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Abstract

We investigate Poincaré series, where we average products of terms of Fourier series of
real-analytic Siegel modular forms. There are some (trivial) special cases for which the
products of terms of Fourier series of elliptic modular forms and harmonic Maass forms
are almost holomorphic, in which case the corresponding Poincaré series are almost
holomorphic as well. In general, this is not the case. The main point of this paper is the
study of Siegel–Poincaré series of degree 2 attached to products of terms of Fourier
series of harmonic Siegel–Maass forms and holomorphic Siegel modular forms. We
establish conditions on the convergence and nonvanishing of such Siegel–Poincaré
series. We surprisingly discover that these Poincaré series are almost holomorphic
Siegel modular forms, although the product of terms of Fourier series of harmonic
Siegel–Maass forms and holomorphic Siegel modular forms (in contrast to the elliptic
case) is not almost holomorphic. Our proof employs tools from representation theory.
In particular, we determine some constituents of the tensor product of Harish-Chandra
modules with walls.
Keywords: Almost holomorphic modular forms, Siegel modular forms,
Harish-Chandra modules

Mathematics Subject Classification: Primary 11F46; Secondary 11F30, 11F37, 11F70

Modular forms have a rich history with many beautiful applications in different sciences.
Restricting our attention to cusp forms, we can distinguish two classes of modular forms,
which behave drastically differently: Maass cusp forms and almost holomorphic modular
forms. Almost holomorphic forms modular forms were introduced independently by
Shimura [31] and Kaneko and Zagier [20]. Shimura initiated their study, because of their
special arithmetic properties. Kaneko and Zagier’s paper was stimulated by Dijkgraaf [7],
who conjectured a relation between almost holomorphic modular forms and numbers
of topologically inequivalent branched covers of an elliptic curve. Research on the latter
aspect has been particularly successful, establishing connections to Kac–Moody algebras
and related representation theoretic objects [4,9].
Poincaré series play a major role in the theory of automorphic forms (for example, see

[5,8,10] amongmany others). It is not difficult to construct almost holomorphic Poincaré
series by observing that almost holomorphic modular forms vanish under a power of the
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lowering operatorL := −2iy2∂τ , where throughout τ = x+iy ∈ H. Specifically, the elliptic
Poincaré series

∑
γ (y−de2π i nτ )

∣
∣
k γ converges for n, d ∈ Z, n > 0, k > 2, 0 ≤ d < k

2 − 1,
and it is almost holomorphic, since L is equivariant with respect to the usual slash action |k
and Ld+1(y−de2π i nτ ) = 0. Slightly more general, if s ∈ C, then Selberg’s [29] Poincaré
series

∑
γ

(
(ys) · (e2π i nτ )

) ∣
∣
k γ corresponds to a product of terms of Fourier series. The

factor ys is the 0-th term of the Fourier series of a (weight 0) Eisenstein series, and the
factor e2π i nτ is a term of Fourier series of a (weight k) holomorphic modular form. In
general, if the product of two terms of Fourier series is not almost holomorphic, then the
associated Poincaré series is not almost holomorphic either, provided that it is nonzero.
We discuss two examples in more detail in Sect. 1.2.
Siegel modular forms impact many different areas of mathematics: Algebraic and arith-

metic geometry, invariant theory, representation theory, quantum theory, and conformal
field theory, for example. Almost holomorphic Siegel modular forms were recently classi-
fied in [13,26], and they play an important role in the context of mirror symmetry in [13].
The purpose of this paper is to construct almost holomorphic Siegel–Poincaré series

of degree 2, where we average products of terms of Fourier series of (harmonic) Siegel–
Maass forms, but where these products are not almost holomorphic themselves. More
specifically, in (3.3) we define the Siegel–Poincaré series

P
(2)
k,�;T,T ′ (Z) =

∑

M

(
�k (T ;Z) · ��(T ′;Z)

) ∣
∣
k+�

M,

where k , � are positive even integers, T , T ′ are positive definite and symmetric 2 × 2
matrices, andwhere�k (T ;Z) and��(T ′;Z) are theT -th andT ′-th terms of Fourier series
of a weight k harmonic Siegel–Maass form (as in [6,27]) and weight � holomorphic Siegel
modular form, respectively. We apply an estimate of [30] to prove that P

(2)
k,�;T,T ′ converges

for all � large enough. Moreover, we employ a result of [17] to show that P
(2)
k,�;T,T ′ does not

vanish identically for all � large enough. The following theorem is our main result.

Theorem I Assume the generalized Ramanujan conjecture for GL4 . The function
�k (T ;Z) · ��(T ′;Z) is not almost holomorphic. If � ≥ 6 + 2b − k, where b > 0 is defined
in (3.4), then P

(2)
k,�;T,T ′ converges and is almost holomorphic.

Remark (1) Poincaré series are the startingpoint forKuznetsov-type [18] trace formulas.
It would be interesting to determine the Fourier series coefficients and the spectral
decomposition ofP(2)

k,�;T,T ′ to discover a novel Kuznetsov-type trace formula for Siegel
modular forms.

(2) It is possible to define P
(2)
k,�;T,T ′ for indefinite T . One can show that these Poincaré

series converge for sufficiently large � and that they are almost holomorphic. How-
ever, unfolding the Petersson scalar product against an arbitrary almost holomorphic
Siegel modular form yields that they vanish identically.

The paper is organized as follows: In Sect. 1, we illustrate how almost holomorphic
Poincaré series arise in the setting of elliptic modular forms. In Sect. 2, we review real-
analytic Siegel modular forms. In particular, we recall the notions of almost holomor-
phic Siegel modular forms and harmonic Siegel–Maass forms. In Sect. 3, we define the
Siegel–Poincaré series P

(2)
k,�;T,T ′ , and we determine conditions on its convergence and

nonvanishing. In Sect. 4, we prove Theorem I using tools from real representation the-
ory: The Poincaré series P

(2)
k,�;T,T ′ yields a cuspidal automorphic representation for PGSpn.
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The (g, K )-module attached to its component at the infinite place embeds into the tensor
product of twoHarish-Chandramodules generated by�k and��. This puts severe restric-
tions on (g, K )-modules arising in our context. Specifically, we employ Muić’s [25] study
of decompositions of generalized principal series to control Harish-Chandra parameters
of (g, K )-modules that have “walls” in their K -type support. In addition, P(2)

k,�;T,T ′ gives rise
to a scalar K -type. Consequently, we can invoke Arthur’s [2] endoscopic classification of
representations of Sp2(R) to narrow down possibilities to holomorphic (limits of) discrete
series.

1 Poincaré series for elliptic modular forms
We consider cuspidal Poincaré series in the case of elliptic modular forms to demonstrate
possible phenomena and to explain available tools to investigate such series. From the
introduction, recall the almost holomorphic Poincaré series attached to the function

φk[d](n; τ ) := y−de2π i nτ , n > 0. (1.1)

Note that φk[d] does not depend on k . Nevertheless, we also include it in the notation to
indicate that it is a typical term of a weight k almost holomorphic modular form. If d = 0,
then we write φk (n; τ ) := φk[0](n; τ ).
To define elliptic Poincaré series, set 


(1)∞ := { ± ( 1 b
0 1

)
, b ∈ Z

}
, and recall the elliptic

slash action (f |k γ )(τ ) := (cτ + d)−k f ( aτ+b
cτ+d ) for f : H → C, k ∈ Z, and γ = ( a b

c d
) ∈

SL2(Z). Products of almost holomorphic functions are almost holomorphic. Hence, it is
trivial that the Poincaré series

P(1)k[d],�;n,m(τ ) :=
∑

γ∈

(1)∞ \SL2(Z)

(
φk[d](n; τ )φ�(m; τ )

) ∣
∣
k+�

γ (1.2)

is almost holomorphic, provided that it converges, which is the case if k + � > 2+ 2d. In
the next two sections, we will demonstrate that analogous Poincaré series are, in general,
not almost holomorphic.

1.1 Poincaré series that are not almost holomorphic

Consider a typical term of the nonholomorphic part of a weight k harmonic weak Maass
form:

ψ̃k (n; τ ) := 
(1 − k, 4π |n|y) e2π i nτ , k ≤ 0, n < 0, (1.3)

where
 is the usual incomplete gamma function.Note that ψ̃k (n; · ) decays rapidly toward
infinity, but the Poincaré series

∑
γ ψ̃k (n; τ )

∣
∣
kγ does not converge, due to its behavior as

y → 0. For the remainder of this section, let � ∈ Z such that k + � > 2, in which case the
Poincaré series

P̃
(1)
k,�;n,m(τ ) :=

∑

γ∈

(1)∞ \SL2(Z)

(
ψ̃k (n; τ )φ�(m; τ )

) ∣
∣
k+�

γ (1.4)

converges.
Our main tool in this paper—see Sect. 4—is the theory of Harish-Chandra modules

(i.e., real representation theory). We will apply it to the case of elliptic modular forms
in Sect. 1.4. Guided by the emphasis of real representation theory on linear differen-
tial operators, we consider the lowering operator L instead of Bruinier and Funke’s [3]
ξ -operator. The ξ -operator and Lmap smooth functions on H to smooth functions on H,
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and are defined by

ξk (f ) := 2iyk∂τ f and L := Lk := −2iy2∂τ ,

where ∂τ f = ∂f
/
∂τ and ∂τ f = ∂f

/
∂τ . The space M

(1)
k of harmonic Maass forms is

mapped by ξk to M(1)
2−k , the space of holomorphic modular forms. Equivalently, it is

mapped by Lk to y2−kM(1)
2−k , which is the space of antiholomorphic modular forms of

antiholomorphic weight 2 − k normalized by y2−k to holomorphic weight k − 2. Terms
of Fourier series are related by the formula Lk

(
ψ̃k (n; τ )

) = (4π |n|)1−k φ̃k−2(−n; τ ) with

φ̃k (n; τ ) := y−kφ−k (n; τ ) = y−ke−2π i nτ , k < 0, n < 0. (1.5)

The image of P̃
(1)
k,�;n,m undermLk is therefore a scalar multiple of

P̃(1)k−2,�;n,m(τ ) :=
∑

γ∈

(1)∞ \SL2(Z)

(
φ̃k−2(n; τ )φ�(m; τ )

) ∣
∣
k−2+�

γ . (1.6)

For simplicity, we focus on |m| > |n|. In the next section, we find that neither P̃(1)k,�;n,m
nor P̃

(1)
k,�;n,m is almost holomorphic.

1.2 Spectral decomposition of Poincaré series

It is an important and nontrivial task to find the spectral decomposition of an automorphic
form. The spectrum of the weight k hyperbolic Laplace operator on L2(SL2(Z)\H, |k )
consists of four different contributions: (1) Eisenstein series Ek,s with spectral parameter
s = 1/2 + it, t ∈ R. (2) The residual spectrum, which arises from unary theta series.
(3) Almost holomorphic and almost antiholomorphic cusp forms. (4) Proper Maass cusp
forms. The Poincaré series that we consider are all cuspidal, and so Eisenstein series do not
occur in their spectral decomposition. Furthermore, the residual spectrum occurs only
for half-integral weight, and therefore, it does not contribute to the weights that we treat.
Consequently, Parseval’s equation implies that if f is one of the Poincaré series, then

f =
∑

j
〈gj, f 〉gj +

∑

j
〈uj, f 〉uj

where gj runs through a (finite) complete orthonormal set of almost holomorphic and
antiholomorphic modular forms, and uj runs through an (infinite) complete orthonormal
set of proper Maass cusp forms.
We now show that P̃(1)k,�;n,m in (1.6) and P̃

(1)
k,�;n,m in (1.4) are not almost holomorphic.More

precisely, we show that both have spectral expansions with infinite support. The relation

Lk
(
P̃
(1)
k,�;n,m(τ )

)
= (4π |n|)1−k P̃(1)k−2,�;n,m(τ )

allows us to examine only P̃(1)k,�;n,m.
To exhibit the spectral decomposition, suppose that u is a Maass cusp form with spec-

tral parameter s with Re(s) > 1
2 . Without loss of generality, we can raise its weight to

weight k + �, such that its spectral parameter with respect to the weight k + � Laplace
operator is s − (k + �)/2. The Fourier series expansion of u has the form

u(τ ) =
∑

n∈Z\{0}
c(u; n) (4π |n|y)− k+�

2 Wsgn(n) k+�
2 , s− 1

2
(4π |n|y)e2π i nx,

where Wμ,ν denotes the usual W -Whittaker function. We unfold the Petersson scalar
product of the Poincaré series P̃(1)k,�;n,m against u, and obtain by 7.621.3 of [11] that
〈u, P̃(1)k,�;n,m〉 equals
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c(u; m − n)
∫ ∞

0
y−ke−2π (m−n)y (4π (m − n)y)−

k+�
2 Wk+�

2 , s− 1
2
(4π (m − n)y)

dy
y2−(k+�)

= c(u; m − n) (4π (m − n))1−l



(
�−k
2 + s − 1

)



(
�−k
2 − s

)


(−k)

×2F1
(

�−k
2 + s − 1, s − k+�

2 , −k ; 0
)
.

The hypergeometric series evaluated at 0 equals 1. The gamma factors do not vanish, and
all Maass cusp forms with c(u; m − n) 
= 0 contribute to the spectral expansion of f . By
Theorem 1.2 of [12], there are infinitely many such Maass cusp forms.

1.3 Almost holomorphic Poincaré series

In this section, we suggest another Poincaré series that is almost holomorphic. In light of
what we discuss in Sect. 1.4, it is natural to replace ψ̃k by

ψk (n; τ ) := y−k 
(1 + k, 4πny) e2π i nτ , k ≥ 0, n > 0. (1.7)

It is a term of the Fourier series of an “anti-harmonic” Maass form in y−k
M

(1)
−k , which is a

space of functions that are mapped by the raising operator

Rk := 2i∂τ + ky−1 (1.8)

to holomorphic modular forms of weight k + 2.
Define the Poincaré series

P
(1)
k,�;n,m(τ ) :=

∑

γ∈

(1)∞ \SL2(Z)

(ψk (n; τ )φ�(m; τ ))
∣
∣
k+�

γ , (1.9)

which converges if � − k > 2. Observe that

ψk (n; τ )φ�(m; τ ) = y−k
(1 + k, 4πny)e2π i nτ e2π i mτ = p(y−1)e2π i (n+m)τ ,

where p is a polynomial of degree k . Applying the lowering operator k+1 times annihilates
this product, i.e., P(1)

k,�;n,m is almost holomorphic.
Finally, it is easy to see that P(1)k[d],�;n,m [defined in (1.2)] is in the kernel of Ld+1, i.e., it is

also almost holomorphic.

1.4 Harish-Chandra modules

The spectral decomposition of an automorphic form implies a decomposition of the
associated Harish-Chandra module. Vice versa, one can deduce from the decomposition
of the Harish-Chandra module attached to an automorphic form which parts of the
spectrum contribute to its spectral expansion. In particular, it is possible to infer from
the Harish-Chandra module alone whether an automorphic form is almost holomorphic.
In this section, we give some details and examples. A precise statement in the case of
automorphic forms for Sp2(R) is presented in Sect. 4.
We reconsider the spectral decomposition of the Poincaré series P(1)k[d],�;n,m and P

(1)
k,�;n,n′

in light of Harish-Chandra modules. The Poincaré series in (1.4) cannot be completely
analyzed, and their (g, K )-modules are not Harish-Chandra modules. An excellent treat-
ment of Harish-Chandramodules can, for example, be found in [15,32]. To accommodate
the classically inclined reader, we suggest a rather simple schematic way of thinking of
Harish-Chandra modules in terms of lowering and raising operators, but for simplicity
we suppress details on the correspondence of Harish-Chandra modules and the C[L, R]-
modules that we employ in this section. We will be more precise in Sect. 4, when we
discuss the case of Sp2(R).
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Given an even weight k and a function f , we study the action of C[L, R] where L and R
are abstract lowering operators on the pair (f, k). The action is precisely given by L (f, k) =
(Lk (f ), k − 2) and R (f, k) = (Rk (f ), k + 2), where Lk and Rk are the usual lowering and
raising operators, as before given by

Lk := −2iy2∂τ and Rk := 2i∂τ + ky−1.

By viewing the second component of (f, k) as a grading, it makes sense to speak of the
gradedmoduleC[L, R] f , and study for which k its k-th graded component is nonzero.We
are further interested in the action of the lowering and raising operators on the graded
components of C[L, R] (f, k). We illustrate the typical behavior on the function ys with
s ∈ C. We clearly have Lk (ys) = sys+1 and Rk (ys) = (s + k)ys−1. If s = 0 or s = −k , then
ys vanishes under Lk or Rk , respectively. Rewriting this in terms of pairs (f, k), we find that
L(ys, 0) = (sys+1,−2) and R(ys, 0) = (sys−1, 2).
We now exhibit the behavior of terms of the Fourier series in (1.1), (1.3), (1.5), and (1.7)

under lowering and raising operators. For any n, we have L(φk (n; τ ), k) = 0, and no
power of R annihilates (φk (n; τ ), k). The situation for ψk (n; τ ), k) is similar. We have
Lk+1(ψk (n; τ ), k) = (0,−k − 2). In addition, LR(ψk (n; τ ), k) = 0. The behavior of φ̃k and
ψ̃ is analogous.
We now introduce a schematic way to describe thesemodules. Every graded component

which is nonzero corresponds to a filled circle. Graded components that are zero corre-
spond to (small) circles. Both are placed on a line to emphasize the 2Z-grading.We further
encircle one dot that corresponds to the graded component, whichwe are focusing on. For
example, in the case of (y−d, 0) we would encircle the 0-th graded component, and when
considering (φk , k) we encircle the k-th one. Finally, we separate C[R, L]-submodules by
vertical lines decorated with an arrow. It means that applying the lowering operator (if the
arrow points rightwards) or the raising operator (if the arrow points leftwards) applied to
this graded component equals zero. In addition, we insert vertical dashed lines to indicate
the relation to walls in so-called principal series representations. Here are diagrams for
φk[d], ψk , φ̃k , and ψ̃k .

(
φk[d], k

) k
2d − k k − 2d

(
ψk , k

) k
−k − 2 k + 2

(
φ̃k , k

)
k −k

(
ψ̃k , k

) k
k − 2 −k + 2

We now come back to the spectral decomposition of Poincaré series. We illustrate
our approach in the first case Pk[d],�;n,m. It is central for the more general discussion in
Sect. 4 to decompose the action of lowering operators and raising operators into two parts
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according to the following analogue to the Leibniz product rule.

Lk+�

(
φk[d](n; τ ) · φ�(m; τ )

∣
∣
k+�

γ
)

= Lk+�

(
φk[d](n; τ )

∣
∣
k γ · φ�(m; τ )

∣
∣
�
γ
)

= Lk
(
φk[d](n; τ )

∣
∣
k γ

) · φ�(m; τ )
∣
∣
�
γ + φk[d](n; τ )

∣
∣k γ · L� (φ�(m; τ )

∣
∣
�

γ
)
.

An analogous formula holds for the raising operator. Applying both formulas iteratively
yields that

C[L, R]
(
Pk[d],�;n,m, k + �

) ⊆ C[L, R]
(
φk[d](n; · ) · φ�(m; · ), k + �

)

⊆ (
C[L, R]

(
φk[d](n; · ), k)) ⊗ (C[L, R] (φ�(m; · ), �)) .

The tensor product of (f, k) and (g, �) is defined as (fg, k + �), which is in accordance with
the product f |k γ · g |� γ = (fg)|k+� γ .
With this machinery, we can now read off an upper bound for the support of the

graded module C[L, R]
(
Pk[d],�;n,m, k + �

)
. We have already given diagrams for the left

and right tensor component that correspond to it. All nonzero graded components are
1-dimensional, and we find that the weights of the nonzero graded components in the
tensor product are at least k − 2d + �.
As a last step, we use the classification of Harish-Chandra modules for SL2(R): (Limits

of) holomorphic discrete series are the only Harish-Chandra admissible modules which
have a lowest weight. Therefore, the Harish-Chandra module attached to Pk[d],�;n,m is a
(finite) direct sum of (limits of) holomorphic discrete series. Graded components of such
discrete series correspond to almost holomorphic modular forms, and this proves again
what we have already observed in Sect. 1.3: The Poincaré series Pk[d],�;n,m decomposes as
a finite sum of almost holomorphic modular forms.

The inconclusive casesTo analyze the Poincaré series in (1.4) and (1.6), we have to consider
the tensor product of the C[L, R]-modules generated by φ̃k and φ�, and by ψ̃k and φ�,
respectively. These tensor products are supported on all weights and all weight spaces are
infinite dimensional. Thus, we cannot deduce anything definite. Nevertheless, this at least
suggests that infinitely many Maass cusp forms appear in the spectral decomposition,
which is what we verified directly in Sect. 1.2.

2 Real-analytic Siegel modular forms
We start by introducing necessary notation to define Siegel modular forms. Let I = I (2)

be the 2 × 2 identity matrix, 
 := 
(2) := Sp2(Z) be the symplectic group of degree 2
over Z, H

(2) be the Siegel upper half space of degree 2, and let Z = X + iY ∈ H
(2) be a

typical variable. IfM = ( A B
C D

) ∈ 
 and Z ∈ H
(2), then

M • Z := (AZ + B)(CZ + D)−1.

Furthermore, if F : H
(2) → C and if k ∈ Z, then

(
F
∣
∣
k M

)
(Z) := det(CZ + D)−k F (M • Z) (2.1)

for allM = ( A B
C D

) ∈ 
.

Definition 2.1 A holomorphic (degree 2) Siegel modular form of weight k on 
 is a
holomorphic function F : H

(2) → C such that, for allM ∈ 
, F
∣
∣
k M = F .
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2.1 Almost holomorphic Siegel modular forms

Almost holomorphic Siegel modular forms were introduced by Shimura [31]. In degree 2,
they were classified in [13,26]. Write Z = (zij) and set ∂Z :=

(
1
2 (1 + δij)∂zij

)
to define the

lowering operator

L := L(2) := Y t (Y ∂Z
)
. (2.2)

By the d-th power of L, we mean its d-th tensor power.

Definition 2.2 An almost holomorphic (degree 2) Siegel modular form of weight k and
depth d on 
 is a real-analytic function F : H

(2) → C satisfying the following conditions:

(1) For allM ∈ 
, F
∣
∣
k M = F .

(2) We have that Ld+1(F ) = 0.

2.2 Harmonic Siegel–Maass forms

In [6], we introduced a certain space of harmonic (skew) Siegel–Maass forms, and we
proved a connection of this space to the space of harmonic skew-Maass–Jacobi forms.
In particular, we answered a question of Kohnen [16] on how skew-holomorphic Jacobi
forms are related to real-analytic Siegelmodular forms.We now introduce the (α,β)-slash
action and the corresponding matrix-valued Laplace operator to recall the definition of
harmonic (skew) Siegel–Maass forms in [6].
If F : H

(2) → C, and if α,β ∈ C such that α − β ∈ Z, then
(
F

∣
∣
(α,β)M

)
(Z) := det(CZ + D)−α det(CZ + D)−β F (M • Z) (2.3)

for allM = ( A B
C D

) ∈ 
. If β = 0, we have
(
F
∣
∣
α
M

)
(Z) =

(
F
∣
∣
(α,β)M

)
(Z). As before, write

Z = (zij) and set ∂Z :=
(
1
2 (1 + δij)∂zij

)
to define the Laplace operator

�α,β := −4Y t (Y ∂Z
)
∂Z − 2iβY ∂Z + 2iαY ∂Z, (2.4)

which is equivariant with respect to the action in (2.3) (see [24] for details). For the
remainder, assume that κ is an odd integer such that κ /∈ {1, 3}.
Definition 2.3 A harmonic (skew) Siegel–Maass form of weight κ on 
 is a real-analytic
function F : H

(2) → C satisfying the following conditions:

(1) For allM ∈ 
, F |( 1
2 , κ− 1

2

) M = F .

(2) We have that � 1
2 ,κ− 1

2
(F ) = 0.

(3) We have that |F (Z)| ≤ c tr(Y )a for some a, c > 0 as tr(Y ) → ∞.

Let M
sk
κ denote the space of such harmonic Siegel–Maass forms of weight κ .

Remark 2.4 In [6], we only focused on (skew) Siegel–Maass forms of type
( 1
2 , κ − 1

2
)
,

in order to establish links to the spaces of skew-Maass–Jacobi forms (if κ < 0) and
skew-holomorphic Jacobi forms (if κ > 3). Nevertheless, many results of [6] extend to
“holomorphic weights,” which are more natural from a representation theoretic perspec-
tive. In fact, if F ∈ M

sk
κ , then the form det(Y )κ−1/2F (Z) has weight k := 1 − κ , i.e., it is

invariant under (2.1) with k = 1− κ , where k is an even integer such that k /∈ {0,−2}. For
convenience, we set

Mk := M
(2)
k := det(Y )

1
2−k

M
sk
1−k . (2.5)
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Let 
∞ := 

(2)∞ := { ( A B

0 D
) ∈ 


}
. Recall Maass’ [23,24] nonholomorphic Eisenstein

series

Eα,β (Z) :=
∑

M∈
∞\

1
∣
∣
(α,β)M (2.6)

and also the Poincaré–Eisenstein series

Pκ ,s(Z) :=
∑

M∈
∞\

det(Y )s

∣
∣(

1
2 , κ− 1

2

) M. (2.7)

Then, Pκ ,s = det(Y )sEs+1/2,s+κ−1/2, and in [6], we stated the following fact.

Proposition 2.5 If s = 0 (κ > 3) or s = 3
2 − κ (κ < 0), then Pκ ,s ∈ M

sk
κ . In other words,

we have

det(Y )
1
2−k P1−k,0 ∈ Mk for k < −2;

det(Y )
1
2−k P1−k, 12+k ∈ Mk for k > 1.

We end this section with a remark on terms of the Fourier series of harmonic Siegel–
Maass forms.

Remark 2.6 In [6], we determined Fourier series expansions of harmonic Siegel–Maass
forms: For anynondegenerate, symmetric, half-integral 2×2matrixT there exist functions
�k (T ; Z) such that the T -th term of the Fourier series of any F ∈ Mk is given by

c(F ; T )�k (T ; Z), where c(F ; T ) ∈ C.

The ideas in theproof of Proposition4.6 canbeused to show that for k < −2,�k (T ;Z) = 0
for positive definite T .

3 Real-analytic Siegel–Poincaré series
In this section, we define Poincaré series attached to products of terms of Fourier series
of holomorphic Siegel modular forms and harmonic Siegel–Maass forms. Recall from
Proposition 2.5 that det(Y )E1+k,1 ∈ Mk . We can use its Fourier series to define �k (T ;Z)
in Remark 2.6.
IfRe(α),Re(β) > 1

2 , then (see [24]) the terms of the Fourier series of the Eisenstein series
Eα,β are, up to scalar multiples, given by

hα,β (T ;Y ) e2π i tr(TX),

where

hα,β (T ;Y ) :=
∫ ∫

U±T>0

det(U + T )α− 3
2 det(U − T )β− 3

2 e−2π tr(YU ) dU. (3.1)

For the remainder, let T be positive definite, which we denote by T > 0. Set

�k (T ;Z) := det(TY ) hk+1,1(T ; Y ) e2π i tr(TX) and ��(T ;Z) := e2π i tr(TZ), (3.2)

and for T ′ > 0 and positive even integers k and � define the Poincaré series

P(2)
k,�;T,T ′ (Z) :=

∑

M∈�\


(
�k (T ;Z) · ��(T ′;Z)

) ∣
∣
k+�

M, (3.3)

where � is the subgroup of 
 defined by

� := {( I B
0 I

)
, B ∈ Mat2(Z), tB = B

}
.

Observe that�k (T ;Z+B) = �k (T ;Z) and��(T ′;Z+B) = ��(T ′;Z), and one finds that
P(2)
k,�;T,T ′ is well defined.
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3.1 Convergence

We determine the convergence of P(2)
k,�;T,T ′ (Z) by comparing it to the Poincaré series

Pk ′ ,T (Z) :=
∑

M∈�\

e2π i tr(TZ)

∣
∣
k ′ M,

which converges absolutely and uniformly on compact subsets of H
(2) for even integers

k ′ ≥ 6 (see, for example, Proposition 3 on page 85 of [14]).
Consider det(Y ) hk+1,1(T ; Y ), where T > 0 and Y > 0. Let 0 < λ1 ≤ λ2 be the

eigenvalues of TY . Then det(TY ) = λ1λ2, tr(TY ) = λ1 + λ2, and λ1 ≥ det(TY )
tr(TY ) .

Shimura [30] studied a functionω(g, h;α,β), which is closely related to (3.1). Specifically,
if g = 2πY , h = T , α = k + 1, and β = 1, then

ω(g, h;α,β) := 2−2−2k

π
det(2πTY )

1
2−kdet(2πY )k+ 1

2 · h1+k,1(T ; Y ).

Shimura established an estimate for ω, which implies that there exist constants a, b > 0
(depending on α and β , i.e., on k) such that

det(TY )hk+1,1(T ; Y )

≤ det(TY ) 22k+2π det(2πTY )k−1/2det(2πY )−k−1/2 a e−2π tr(TY )
(
1 + λ−b

1

)

≤ c e−2π tr(TY )
(

1 +
(

tr(TY )
det(TY )

)b
)

, (3.4)

where c := a 21+2kdet(T )k−b+1/2. Note that tr(TY )b e−2π tr(TY ) ≤ de−π tr(TY ) for some
constant d > 0. Thus,

det(TY )hk+1,1(T ;Y ) 

(
1 + det(Y )−b

)
e−π tr(TY ), (3.5)

and one finds that P(2)
k,�;T,T ′ (Z) in (3.3) is dominated by

∑

M∈�\


((
1 + det(Y )−b

)
e−π tr(T̃Y )

) ∣
∣
k+�

M (3.6)

with T̃ := T +T ′ > 0. We conclude that P(2)
k,�;T,T ′ (Z) converges absolutely and uniformly

on compact subsets of H
(2) if � + k − 2b ≥ 6.

3.2 Nonvanishing

In this section, we show that lim�→∞ P(2)
k,�;T,T ′ (iy0I) > 0 for some y0 > 1, which implies

that P
(2)
k,�;T,T ′ does not vanish identically for all � large enough. We apply the following

lemma of Kowalski, Saha, and Tsimerman [17], where U (y0) stands for some neighbor-
hood of iy0I (y0 > 0).

Lemma 3.1 ([17]) There exists a real number y0 > 1 such that for any
( A B
C D

) ∈ 
 with
C 
= 0 and for all Z ∈ U (y0), we have |det(CZ + D)| > 1.

LetM = ( A B
C D

) ∈ 
. Suppose that C 
= 0. Choose y0 > 1 as in Lemma 3.1 and consider
Z = iy0I . Then |det(CZ + D)| > 1, and if T > 0, then

det(CZ + D)−k−�
(
1 + |det(CZ + D)|2b

)
e2π itr(T M•Z) �→∞−−−→ 0.

Recall that (3.6) is a majorant of (3.3), which converges for all � ≥ 6− k + 2b, and we find
that

∑

M=
( ∗ ∗
C ∗

)
∈�\


C 
=0

((
�k (T ;Z) · ��(T ′;Z)

)) ∣
∣
k+�

M �→∞−−−→ 0.
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Finally, suppose that C = 0. Then D = tA−1. Moreover, we factor out by �, and hence,
we may (and do) assume that B = 0. IfM =

(
A 0
0 tA−1

)
and again Z = iy0I , then

det (Im (M • iy0I)) = det
(
A (y0I) tA

) = y20det(A)
2 = y20.

Thus,
∑

M=( ∗ ∗
0 ∗ )∈�\


((
�k (T ;Z) · ��(T ′;Z)

)) ∣
∣
k+�

M

= y20
∑

A∈GL2(Z)
det(A)−k−�hk+1,1(T, y0I)e−2πy0 tr(T̃A tA),

which is positive (k and � are even), where again T̃ := T + T ′ > 0. In particular,

lim
�→∞P(2)

k,�;T,T ′ (iy0I) > 0.

4 (g, K )-modules generated by Poincaré series
Throughout this section, we focus on (g, K )-modules for G := Sp2(R). We diverge from
the classical notationM ∈ Sp2(R) in favor of the representation theoretic notation g ∈ G.
Recall the realization of the symplectic group as

Sp2(R) =
{
g ∈ Mat4(R) : tgJ (2)g = J (2)

}
, J (2) =

(
0 −I (2)

I (2) 0

)

,

with maximal compact subgroup

K =
{(

A −B
B A

)

: A + iB ∈ U2(R)
}

∼= U2(R),

where U2(R) are theR-points of the unitary group U2 attached to the quadratic extension
C/R, which as an algebraic group is defined over R.
Irreducible representations of U2(R) are isomorphic to detksym� := detk ⊗ sym� for

some k ∈ Z, � ∈ Z≥0. This is the classical way of denoting weights for Siegel modular
forms. In the context of real-analytic representation theory, it is more common to para-
metrize irreducible K -representations by integers a, b ∈ Z subject to the condition that
a ≥ b. This notion stems from the action of the center of k (the complexified Lie algebra
of K ) on a representation. Translation between the two conventions is straightforward:
The pair (a, b) corresponds to detbsymb−a, while the weight detksym� corresponds to
(k + �, k).
A (g, K )-module is a simultaneous g andK -modulewith compatibility relations imposed

on them. A precise definition can be found in Section 3.3.1 of [32]. One invariant of
(g, K )-modules is the set of nontrivial K -types (i.e., irreducible K -representations). A
(g, K )-module � viewed as a K -representation can be decomposed as a direct sum of
irreducibles. We say that a K -type πK occurs in � if dim HomK (πK ,� ) > 0. If the
multiplicity in � of all πK ’s is finite, then � is called a Harish-Chandra module. The
invariant that we will primarily encounter is the set of K -types that occur in a (g, K )-
module.
TheK -types in (g, K )-modules for Sp2(R) canbedisplayedby ahalf-grid in 2dimensions.

A typical such grid looks as follows, where we have marked K -types that occur by a filled
circle, and those that do not occur by an empty circle.
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(0,0)

We say that a Harish-Chandra module� has a vertical wall in the direction of← or→,
if there exists a0 ∈ Z such that every K -type with highest weight (a, b) that occurs in �

satisfies a ≤ a0 or a ≥ a0, respectively. Horizontal walls in the direction of ↑ and ↓ can
be defined analogously.

4.1 (g, K )-modules associated with modular forms

Section 2 of [33] gives an account of the connection between modular forms and Harish-
Chandra modules. Weights are finite dimensional, holomorphic representations σ of
GL2(C). Their representation space is denoted by V (σ ). Given a weight σ and a smooth
function F : H

(2) → V (σ ), we can attach a function AR,σ (F ) := AR(F ) on G(R) = Sp2(R):

AR(F )(g) = σ−1
(
j(g, iI (2))

)
f (g • iI (2)), j(g, Z) = CZ + D. (4.1)

FromAR(F ), one constructs the vector spaceAR,σ (F )(g) that is spanned by its coordinates.
This spaceunder right translationbyK is isomorphic to thedualσ∨ ofσ . The actionofgon
this space generates a (g, K )-module that we denote by� (F ). If F is an automorphic form
or a term of the Fourier series of a modular form, then� (F ) is a Harish-Chandra module.
Recall the compatibility of covariant differential operators acting on F and the g-action

on � (F ) that is stated and the end of Section 2.2 of [33] in terms of the following two
commutative diagrams.

F AR,σ (F )

Rσ (F ) m+ AR,σ (F )

AR,σ

AR,sym2σ

Rσ m+

F AR,σ (F )

Lσ (F ) m− AR,σ (F )

AR,σ

A
R,det−2sym2σ

Lσ m−

This compatibility allows us to pass back and forth between the classical description of
covariant differential operators acting onmodular forms and the representation theoretic
perspective.

Lemma 4.1 Let c : H
(2) → V (σ ) be smooth function such that the Poincaré series

Pc =
∑

γ∈
∞\

c
∣
∣
σ

γ

is locally absolutely convergent. Then, there is an inclusion � (Pc) ↪→ � (c).

Proof This is an immediate consequence of viewing Poincaré series as intertwining maps
from a suitable principal series to the automorphic spectrum. It can also be seen directly,
by checking that

AR(Pc) =
∑

γ∈
∞\

AR(c) ◦ γ .

��
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Lemma 4.2 Given two smooth functions c1 : H
(2) → V (σ1) and c2 : H

(2) → V (σ2), then
there is an inclusion � (c1 · c2) ↪→ � (c1) ⊗ � (c2).

Proof This is a rephrasing of the Leibniz rule for differentials. ��

4.2 The tensor products of (g, K )-modules

Proposition 4.3 Let �1 and �2 be Harish-Chandra modules. If �1 has a vertical wall
in the direction of → and �2 has a horizontal wall in the direction of ↑, then the tensor
product �1 ⊗ �2 has a vertical wall in the direction of →. If �1 has a vertical wall in
the direction of ← and �2 has a horizontal wall in the direction of ↓, then the tensor
product �1 ⊗ �2 has a horizontal wall in the direction of ↓.

Proof We prove the first case and leave the second one to the reader. Let a0 and b′
0 be

such that a ≥ a0 if (a, b) occurs in �1 and b′ ≥ b′
0 if (a′, b′) occurs in �2. Let (a, b)

and (a′, b′) be arbitrary K -types in �1 and �2. Then by the Clebsch-Gordan rules, their
tensor product contains K -types of weight (a′′, b′′) with a′′ + b′′ = a + a′ + b + b′ and
max(a − b, a′ − b′) − min(a − b, a′ − b′) ≤ a′′ − b′′ ≤ a − b + a′ − b′.
Adding these two, we find that

2a′′ ≥ a + a′ + b′ + b′ + max
(
a − b, a′ − b′) − min

(
a − b, a′ − b′) .

If a − b ≥ a′ − b′, then this equals 2(a + b′) ≥ 2(a0 + b′
0). Otherwise, it equals 2(a′ + b)

which is greater than 2(a + b′) ≥ 2(a0 + b′
0), because a′ − b′ ≥ a − b. ��

4.3 Harish-Chandra modules with walls

Proposition 4.4 Assume the generalized Ramanujan conjecture for GL4 . Let � be an
irreducible, cuspidal, automorphic representation, with Harish-Chandra module �∞ at
the infinite place. If �∞ has a vertical or horizontal wall, and if �∞ contains a scalar
K-type, then �∞ is a holomorphic or antiholomorphic (limit of) discrete series.

Proof We first show that the Harish-Chandra parameters (s1, s2) of �∞ are integral. The
Langlands classification [15] exhausts irreducible Harish-Chandra modules as irreducible
quotients of induced representations. We use [25] to determine their K -types. We adopt
Muić’s notation. Equations (9.3–9.5) of [25] allow us to focus on the induced representa-
tions

| |psgnp × | |tsgnt � 1 , δ (| |ssgnε , k) � 1 , ζ (| |ssgnε , k) � 1

| |ssgnε
� X(p,±), | |ssgnε

� Vp
(4.2)

with nonintegral Harish-Chandra parameter. The first representation is irreducible by
Lemma 9.1 of [25]. The remaining ones are irreducible by Theorem 12.1 of [25]. Hence, it
suffices to check K -types of induced representations that occur in (4.2), which was done
in Section 6 of [25]. This shows that s1, s2 ∈ Z.
Assume that �∞ is tempered. Among the (limits of) discrete series, only the holomor-

phic ones contain scalar K -types. To show that no other tempered representation can
occur, observe that tempered representations that are not (limits of) discrete series are
fully induced from discrete series attached to the Levi factor of a parabolic subgroup
by Knapp and Zuckerman [19]. Section 9 of [25] lists the nontempered constituents of
inductions of discrete series, and this reduces us to the Harish-Chandra parameter (0, 0).
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By Corollary 5.2 of [25], the induced representation 1 × 1 � 1 is irreducible. Lemma 6.1
reveals that it has no walls. The principal series

sgn × sgnε
� 1 ∼= sgnε × sgn � 1 ∼= sgnε

� X(0,+) ⊕ sgnε
� X(0,−)

contains K -types (k ′, k ′) for odd k ′ only.
Assume that �∞ is nontempered. Then by the generalized Ramanujan conjecture for

GL4 and by Arthur’s endoscopic classification [2], the only nontempered contributions to
the automorphic spectrumare lifts of (1) Soudry type, (2) Saito–Kurokawa type, (3)Howe–
Piatetski–Shapiro type, or (4) one-dimensional type. For a detailed explanation, see [1].
Local components at the infinite places can be determined via the local Langlands corre-
spondence for reductive groups over the reals, which was established in [21]. Sections 1
and 2 of [28] summarize both results briefly. For Soudry type lifts, we apply Lemma 6.1
of [25] to discover that no scalar K -types occur. The holomorphic Saito–Kurokawa lift
does contain scalar K -types. At the infinite place, it is a holomorphic discrete series. A
Saito–Kurokawa lift with integral Harish-Chandra parameter that is not a holomorphic
discrete series contains no scalar K -type by Lemmas 6.1 and 9.2 of [25]. The Howe–
Piatetski–Shapiro type corresponds to the Langlands quotient of the Borel subgroup. In
the case of integral Harish-Chandra parameters, it contains no scalar K -type by, again,
Lemma 6.1 and 9.2 of [25]. This also applies to the one-dimensional type. This establishes
the claim. ��

4.4 Proof of the main theorem

Before we investigate Poincaré series, we recall two results about their Fourier series:

Proposition 4.5 Let c : H
(2) → V (σ ) be a holomorphic function. Then � (c) has a

horizontal wall in the direction of ↑. Moreover, � (�k (T ;Z)) has a vertical wall in the
direction of →, where �k (T ;Z) is defined in (3.2).

Proof The first statement is classical and follows from the description of holomorphic
discrete series. The second one is a direct consequence of Proposition 4.1 of [33], or
alternatively can be extracted from [22].

Proposition 4.6 There is no d ∈ Z≥0 such that

Ld
(
�k (T ; · )��(T ′; · ))

vanishes.

Proof Since L(��(T ; · ) = 0, we have

Ld
(
�k (T ; · )��(T ′; · )) = Ld (�k (T ; · )) · ��(T ′; · ).

Using the equivariance

�k ( tUTU ;Z) = �k (T ; tUZU ), U ∈ GL2(R)

we can focus on the case that �k (T ; · ) is a nonvanishing term of the Fourier series of
an Eisenstein series. We then obtain an embedding of the Harish-Chandra module �k
generated by that Eisenstein series into the generalizedWhittaker modelWk,T associated
with �k (T ; · ) (which, in fact, is a Bessel model). Using the decomposition series of prin-
cipal series given in [22], we find that the K -types (k + 2a, k) occur in �k for all a ≥ 0.
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Moreover, all K -types in �k occur with multiplicity at most 1. Let π be the projection of
the weight (i.e., GL2(C)-representation) detk (sym2)d to detksym2d . Our argument shows
that

π
(
Ld (�k (T ; · ))

)

generates the K -type (k + 2d, k) of the image of �k in Wk,T . In particular, it does not
vanish. ��

Proof of Theorem I By Sect. 3, the Poincaré series P(2)
k,�;T,T ′ is a real-analytic cusp form.We

have to show that it vanishes under some tensor power of the lowering operator L. By the
connection of modular forms and (g, K )-modules, elaborated on in Sect. 4.1, it suffices to
show that �

(
P(2)
k,�;T,T ′

)
is a finite sum of holomorphic (limits of) discrete series.

Cuspidality implies that �
(
P(2)
k,�;T,T ′

)
is a direct sum of irreducibles. The theorem is

proved if we show that any of its irreducible subquotients is a holomorphic (limit of)
discrete series.
Lemma 4.1 asserts that we can restrict on the codomain of

�
(
P(2)
k,�;T,T ′

)
↪−→ �

(
�k (T ;Z) · ��(T ′;Z)

)
,

and Lemma 4.2 allows us to further reduce our considerations to

�
(
�k (T ;Z) · ��(T ′;Z)

)
↪−→ �k,�;T,T ′ = � (�k (T ;Z)) ⊗ �

(
��(T ′;Z)

)
,

where ��(T ′;Z) is viewed as a function from H
(2) to V (det�).

Proposition 4.5 guarantees that the first tensor factor has a horizontal wall, and the
second one has a vertical wall. Consequently, we can apply Proposition 4.3. It implies
that �k,�;T,T ′ has a vertical wall in the direction of →. If it occurs in �

(
P(2)
k,�;T,T ′

)
, then

it contains a scalar K -type. Hence, it is a holomorphic discrete series by Proposition 4.4.
This completes the proof. ��
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