
A Type Theory for Probabilistic and Bayesian Reasoning

Downloaded from: https://research.chalmers.se, 2019-05-11 19:02 UTC

Citation for the original published paper (version of record):
Jacobs, B., Adams, R. (2018)
A Type Theory for Probabilistic and Bayesian Reasoning
Leibniz International Proceedings in Informatics (LIPIcs), 69(1): 1-34
http://dx.doi.org/10.4230/lipics.types.2015.1

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chalmers Research

https://core.ac.uk/display/198039545?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Type Theory for Probabilistic and Bayesian
Reasoning∗

Robin Adams1 and Bart Jacobs2

1 Institutt for Informatikk,
Universitetet i Bergen, Norway
robin.adams@uib.no

2 Institute for Computing and Information Sciences,
Radboud University, the Netherlands
bart@cs.ru.nl

Abstract
This paper introduces a novel type theory and logic for probabilistic reasoning. Its logic is
quantitative, with fuzzy predicates. It includes normalisation and conditioning of states. This
conditioning uses a key aspect that distinguishes our probabilistic type theory from quantum
type theory, namely the bijective correspondence between predicates and side-effect free actions
(called instrument, or assert, maps). The paper shows how suitable computation rules can be
derived from this predicate-action correspondence, and uses these rules for calculating conditional
probabilities in two well-known examples of Bayesian reasoning in (graphical) models. Our type
theory may thus form the basis for a mechanisation of Bayesian inference.

1998 ACM Subject Classification F.4.1 [Mathematical Logic and Formal Languages]: Math-
ematical Logic — Lambda calculus and related systems; G.3 [Probability and Statistics]: Prob-
abilistic algorithms; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and
Reasoning about Programs

Keywords and phrases Probability theory, type theory, effect module, Bayesian reasoning

Digital Object Identifier 10.4230/LIPIcs.TYPES.2015.<article-no>

1 Introduction

A probabilistic program is understood (semantically) as a stochastic process. A key feature of
probabilistic programs as studied in the 1980s and 1990s is the presence of probabilistic choice,
for instance in the form of a weighted sum x+r y, where the number r ∈ [0, 1] determines
the ratio of the contributions of x and y to the result. This can be expressed explicitly as a
convex sum r · x+ (1− r) · y. Some of the relevant sources are [12, 13], and [11], and [15],
and also [17] for the combination of probability and non-determinism. In the language of
category theory, a probabilistic program is a map in the Kleisli category of the distribution
monad D (in the discrete case) or of the Giry monad G (in the continuous case).

In recent years, with the establishement of Bayesian machine learning as an important area
of computer science, the meaning of probabilistic programming shifted towards conditional
inference. The key feature is no longer probabilistic choice, but normalisation of distributions
(states), see e.g. [3]. Interestingly, this can be done in basically the same underlying models,
where a program still produces a distribution — discrete or continuous — over its output.

∗ This work was supported by ERC Advanced Grant QCLS: Quantum Computation, Logic and Security.

© Robin Adams and Bart Jacobs;
licensed under Creative Commons License CC-BY

21st International Conference on Types for Proofs and Programs (TYPES 2015).
Editor: Tarmo Uustalu; Article No.<article-no>; pp.<article-no>:1–<article-no>:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TYPES.2015.<article-no>
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

<article-no>:2A Type Theory for Probabilistic and Bayesian Reasoning

This paper contributes to this latest line of work by formulating a novel type theory for
probabilistic and Bayesian reasoning. We list the key features of our type theory.

It includes a logic, which is quantitative in nature. This means that its predicates are best
understood as ‘fuzzy’ predicates, taking values in the unit interval [0, 1] of probabilities,
instead of in the two-element set {0, 1} of Booleans.
As a result, the predicates of this logic do not form Boolean algebras, but effect modules
(see e.g. [8]). The double negation rule does hold, but the sum > is a partial operation.
Moreover, there is a scalar multiplication s · p, for a scalar s and a predicate p, which
produces a scaled version of the predicate p.
This logic is a special case of a more general quantum type theory [1]. What we describe
here is the probabilistic subcase of this quantum type theory, which is characterised by a
bijective correspondence between predicates and side-effect free assert maps (see below
for details).
The type theory includes normalisation (and also probabilistic choice). Abstractly,
normalisation means that each non-zero ‘substate’ in the type theory can be turned
into a proper state (like in [9]). This involves, for instance, turning a subdistribution∑
i rixi, where the probabilities ri ∈ [0, 1] satisfy 0 < r ≤ 1 for r def=

∑
i ri, into a proper

distribution
∑
i
ri

r xi — where, by construction,
∑
i
ri

r = 1.
The type theory also includes conditioning, via the combination of assert maps and
normalisation (from the previous two points). Hence, we can calculate conditional prob-
abilities inside the type theory, via appropriate (derived) computation rules. In contrast,
in the language of [3], probabilistic (graphical) models can be formulated, but actual
computations are done in the underlying mathematical models. Since these computation
are done inside our calculus, our type theory can form the basis for mechanisation.

The type theory that we present is based on a new categorical foundation for quantum
logic, called effectus theory, see [8, 9, 4, 5]1. This theory involves a basic duality between
states and effects (predicates), which is implicitly also present in our type theory. A subclass
of ‘commutative’ effectuses can be defined, forming models for probabilistic computation and
logic. Our type theory corresponds to these commutative effectuses, and will thus be called
COMET, as abbreviation of COMmutative Effectus Theory. This COMET can be seen as
an internal language for commutative effectuses.

A key feature of quantum theory is that observations have a side-effect: measuring a
system disturbs it at the quantum level. In order to perform such measurements, each
quantum predicate comes with an associated ‘measurement’ instrument operation which acts
on the underlying space. Probabilistic theories also have such instruments . . . but they are
side-effect free!

The idea that predicates come with an associated action is familiar in mathematics. For
instance, in a Hilbert space H, a closed subspace P ⊆ H (a predicate) can equivalently be
described as a linear idempotent operator p : H→ H (an action) that has P has image. We
sketch how these predicate-action correspondences also exist in the models that underly our
type theory.

First, in the category Sets of sets and functions, a predicate p on a set X can be identified
with a subset of X, but also with a ‘characteristic’ map p : X → 1 + 1, where 1 + 1 = 2 is
the two-element set. We prefer the latter view. Such a predicate corresponds bijectively to a

1 A general introduction to effectus theory [6] will soon be available.

R. Adams and B. Jacobs <article-no>:3

‘side-effect free’ instrument instrp : X → X +X, namely to:

instrp(x) =

 inl (x) if p(x) = 1
inr (x) if p(x) = 0

Here we write X +X for the sum (coproduct), with left and right coprojections (also called
injections) inl (_) , inr (_) : X → X+X. Notice that this instrument merely makes a left-right
distinction, as described by the predicate, but does not change the state x. It is called
side-effect free because it satisfies ∇ ◦ instrp = id, where ∇ = [id, id] : X + X → X is the
codiagonal. It easy to see that each map f : X → X +X with ∇ ◦ f = id corresponds to a
predicate p : X → 1 + 1, namely to p = (! + !) ◦ f , where ! : X → 1 is the unique map to the
final (singleton, unit) set 1.

Our next example describes the same predicate-action correspondence in a probabilistic
setting. It assumes familiarity with the discrete distribution monad D — see [8] for details,
and also Subsection 4.1 — and with its Kleisli category K`(D). A predicate map p : X → 1+1
in K`(D) is (essentially) a fuzzy predicate p : X → [0, 1], since D(1 + 1) = D(2) ∼= [0, 1].
There is also an associated instrument map instrp : X → X + X in K`(D), given by the
function instrp : X → D(X + X) that sends an element x ∈ X to the distribution (formal
convex combination):

instrp(x) = p(x) · inl (x) + (1− p(x)) · inr (x) .

This instrument makes a left-right distinction, with the weight of the distinction given by the
fuzzy predicate p. Again we have ∇◦ instrp = id, in the Kleisli category, since the instrument
map does not change the state. It is easy to see that we get a bijective correspondence.

These instrument maps instrp : X → X + X can in fact be simplified further into
what we call assert maps. The (partial) map assertp : X → X + 1 can be defined as
assertp = (id + !) ◦ instrp. We say that such a map is side-effect free if there is an inequality
assertp ≤ inl (_), for a suitable order on the homset of partial maps X → X + 1. Given
assert maps for p, and for its orthosupplement (negation) p⊥, we can define the associated
instrument via a partial pairing operation as instrp = «assertp, assertp⊥», see below for details.

The key aspect of a probabilistic model, in contrast to a quantum model, is that there is
a bijective correspondence between:

predicates X → 1 + 1
side-effect free instruments X → X +X — or equivalently, side-effect free assert maps
X → X + 1.

We shall define conditioning via normalisation after assert. More specifically, for a state
ω : X and a predicate p on X we define the conditional state ω|p = cond (ω, p) as:

cond (ω, p) = nrm (assertp(ω)) ,

where nrm (−) describes normalisation (of substates to states). This description occurs, in
semantical form in [9]. Here we formalise it at a type-theoretic level and derive suitable
computation rules from it that allow us to do (exact) conditional inference.

The paper is organised as follows. Section 2 provides an overview of the type theory,
with some key results, without giving all the details and proofs. Section 3 takes two familiar
examples of Bayesian reasoning and formalises them in our type theory COMET. Next,
Section 4 sketches how our type theory can be interpreted in set-theoretic and probabilistic
models. Subsequently, Section 5 explores the type theory in greater depth, and provides
justification for the computation rules in the examples. Appendix A contains a formal
presentation of the type theory COMET.

TYPES 2015

<article-no>:4A Type Theory for Probabilistic and Bayesian Reasoning

x : A ∈ Γ(var) Γ ` x : A
(unit) Γ ` ∗ : 1

Γ ` s : A ∆ ` t : B(⊗) Γ,∆ ` s ⊗ t : A⊗B

Γ ` s : A⊗B ∆, x : A, y : B ` t : C(lett) Γ,∆ ` let x ⊗ y = s in t : C

Γ ` t : 0(magic) Γ ` ¡ t : A
Γ ` t : A(inl)

Γ ` inl (t) : A+B
Γ ` t : B(inr)

Γ ` inr (t) : A+B

Γ ` r : A+B ∆, x : A ` s : C ∆, y : B ` t : C(case)
Γ,∆ ` case r of inl (x) 7→ s | inr (y) 7→ t : C

Γ ` s : A+ 1 Γ ` t : B + 1 Γ ` s ↓= t ↑: 2(inlr) Γ ` «s, t» : A+B

Γ ` t : A+B Γ ` inl? (t) = > : 2
(left)

Γ ` left (t) : A
x : A ` t : n Γ ` s : A(instr)

Γ ` instrλxt(s) : n ·A

(1/n)
Γ ` 1/n : 2

` t : A+ 1 ` 1/n ≤ t ↓: 2
(nrm)

Γ ` nrm (t) : A

Γ ` s : A+ 1 Γ ` t : A+ 1
Γ ` b : (A+A) + 1 Γ ` do x← b;B1(x) = s : A+ 1

Γ ` do x← b;B2(x) = t : A+ 1
(>) Γ ` s> t : A+ 1

Figure 1 Typing rules for COMET

2 Syntax and Rules of Deduction

We present here the terms and types of COMET. We shall describe the system at a high
level here, giving the intuition behind each construction. The complete list of the rules of
deduction of COMET is given in Appendix A, and the properties that we use are all proved
in Section 5.

2.1 Syntax
Assume we are given a set of type constants C, representing the base data types needed for
each example. (These may typically include for instance bool, nat and real.) Then the
types of COMET are the following.

Type A ::= C | 0 | 1 | A+B | A⊗B
Term t ::= x | ∗ | t ⊗ t | let x ⊗ y = t in t | ¡ t | inl (t) | inr (t) |

(case t of inl (x) 7→ t | inr (x) 7→ t) | «s, t» | left (t) | instrλxtt | 1/n |
nrm (t) | s> t

We explain the intended meaning of these terms in the remaining parts of Section 2.
The variables x and y are bound within s in let x ⊗ y = s in t. The variable x is bound

within s and y within t in case r of inl (x) 7→ s | inr (y) 7→ t, and x is bound within t in

R. Adams and B. Jacobs <article-no>:5

let x ⊗ y = r ⊗ s in t = t[x := r, y := s] (β⊗)
case inl (r) of inl (x) 7→ s | inr (y) 7→ t = s[x := r] (β+1)
case inr (r) of inl (x) 7→ s | inr (y) 7→ t = t[y := r] (β+2)
B1(«s, t») = s (βinlr1)
B2(«s, t») = t (βinlr1)
inl (left (t)) = t (βleft)
left (inl (t)) = t (ηleft)
index (instrλxp(t)) = p[x := t] (instr-test)
∇(instrλxp(t)) = t (∇-instr)
if ∇(t) = x then instrλxindex(t)(s) = t[x := s] (ηinstr)
if t : 1 then ∗ = t (η1)
if t : A⊗B then let x ⊗ y = t in x ⊗ y = t (η⊗)
if t : A+B then case t of inl (x) 7→ inl (x) | inr (y) 7→ inr (y) = t (η+)
if t : A+B then «B1(t),B2(t)» = t (ηinlr)
if t is well-typed then do _← t; return nrm (t) = t (βnrm)
if t = do _← t; return ρ and 1/n ≤ t, then ρ = nrm (t) (ηnrm)
n · 1/n = > (n · 1/n)
if n · t = > then t = 1/n (divide)
if do x← b;B1(x) = s and do x← b;B2(x) = t

then s> t = do x← b; return ∇(x) (>-def)

Figure 2 Computation rules for COMET

instrλxt(s). We identify terms up to α-conversion (change of bound variable). We write
t[x := s] for the result of substituting s for x within t, renaming bound variables to avoid
variable capture. We shall write _ for a vacuous bound variable; for example, we write
case r of inl (_) 7→ s | inr (y) 7→ t for case r of inl (x) 7→ s | inr (y) 7→ t when y does not occur
free in s.

We shall also sometimes abbreviate our terms, for example writing instrinl(t) when we
should strictly write instrλxinl(x)(t). Each time, the meaning should be clear from context.

The typing rules for these terms are given in Figure 1. (Note that some of these rules
make use of defined expressions, which will be introduced in the sections below.)

The computation rules that these terms obey are given in Figure 2.
Figures 1 and 2 should be understood simultaneously. So the term «s, t» is well-typed if

and only if we can type s : A+ 1 and t : B + 1 (using the rules in Figure 1), and derive the
equation s ↓= t ↑ using the rules in Figure 2.

The full set of rules of deduction for the system is given in Appendix A.

2.2 Linear Type Theory
Note the form of several of the typing rules in Figure 1, including (⊗) and (lett) . These
rules do not allow a variable to be duplicated; in particular, we cannot derive the judgement

TYPES 2015

<article-no>:6A Type Theory for Probabilistic and Bayesian Reasoning

x : A ` x ⊗ x : A⊗A. The contraction rule does not hold in our type theory — it is not the
case in general that, if Γ, x : A, y : B ` J , then Γ, z : A ` J [x := z, y := z]. Our theory is
thus similar to a linear type theory (see for example [2]).

The reason is that these judgements do not behave well with respect to substitution. For
example, take the computation x : 2 ` x ⊗ x : 2⊗ 2. If we apply this computation to the
scalar 1/2, we presumably wish the result to be > ⊗ > with probability 1/2, and ⊥ ⊗ ⊥ with
probability 1/2. But this is not the semantics for the term ` 1/2 ⊗ 1/2 : 2⊗ 2. This term
assigns probability 1/4 to all four possibilities > ⊗ >, > ⊗ ⊥, ⊥ ⊗ >, > ⊗ >.

2.3 States, Predicates and Scalars
A closed term ` t : A will be called a state of type A, and intuitively it represents a probability
distribution over the elements of A.

A predicate on type A is a proposition of the form x : A ` p : 2. These shall be the
formulas of the logic of COMET (see Section 2.7).

A scalar is a term s such that ` s : 2. The closed terms t such that ` t : 2 are called
scalars, and represent the probabilities or truth values of our system. In our intended semantics
for discrete and continuous probabilities, these denote elements of the real interval [0, 1].

Given a state ` t : A and a predicate x : A ` p : 2, we can find the probability that p is
true when measured on t; this probability is simply the scalar p[x := t].

2.4 Empty Type
The typing rule for the term ¡ t says that from an inhabitant t : 0 we can produce an
inhabitant ¡ t in any type A. Intuitively, this says ‘If the empty type is inhabited, then every
type is inhabited’, which is vacuously true.

2.5 Coproducts and Copowers
Since we have the coproduct A+B of two types, we can construct the disjoint union of n
types A1 + · · ·+An in the obvious way. We write inn1 (), . . . , innn () for its constructors; thus,
if a : Ai then inni (a) : A1 + · · ·+An. And given t : A1 + · · ·+An, we can eliminate it as:

case t of inn1 (x1) 7→ t1 | · · · | innn (xn) 7→ tn .

We abbreviate this expression as case n
i=1 t of inni (xi) 7→ ti.

The term left (t) is understood as follows. If we have a term t : A+B and we have derived
the judgement inl? (t) = >, then we know that we know that t has the form inl (a) for some
term a : A. We denote this unique term a by left (t).

We have a similar right () consturction, but there is no need to give primitive rules for
this one, as it can be defined in terms of left (): right (t) def= left (swap (t)), where swap (t) def=
case t of inl (x) 7→ inr (x) | inr (y) 7→ inl (y).

For the special case where all the types are equal, we write n ·A for the type A+ · · ·+A,
where there are n copies of A. In category theory, this is known as the nth copower of A.
(We include the special cases 0 ·A def= 0 and 1 ·A def= A.)

The codiagonal ∇(t) : A for t : n ·A is defined by ∇(t) def= case n
i=1 t of inni (x) 7→ x. (In

particular, whene n = 2 and t : A+A, then ∇(t) def= case t of inl (x) 7→ x | inr (x) 7→ x.)
We write n for n · 1. We denote the canonical elements by 1, 2, . . . , n: i def= inni (∗) : n for

1 ≤ i ≤ n. For t : n ·A, we define index (t) = case n
i=1t of inni (_) 7→ i : n.

R. Adams and B. Jacobs <article-no>:7

Γ ` s : A+ 1 Γ ` t : A+ 1
Γ ` b : (A+A) + 1 Γ ` do x← b;B1(x) = s : A+ 1

Γ ` do x← b; return ∇(x) = t : A+ 1
(order) Γ ` s ≤ t : A+ 1

Figure 3 Rule for Ordering in COMET

2.6 Partial Functions
A term of type A is intended to represent a total computation, that always terminates and
returns a value of type A. We can think of a term of type A+ 1 as a partial computation
that may return a value a of type A (by outputting inl (a)) or diverge (by outputting inr (∗)).
The judgement s ≤ t should be understood as: the probability that s returns inl (a) is ≤
the probability that t returns inl (a), for all a. The rule for this ordering relation is given in
Figure 3.

We define:
If Γ ` t : A then Γ ` return t def= inl (t) : A+ 1. This program converges with probability 1.
Γ ` fail def= inr (∗) : A+ 1. This program diverges with probability 1.
If Γ ` s : A+ 1 and ∆, x : A ` t : B + 1 then
Γ,∆ ` do x← s; t def= case s of inl (x) 7→ t | inr (_) 7→ fail.
We introduce the following abbreviation. If f is an expression (such as inl, inr) such that
f(x) is a term, then we write t�= f for do x← t; f(x).

The term do x← s; t should be read as the following computation: Run s. If s returns a
value, pass this as input x to the computation t; otherwise, diverge.

These constructions satisfy these computation rules:

do x← return s; t = t[x := s] do x← fail; t = fail
do x← r; return x = r do _← r; fail = fail

do x← r; (do y ← s; t) = do y ← (do x← r; s); t

This construction also allows us to define scalar multiplication. If we are given a scalar
` s : 2 and a substate ` t : A+ 1, the result of multiplying or scaling t by s is ` do _← s; t :
A+ 1.

2.6.1 Partial Projections
Given t : n ·A, the partial projection Bi(t) : A+ 1 is defined to be

Bi(t)
def= case n

j=1t of innj (x) 7→
{

return x if i = j

fail otherwise

2.6.2 Partial Pairing
The term «s, t» is understood intuitively as follows. We are given two partial computations
s and t, and we have derived the judgement s↓= t↑, which tells us that exactly one of s and
t converges on any given input. We may then form the computation «s, t» which, given an
input x, returns either s(x) or t(x), whichever of the two converges.

TYPES 2015

<article-no>:8A Type Theory for Probabilistic and Bayesian Reasoning

2.6.3 Partial Sum

Let Γ ` s, t : A+ 1. If these have disjoint domains (i.e. given any input x, the sum of the
probability that s and t return a is never greater than 1), then we may form the computation
Γ ` s > t, the partial sum of s and t. The probability that this program converges with
output a is the sum of the probability that s returns a, and the probability that t returns a.
The definition is given by the rule (>-def) ; see Section 5.3.

We write n · t for the sum t > · · · > t with n summands. We include the special cases
0 · t def= fail and 1 · t def= t.

With this operation, the partial functions in A+ 1 form a partial commutative monoid
(PCM) (see Lemma 10).

2.7 Logic

The type 2 = 1 + 1 shall play a special role in this type theory. It is the type of propositions
or predicates, and its objects shall be used as the formulas of our logic.

We define > def= inl (∗) and ⊥ def= inr (∗). We also define the orthosupplement of a predicate
p, which roughly corresponds to negation:

p⊥
def= case p of inl (_) 7→ ⊥ | inr (_) 7→ >

We immediately have that p⊥⊥ = p, >⊥ = ⊥ and ⊥⊥ = >.
The ordering on 2 shall play the role of the derivability relation in our logic: p ≤ q will

indicate that q is derivable from p, or that p implies q. The rules for this logic are not the
familiar rules of classical or intuitionistic logic. Rather, the predicates over any context form
an effect algebra (Proposition 13).

2.7.1 n-tests

An n-test in a context Γ is an n-tuple of predicates (p1, . . . , pn) on A such that Γ `
p1 > · · ·> pn = > : 2.

Intutively, this can be thought of as a set of n fuzzy predicates whose probabilities always
sum to 1. We can think of this as a test that can be performed on the types of Γ with n
possible outcomes; and, indeed, there is a one-to-one correspondence between the n-tests of
Γ and the terms of type n (Lemma 18).

2.7.2 Instrument Maps

Let x : A ` t : n and Γ ` s : A. The term instrλxt(s) : n · A is interpreted as follows: we
read the computation x : A ` t : n as a test on the type A, with n possible outcomes.
The computation instrλxt(s) runs t on (the output of) s, and returns inni (s), where i is the
outcome of the test.

Given an n-test (p1, . . . , pn) on A, we can write a program that tests which of p1, . . . , pn
is true of its input, and performs one of n different calculations as a result. We write this
program as Γ ` measure p1 7→ t1 | · · · | pn 7→ tn. It will be defined in Definition 21.

If x : A ` p : 2 and Γ, x : A ` s, t : A, we define Γ ` (if p then s else t) def= measure p 7→ s |
p⊥ 7→ t. In the case where s and t do not depend on x, we have the following fact (Lemma
23.2): if p then s else t = case p of inl (_) 7→ s | inr (_) 7→ t.

R. Adams and B. Jacobs <article-no>:9

2.7.3 Assert Maps
If x : A ` p : 2 is a predicate, we define

Γ ` assertλxp(t)
def= case instrλxp(t) of inl (x) 7→ return x | inr (_) 7→ fail : A+ 1

The computation assertp(t) is a partial computation with output type A. It tests whether p
is true of t; if so, it leaves t unchanged; if not, it diverges. That is, if p[x := t] returns >, the
computation converges and returns t; if not, it diverges.

These constructions satisfy the following computation rules (see Section 5.3.1 below for
the proofs).

(assert↓) (assertλxp(t))↓= p[x := t]
(assert-scalar) For a scalar ` s : 2: assertλ_s(∗) = instrλ_s(∗) = s : 2.
(instr+) For x : A+B ` t : n:

instrλxt(s) = case s of inl (y) 7→ case n
i=1instrλa.t[x:=inl(a)](y) of inni (z) 7→ inni (inl (z))

inr (y) 7→ case n
i=1instrλb.t[x:=inl(b)](y) of inni (z) 7→ inni (inr (z))

(assert+) For x : A+B ` p : 2:

assertλxp(t) = case t of inl (x) 7→ do z ← assertλa.p[x:=inl(a)](x); return inl (z) |
inr (y) 7→ do z ← assertλb.p[x:=inr(b)](y); return inr (z)

(instr m) For x : m ` t : n: instrλxt(s) = case m
i=1s of i 7→ case n

j=1t[x := i] of j 7→ innj (i)
(assert m) For x : m ` p : 2: assertλxp(t) = case m

i=1t of i 7→ if p[x := i] then return i else fail

In particular, we have assertinl?(t) = B1(t) and assertinr?(t) = B2(t).

2.7.4 Sequential Product
Given two predicates x : A ` p, q : 2, we can define their sequential product

x : A ` p & q
def= do x← assertp(x); q : 2 .

The probability of this predicate being true at x is the product of the probabilities of p
and q. This operation has many of the familiar properties of conjunction — including
commutativity — but not all: in particular, we do not have p & p⊥ = ⊥ in all cases. (For
example, 1/2 & (1/2)⊥ = 1/4.)

2.7.5 Coproducts
We can define predicates which, given a term t : A+B, test which of A and B the term came
from. We write these as inl? (t) and inr? (t). (Compare these with the operators FstAnd and
SndAnd defined in [10].) They are defined by

inl? (t) def= case t of inl (_) 7→ > | inr (_) 7→ ⊥
inr? (t) def= case t of inl (_) 7→ ⊥ | inr (_) 7→ >

TYPES 2015

<article-no>:10A Type Theory for Probabilistic and Bayesian Reasoning

2.7.6 Kernels
The predicate inr? () is particularly important for partial maps.

Let Γ ` t : A+ 1. The kernel of the map denoted by t is

t↑def= inr? (t) def= case t of inl (_) 7→ ⊥ | inr (_) 7→ >

Intuitively, if we think of t as a partial computation, then t↑ is the proposition ‘t does not
terminate’, or the function that gives the probability that t will diverge on a given input.

Its orthosupplement, (t↑)⊥ = inl? (t), which we shall also write as t↓, is also called the
domain predicate of t, and represents the proposition that t terminates. We note that it is
equal to do _← t;>.

2.7.7 Scalar Constants
The term 1/n represents the probability distribution on 2 = {>,⊥} which returns > with
probability 1/n and ⊥ with probability (n− 1)/n. It can be thought of as a coin toss, with
a weighted coin that returns heads with probability 1/n.

From this, we have a representation of the rational numbers between 0 and 1. Let m/n
denote the term 1/n > · · · > 1/n, where there are m summands. The usual arithmetic of
rational numbers can be carried out in our system (see Section 5.6).

2.8 Normalisation
Let ` t : A+ 1. Then t represents a substate of A. As long as the probability t↓ is non-zero,
we can normalise this program over the probability of non-termination. The result is the state
denoted by nrm (t). Intuitively, the probability that nrm (t) will output a is the probability
that t will output inl (a), conditioned on the event that t terminates.

In order to type nrm (t), we must first prove that t has a non-zero probability of terminating
by deriving an inequality of the form 1/n ≤ t↓ for some positive integer n ≥ 2.

If ` t : A and x : A ` p(x) : 2, we write cond (t, p) for

cond (t, p) def= nrm (assertp(t)) .

The term t denotes a computation whose output is given by a probability distribution over
A. Then cond (t, p) gives the result of normalising that conditional probability distribution
with respect to p.

2.9 Marginalisation
The tensor product of type A⊗B comes with two projections. Given Γ ` t : A⊗B, define

Γ ` π1(t) def= let x ⊗ _ = t in x : A Γ ` π2(t) def= let _ ⊗ y = t in y : B

If t is a state (i..e Γ is the empty context), then π1(t) denotes the result of marginalising t,
as a probability distribution over A⊗B, to a probability distribution over A.

2.10 Local Definition
In our examples, we shall make free use of local definition. This is not a part of the syntax
of COMET itself, but part of our metalanguage. We write let x = s in t for t[x := s]. We
shall also locally define functions: we write let f(x) = s in t for the result of replacing every
subterm of the form f(r) with s[x := r] in t.

R. Adams and B. Jacobs <article-no>:11

3 Examples

This section describes two examples of (Bayesian) reasoning in our type theory COMET.
The first example is a typical exercise in Bayesian probability theory. Since such kind of
reasoning is not very intuitive, a formal calculus is very useful. The second example involves
a simple graphical model.

I Example 1. (See also [18, 3]) Consider the following situation.

1% of a population have a disease. 80% of subjects with the disease test positive, and
9.6% without the disease also test positive. If a subject is positive, what are the odds
they have the disease?

This situation can be described as a very simple graphical model, with associated (conditional)
probabilities. �� ��HasDisease

���� ��PositiveResult

Pr (HD)

0.01

HD Pr (P R)

t 0.8

f 0.096

In our type theory COMET, we use the following description.

let subject = 0.01 in
let positive_result(x) = (if x then 0.8 else 0.096) in

cond (subject, positive_result)

We thus obtain a state subject : 2, conditioned on the predicate positive_result on 2. We
calculate the outcome in semi-formal style. The conditional state cond (subject, positive_result)
is defined via normalisation of assert, see Section 2.8. We first show what this assert term is,
using the rule (assert m)and (assert-scalar):

assertpositive_result(x) = if x then do _← assertpositive_result(>)(x); return >
else do _← assertpositive_result(⊥)(x); return ⊥

= if x then do _← assert0.8(x); return >
else do _← assert0.096(x); return ⊥

= if x then if 0.8 then return > else fail
else if 0.096 then return ⊥ else fail

Conditioning requires that the domain of the substate assertpositive_result(subject) is non-zero.
We compute this domain as:

assertpositive_result(subject)↓ = positive_result(subject) (Rule (assert↓))
= if 0.01 then 0.8 else 0.096
= 0.01 & 0.8 > 0.99 & 0.096 (Lemma 23.2)
= 0.10304 (Lemma 25)

Hence we can choose (for example) n = 10, to get 1
n ≤ 0.10304 = assertpositive_result(subject)↓.

TYPES 2015

<article-no>:12A Type Theory for Probabilistic and Bayesian Reasoning

We now proceed to calculate the result, answering the question in the beginning of this
example.

assertpositive_result(subject)
= if 0.01 then if 0.8 then return > else fail

else if 0.096 then return ⊥ else fail
= measure 0.01 & 0.8 7→ return >

0.01 & 0.8⊥ 7→ fail
0.01⊥ & 0.096 7→ return ⊥
0.01⊥ & 0.096⊥ 7→ fail

(Lemma 22.3)

= measure 0.008 7→ return >
0.09504 7→ return ⊥
0.89696 7→ fail

(Lemma 22.5)

cond (subject, positive_result)
def= nrm (assertpositive_result(subject))
= measure 0.0776 7→ >

0.9224 7→ ⊥
(Corollary 27)

= 0.0776. (Lemma 23.3)

Hence the probability of having the disease after a positive test result is 7.8%.

I Example 2 (Bayesian Network). The following is a standard example of a problem in
Bayesian networks, created by [16, Chap. 14].

I’m at work, neighbor John calls to say my alarm is ringing. Sometimes it’s set off by
minor earthquakes. Is there a burglar?

We are given that the situation is as described by the following Bayesian network.�� ��Burglary

$$

�� ��Earthquake

yy�� ��Alarm

zz %%�� ��JohnCalls
�� ��MaryCalls

Pr (B)
1

1000

A Pr (J)

t 9
10

f 1
20

B E Pr (A)

t t 95
100

t f 94
100

f t 29
100

f f 1
1000

Pr (E)
1

500

A Pr (M)

t 7
10

f 1
100

The probability of each event given its preconditions is as given in the tables — for example,
the probability that the alarm rings given that there is a burglar but no earthquake is 0.94.

We model the above question in COMET as follows.

let b = 0.01 in let e = 0.002 in
let a(x, y) = (if x then (if y then 0.95 else 0.94)

else (if y then 0.29 else 0.001)) in
let j(z) = (if z then 0.9 else 0.05) in

let m(z) = (if z then 0.7 else 0.01) in
π1
(
cond (b ⊗ e, j ◦ a)

)

R. Adams and B. Jacobs <article-no>:13

We first elaborate the predicate j ◦ a, given in context as x : 2, y : 2 ` j(a(x, y)) : 2. It is:

j(a(x, y)) = if a(x, y) then 0.90 else 0.05
= if x then (if y then (if 0.95 then 0.90 else 0.05) else (if 0.94 then 0.90 else 0.05)

else (if y then (if 0.29 then 0.90 else 0.05) else (if 0.001 then 0.90 else 0.05)
= if x then (if y then 0.95 & 0.90 > 0.95⊥ & 0.05 else 0.94 & 0.90 > 0.94⊥ & 0.05)

else (if y then 0.29 & 0.90 > 0.29⊥ & 0.05 else 0.001 & 0.90 > 0.001⊥ & 0.05
= if x then (if y then 0.8575 else 0.849) else (if y then 0.2965 else 0.05085)

The associated assert map is:

assertj◦a(b, e) = measure 0.001 & 0.002 & 0.8575 7→ return > ⊗ >
0.001 & 0.998 & 0.849 7→ return > ⊗ ⊥
0.999 & 0.002 & 0.2965 7→ return ⊥ ⊗ >
0.999 & 0.998 & 0.05085 7→ return ⊥ ⊗ ⊥
0.052138976⊥ 7→ fail

= measure 0.000001715 7→ return > ⊗ >
0.000847302 7→ return > ⊗ ⊥
0.000592407 7→ return ⊥ ⊗ >
0.050697552 7→ return ⊥ ⊗ ⊥
0.052138976⊥ 7→ fail

Hence by Corollary 27 we obtain the marginalised conditional:

π1
(
cond (b ⊗ e, j ◦ a)

)
= π1

(
nrm (assertj◦a(b, e))

)
= π1

(
measure 0.000001715/0.052138976 7→ > ⊗ >

0.000847302/0.052138976 7→ > ⊗ ⊥
0.000592407/0.052138976 7→ ⊥ ⊗ >
0.050697552/0.052138976 7→ ⊥ ⊗ ⊥

)
= measure 0.000032893 7→ π1(> ⊗ >)

0.016250837 7→ π1(> ⊗ ⊥)
0.011362078 7→ π1(⊥ ⊗ >)
0.972354194 7→ π1(⊥ ⊗ ⊥)

= measure 0.000032893 7→ >
0.016250837 7→ >
0.011362076 7→ ⊥
0.972354194 7→ ⊥

= measure 0.01628373 7→ >
0.98371627 7→ ⊥

= 0.01628373

We conclude that there is a 1.6% chance of a burglary when John calls.

TYPES 2015

<article-no>:14A Type Theory for Probabilistic and Bayesian Reasoning

P (xi(~a) = b) =
{

1 if b = ai

0 if b 6= ai

P («s, t»(~g) = a1) = P (s(~g) = a1)
P («s, t»(~g) = b2) = P (t(~g) = b1)
P (left (t) (~g) = a) = P (t(~g) = a1)

P (instrλxt(s)(~g) = ai)

= P (s(~g) = a)P (t(a) = i)

P (1/n(~g) = >) = 1/n

P (1/n(~g) = ⊥) = (n− 1)/n

P (nrm (t) (~g) = a)

= P (t(~g) = a1)/(1− P (t(~g) = ∗2))
P ((s > t)(~g) = a1)

= P (s(~g) = a1) + P (t(~g) = a1)
P ((s > t)(~g) = ∗2)

= P (s(~g) = ∗2) + P (t(~g) = ∗2)− 1

P ((let x ⊗ y = s in t)(~g, ~d) = c) =
∑
a

∑
b

P (s(~g) = (a, b))P (t(~d, a, b) = c)

P (case r of inl (x) 7→ s | inr (y) 7→ t(~g, ~d) = c)

=
∑
a

P (r(~g) = a1)P (s(~d, a) = c) +
∑
b

P (r(~g) = b2)P (t(~d, b) = c)

Figure 4 Semantics for COMET in K`D

4 Semantics

The terms of COMET are intended to represent probabilistic programs. We show how to
give semantics to our system in three different ways: using discrete and continuous probability
distributions, and simple set-theoretic semantics for deterministic computation.

4.1 Discrete Probabilistic Computation
We give an interpretation that assigns, to each term, a discrete probability distribution over
its output type.

I Definition 3. Let A be a set.
The support of a function φ : A→ [0, 1] is suppφ = {a ∈ A : φ(a) 6= 0}.
A (discrete) probability distribution over A is a function φ : A→ φ with finite support
such that

∑
a∈A φ(a) = 1.

Let DA be the set of all probability distributions on A.

We shall interpret every type A as a set [[A]]. Assume we are given a set [[C]] for each
type constant C. Define a set [[A]] for each type A thus:

[[0]] = ∅ [[1]] = {∗} [[A+B]] = [[A]]] [[B]] [[A ⊗ B]] = [[A]]× [[B]]

where A] B = {a1 : a ∈ A} ∪ {b2 : b ∈ B}. We extend this to contexts by defining
[[x1 : A1, . . . , xn : An]] = [[A1]]× · · · × [[An]].

Now, to every term x1 : A1, . . . , xn : An ` t : B, we assign a function [[t]] : [[A1]]× · · · ×
[[An]]→ D [[B]]. The value [[t]] (a1, . . . , an)(b) ∈ [0, 1] will be written as P (t(a1, . . . , an) = b),
and should be thought of as the probability that b will be the output if a1, . . . , an are the
inputs. We give a few of the clauses in Figure 4. The others follow the same pattern.

The sums involved here are all well-defined because, for all t and ~g, the function P (t(~g) =
−) has finite support.

R. Adams and B. Jacobs <article-no>:15

I Theorem 4 (Soundness). 1. If Γ ` t : A is derivable, then for all ~g ∈ [[Γ]], we have
P (t(~g) = −) is a probability distribution on [[A]].

2. If Γ ` s = t : A, then P (s(~g) = a) = P (t(~g) = a).

Proof. The proof is by induction on derivations. First prove P (t[x := s](~g,~a) = b) =∑
a∈[[A]] P (s(~g) = a)P (t(~d, a) = b) whenever t[x := s] is well-typed. J

As a corollary, we know that COMET is non-degenerate:

I Corollary 5. Not every judgement is derivable; in particular, the judgement ` > = ⊥ : 2
is not derivable.

4.2 Alternative Semantics
It is also possible to give semantics to COMET using continuous probabilities. We assign
a measurable space [[A]] to every type A. Each term then gives a measurable function
[[A1]]× · · · × [[An]]→ G [[B]], where GX is the space of all probability distributions over the
measurable space X. (G here is the Giry monad [7].)

If we remove the constants 1/n from the system, we can give deterministic semantics to
the subsystem, in which we assign a set to every type, and a function [[A1]]×· · ·× [[An]]→ [[B]]
to every term.

More generally, we can give an interpretation of COMET in any commutative monoidal
effectus with normalisation in which there exists a scalar s such that n · s = 1 for all positive
integers n [6]. The discrete and continuous semantics we have described are two instances of
this interpretation.

5 Metatheorems

We presented an overview of the system in Section 2, and gave the intuitive meaning of the
terms of COMET. In this section, we proceed to a more formal development of the theory,
and investigate what can be proved within the system.

The type theory we have presented enjoys the following standard properties.

I Lemma 6.
1. Weakening If Γ ` J and Γ ⊆ ∆ then ∆ ` J .
2. Substitution If Γ ` t : A and ∆, x : A ` J then Γ,∆ ` J [x := t].
3. Equation Validity If Γ ` s = t : A then Γ ` s : A and Γ ` t : A.
4. Inequality Validity If Γ ` s ≤ t : A+ 1 then Γ ` s : A+ 1 and Γ ` t : A+ 1.
5. Functionality If Γ ` r = s : A and ∆, x : A ` t : B then Γ,∆ ` t[x := r] = t[x := s] : B.

Proof. The proof in each case is by induction on derivations. Each case is straightforward. J

The following lemma shows that substituting within our binding operations works as
desired.

I Lemma 7. 1. If Γ ` r : A ⊗ B; ∆, x : A, y : B ` s : C; and Θ, z : C ` t : D then
Γ,∆,Θ ` t[z := let x ⊗ y = r in s] = let x ⊗ y = r in t[z := s] : D.

2. If Γ ` r : A+B; ∆, x : A ` s : C; ∆, y : B ` s′ : C; and Θ, z : C ` t : D then

Γ,∆,Θ ` t[z := case r of inl (x) 7→ s | inr (y) 7→ s′]
= case r of inl (x) 7→ t[z := s] | inr (y) 7→ t[z := s′] : D

.

TYPES 2015

<article-no>:16A Type Theory for Probabilistic and Bayesian Reasoning

Proof. For part 1, we us the following ‘trick’ to simulate local definition (see [1]):

t[z := case r of inl (x) 7→ s | inr (y) 7→ s′]
= let z ⊗ _ = (case r of inl (x) 7→ s | inr (y) 7→ s′) ⊗ ∗ in t (β⊗)
= let z ⊗ _ = case r of inl (x) 7→ s ⊗ ∗ | inr (y) 7→ s′ ⊗ ∗ in t (case-⊗)
= case r of inl (x) 7→ let z ⊗ _ = s ⊗ ∗ in t | inr (y) 7→ let z ⊗ _ = s′ ⊗ ∗ in t (let-case)
= case r of inl (x) 7→ t[z := s] | inr (y) 7→ t[z := s′] (β⊗)

Part 2 is proven similarly using (let-⊗) and (let-let) . J

I Corollary 8. 1. If Γ ` s : A⊗B and ∆ ` t : C then Γ,∆ ` let _ ⊗ _ = s in t = t : C.
2. If Γ ` s : A+B and ∆ ` t : C then Γ,∆ ` case s of inl (_) 7→ t | inr (_) 7→ t = t : C.

Proof. These are both the special case where z does not occur free in t. J

5.1 Coproducts
We generalise the inl? () and inr? () constructions as follows. Define the predicate ini? () on
n ·A, which tests whether a term comes from the ith component, as follows.

ini? (t) def= case n
j=1t of innj (_) 7→

{
> if i = j

⊥ if i 6= j

5.2 Kernels
I Lemma 9.
1. If Γ ` t : A+ 1 then Γ ` t↓= (do _← t;>) : 2
2. Let Γ ` t : A+ 1. Then Γ ` t↓= ⊥ : 2 if and only if Γ ` t = fail : A+ 1.
3. Let Γ ` s : A+ 1 and ∆, x : A ` t : B + 1. Then Γ,∆ ` (do x← s; t)↓= do x← s; t↓ : 2.

Proof.
1. This holds just by expanding definitions.
2. Obviously, (fail↓) = ⊥. For the converse, if t↓= ⊥ then t↑= > and so t = inr (right (t)) =

inr (∗) by (η1) .
3. (case s of inl (x) 7→ t | inr (_) 7→ fail↓) = case s of inl (x) 7→ t↓ | inr (_) 7→ fail↓

= case s of inl (x) 7→ t↓ | inr (_) 7→ ⊥
J

5.3 Ordering on Partial Maps and the Partial Sum
Note that, from the rules (>) and (>-def) , we have Γ ` s > t : A + 1 if and only if there
exists Γ ` b : (A+A) + 1 such that

Γ ` b�= B1 = s : A+ 1, Γ ` b�= B2 = t : A+ 1 ,

in which case Γ ` s > t = do x ← b; return ∇(x) : A + 1. We say that such a term b is a
bound for s> t. By the rule (JM) , this bound is unique if it exists.

The set of partial maps A → B + 1 between any two types A and B form a partial
commutative monoid (PCM) with least element fail, as shown by the following results.

I Lemma 10.

R. Adams and B. Jacobs <article-no>:17

1. If Γ ` t : A+ 1 then Γ ` t> fail = t : A+ 1.
2. (Commutativity) If Γ ` s> t : A+ 1 then Γ ` t> s : A+ 1 and Γ ` s> t = t> s : A+ 1.
3. (Associativity) Γ ` (r > s) > t : A+ 1 if and only if Γ ` r > (s> t) : A+ 1, in which

case Γ ` r > (s> t) = (r > s) > t : A+ 1.

Proof. We prove part 2 here. Let b be a bound for s> t. Then do x← b; return swap (x) is a
bound for t>s and we have t>s = do y ← (do x← b; return swap (x)); return ∇(y) = s>t. J

I Lemma 11. Let Γ ` r : A + 1 and Γ ` s : A + 1. Then Γ ` r ≤ s : A + 1 if and only if
there exists t such that Γ ` r > t = s : A+ 1.

Proof. Suppose r ≤ s. If b is such that do x← b;B1(x) = r and do x← b; return ∇(x) = s

then take t = do x← b;B2(x).
Conversely, if r > t = s, then inverting the derivation of Γ ` r > t : A+ 1 we have that

there exists b such that r = do x← b;B1(x), t = do x← b;B2(x) and s = r > t = do x←
b; return ∇(x). Therefore, r ≤ s by (order) . J

In this case, the bound for r > s will also be called a bound for r ≤ s.

I Lemma 12.
1. If Γ ` s> t : A+ 1 then Γ ` s ≤ s> t : A+ 1 and Γ ` t ≤ s> t : A+ 1.
2. If Γ ` t : A+ 1 then Γ ` t ≤ t : A+ 1.
3. If Γ ` t : A+ 1 then Γ ` fail ≤ t : A+ 1.
4. If Γ ` r ≤ s : A+ 1 and Γ ` s ≤ t : A+ 1 then Γ ` r ≤ t : A+ 1.
5. If Γ ` r ≤ s : A+ 1 and Γ ` s> t : A+ 1 then Γ ` r > t ≤ s> t : A+ 1.

Proof. Parts 1–4 follow by applying Lemma 11 to the appropriate part of Lemma 10. For
part 5, let r > x = s. Then r > x> t = s> t and so r > t ≤ s> t. J

On the predicates, we have the following structure, which shows that they form an effect
algebra. (In fact, they have more structure: they form an effect module over the scalars, as
we will prove in Proposition 17.)

I Proposition 13. Let Γ ` p, q, r : 2.
1. If Γ ` p : 2 then Γ ` p> p⊥ = > : 2.
2. If Γ ` p> q = > : 2 then Γ ` q = p⊥ : 2.
3. (Zero-One Law) If Γ ` p>> : 2 then Γ ` p = ⊥ : 2.
4. Γ ` p> q : 2 if and only if Γ ` p ≤ q⊥ : 2.
5. Suppose Γ ` r : A+B and ∆, x : A ` s> t : C + 1 and ∆, y : B ` s′ > t′ : C + 1. Then

Γ,∆ ` case r of inl (x) 7→ s> t | inr (y) 7→ s′ > t′

= (case r of inl (x) 7→ s | inr (y) 7→ s′) > (case r of inl (x) 7→ t | inr (y) 7→ t′) : C + 1

6. If Γ ` r : A + 1 and ∆, x : A ` s > t : B + 1 then Γ,∆ ` do x ← r; s> t = (do x ←
r; s) > (do x← r; t) : B + 1.

Proof. We prove part 2 here. Let b be a bound for p>q. We have> = do x← b; return ∇(x) =
do x ← b;> = b ↓. Therefore, b = inl (left (b)) by (βleft) , and so p = B1(left (b)) and
q = B2(left (b)) = B1(left (b))⊥ = p⊥. J

I Corollary 14. 1. (Cancellation) If Γ ` p> q = p> r : 2 then Γ ` q = r : 2.
2. (Positivity) If Γ ` p> q = ⊥ : 2 then Γ ` p = ⊥ : 2 and Γ ` q = ⊥ : 2.
3. If Γ ` p : 2 then Γ ` p ≤ > : 2.

TYPES 2015

<article-no>:18A Type Theory for Probabilistic and Bayesian Reasoning

4. If Γ ` p ≤ q : 2 then Γ ` q⊥ ≤ p⊥ : 2.
5. If Γ ` p ≤ q : 2 and Γ ` q ≤ p : 2 then Γ ` p = q : 2.

Proof. We prove part 1 here. We have p> q> (p> q)⊥ = p> r> (p> q)⊥ = >, and therefore.
q = r = (p> (p> q)⊥)⊥. J

5.3.1 Assert Maps
Recall that, for x : A ` p : 2 and Γ ` t : A, we define Γ ` assertλxp(t)

def= B1(instrλxp(t)) :
A+ 1.

We now give rules for calculating instrλxp and assertλxp directed by the type.

I Lemma 15 ((assert-scalar)). If ` s : 2 then

` assertλ_s(∗) = instrλ_s(∗) = s : 2

Proof. We have ∇(s) = ∗ by (η1) and s↓= s by (η+) . The result follows by (ηinstr) . J

I Lemma 16. The rules (instr+) and (assert+) are admissible.

Proof. For x : A+B, let us write f(x) for case x of inl (y) 7→ (inl + inl)(instrλa.p[inl(a)](y)) |
inr (z) 7→ (inr + inr)(instrλb.p[inr(b)](z)). We shall prove f(x) = instrλxp(x).

We have

∇(f(x)) = case x of inl (y) 7→ inl
(
∇(assertλa.p[x:=inl(a)](y))

)
|

inr (z) 7→ inr
(
∇(assertλb.p[inr(b)](z))

)
= case x of inl (y) 7→ inl (y) | inr (z) 7→ inr (z) = x by (η+)

f(x)↓ = case x of inl (y) 7→ instrλa.p[x:=inl(a)](y)↓ | inr (z) 7→ instrλb.p[inr(b)](z)↓
= case x of inl (y) 7→ p[x := inl (y)] | inr (z) 7→ p[x := inr (z)] = p

the last step using Corollary 8.2. Hence f(x) = instrp(x) by (ηinstr) . J

The rules (instr m)and (assert m)follow easily.

5.4 Sequential Product
We do not have conjunction or disjunction in our language for predicates over the same type,
as this would involve duplicating variables. However, we do have the following sequential
product. (This was called the ‘and-then’ test operator in Section 9 in [10].)

Let x : A ` p, q : 2. We define the sequential product p & q by

x : A ` p & q
def= do x← assertλxp(x); q : 2 .

I Proposition 17. Let x : A ` p, q : 2.
1. instrp&q(x) = case instrp(x) of inl (x) 7→ instrq(x) | inr (y) 7→ inr (y)
2. assertp&q(x) = do x← assertp(x); assertq(x) def= assertp(x)�= assertq
3. (Commutativity) p & q = q & p.
4. (p> q) & r = p & r > q & r and p & (q > r) = p & q > p & r.
5. p & ⊥ = ⊥ & q = ⊥
6. p & > = p and > & q = q

7. p & (q & r) = (p & q) & r

8. Let x : A ` p : 2. If x does not occur in q, then p & q = case p of inl (_) 7→ q | inr (_) 7→ ⊥.

R. Adams and B. Jacobs <article-no>:19

Proof. We shall prove part 1 here.

inl? (case instrp(x) of inl (x) 7→ instrq(x) | inr (y) 7→ inr (y))
= case instrp(x) of inl (x) 7→ q | inr (y) 7→ ⊥ = do x← assertp(x); q = p & q

∇(case instrp(x) of inl (x) 7→ instrq(x) | inr (y) 7→ inr (y))
= case instrp(x) of inl (x) 7→ x | inr (y) 7→ y = ∇(instrp(x)) = x

so the result follows by (ηinstr) . J

These results show that the scalars form an effect monoid, and the predicates on any
type form an effect module over that effect monoid (see [10] Lemma 13 and Proposition 14).

5.5 n-tests
Recall that an n-test on a type A is an n-tuple (p1, . . . , pn) such that x : A ` p1 > · · ·> pn =
> : 2.

The following lemma shows that there is a one-to-one correspondance between the n-tests
on A, and the maps A→ n.

I Lemma 18. For every n-test (p1, . . . , pn) on A, there exists a term x : A ` t(x) : n, unique
up to equality, such that x : A ` pi(x) = Bi(t(x)) : 2.

Proof. The proof is by induction on n. The case n = 1 is trivial.
Suppose the result is true for n. Take an n+ 1-test (p1, . . . , pn+1). Then

(p1, p2, . . . , pn > pn+1) is an n-test. By the induction hypothesis, there exists t : n such that
Bi(t) = pi for i < n and Bn(t) = pn > pn+1. Let b : 3 be the bound for pn > pn+1. Reading
t and b as partial functions in n− 1 + 1 and 2 + 1, we have that t↑= b↓= pn > pn+1. Hence
«b, t» : 2 + n− 1 exists. Reading it as a term of type n + 1, we have that

B1(«b, t») = pn, B2(«b, t») = pn+1, Bi+2(«b, t») = pi (i < n) .

From this it is easy to construct the term of type n + 1 required. J

We write instr(p1,...,pn)(s) for instrt(s), where t is the term such that Bi(t) = pi for each i.

I Lemma 19. instr(p1,...,pn)(x) is the unique term such that ini?
(
instr(p1,...,pn)(x)

)
= pi for

all i and ∇(instr(p1,...,pn)(x)) = x.

I Lemma 20.

instrpi
(x) = case n

j=1instr(p1,...,pn)(x) of innj (x) 7→
{

inl (x) if i = j

inr (x) if i 6= j

assertpi(x) = case n
j=1instr(p1,...,pn)(x) of innj (x) 7→

{
return x if i = j

fail if i 6= j

Proof. The first formula holds because inl? () maps the right-hand side to ini?
(
instr(p1,...,pn)(x)

)
=

pi, and ∇ maps the right-hand side to x. The second formula follows immediately from the
first. J

We can now define the program that divides into n branches depending on the outcome
of an n-test:

TYPES 2015

<article-no>:20A Type Theory for Probabilistic and Bayesian Reasoning

I Definition 21. Given x : A ` p1(x) > · · ·> pn(x) = > : 2, define

x : A ` measure p1(x) 7→ t1(x) | · · · | pn(x) 7→ tn(x)
def= case instr(p1,...,pn)(x) of in1? (x) 7→ t1(x) | · · · | inn? (x) 7→ tn(x)

I Lemma 22. The measure construction satisfies the following laws.
1. (measure > 7→ t) = t

2. (measure p1 7→ t1 | · · · | pn 7→ tn | ⊥ 7→ tn+1) = (measure p1 7→ t1 | · · · | pn 7→ tn)
3. (measurei pi 7→ measurej qij 7→ tij) = (measurei,j pi & qij 7→ tij)
4. For any permutation π of {1, . . . , n}, measurei pi 7→ ti = measurei pπ(i) 7→ tπ(i).
5. If tn = tn+1 then

measureni=1pi 7→ ti = measure p1 7→ t1 | · · · | pn−1 7→ tn−1 | pn > pn+1 7→ tn.

Proof. We shall prove part 3. The proof for the other parts follows the same pattern. Let us
write ini,j () (1 ≤ i ≤ m, 1 ≤ j ≤ ni) for the constructors of (n1 + · · ·+ nm) ·A, and ini,j? ()
for the corresponding predicates.

It suffices to prove that instr(pi&qij)i,j
(x) = case mi=1 instr~p(x) of inmi (x) 7→ case ni

j=1 instr~qi
(x) of inni

j (x) 7→
ini,j (x).

Let R denote the right-hand side. We have

ini,j? (R) = case m
i′=1 instr~p(x) of inmi′ (x) 7→

{
qij if i = i′

⊥ if i 6= i′

= do x← assertpi
(x); qij = pi & qij (by Lemma 20)

∇(R) = case m
i=1 instr~p(x) of inmi (x) 7→ x = ∇(instr~p(x)) = x

The result follows by (ηinstr) . J

Let x : A ` p : 2 and Γ, x : A ` s, t : B. We define if p then s else t def= measure p 7→
s | p⊥ 7→ t : B. Note that, in the case where s and t do not depend on x, this is equal to
case p of inl (_) 7→ s | inr (_) 7→ t.

I Lemma 23. 1. If x : A ` p1 > · · ·> pn = > : 2 and x : A ` q1, . . . , qn : 2, then

(measure p1 7→ q1 | · · · | pn 7→ qn) = p1 & q1 > · · ·> pn & qn .

2. Let x : A ` p : 2 and Γ ` q, r : B where x /∈ Γ. Then if p then q else r = case p of inl (_) 7→
q | inr (_) 7→ r : B.

3. Let x : A ` p : 2. Then x : A ` if p then > else ⊥ = p : 2.

Proof. 1. Immediate from Lemma 19.
2. We have

measure p 7→ q | p⊥ 7→ r
def= case instrλxp(x) of inl (_) 7→ q | inr (_) 7→ r

= case inl? (instrλxp(x)) of inl (_) 7→ q | inr (_) 7→ r

= case p of inl (_) 7→ q | inr (_) 7→ r

3. if p then > else ⊥ = case p of inl (_) 7→ > | inr (_) 7→ ⊥ = p by (η+) .
J

R. Adams and B. Jacobs <article-no>:21

5.6 Scalars
From the rules given in Figure 2, the usual algebra of the rational interval from 0 to 1 follows.

I Lemma 24. If p/q = m/n as rational numbers, then ` p · (1/q) = m · (1/n) : 2.

Proof. We first prove that ` a·(1/ab) = 1/b : 2 for all a, b. This holds because ab·(1/ab) = >
by (n · 1/n) , hence a · (1/ab) = 1/b by (divide) .

Hence we have p · (1/q) = pn · (1/nq) = qm · (1/nq) = m · (1/n). J

Recall that within COMET, we are writingm/n for the termm·(1/n). Similar reasoning
leads us to

I Lemma 25. Let q and r be rational numbers in [0, 1].
1. If q ≤ r in the usual ordering, then ` q ≤ r : 2.
2. ` q > r : 2 iff q + r ≤ 1, in which case Γ ` q > r = q + r : 2.
3. ` q & r = qr : 2.

5.7 Normalisation
The following lemma gives us a rule that allows us to calculate the normalised form of a
substate in many cases, including the examples in Section 3.

I Lemma 26. Let ` t : A + 1, ` p1 > · · · > pn = > : 2, and ` q : 2. Let ` s1, . . . , sn : A.
Suppose ` 1/m ≤ q : 2. If

` t = measure p1 & q 7→ return s1 | · · · | pn & q 7→ return sn | q⊥ 7→ fail : A+ 1 , then
` nrm (t) = measure p1 7→ s1 | · · · | pn 7→ sn : A

Proof. Let ρ def= measureni=1pi 7→ si. By the rule (ηnrm) , it is sufficient to prove that
t = do _← t; return ρ. We have

do _← t; return ρ = measure p1 & q 7→ return ρ | · · · | pn & q 7→ return ρ | q⊥ 7→ fail
= measure q 7→ return ρ | q⊥ 7→ fail
= measureni=1 q & pi 7→ return si | q⊥ 7→ fail = t

(We used the commutativity of & in the last step.) J

I Corollary 27. Let α1, . . . , αn, β be rational numbers that sum to 1, with β 6= 1. If

` t = measure α1 7→ return s1 | · · · | αn 7→ return sn | β 7→ fail : A+ 1 , then
` nrm (t) = measure α1/(α1 + · · ·+ αn) 7→ s1 | · · · | αn/(α1 + · · ·+ αn) 7→ sn : A .

6 Conclusion

The system COMET allows for the specification of probabilistic programs and reasoning
about their properties, both within the same syntax.

There are several avenues for further work and research.
The type theory that we describe can be interpreted both in discrete and in continuous
probabilistic models, that is, both in the Kleisli category K`(D) of the distribution
monad D and in the Kleisli category K`(G) of the Giry monad G. On a finite type each
distribution is discrete. The discrete semantics were exploited in the current paper in
the examples in Section 3. In a follow-up version we intend to elaborate also continuous
examples.

TYPES 2015

<article-no>:22A Type Theory for Probabilistic and Bayesian Reasoning

The normalisation and conditioning that we use in this paper can in principle also be
used in a quantum context, using the appropriate (non-side-effect free) assert maps that
one has there. This will give a form of Bayesian quantum theory, as also explored in [14].
A further ambitious follow-up project is to develop tool support for COMET, so that
the computations that we carry out here by hand can be automated. This will provide a
formal language for Bayesian inference.

Acknowledgements Thanks to Kenta Cho for discussion and suggestions during the writing
of this paper, and very detailed proofreading. Thanks to Bas Westerbaan for discussions
about effectus theory.

References
1 Robin Adams. QPEL: Quantum programming and effect language. In 11th Workshop on

Quantum Physics and Logic, pages 133–153, 2014.
2 Nick Benton, Gavin Bierman, Valeria De Paiva, and Martin Hyland. A term calculus for

intuitionistic linear logic. In TLCA, volume 664 of Lecture Annotes in Computer Science,
pages 75–90. Springer-Verlag, 1993.

3 Johannes Borgström, Andrew D. Gordon, Michael Greenberg, James Margetson, and
Jurgen van Gael. Measure transformer semantics for Bayesian machine learning. In
ESOP’11/ETAPS’11 Proceedings of the 20th European conference on Programming lan-
guages and systems, pages 77–96, 2011.

4 K. Cho. Total and partial computation in categorical quantum foundations. In C. Heunen,
P. Selinger, and J. Vicary, editors, Quantum Physics and Logic (QPL) 2015, number 195
in Elect. Proc. in Theor. Comp. Sci., pages 116–135, 2015.

5 K. Cho, B. Jacobs, A. Westerbaan, and B. Westerbaan. Quotient comprehension chains.
In C. Heunen, P. Selinger, and J. Vicary, editors, Quantum Physics and Logic (QPL) 2015,
number 195 in Elect. Proc. in Theor. Comp. Sci., pages 136–147, 2015.

6 Kenta Cho, Bart Jacobs, Bas Westerbaan, and Bram Westerbaan. An introduction to
effectus theory. Unpublished.

7 B. Jacobs. Measurable spaces and their effect logic. In Logic in Computer Science. IEEE,
Computer Science Press, 2013.

8 B. Jacobs. New directions in categorical logic, for classical, probabilistic and quantum logic.
Logical Methods in Comp. Sci., 11(3):1–76, 2015.

9 B. Jacobs, B. Westerbaan, and A. Westerbaan. States of convex sets. In A. Pitts, editor,
Foundations of Software Science and Computation Structures, number 9034 in Lect. Notes
Comp. Sci., pages 87–101. Springer, Berlin, 2015.

10 Bart Jacobs. New directions in categorical logic, for classical, probabilistic and quantum
logic. arXiv:1205.3940, 2014. URL: http://arxiv.org/abs/1205.3940.

11 C. Jones and G. Plotkin. A probabilistic powerdomain of evaluations. In Logic in Computer
Science, pages 186–195. IEEE, Computer Science Press, 1989.

12 D. Kozen. Semantics of probabilistic programs. Journ. Comp. Syst. Sci, 22(3):328–350,
1981.

13 D. Kozen. A probabilistic PDL. Journ. Comp. Syst. Sci, 30(2):162–178, 1985.
14 Matthew S Leifer and Robert W Spekkens. Towards a formulation of quantum theory as

a causally neutral theory of bayesian inference. Physical Review A, 88(5):052130, 2013.
15 C. Morgan, A. McIver, and K. Seidel. Probabilistic predicate transformers. ACM Trans.

on Progr. Lang. and Systems, 18(3):325–353, 1996.
16 S. Russel and P. Norvig. Artificial Intelligence. A Modern Approach. Prentice Hall, 2003.

http://arxiv.org/abs/1205.3940

R. Adams and B. Jacobs <article-no>:23

17 R. Tix, K. Keimel, and G. Plotkin. Semantic Domains for Combining Probability and
Non-Determinism. Number 129 in Elect. Notes in Theor. Comp. Sci. Elsevier, Amsterdam,
2005.

18 E. S. Yudkowsky. An intuitive explanation of Bayesian reasoning. Available at
http://yudkowsky.net/rational/bayes, 2003.

A Formal Presentation of COMET

The full set of rules of deduction for COMET are given below.

A.1 Structural Rules
Γ, x : A, y : B,∆ ` J(exch) Γ, y : B, x : A,∆ ` J

x : A ∈ Γ(var) Γ ` x : A

Γ ` t : A(ref) Γ ` t = t : A
Γ ` s = t : A(sym) Γ ` t = s : A

Γ ` r = s : A Γ ` s = t : A(trans) Γ ` r = t : A

A.2 The Unit Type
(unit) Γ ` ∗ : 1

Γ ` t : 1(η1) Γ ` t = ∗ : 1

A.3 Tensor Product
Γ ` s : A ∆ ` t : B(⊗) Γ,∆ ` s ⊗ t : A⊗B

Γ ` s : A⊗B ∆, x : A, y : B ` t : C(lett) Γ,∆ ` let x ⊗ y = s in t : C

Γ ` s = s′ : A ∆ ` t = t′ : B(paireq)
Γ,∆ ` s ⊗ t = s′ ⊗ t′ : A⊗B

Γ ` s = s′ : A⊗B ∆, x : A, y : B ` t = t′ : C(leteq)
Γ,∆ ` (let x ⊗ y = s in t) = (let x ⊗ y = s′ in t′) : C

Γ ` r : A ∆ ` s : B Θ, x : A, y : B ` t : C(β⊗)
Γ,∆,Θ ` (let x ⊗ y = r ⊗ s in t) = t[x := r, y := s] : C

Γ ` t : A⊗B(η⊗)
Γ ` t = (let x ⊗ y = t in x ⊗ y) : A⊗B

Γ ` r : A⊗B ∆, x : A, y : B ` s : C ⊗D Θ, z : C,w : D ` t : E(let-let)
Γ,∆,Θ ` let x ⊗ y = r in (let z ⊗ w = s in t)

= let z ⊗ w = (let x ⊗ y = r in s) in t : E

Γ ` r : A⊗B ∆, x : A, y : B ` s : C Θ ` t : D(let-⊗)
Γ,∆,Θ ` let x ⊗ y = r in (s ⊗ t) = (let x ⊗ y = r in s) ⊗ t : D

A.4 Empty Type
Γ ` t : 0(magic) Γ ` ¡ t : A

Γ ` s : 0 Γ ` t : A(η0) Γ ` ¡ s = t : A

TYPES 2015

<article-no>:24A Type Theory for Probabilistic and Bayesian Reasoning

A.5 Binary Coproducts
Γ ` t : A(inl)

Γ ` inl (t) : A+B
Γ ` t : B(inr)

Γ ` inr (t) : A+B

Γ ` t = t′ : A(inl-eq)
Γ ` inl (t) = inl (t′) : A+B

Γ ` t = t′ : B(inr-eq)
Γ ` inr (t) = inr (t′) : A+B

Γ ` r : A+B ∆, x : A ` s : C ∆, y : B ` t : C(case)
Γ,∆ ` case r of inl (x) 7→ s | inr (y) 7→ t : C

Γ ` r = r′ : A+B ∆, x : A ` s = s′ : C ∆, y : B ` t = t′ : C(case-eq)
Γ,∆ ` case r of inl (x) 7→ s | inr (y) 7→ t = case r′ of inl (x) 7→ s′ | inr (y) 7→ t′ : C

Γ ` r : A ∆, x : A ` s : C ∆, y : B ` t : C(β+1) Γ,∆ ` case inl (r) of inl (x) 7→ s | inr (y) 7→ t = s[x := r] : C
Γ ` r : B ∆, x : A ` s : C ∆, y : B ` t : C(β+2) Γ,∆ ` case inr (r) of inl (x) 7→ s | inr (y) 7→ t = t[y := r] : C

Γ ` t : A+B(η+)
Γ ` t = case t of inl (x) 7→ inl (x) | inr (y) 7→ inr (y) : A+B

Γ ` r : A+B ∆, x : A ` s : C +D ∆, y : B ` s′ : C +D

Θ, z : C ` t : E Θ, w : D ` t′ : E
(case-case)

Γ,∆,Θ ` case r of inl (x) 7→ case s of inl (z) 7→ t | inr (w) 7→ t′ |
inr (y) 7→ case s′ of inl (z) 7→ t | inr (w) 7→ t′

= case (case r of inl (x) 7→ s | inr (y) 7→ s′)
of inl (z) 7→ t | inr (w) 7→ t′ : E

Γ ` r : A+B ∆, x : A ` s : C ∆, y : B ` s′ : C Θ ` t : D(case-⊗)
Γ,∆,Θ ` (case r of inl (x) 7→ s | inr (y) 7→ s′) ⊗ t =

case r of inl (x) 7→ s ⊗ t | inr (y) 7→ s′ ⊗ t : C ⊗D

Γ ` r : A+B ∆, z : A ` s : C ⊗D
∆, w : B ` s′ : C ⊗D Θ, x : C, y : D ` t : E

(let-case)
Γ,∆,Θ ` let x ⊗ y = case r of inl (z) 7→ s | inr (w) 7→ s′ in t =

case r of inl (z) 7→ let x ⊗ y = s in t | inr (w) 7→ let x ⊗ y = s′ in t : E

A.6 Partial Pairing
Γ ` s : A+ 1 Γ ` t : B + 1 Γ ` s ↓= t ↑: 2(inlr) Γ ` «s, t» : A+B

Γ ` s = s′ : A+ 1 Γ ` t = t′ : B + 1 Γ ` s ↓= t ↑: 2(inlr-eq)
Γ ` «s, t» = «s′, t′» : A+B

Γ ` s : A+ 1 Γ ` t : B + 1 Γ ` s ↓= t ↑: 2(βinlr1) Γ ` B1(«s, t») = s : A+ 1
Γ ` s : A+ 1 Γ ` t : B + 1 Γ ` s ↓= t ↑: 2(βinlr1) Γ ` B2(«s, t») = t : B + 1

Γ ` t : A+B(ηinlr)
Γ ` t = «B1(t),B2(t)» : A+B

R. Adams and B. Jacobs <article-no>:25

A.7 The left () Construction
Γ ` t : A+B Γ ` inl? (t) = > : 2

(left)
Γ ` left (t) : A

Γ ` t = t′ : A+B Γ ` inl? (t) = > : 2
(left-eq)

Γ ` left (t) = left (t′) : A

Γ ` t : A+B Γ ` inl? (t) = > : 2
(βleft)

Γ ` inl (left (t)) = t : A+B

Γ ` t : A(ηleft)
Γ ` left (inl (t)) = t : A

A.8 Instruments
x : A ` t : n Γ ` s : A(instr)

Γ ` instrλxt(s) : n ·A
x : A ` t : n Γ ` s : A(∇-instr)
Γ ` ∇(instrλxt(s)) = s : A

x : A ` t : n Γ ` s : A(instr-test)
Γ ` case n

i=1instrλxt(s) of inni (_) 7→ i = t[x := s] : n
x : A ` r : n ·A x : A ` ∇(r) = x : A Γ ` s : A

(ηinstr)
Γ ` instrλx.case n

i=1r of inn
i

(_)7→i(s) = r[x := s] : n ·A
x : A ` t = t′ : n Γ ` s = s′ : A(instr-eq)
Γ ` instrλxt(s) = instrλxt′(s′) : n ·A

A.9 Scalar Constants
For any natural number n ≥ 2, we have the following rules.

(1/n)
Γ ` 1/n : 2

(n · 1/n)
Γ ` n · 1/n = > : 2

Γ ` n · t = > : 2(divide)
Γ ` t = 1/n : 2

(bmn) (1 ≤ m < n)Γ ` bmn : 3
(B1 − bmn) (1 ≤ m < n)

Γ ` do x← bmn;B1(x) = m · 1/n : 2
(B2 − bmn) (1 ≤ m < n)

Γ ` do x← bmn; return ∇(x) = 1/n : 2

A.10 Normalisation
` t : A+ 1 ` 1/n ≤ t ↓: 2

(nrm)
Γ ` nrm (t) : A

` t : A+ 1 ` 1/n ≤ t ↓: 2
(βnrm)

Γ ` t = do _← t; return nrm (t) : A+ 1
` t : A+ 1 ` 1/n ≤ t ↓: 2 ` ρ : A ` t = do _← t; return ρ : A+ 1

(ηnrm)
Γ ` ρ = nrm (t) : A

A.11 Partial Sum

Γ ` s : A+ 1 Γ ` t : A+ 1
Γ ` b : (A+A) + 1 Γ ` do x← b;B1(x) = s : A+ 1

Γ ` do x← b;B2(x) = t : A+ 1
(>) Γ ` s> t : A+ 1

Γ ` s : A+ 1 Γ ` t : A+ 1
Γ ` b : (A+A) + 1 Γ ` do x← b;B1(x) = s : A+ 1

Γ ` do x← b;B2(x) = t : A+ 1
(>-def)

Γ ` s> t = do x← b; return ∇(x) : A+ 1

TYPES 2015

<article-no>:26A Type Theory for Probabilistic and Bayesian Reasoning

A.12 Miscellaneous
Γ ` s : (A+A) + 1 Γ ` t : (A+A) + 1

Γ ` s�= B1 = t�= B1 : A+ 1 Γ ` s�= B2 = t�= B2 : A+ 1
(JM)

Γ ` s = t : (A+A) + 1
x : A ` p : 2 x : A ` q : 2 Γ ` t : A(comm)

Γ ` assertλxp(t)�= assertλxq = assertλxq(t)�= assertλxp : A+ 1

	Introduction
	Syntax and Rules of Deduction
	Syntax
	Linear Type Theory
	States, Predicates and Scalars
	Empty Type
	Coproducts and Copowers
	Partial Functions
	Partial Projections
	Partial Pairing
	Partial Sum

	Logic
	n-tests
	Instrument Maps
	Assert Maps
	Sequential Product
	Coproducts
	Kernels
	Scalar Constants

	Normalisation
	Marginalisation
	Local Definition

	Examples
	Semantics
	Discrete Probabilistic Computation
	Alternative Semantics

	Metatheorems
	Coproducts
	Kernels
	Ordering on Partial Maps and the Partial Sum
	Assert Maps

	Sequential Product
	n-tests
	Scalars
	Normalisation

	Conclusion
	Formal Presentation of COMET
	Structural Rules
	The Unit Type
	Tensor Product
	Empty Type
	Binary Coproducts
	Partial Pairing
	The left() Construction
	Instruments
	Scalar Constants
	Normalisation
	Partial Sum
	Miscellaneous

