08

3e+08

5.0e+07

1.0e+08

1.5e+08

2.0e+08

2.5e+08

5e+07

1e+08

2e+07

4e+07

6e+07

Number of Threads

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

e
c
)

Ins − Del 0 − 0
0.5 − 0.5

5 − 5
10 − 10

15 − 15
25 − 25

40 − 40
50 − 50

Figure 5.15: Skiplist Uniform distribution for key selection

234 CHAPTER 5. RESULT IV

Range: 32768 Range: 65536 Range: 131072

Range: 4096 Range: 8192 Range: 16384

Range: 512 Range: 1024 Range: 2048

Range: 64 Range: 128 Range: 256

4 8 12 16 4 8 12 16 4 8 12 16

4 8 12 16 4 8 12 16 4 8 12 16

4 8 12 16 4 8 12 16 4 8 12 16

4 8 12 16 4 8 12 16 4 8 12 16
0e+00

1e+08

2e+08

3e+08

5.0e+07

1.0e+08

1.5e+08

5e+07

1e+08

2.5e+07

5.0e+07

7.5e+07

0e+00

1e+08

2e+08

3e+08

0.0e+00

5.0e+07

1.0e+08

1.5e+08

2.0e+08

5.0e+07

1.0e+08

1.5e+08

2.5e+07

5.0e+07

7.5e+07

1.0e+08

0e+00

1e+08

2e+08

3e+08

4e+08

0.0e+00

5.0e+07

1.0e+08

1.5e+08

2.0e+08

5.0e+07

1.0e+08

1.5e+08

2.5e+07

5.0e+07

7.5e+07

1.0e+08

Number of Threads

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

e
c
)

Ins − Del 0 − 0
0.5 − 0.5

5 − 5
10 − 10

15 − 15
25 − 25

40 − 40
50 − 50

Figure 5.16: Skiplist Zipf distribution for key selection

5.7. EXPERIMENTAL EVALUATION 235

Range: 32768 Range: 65536 Range: 131072

Range: 4096 Range: 8192 Range: 16384

Range: 512 Range: 1024 Range: 2048

Range: 64 Range: 128 Range: 256

4 8 12 16 4 8 12 16 4 8 12 16

4 8 12 16 4 8 12 16 4 8 12 16

4 8 12 16 4 8 12 16 4 8 12 16

4 8 12 16 4 8 12 16 4 8 12 16

2e+07

4e+07

6e+07

8e+07

2e+07

4e+07

6e+07

2e+07

4e+07

6e+07

1e+07

2e+07

3e+07

4e+07

2e+07

4e+07

6e+07

8e+07

2e+07

4e+07

6e+07

2e+07

4e+07

6e+07

1e+07

2e+07

3e+07

4e+07

5e+07

2e+07

4e+07

6e+07

8e+07

2e+07

4e+07

6e+07

8e+07

2e+07

4e+07

6e+07

2e+07

4e+07

6e+07

Number of Threads

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

e
c
)

Ins − Del 6 − 18 18 − 6 20 − 60 30 − 10 60 − 20

Figure 5.17: Skiplist asymmetric update rates, uniform distribution for key selection

236 CHAPTER 5. RESULT IV

5.7.2.4 Binary Tree

Figure 5.18, 5.19 and 5.20 illustrates the results for the binary tree, for vari-

ous scenarios that are described before (see 5.7). Here, we observe that our

estimations often closely follow the real behaviour.

Discussing the difference between binary tree and skip list would be inter-

esting. Loosely speaking, these two data structure provide the same asymptotic

complexity in average, but we can observe in practice that binary tree outper-

forms skip list in the majority of configurations.

One can observe that binary tree outperforms skip list when there are no

updates. We conjecture that skip list operation traverses more nodes in average.

It searches in a level until it encounters a key that is bigger (or equal if lucky)

than the search key. Then, it returns to the previous key to continue the traversal

in the lower level. This additional node traversal (the one from which it comes

back) at each level might be the leading actor of the observed performance

difference.

It can be observed that binary tree scales better with the increase in the

number of threads for the cases with high update rates. Firstly, skip list oper-

ations require more Compare-and-Swap executions on average, therefore per-

forms slower than binary tree. Secondly, binary tree modifications occur only

in the leaves, where the read rates of nodes are low. Thus, it is less probable to

observe a modification before another overwrites it. This effect can be observed

when one compares the experiments with the Zipf and the uniform distribution

for binary tree. The scalability (with respect to increasing number of threads)

is lost with Zipf because threads operate on the same portion of the tree, which

more makes it more probable for a thread to observe a modification before it is

overwritten.

5.7. EXPERIMENTAL EVALUATION 237

Range: 65536 Range: 131072 Range: 262144

Range: 8192 Range: 16384 Range: 32768

Range: 1024 Range: 2048 Range: 4096

Range: 128 Range: 256 Range: 512

4 8 12 16 4 8 12 16 4 8 12 16

4 8 12 16 4 8 12 16 4 8 12 16

4 8 12 16 4 8 12 16 4 8 12 16

4 8 12 16 4 8 12 16 4 8 12 16

1e+08

2e+08

4.0e+07

8.0e+07

1.2e+08

1.6e+08

2.5e+07

5.0e+07

7.5e+07

1.0e+08

2e+07

4e+07

6e+07

1e+08

2e+08

3e+08

5.0e+07

1.0e+08

1.5e+08

2.0e+08

3e+07

6e+07

9e+07

2e+07

4e+07

6e+07

8e+07

1e+08

2e+08

3e+08

5.0e+07

1.0e+08

1.5e+08

2.0e+08

5e+07

1e+08

2.5e+07

5.0e+07

7.5e+07

Number of Threads

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

e
c
)

Ins − Del 0 − 0
0.5 − 0.5

5 − 5
10 − 10

15 − 15
25 − 25

40 − 40
50 − 50

Figure 5.18: BST Uniform distribution for key selection

238 CHAPTER 5. RESULT IV

Range: 65536 Range: 131072 Range: 262144

Range: 8192 Range: 16384 Range: 32768

Range: 1024 Range: 2048 Range: 4096

Range: 128 Range: 256 Range: 512

4 8 12 16 4 8 12 16 4 8 12 16

4 8 12 16 4 8 12 16 4 8 12 16

4 8 12 16 4 8 12 16 4 8 12 16

4 8 12 16 4 8 12 16 4 8 12 16

1e+08

2e+08

5.0e+07

1.0e+08

1.5e+08

2.0e+08

4.0e+07

8.0e+07

1.2e+08

1.6e+08

3e+07

6e+07

9e+07

0e+00

1e+08

2e+08

3e+08

5.0e+07

1.0e+08

1.5e+08

2.0e+08

2.5e+08

5.0e+07

1.0e+08

1.5e+08

5e+07

1e+08

0e+00

1e+08

2e+08

3e+08

4e+08

5.0e+07

1.0e+08

1.5e+08

2.0e+08

2.5e+08

5.0e+07

1.0e+08

1.5e+08

5e+07

1e+08

Number of Threads

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

e
c
)

Ins − Del 0 − 0
0.5 − 0.5

5 − 5
10 − 10

15 − 15
25 − 25

40 − 40
50 − 50

Figure 5.19: BST Zipf distribution for key selection

5.7. EXPERIMENTAL EVALUATION 239

Range: 65536 Range: 131072 Range: 262144

Range: 8192 Range: 16384 Range: 32768

Range: 1024 Range: 2048 Range: 4096

Range: 128 Range: 256 Range: 512

4 8 12 16 4 8 12 16 4 8 12 16

4 8 12 16 4 8 12 16 4 8 12 16

4 8 12 16 4 8 12 16 4 8 12 16

4 8 12 16 4 8 12 16 4 8 12 16

2.50e+07

5.00e+07

7.50e+07

1.00e+08

1.25e+08

3e+07

6e+07

9e+07

2e+07

4e+07

6e+07

8e+07

2e+07

4e+07

6e+07

2.50e+07

5.00e+07

7.50e+07

1.00e+08

1.25e+08

3.0e+07

6.0e+07

9.0e+07

1.2e+08

2.5e+07

5.0e+07

7.5e+07

2e+07

4e+07

6e+07

2.50e+07

5.00e+07

7.50e+07

1.00e+08

1.25e+08

2.50e+07

5.00e+07

7.50e+07

1.00e+08

1.25e+08

2.5e+07

5.0e+07

7.5e+07

1.0e+08

2e+07

4e+07

6e+07

8e+07

Number of Threads

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

e
c
)

Ins − Del 6 − 18 18 − 6 20 − 60 30 − 10 60 − 20

Figure 5.20: BST asymmetric update rates, uniform distribution for key selection

240 CHAPTER 5. RESULT IV

5.8 Applications: to Pad or not to Pad

In a non-padded (packed) configuration, multiple nodes are packed together

into a single cacheline. This implies that a modification done at a node, could

lead to a coherence cache miss in the traversal of the other nodes. It is often

referred as false sharing. On the other hand, the packed configurations benefit

from their compact representation by reducing the capacity misses.

Until now, we have assumed that the nodes are padded. Here, we extend the

framework to estimate the performance of a packed configuration to facilitate

the tuning process. In such a setting, where the nodes are inserted and deleted

repeatedly, Ni can be alone in its cacheline with the old versions of a set of

nodes that are not present any more in the data structure. Alternatively, it might

be mapped to the same cacheline with some number of active nodes that are

present in the search data structure and they all together contribute to the event

rates that are originating from the same cacheline.

Firstly, we assume that at most two nodes can be packed to a cacheline (that

is the case for the data structures that we consider). We denote the total number

of slots for the node allocations with S = 2MpageSize/cacheLineSize. Re-

call thatM is the number of pages that are used by the structure. We assume

that the nodes are assigned uniformly to the slots; given that Ni and Nj are

present in the structure, Nj is mapped to the same cacheline as Ni with prob-

ability: 1/(S − 1). With the linearity of expectation, the expected additional

event rate for the cacheline that Ni is mapped to can be given by the sum of

event rates originating from different nodes. λread
i and λcas

i provides the event

rates for Ni, and we introduce an additive factor to represent the average event

rate contributions of other nodes to the cacheline of Ni: λread,addi
i for Read

events, and λcas,addi
i for CAS events. Nj contribute to the Read event rates

with λread
j if Nj and Ni are assigned to the same cacheline, which happens with

probability pj/(S−1). Then, we have: λread,addi
i =

∑N
j=1,j 6=i λread

j (
pj

S−1) and

λcas,addi
i =

∑N
j=1,j 6=i λcas

j (
pj

S−1).

With the node packing, we obtain additive components for CAS and Read

events. Now, we show the integration of these additive components into the

5.8. APPLICATIONS: TO PAD OR NOT TO PAD 241

process.

5.8.0.1 Cache Misses

To begin with, packing would have a positive impact on the cache misses as

it would increase the characteristic time (T) of the cache, that is the duration

for C unique cacheline references. To recall, Ni could contribute to this C

references only if Ni ∈ D and we have embedded this effect into the process

by introducing the random variable Pi (see 5.5.1.5). With the packing, this

contribution becomes less probable, as the contribution would occur only if the

reference to Ni occurs before the references to the other node that is mapped to

the same cacheline with Ni. Otherwise, the reference to Ni would be ineffective

for the characteristic time. To recall, the characteristic time is the solution of

the following equation:

Xcache(t) =

N∑

j=1

P pack
i 10<Oj≤t

where P pack
i is the variable that we modify in the process,

P pack
i =





pi(λ
read
i /(λread

i + λread,addi
i)), if P pack

i = 1

1− pi(λ
read
i /(λread

i + λread,addi
i)), if P pack

i = 0

Having obtained the characteristic time, we involve the additive factor to

estimate the cache miss rate of Ni. This is because a reference leads to a cache

miss (in a cache of size C) only if the previous C cacheline references do not

include the cacheline that Ni is mapped to.

Hitcache
i = 1− e(−(λread

i +λread,addi

i
))/P)T

5.8.0.2 Page Misses

Secondly, packing can improve the TLB cache hit ratios. This simply happens

because it reduces the total number of pages that the search data structure spans.

242 CHAPTER 5. RESULT IV

To recall, the total number of pages is a parameter of the process that computes

the expected latency for the impacting factor (Hittlb
i). Packing do not influence

the process, so we just need to update the value of the parameter.

5.8.0.3 CAS Execution

On the downside, packing is expected to reduce the performance through the

CAS related impacting factors. To recall, CASreco
i represents the expected la-

tency per traversal at Ni for executing CAS instructions targeted to Ni. This

factor is proportional to the throughput, and packing do not change the proba-

bility of executing a CAS at Ni while traversing it. So, packing does not have a

direct impact on this component.

5.8.0.4 Invalidation Recovery

The most important performance impacting CAS related factor is the invalida-

tion recovery. For each traversal of Ni, there exist a possibility to pay for a

coherence cache miss due to the previous CAS executions at the cacheline, that

Ni is mapped to. To compute the probability of a coherence miss, one needs

to consider the previous events on the cacheline. The traversal (by a thread at

Ni) would not experience the coherence miss if the previous traversal (on the

cacheline that Ni is mapped to) of the same thread is not followed by CAS event

of another thread. Thus, we consider the additive factor for both type of events

and modify the process as follows:

= P [Coherence Miss on traversal of Ni]

(λcas
i + λcas,addi

i)(P − 1)

(λcas
i + λcas,addi

i)P + (λread
i + λread,addi

i)

5.8.0.5 Stall Time

Finally, packing has a potential to increase the ratio of time that the cacheline

(that Ni is mapped to) is blocked due to CAS executions. We simply update the

process by involving the additive factor:

5.9. CONCLUSION 243

E

[
CASstall

i

]
= (λcas

i + λcas,addi
i)(P − 1)tcas tcas

2

5.8.0.6 Experiments

In Figures 5.22 and 5.21, the results are depicted for configurations with padding

(dashed lines), packing(dots) and our packing based estimations(lines), for the

linked list and hash table (nodes for tree and skiplist is too large to be packed

in a single cacheline or already packed). The key selection is done with the

uniform distribution. For almost every case, we observe that the packing in-

creases the performance and the performance do not degrade due to the false

sharing, even when the update rate is high. The stall time (E
[
CASstall

i

]
) of-

ten is not significant and the invalidation recovery (E [CASreco
i]) dominates the

performance when there are update operations. As an observation, the latency

induced by this factor do not increase with packing, presumably because:

(λcas
i + λcas,addi

i)(P − 1)

(λcas
i + λcas,addi

i)P + (λread
i + λread,addi

i)
≈ λcas

i (P − 1)

λcas
i P + λread

i

This might explain us the reason why the false sharing do not degrade the

performance, as opposed to one might expect. However, the cache and page

misses influence the performance positively, as expected.

Our estimations show that these effects are captured by our framework. We

observe a slight increase in almost all the curves that is coupled with a slight

increase in our estimations, due to the reduced capacity cache misses.

5.9 Conclusion

In this paper, we have modeled and analyzed the performance of search data

structures under a stationary and memoryless access pattern. We have distin-

guished two types of events that occur in the search data structure nodes and

have modeled the arrival of events with Poisson processes. The properties of

244 CHAPTER 5. RESULT IV

Range: 32768 Range: 65536 Range: 131072

Range: 4096 Range: 8192 Range: 16384

Range: 512 Range: 1024 Range: 2048

Range: 64 Range: 128 Range: 256

4 8 12 16 4 8 12 16 4 8 12 16

4 8 12 16 4 8 12 16 4 8 12 16

4 8 12 16 4 8 12 16 4 8 12 16

4 8 12 16 4 8 12 16 4 8 12 16

2e+08

4e+08

6e+08

1e+08

2e+08

3e+08

4e+08

5e+08

1e+08

2e+08

3e+08

4e+08

1e+08

2e+08

3e+08

4e+08

2e+08

4e+08

6e+08

2e+08

4e+08

6e+08

1e+08

2e+08

3e+08

4e+08

1e+08

2e+08

3e+08

4e+08

2e+08

4e+08

6e+08

2e+08

4e+08

6e+08

1e+08

2e+08

3e+08

4e+08

5e+08

1e+08

2e+08

3e+08

4e+08

Number of Threads

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

e
c
)

Ins − Del 0 − 0
0.5 − 0.5

5 − 5
10 − 10

15 − 15
25 − 25

40 − 40
50 − 50

Figure 5.21: Packed nodes for Hash Table, with load factor=2

the Poisson process allowed us to consider the thread-wise and system-wise in-

terleaving of events which are crucial for the estimation of the throughput. For

5.9. CONCLUSION 245

Range: 32768 Range: 65536

Range: 4096 Range: 8192 Range: 16384

Range: 512 Range: 1024 Range: 2048

Range: 64 Range: 128 Range: 256

4 8 12 16 4 8 12 16

4 8 12 16 4 8 12 16 4 8 12 16

4 8 12 16 4 8 12 16 4 8 12 16

4 8 12 16 4 8 12 16 4 8 12 16

2.5e+07

5.0e+07

7.5e+07

2e+06

4e+06

6e+06

8e+06

1e+05

2e+05

3e+05

4e+05

5e+05

5.0e+07

1.0e+08

1.5e+08

5.0e+06

1.0e+07

1.5e+07

2.0e+07

5e+05

1e+06

25000

50000

75000

0e+00

1e+08

2e+08

3e+08

1e+07

2e+07

3e+07

4e+07

1e+06

2e+06

3e+06

50000

100000

150000

200000

Number of Threads

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

e
c
)

Ins − Del 0 − 0
0.5 − 0.5

5 − 5
10 − 10

15 − 15
25 − 25

40 − 40
50 − 50

Figure 5.22: Packed nodes for Linked List

the validation, we have used several fundemental lock-free search data struc-

tures.

246 CHAPTER 5. RESULT IV

As the future work, it would be of interest to study to which extent the ap-

plication workload can be distorted while giving satisfactory results. Putting

aside the non-memoryless access patterns, the non-stationary workloads such

as bursty access patterns, could be covered by splitting the time interval into

alternating phases and assuming a stationary behaviour for each phase. Further-

more, we foresee that the framework can capture the performance of lock-based

search data structures and also can be exploited to predict the energy efficiency

of the concurrent search data structures.

Bibliography

[1] Peter Kirschenhofer and Helmut Prodinger, “The path length of random skip lists,”

Acta Informatica, vol. 31, no. 8, pp. 775–792, 1994.

[2] William Pugh, “Skip lists: A probabilistic alternative to balanced trees,” Commu-

nications of the ACM, vol. 33, no. 6, pp. 668–676, 1990.

[3] Luc Devroye, “A note on the height of binary search trees,” Journal of the ACM

(JACM), vol. 33, no. 3, pp. 489–498, 1986.

[4] Raimund Seidel and Cecilia R. Aragon, “Randomized search trees,” Algorithmica,

vol. 16, no. 4/5, pp. 464–497, 1996.

[5] Hosam M. Mahmoud and Ralph Neininger, “Distribution of distances in random

binary search trees,” The Annals of Applied Probability, vol. 13, no. 1, pp. 253–

276, 2003.

[6] Yutao Zhong, Steven G. Dropsho, Xipeng Shen, Ahren Studer, and Chen Ding,

“Miss rate prediction across program inputs and cache configurations,” IEEE

Transactions on Computers (TC), vol. 56, no. 3, pp. 328–343, 2007.

[7] Philippe Flajolet, Danièle Gardy, and Loÿs Thimonier, “Birthday paradox, coupon

collectors, caching algorithms and self-organizing search,” Discrete Applied Math-

ematics, vol. 39, no. 3, pp. 207–229, 1992.

[8] James D. Fix, “The set-associative cache performance of search trees,” in Pro-

ceedings of the ACM-SIAM Symposium On Discrete Algorithms (SODA). 2003,

pp. 565–572, ACM/SIAM.

BIBLIOGRAPHY 247

[9] Mikhail Fomitchev and Eric Ruppert, “Lock-free linked lists and skip lists,” in Pro-

ceedings of the ACM Symposium on Principles of Distributed Computing (PoDC).

2004, pp. 50–59, ACM.

[10] Bapi Chatterjee, Nhan Nguyen Dang, and Philippas Tsigas, “Efficient lock-free

binary search trees,” in Proceedings of the ACM Symposium on Principles of Dis-

tributed Computing (PoDC). 2014, pp. 322–331, ACM.

[11] Vincent Gramoli, “More than you ever wanted to know about synchronization:

synchrobench, measuring the impact of the synchronization on concurrent algo-

rithms,” in Principles and Practice of Parallel Programming (PPoPP). 2015, pp.

1–10, ACM.

[12] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis, “Asynchronized con-

currency: The secret to scaling concurrent search data structures,” in Proceedings

of the International Conference on Architectural Support for Programming Lan-

guages and Operating Systems (ASPLOS). 2015, pp. 631–644, ACM.

[13] Tudor David and Rachid Guerraoui, “Concurrent search data structures can be

blocking and practically wait-free,” in Proceedings of the ACM Symposium on

Parallelism in Algorithms and Architectures (SPAA). 2016, pp. 337–348, ACM.

[14] Andrew Barbour and Timothy Carlisle Brown, “Stein’s method and point process

approximation,” Stochastic Processes and their Applications, vol. 43, no. 1, pp. 9

– 31, 1992.

[15] Louis Chen and Adrian RÃűllin, “Approximating dependent rare events,”

Bernoulli, vol. 19, no. 4, pp. 1243–1267, 2013.

[16] Richard Arratia, Larry Goldstein, and Louis Gordon, “Poisson approximation and

the chen-stein method,” Statistical Science, vol. 5, no. 4, pp. 403–424, 1990.

[17] Timothy Carlisle Brown, Graham Weinberg, and Aihua Xia, “Removing loga-

rithms from poisson process error bounds,” Stochastic Processes and their Appli-

cations, vol. 87, no. 1, pp. 149 – 165, 2000.

[18] Christine Fricker, Philippe Robert, and James Roberts, “A versatile and accurate

approximation for LRU cache performance,” CoRR, vol. abs/1202.3974, 2012.

[19] John D. C. Little, “A proof for the queuing formula: L= λ w,” Operations research,

vol. 9, no. 3, pp. 383–387, 1961.

248 CHAPTER 5. RESULT IV

[20] Timothy L. Harris, “A pragmatic implementation of non-blocking linked-lists,”

in Proceedings of the International Symposium on Distributed Computing (DISC).

2001, vol. 2180 of Lecture Notes in Computer Science, pp. 300–314, Springer.

[21] Håkan Sundell and Philippas Tsigas, “Fast and lock-free concurrent priority queues

for multi-thread systems,” Journal of Parallel and Distributed Computing (JPDC),

vol. 65, no. 5, pp. 609–627, 2005.

[22] Aravind Natarajan and Neeraj Mittal, “Fast concurrent lock-free binary search

trees,” in Principles and Practice of Parallel Programming (PPoPP). 2014, pp.

317–328, ACM.

[23] Gabriele Paoloni, “How to benchmark code execution times on Intel R© ia-32 and

ia-64 instruction set architectures,” Tech. Rep. 324264-001, Intel, 2010.

[24] Vlastimil Babka and Petr Tuma, “Investigating cache parameters of x86 family

processors,” in SPEC Benchmark Workshop. 2009, vol. 5419 of Lecture Notes in

Computer Science, pp. 77–96, Springer.

Part III

CONCLUSION

6
Conclusion and Future Work

In this thesis, we have presented analytical methodologies to estimate the through-

put and energy efficiency of lock-free data structures. Our models cover lock-

free designs of various abstract data types that are exploited in a wide range

of scenarios including several contention levels, access patterns, number of

threads, hardware configurations, data structure sizes.

We validate our models in a broad spectrum of data structures implementa-

tions such as queues, stacks, priority queues, hash tables, skip lists, deques, hash

tables, binary trees, linked lists and obtain performance estimates that are close

to what we observe in practice. Besides, we make use of our analyses to: (i)

design a new back-off strategy; (ii) optimize memory management mechanism;

(iii) resolve the impact of different memory alignment strategies.

For the future work, we envision two extensions to our models. Firstly, we

251

252 CHAPTER 6. CONCLUSION AND FUTURE WORK

can adapt our frameworks to analyze the performance of lock-based concurrent

algorithms. For example, we can estimate the performance of a Test-And-Set

lock or a lock-based search data structure by using our existing frameworks.

These examples show some promise that our frameworks can be extended to

cover algorithms with various locking mechanisms.

Lock-based approaches are easier to understand and implement compared

to the lock-free ones. Therefore, there is widespread interest from programmers

to the lock-based approaches when it comes to implementing concurrent pro-

grams. This extension would appeal to a broader audience than their lock-free

variants and provide an understanding of the performance of lock-based syn-

chronization mechanisms. Also, it would be interesting to compare the energy

efficiency and throughput of lock-free and lock-based approaches. It might be

possible to determine the characteristics of the configurations where one ap-

proach is better than the other. This can lead to new designs for concurrent data

structures and also can help to determine the data structure that suits best to the

application at hand.

Secondly, we can extend our frameworks to estimate the energy efficiency

of search data structures. With micro-benchmarking, we can extract the energy

consumption cost for each type of event that is defined in our model. Then, we

can couple these values with the occurrence rate of events that are provided by

our throughput framework. This approach would lead to the energy consump-

tion of the search data structures.

On the other hand, we can focus on the applications of our analyses. We

have predicted but have not yet attempted to improve the energy efficiency of

lock-free data structures. Back-off is a well-known strategy that is often used

to improve the performance. We believe, an emphasis on energy efficiency can

also be put in the back-off mechanisms. A subset of processors can apply DVFS

technique to back-off by reducing their clock frequency. This approach would

improve not only the performance but also the energy efficiency.

Another way to improve energy efficiency is to avoid wasteful use of re-

sources. In this thesis, we have considered programs that are parallelized based

on producer/consumer pattern. For this case, the number of consumer processes

253

can be tuned according to the production rate of producer processes since an

imbalance of the rates might lead to waste of resources. Our framework can

be used to predict consumption and production rates (throughput) and to set

the number of producer and consumer processes to minimize the waste of re-

sources.

We have observed that inherent sequential bottlenecks limit the scalability

of some abstract data types (e.g. stack, queue). To overcome this limitation,

techniques like elimination, combining, semantic relaxation can be used. How-

ever, these techniques are only useful when the contention on the data structure

is high enough and turns out to be a burden otherwise. Think of a concurrent

stack that employs elimination: a push operation declares its operation in an

entry of an elimination array and waits for some time for a matching pop oper-

ation that searches the array. If a matching operation is not found, the operation

falls back to the original path and takes place on the concurrent stack. Here,

the size of the elimination array is crucial for performance since small sizes

might restrict the scalability under very high contention, and large sizes could

be harmful by increasing the search time for the pop operation. A similar logic

applies to the semantic relaxation concerning the accuracy metric. A stack can

be relaxed to allow for concurrent accesses from many processes. Unless there

is enough concurrency, relaxation might decrease the accuracy but would be in-

effective to increase the performance. Our results can be extended to cover these

designs and can be used to eliminate the mentioned losses in the performance

and accuracy metrics.

