
A Modular Hierarchy of Logical Frameworks

Downloaded from: https://research.chalmers.se, 2019-05-11 19:02 UTC

Citation for the original published paper (version of record):
Adams, R. (2004)
A Modular Hierarchy of Logical Frameworks
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Chalmers Research

https://core.ac.uk/display/198039544?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Modular Hierarchy of Logical Frameworks

Robin Adams

University of Manchester
robin.adams@ma.man.ac.uk

Abstract. We present a modular method for building logical frame-
works as a set of features that are defined and behave independently of
one another. We show how several existing logical frameworks can be so
constructed.

1 Introduction

2 Logical Frameworks and Features

A logical framework consists of the following components:

1. Disjoint, countably infinite sets of variables and constants. There must be at
least one such set of each, but there may be more than one; for example, we
may provide ourselves with sets of n-ary variables for each natural number
n.

2. A number of syntactic classes of expressions, defined in a BNF-style grammar
by a set of constructors, each of which forms a member of one class from
members of other classes. For example, the definition of the class of terms
may contain the clause

Term M ::= · · · | [x : A]M | · · · (1)

This indicates that “[:] ” is a constructor that takes a variable, a kind and
a term, and returns a term. We allow constructors to bind the variables that
they use; for example, the above abstraction constructor binds the variable x
within the term M . We shall not go into the details of variable binding, but
shall take the notions of free and bound variable, α-conversion, and capture-
avoiding substitution as read. We shall always identify our expressions up to
α-convertibility.

3. Three of the syntactic classes are distinguished as being the classes of signa-
ture declarations, context declarations and judgement bodies. Each signature
declaration is specified to be either a declaration of a particular constant,
or of none. Similarly, each context declaration is specified to be either a
declaration of a particular variable or of none. We shall always give these
assignments at the same time as writing the grammar clause defining the
declaration: we write

δ of x

to indicate that δ is a context declaration of the variable x, or

δ of none

to indicate that δ is a context declaration of no variable; similarly for signa-
ture declarations.

For example, in a system in which we can declare constants of a particular
kind

c : A

and declare equalities to hold between two terms of the same kind

M = N : A ,

the class of signature declarations is defined by the grammar

Signature declaration δ ::= c : A of c |M = M : A of none

We now define a signature to be a finite sequence of signature declarations,
such that no two declarations are of the same constant. The domain of the
signature Σ, domΣ, is then defined to be the sequence consisting of the
constants declared in Σ, in order. For example, with the class of signature
declarations given by the grammar (1), the signature

A : Type, a : El(a), b : El(a), a = b : El(a)

has domain

A, a, b

Similarly, we define a context to be a finite sequence of context declarations,
no two of the same variable, and we define its domain similarly.

Finally, we define a judgement to be a string of one of two forms: either

Σ sig

or

Γ `Σ J

where Σ is a signature, Γ a context, and J a judgement body.

4. The final component of a logical framework is a set of rules of deduction
which define the set of derivable judgements.

A feature shall be a collection of additional elements that can be ‘bolted on’
to the above set-up.

3 The Basic Framework BF

As is to be expected, BF is a very simple system. It allows: the declaration
of variable and constant types; the declaration of variables and constants of a
previously declared type; and the assertion that a variable or constant has the
type with which it was declared, or is itself a type.

The grammar of BF is as follows:

Term a ::= x | c
Kind A ::= Type | El(a)

A signature of BF is a sequence of clauses

c : A

where c is a constant and A a type.
A context of BF is a sequence of declarations

x : A

where x is a variable and A a type.
There are four judgement forms in BF:

– Σ sig, to say that Σ is a valid signature.
– Γ `Σ valid, to say that, under the signature Σ, Γ is a valid context.
– Γ `Σ A kind, to say that, under the signature Σ and context Γ , A is a kind.
– Γ `Σ a : A, to say that, under the signature Σ and context Γ , a is an object

of kind A.

The rules of deduction of BF are given in Figure 1.

〈〉 sig

`Σ A kind
(c /∈ domΣ)

Σ, c : A sig

Σ sig

`Σ valid

Γ `Σ A kind
(x /∈ domΓ)

Γ, x : A `Σ valid

Γ `Σ valid
(c : A ∈ Σ)

Γ `Σ c : A

Γ `Σ valid
(x : A ∈ Γ)

Γ `Σ x : A

Γ `Σ valid

Γ `Σ Type kind

Γ `Σ a : Type

Γ `Σ El(a) kind

Fig. 1. The basic framework BF

4 Features

The first, and most important, of our features are those which allow parametriza-
tion of variables and constants. Parametrization provides a common core, above
which the different forms of abstraction (λ-abstraction with typed or untyped
domains, and with β- or βη-conversion, as well as PAL+-style abstraction by
let-definition) can be built as conservative extensions.

We define a series of features: SPar (1), SPar (2), SPar (3), . . . , and LPar (1),
LPar (2), LPar (3), These extend one another in the manner shown in Fig-
ure 2.

LPar (ω)

LPar (3)
....

....
....

....
....

....
....

.-

SPar (ω)

�

⊃

LPar (2)
⊂

-

SPar (3)
....

....
....

....
....

....
....

.-
�

⊃

LPar (1)
⊂

-

SPar (2)
⊂

-
�

⊃

SPar (1)
⊂

-
�

⊃

BF
⊂

-

Fig. 2. The initial fragment of the modular hierarchy

Define the set of arities by the grammar

Arity α ::= (α, . . . , α)

We write 0 for the arity (), n for the arity

n︷ ︸︸ ︷
(0, . . . ,0)

Define the order of each arity α, Ord (α), as follows:

Ord (0) = 0

Ord ((α1, . . . , αn)) = max(Ord (α1) , . . . ,Ord (αn)) + 1

Parameters in Small Types, SPar (n) We give ourselves disjoint, countably in-
finite sets Vα of α-ary variables for each arity α of order ≤ n, with V0 being the
set of variables that we have been using in BF. Likewise, we introduce sets Cα
of α-ary constants, with C0 being the set of constants of BF.

For each arity

α ≡ (α1, . . . , αm)

of order ≤ n, we define an α-ary variable sequence to be a sequence of distinct
variables

(x1, . . . , xm)

where xi is an αi-ary variable.
We define an α-ary pure context by recursion on α as follows. An α-ary pure

context is a string of the form

(x1 : (∆1) El(a1), . . . , xm : (∆m) El(am))

where each xi is an αi-ary variable, all distinct, ∆i an αi-ary pure context, and ai
a term. Its domain is (x1, . . . , xm); note that this is an α-ary variable sequence.

We define an α-ary abstraction to be a string of the form

[x]M

where x is an α-ary variable sequence, and M a term. We take each member of x
to be bound within M in this abstraction, and we define free and bound variables
and identify all our expressions up to α-conversion in the usual manner. We write
M̂ , N̂ , . . . for arbitrary abstractions. Just as for variables, if α ≡ (α1, . . . , αm),
we define an α-ary abstraction sequence to be a sequence M̂ ≡ (̂M1, . . . , M̂m),
where M̂i is an αi-ary abstraction. In this case, we do not insist they be distinct.

We add the following clause to the grammar: For each arity

α ≡ (α1, . . . , αm)

of order ≤ n,

z(̂M)

is a term, where z is an α-ary variable or constant, and M̂ an α-ary abstraction
sequence. This clause subsumes the grammar of BF, for x() and c() are terms
when x is a 0-ary variable and c a 0-ary constant.

We also allow declarations of the form

c : (∆)A

in the signature, where c is an α-ary constant, ∆ an α-ary pure context, and A
a type; and those of the form

x : (∆) El(a)

in the context, where x is an α-ary variable, ∆ an α-ary pure context, and a a
term. Again, these subsume those of BF.

We define the operation of instantiation as follows. We are going to define a
term

{̂M1/x1, . . . , M̂m/xm}M

where M is a term, and, for i = 1, . . . ,m, M̂i ≡ [yi]Mi is an αi-ary abstraction,
and xi an αi-ary variable.

{̂M/x}z(̂N) ≡ z({̂M/x}̂N)

(if z is a constant or a variable not in x)

{̂M/x}xi(̂N) ≡ {{̂M/x}̂N/yi}Mi

If M̂ is an α-ary abstraction sequence, and ∆ an α-ary pure context, we
define a set of judgements

Γ
Σ M̂ :: ∆

(read: under signature Σ and context Γ , M̂ satisfies ∆). The definition is as
follows. Let

∆ ≡ x1 : (∆1) El(a1), . . . , xm : (∆m) El(am)

and let
M̂i ≡ [yi]Mi

By α-conversion, we may assume yi ≡ dom∆i.

Γ
Σ M̂ :: ∆

is the following set of judgements:

Γ,∆1 `Σ M1 : El(a1)

Γ, {̂M1/x1}∆2 `Σ M2 : El({̂M1/x1}a2)

Γ, {̂M1/x1, M̂2/x2}∆3 `Σ M3 : El({̂M1/x1, M̂2/x2}a3)

...

Γ, {̂M1/x1, . . . , M̂m−1/xm−1}∆m `Σ Mm : El({̂M1/x1, . . . , M̂m−1/xm−1}am)

In the case m = 0, we take Γ
Σ M̂ :: ∆ (i.e. Γ
Σ 〈〉 :: 〈〉) to be the single
judgement

Γ `Σ valid

The rules of deduction in SPar (n) are as follows:

∆ `Σ valid
(c /∈ domΣ)

Σ, c : (∆)Type sig

∆ `Σ a : Type
(c /∈ domΣ)

Σ, c : (∆) El(a) sig

Γ,∆ `Σ a : Type
(x /∈ domΓ)

Γ, x : (∆) El(a) `Σ valid

Γ
Σ M̂ :: ∆
(c : (∆)A ∈ Σ)

Γ `Σ c[̂M] : {̂M/ dom∆}A

Γ
Σ M̂ :: ∆
(x : (∆) El(a) ∈ Γ)

Γ `Σ x[̂M] : El({̂M/dom∆}a)

Finally, SPar (ω) is defined to be the union of all the features SPar (n).

Parameters in Large Types, LPar (n) The feature LPar (n) allows variables to
have types of the form (∆)Type as well as (∆) El(a). The details are similar to
SPar (n).

For each arity α ≡ (α1, . . . , αm) of order ≤ n:

An α-ary pure context is a string of the form

(x1 : (∆1)A1, . . . , xm : (∆m)Am)

where each xi is an αi-ary variable, all distinct, ∆i is an alphai-ary pure context,
and Ai is either Type or El(ai) for some term ai. Its domain is defined to be
the αi-ary variable sequence x1, . . . , xm.

Again, we define an α-ary abstraction to be a string of the form [x]M , where
x is an α-ary variable sequence and M a term. And we add to the grammar
the clause: if z is an α-ary variable or constant, and M̂ an α-ary abstraction
sequence, then z [̂M] is a term.

We allow declarations of the form c : (∆)A in the signature and x : (∆)A in
the context, where c is an α-ary constant, x an α-ary variable, ∆ an α-ary pure
context, and A either Type or El(a) for some term a.

We define instantiation and satisfaction as in SPar (n).

The rules of deduction of LPar (n) are as follows:

∆ `Σ valid
(c /∈ domΣ)

Σ, c : (∆)Type sig

∆ `Σ a : Type
(c /∈ domΣ)

Σ, c : (∆) El(a) sig

Γ,∆ `Σ valid
(x /∈ domΓ)

Γ, x : (∆)Type `Σ valid

Γ,∆ `Σ a : Type
(x /∈ domΓ)

Γ, x : (∆) El(a) `Σ valid

Γ
Σ M̂ :: ∆
(c : (∆)A ∈ Σ)

Γ `Σ c[̂M] : {̂M/ dom∆}A

Γ
Σ M̂ :: ∆
(x : (∆)A ∈ Γ)

Γ `Σ x[̂M] : {̂M/dom∆}A

Again, LPar (ω) is the union of all the features LPar (n).

4.1 Lambda Abstraction

We can now add in traditional λ-abstraction. We can make these abstractions
typed or untyped (i.e. explicitly include the domain or not), and we can choose
to use β or βη-conversion. These two choices lead to four features that can be
added to a framework. We shall denote them λtβ , λutβ , λtβη, λutβη. We shall give

here the details of λtβ ; the others are very similar.

We shall describe here a feature λtβ to be built on top of BF + LPar (ω).
It would be easy to change the details to give a feature that could be added to
BF + LPar (n), BF + SPar (n), or BF + SPar (ω).

We shall have classes of α-ary terms and α-ary kinds. We take the terms and
kinds of BF+LPar (ω) to be the 0-ary terms and 0-ary kinds, respectively, and
introduce new classes for every other arity α.

We add the following clauses to the grammar:

Terms

– Every α-ary variable or constant is an α-ary term.
– If M is an (α1, . . . , αn)-ary term, x an α0-ary variable, and A an α0-ary

type, then

[x : (∆)A]M

is an (α0, α1, . . . , αn)-ary term.
– If M is an (α0, α1, . . . , αn)-ary term, and N an α0-ary term, then M [N] is

an α0-ary term.

Types

– If x is an α0-ary variable, A an α0-ary type, and B an (α1, . . . , αm)-ary type,
then

(x : A)B

is an (α0, α1, . . . , αm)-ary type.

Recall that, as the grammar of BF is still present, the following clauses are still
in the grammar:

– Type is a 0-ary type.
– If M is a 0-ary term, then El(M) is a 0-ary type.

There are two redundancies in the feature λtβ . The first: let c be an α-ary
constant, where α ≡ ((α11, . . . , α1k1), . . . , (αm1, . . . , αmkm)). Let

c : (x1 : (∆1)A1, . . . , xm : (∆m)Am)A

be in the signature, where

∆i ≡ (xi1 : (∆i1)Ai1, . . . , xiki : (∆iki)Aiki)Ai

Then we identify the term

c[[x1]M1, . . . , [xm]Mm]

with the base term

c[[x11 : (∆11)A11] · · · [x1k1 : (∆1k1)A1k1]M1] · · ·
[[xm1 : (∆m1)Am1] · · · [xmkm : (∆mkm)Amkm]Mm]

Similarly, if x is an (α1, . . . , αm)-ary variable, and

x : (x1 : (∆1)A1) · · · (xm : (∆m)Am)A

is in the context, then we identify the term

x[[x1]M1, . . . , [xm]Mm]

with the base term

x[[x11 : (∆11)A11] · · · [x1k1 : (∆1k1)A1k1]M1] · · ·
[[xm1 : (∆m1)Am1] · · · [xmkm : (∆mkm)Amkm]Mm]

We introduce new judgement bodies: K kind and M : K, where M is an
α-ary term and K an α-ary kind.

We define the relations of β-reduction, β-conversion, etc. on our classes of
terms in the usual manner, based on the contraction

([x : (∆)A]M)[N] [N/x]M

where [N/x]M denotes the result of substituting the α-ary term N for the α-ary
variable x throughout the term M , relabelling bound variables to avoid capture.

The rules of deduction in λtβ are now:

Γ, x : A `Σ B kind

Γ `Σ (x : A)B kind

`Σ A kind
(c /∈ domΣ)

Σ, c : A sig

Γ `Σ A kind
(x /∈ domΓ)

Γ, x : A `Σ valid

Γ, x : A `Σ M : B

Γ `Σ [x : A]M : (x : A)B

Γ `Σ M : (x : A)B Γ `Σ N : A

Γ `Σ M [N] : [N/x]B

Γ `Σ M : A Γ `Σ B kind
(A =β B)

Γ `Σ M : B

Global Definition of Constants, cdef Depends on SPar (ω).

Signature Declaration γ ::= · · · | cα[∆α] := M : A

If c[∆] := M : A is in the signature, the following is a reduction rule:

c[̂ N] δc {̂N/ dom∆}

∆ `Σ M : A
(c /∈ domΣ)

Σ, c[∆] := M : A sig

Γ
Σ N̂ :: ∆
(c[∆] := M : A ∈ Σ)

Γ `Σ c[̂ N] : {̂N/dom∆}A

Γ `Σ M : A Γ `Σ B kind
(Γ `Σ A =δc B)

Γ `Σ M : B

Global Definition of Variables, vdef Depends on SPar (ω).

Context Declaration δ ::= · · · | xα[∆α] := M : A

If xα[∆α] := Mβ : Aβ is in the context, the following is a reduction rule:

x[̂ N] δv {̂N/ dom∆}M

Γ,∆ `Σ M : A
(x /∈ domΓ)

Γ, x[∆] := M : A `Σ valid

Γ
Σ N̂ :: ∆
(x[∆] := M : A ∈ Γ)

Γ `Σ x[̂ N] : {̂N/ dom∆}A

Γ `Σ M : A Γ `Σ B kind
(Γ `Σ a =δ b)

Γ `Σ M : B

Fig. 3. Miscellaneous features

Local Definitions, let Depends on vdef .

Term M ::= · · · | letxα[∆α] := M : A inM
Kind A ::= · · · | letxα[∆α] := M : A inA

let v[∆] = M : A inN {[dom∆]M/v}N
let v[∆] = M : A inK {[dom∆]M/v}K

Γ, v[∆] = M : A `Σ K kind

Γ `Σ let v[∆] = M : A inK kind

Γ, v[∆] = M : A `Σ N : K

Γ `Σ let v[∆] = M : A inN : let v[∆] = M : A inK

Γ `Σ M : A Γ `Σ B kind
(A =δ B)

Γ `Σ M : B

Judgemental Equality, eq Depends on SPar (ω).

Judgement body J ::= · · · |M = M : A | A = A

Γ `Σ M : A Γ `Σ N : A
(M = N)

Γ `Σ M = N : A

Γ `Σ A kind Γ `Σ B kind

Γ `Σ A = B

Fig. 4. Miscellaneous features

〈〉 sig

`Σ A kind
(c /∈ domΣ)

Σ, c : A sig

Σ sig

`Σ valid

Γ `Σ A kind
(x /∈ domΓ)

Γ, x : A `Σ valid

Γ `Σ valid
(c : A ∈ Σ)

Γ `Σ c : A

Γ `Σ valid
(x : A ∈ Γ)

Γ `Σ x : A

Γ `Σ valid

Γ `Σ Type kind

Γ `Σ M : Type

Γ `Σ El(M) kind

Γ `Σ M = N : Type

Γ `Σ El(M) = El(N)

Γ `Σ M : A

Γ `Σ M = M : A

Γ `Σ M = N : A

Γ `Σ N = M : A

Γ `Σ M = N : A Γ `Σ N = P : A

Γ `Σ M = P : A

Γ `Σ A kind

Γ `Σ A = A

Γ `Σ A = B

Γ `Σ B = A

Γ `Σ A = B Γ `Σ B = C

Γ `Σ A = C

Γ `Σ M : A Γ `Σ A = B

Γ `Σ M : B

Γ `Σ M = N : A Γ `Σ A = B

Γ `Σ M = N : B

Fig. 5. Basic framework with judgemental equality, BF′

4.2 Other Features

We present a summary of other features in Figures 3 and 4. Each of these features
depends on SPar (ω); it would be easy enough to write a version dependent on
SPar (n) for some finite n.

We could alternatively have built judgemental equality into the hierarchy
from the beginning. Define an alternative version of BF, BF′, with the rules of
deduction in Figure 5

We can now define alternative versions of all the features we have presented
so far. For example, we can define the feature cdef ′, an alternative version of
cdef , to consist of the rules of deduction

∆ `Σ M : A

Σ, c[∆] = M : A sig

Γ
Σ N̂ :: ∆
(c[∆] = M : A ∈ Σ)

Γ `Σ c[̂N] : {̂N/ dom∆}A

Γ
Σ N̂ = P̂ :: ∆
(c[∆] = M : A ∈ Σ)

Γ `Σ c[̂N] = c[̂P] : {̂N/ dom∆}A
Γ
Σ N̂ :: ∆

(c[∆] = M : A ∈ Σ)
Γ `Σ c[̂N] = {̂N/dom∆}M : {̂N/ dom∆}A

Conjecture 1. Let {F1, . . . , Fn} be a set of features closed under dependency.
Then the derivable judgements of

BF + F1 + · · ·+ Fn + eq

are the same as those of
BF′ + F ′1 + · · ·+ F ′n

This conjecture is provable for {F1, . . . , Fn} ⊆ {SPar (n) | n ∈ N}∪{LPar (n) |
n ∈ N}, for, then, in each system, Γ `Σ M = N : A is derivable iff Γ `Σ M : A
is derivable and M ≡ N ; and Γ `Σ A = B is derivable iff Γ `Σ A kind is
derivable and A ≡ B.

Miscellaneous Features

5 Existing Logical Frameworks

PAL = BF + LPar (1) + cdef

AUT-68 ' BF + SPar (ω) + λtβ + LPar (1) + cdef

AUT-QE = BF + LPar (ω) + λtβ + cdef

ELF = BF + SPar (ω) + λtβ

Martin-Löf’s Theory of Types = BF + LPar (ω) + λutβη + eq

LF = BF + LPar (ω) + λtβη + eq

To build PAL+ in the framework, there are two possibilities. Firstly, we could
write a feature that introduces classes of α-ary terms and kinds for every arity
α, in a similar manner to λtβ , but the only such terms are the α-ary variables
and constants. Then we could build on top of this a features similar to vdef
and let, but allowing global and local definitions of any arity term and kind.
Putting these three features on top of BF + LPar (ω) + eq yields a framework
equivalent to PAL+.

Alternatively, we could build features similar to vdef and let on top of BF+
LPar (ω)+eq+λtβη, including a redundancy that identifies [x1 : A1] · · · [xn;An]M
with let v[x1 : A1, . . . , xn : An] = M : Ainv, where A is an inferred kind for M .

6 Use of Frameworks

We show how to build an arbitrary first-order theory in BF + SPar (2).
The signature consists of:

– term : Type
– For each n-ary function symbol F in the language, the declaration

F : (x1 : El(term), . . . , xn : El(term)) El(term)

– prop : Type
– For each n-ary predicate symbol P in the language, the declaration

P : (x1 : El(term), . . . , xn : El(term)) El(prop)

– →: (x : El(prop), y : El(prop)) El(prop)
– ∀ : (p : (x : El(term)) El(prop)) El(prop)
– Prf : (x : El(prop))Type
– → I : (p, q : El(prop), H : (x : El(Prf[p])) El(Prf[q])) El(Prf[→ [p, q]])
– → E : (p, q : El(prop), H1 : El(Prf[→ [p, q]]), H2 : El(Prf[p])) El(Prf[q])
– ∀I : (p : (x : El(term)) El(prop), H : (x : El(term)) El(Prf[p[x]])) El(Prf[∀[p]])
– ∀E : (p : (x : El(term)) El(prop), t : El(term), H : El(Prf[∀[p]])) El(Prf[p[t]])

Theorem 2. 1. There is a bijection ρ between the terms with free variables
among x1, . . . , xn in the first-order language, and the terms M such that

x1 : El(term), . . . , xn : El(term) `Σ M : El(term)

2. There is a bijection σ between the formulas with free variables among x1, . . . , xn
in the first-order language, and the terms M such that

x1 : El(term), . . . , xn : El(term) `Σ M : El(prop)

3. Let φ, ψ1, . . . , ψm be formulas with free variables among x1, . . . , xn. Then
φ is provable from hypothese ψ1, . . . , ψm iff there is a term M such that

x1 : El(term), . . . , xn : El(term), y1 : El(Prf[σ(ψ1)]), . . . , ym : El(Prf[σ(ψm)]) `Σ M : El(Prf[σ(φ)])

Notice that the correspondance between the entities of the object logic and
the terms of the logical framework is a bijection up to identity (that is, α-
conversion), not up to convertibility; indeed, in a framework whose only features
are SPar (n) and LPar (n), there is no such thing as convertibility. This theorem
is much easier to prove than most adequacy theorems, because the correspon-
dence between the framework and the object logic is so much closer than in a
traditional logical framework.

We build W -types within BF+LPar (2) + eq. We suppress instances of El,
and use η-contractions; e.g. we write W [A,B] for W [A, [x : A]B[x]].

W : (A : Type, B : (A)Type)Type,

sup : (A : Type, B : (A)Type, a : A, b : (B[a])W [A,B])W [A,B]

EW : (A : Type, B : (A)Type, C : (W [A,B])Type,

f : (x : A, y : (B[x])W [A,B], g : (v : B[x])C[y[v]])C[sup[A,B, x, y]], z : W [A,B])C[z],

(A : Type, B : (A)Type, C : (W [A,B])Type,

f : (x : A, y : (B[x])W [A,B], g : (v : B[x])C[y[v]])C[sup[A,B, x, y]], a : A, b : (B[a])W [A,B])

EW [A,B,C, f, g, sup[A,B, a, b]] = f [a, b, [v : B[x]]EW [A,B,C, f, g, y[v]]] : C[sup[A,B, a, b]]

