
The solution space of sorting with recurring comparison faults

Downloaded from: https://research.chalmers.se, 2019-05-11 19:12 UTC

Citation for the original published paper (version of record):
Damaschke, P. (2018)
The solution space of sorting with recurring comparison faults
Theory of Computing Systems, 62(6): 1427-1442
http://dx.doi.org/10.1007/s00224-017-9807-4

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chalmers Research

https://core.ac.uk/display/198038888?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Theory Comput Syst (2018) 62:1427–1442

The Solution Space of Sorting with Recurring
Comparison Faults

Peter Damaschke1

Published online: 31 August 2017
© The Author(s) 2017. This article is an open access publication

Abstract Suppose that n elements shall be sorted by comparisons, but some sub-
set of at most k pairs systematically returns false comparison results. This subset
is unknown, but the number k is known in advance. Using a connection to feed-
back arc sets in tournaments (FAST), we characterize the solution space of sorting
with recurring comparison faults by a FAST enumeration, which represents all infor-

mation about the order that can be obtained by doing all

(
n

2

)
comparisons. Some

optimal parameterized enumeration algorithm for FAST also works for the more
general chordal graphs, and this fact contributes to the efficiency of our representa-
tion. Next we compute the solution space more efficiently, by fault-tolerant versions
of Treesort and Quicksort. We need O(n log n + kn + k2 log n) comparisons and
O(n log n+kn+k2 log n+kF (k2, k)) time, where F(n, k) is any parameterized time
bound for finding a FAST with at most k arcs. Thus, for rare faults the complexity
is close to optimal. We also propose directions of further research, revolving around
decision diagrams for sorting with recurring faults.

Keywords Sorting · Faulty input · Feedback arc set · Enumeration ·
Fixed-parameter tractability

This article is part of the Topical Collection on Special Issue on Combinatorial Algorithms

� Peter Damaschke
ptr@chalmers.se

1 Department of Computer Science and Engineering, Chalmers University,
41296 Göteborg, Sweden

DOI 10.1007/s00224-017-9807-4

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-017-9807-4&domain=pdf
http://orcid.org/0000-0003-4047-7594
mailto:ptr@chalmers.se

1428 Theory Comput Syst (2018) 62:1427–1442

1 Introduction

In the model of recurring faults in computations, as introduced in [11], operations
on certain items yield false results even when they are repeated. As opposed to tran-
sient or probabilistic failures, this model accounts for systematic errors. One of the
problems investigated in [11] is to sort a set of n elements by comparisons, under
the assumption Ak that at most k pairs return false comparison results. Recurring
comparison faults can origin from software bugs or, most notably, from unreliable
floating-point operations in geometric computations [10]. One can also think of
applications where the elements are real entities rather than data items in computer
memory. For instance, archeological finds or historical events may be brought into
chronological order by pairwise comparisons, say by comparing style characteristics
or by causal dependencies, respectively, but for a few pairs the comparison criteria
may be misleading.

It is impossible to verify assumption Ak from the comparison results only, because
an adversary may choose any order and just give consistent answers. The best we can
do is to determine all orders compatible with Ak , and then we know: If Ak holds true,
then these are the possible orders. Only if no compatible order exists, we recognize
that Ak is false. Hence the problem belongs to the category of promise problems:
We must know in advance that comparisons are reliable, subject to a certain “small”
number of at most k false pairs, where k is known in advance.

In [11], quality measures for alleged sorted sequences are defined and related to
each other. This is done from the approximation point of view, thus asking: How
much does an order obtained by doing all comparisons and some postprocessing dif-
fer from the unknown sorted order? (See also some earlier related work in [10].)
What is not considered is the full solution space obtained from the comparisons,
and the number of comparisons actually needed. A fault-tolerant search algorithm
for the minimum element is provided in [11]. It returns an element of rank O(k) by
using O(

√
kn) comparisons and time. Here we aim at similar results for the sort-

ing problem. We separate the number of comparisons and auxiliary computations,
as comparisons may be more expensive, depending on the nature of elements to
compare.

Our Contributions We answer two different questions: 1. What can we learn at all
about an unknown order by faulty comparisons? 2. How can we efficiently extract
the entire information (that is asked for in point 1.)? Specifically, how can we infer
all comparison results by doing only a minority of them, ideally in a time close to
O(n log n)?

We give an overview of our contributions. (Here it is hard to summarize the
contents without already being technical; for definitions see Section 2.)

Since arcs (u, v) from true comparison results u < v cannot form directed cycles,
sorting with k faults is closely related to minimal feedback arc sets (MFAS) of
size k in directed graphs. Starting from a version of the previously known “reversal
lemma” for MFAS, we enumerate in O(3kk(n + m)) time all MFAS with at most
k arcs in a directed graph of n vertices and m edges whose underlying undirected
graph is chordal. This extends an early algorithm [13] for finding smallest MFAS in

Theory Comput Syst (2018) 62:1427–1442 1429

tournaments, also called FAST. While it is known that a single minimum FAST can
be computed faster, base 3 in the time bound is necessary (hence optimal) to generate
an explicit enumeration, for simple reasons. Next we show that, in a precise sense,
the MFAS enumeration characterizes the solution space, i.e., the set of orders com-
patible with all comparisons. While there can exist nO(k) such orders, it suffices to
know at most 3k MFAS, as all other compatible orders can be obtained from them
by simple sequences of transpositions. Using the previous results we show that the
MFAS that describe all compatible orders can be enumerated in O(3kk2n) time, once
a single compatible order is known. Finally we give efficient algorithms that actually
find a compatible order and all information needed to reconstruct the solution space.
One building block is a procedure to insert another vertex in an existing order with
a minimum number of backward arcs. This leads to fault-tolerant sorting algorithms
based on Treesort and Quicksort. They essentially need O(n log n) comparisons for
any fixed k, which is optimal in a sense. The time is larger by just some “FPT term”
in the parameter k. These are the first subquadratic algorithms for sorting with recur-
ring comparison faults. We also propose further research on succinct representations
of the solution space using decision diagrams.

Other Related Literature As much work has been done on fault-tolerant searching
and sorting (see the survey [5]), it is important to pay attention to similarities. First of
all, different fault models have been considered. Liar models are deterministic fault
models allowing some maximum number of false answers, like the model considered
here. But the difference is that they count repeated false answers, hence the searcher
may reconstruct every true answers simply by repetition and majority vote. Sorting
in a model where some elements can be corrupted (but comparisons are correct) is
considered in [8]. There the goal is to sort the uncorrupted elements. Sorting under
probabilistic errors is studied in [3, 4]. Some steps of our insertion procedure resem-
ble some of their lemmas, as well as arguments from the kernelization of FAST [1].
Sorting with faults was also studied in [10], however, in their model an algorithm
may use expensive and cheap comparisons, where the cheap ones may err for ele-
ments whose ranks differ by at most some constant. Then, bounds on the number of
inversions for several standard sorting algorithms are proved. Enumeration problems
find attention in various fields (see, e.g. [2]). The number of comparisons needed to
decide certain properties of partial orders has been studied in [7].

2 Preliminaries

A computational problem is fixed-parameter tractable (FPT) if instances with input
size n and an additional input parameter k can be solved in f (k) · nO(1) time, where
f is some computable function.

In directed (undirected) graphs we refer to pairs of vertices as arcs (edges). As
usual, n and m denotes the number of vertices and arcs (edges) of a graph. We use
the terms vertex and element interchangeably.

In the following we introduce quite a number of special definitions, however we
believe that they are necessary for formal clarity.

1430 Theory Comput Syst (2018) 62:1427–1442

To keep order-theoretic terminology simple we consider ordered sets to be ascend-
ing from “left” to “right”. Let V be the set of the n elements to be sorted. Any set
of comparisons performed on pairs of elements naturally defines a directed graph
D = (V , A), where every arc (u, v) indicates a comparison that claimed u < v. We
call D = (V , A) a comparison graph. We call the arc (u, v) true if actually u < v

holds, and false if actually v < u holds. With respect to an order σ of V , an arc is
forward (backward) if it points to the right (left). We denote the set of backward arcs
B(σ). The length of an arc (u, v) is the absolute difference of the positions of u and
v in σ . Let k be a fixed integer. Provided that at most k comparisons are false, clearly,
an order σ is a candidate for the correctly sorted sequence if and only if |B(σ)| ≤ k.
As in [11], we call such an order σ compatible.

A transposition flips the positions of two neighbored vertices u, v in an order. It
turns the arc (u, v), if there is one, from forward to backward or vice versa, while all
other arcs are not affected. For two orders π and σ of the same set, an inversion is a
pair of elements u, v such that u is to the left of v in π but v is to the left of u in σ .
The Kemeny distance d(π, σ) is the number of inversions. Starting from π , consider
any sequence of transpositions with the property that each transposition removes an
inversion. As a simple fact, every maximal sequence of this kind has length d(π, σ)

and ends in σ .
A directed graph D = (V , A) is acyclic if it has no directed cycles. As is well

known, a directed graph is acyclic if and only if it admits an order without back-
ward arcs, called a topological order, moreover, one can construct a topological
order or output a directed cycle in O(n + m) time. For arbitrary directed graphs
D = (V , A) we call an order σ of V a minimal backward order if no other order
τ with B(τ) ⊂ B(σ) exists. A minimum backward order has the smallest possible
number of backward arcs. Hence, in acyclic graphs, minimum and minimal backward
orders and topological orders are the same.

A feedback arc set (FAS) of a directed graph is a subset of arcs whose removal
makes the graph acyclic, and a minimal FAS (MFAS) is a FAS such that no proper
subset of it is a FAS, too. A tournament is a complete directed graph D = (V , A). A
(directed) triangle is a (directed) cycle of three vertices. The FAST problem requires
to find a minimum FAS in a tournament. Let F(n, k) be a time bound of an FPT
algorithm for FAST, for graphs with O(n) vertices and solution size k. Note that
F(n, k) is well-defined for any FPT algorithm: Since the dependency of the time
bound on n is polynomial, a constant factor in n only affects the constant factor in
F(n, k). We will give time bounds in terms of F(n, k); here it is not the intention to
hide the exponential part, but to give the bounds in a generic way, independently of
the current state of FAST. Specifically one may plug in F(n, k) = 2O(

√
k)nO(1) from

[6, 9].
The undirected underlying graph of a directed graph is obtained by ignoring the

orientations of arcs. An undirected graph is chordal if every cycle C is a triangle or
has a chord, that is, an edge joining two non-consecutive vertices in C. Every chordal
graph has a perfect elimination order (PEO), defined by the following property: If u

is the first of u, v, w in the order, and uv and uw are edges, then vw is an edge, too.
Given a chordal graph, a PEO can be constructed in O(n + m) time [14].

Theory Comput Syst (2018) 62:1427–1442 1431

3 Characterizing and Enumerating MFAS

Before discussing our main topic, sorting with recurring faults, we give a few graph-
theoretic results that will play some role. The “reversal lemma” states that reversing
the arcs of an MFAS makes a directed graph acyclic. It was already discovered sev-
eral times in the 1960s and also used in [13]. The following extended version also
considers the corresponding orders.

Lemma 1 An arc set F ⊆ A is an MFAS in a directed graph D = (V , A), if and
only if F = B(σ) for some minimal backward order σ . Moreover, the possible σ are
exactly the topological orders of (V , A \ F).

Proof For any order σ , trivially, B(σ) is a FAS. Let F be any FAS. Then (V , A\F) is
acyclic. We take any topological order σ and re-insert the arcs of F . Clearly, B(σ) ⊆
F . If F is anMFAS then, sinceB(σ) is a FAS, it also followsB(σ) = F . Now assume
that σ is not minimal backward. Then there exists another σ ′ with B(σ ′) ⊂ B(σ).
But F ′ := B(σ ′) is also a FAS, and F ′ ⊂ F contradicts the minimality of F . Thus,
every topological order of (V , A \ F) is minimal backward.

Conversely, let σ be any minimal backward order, and F := B(σ). Then F is
a FAS. Assume that a smaller FAS F ′ ⊂ F exists. As we saw above, there exists
a topological order σ ′ such that B(σ ′) ⊆ F ′ ⊂ F = B(σ), which contradicts the
assumed backward minimality of σ .

Lemma 2 A directed graph with an underlying chordal graph is acyclic if and only
if it has no directed triangle. Furthermore, we can confirm that the graph is acyclic
or find a triangle in O(n + m) time.

Proof We run a standard O(n+m) time algorithm that constructs a topological order
or outputs a directed cycle. If the graph is acyclic, trivially it has no directed triangle.
If we get a directed cycle C, represented as a doubly linked circular list, it remains
to find a directed triangle in O(n + m) time. To this end we construct in O(n + m)

time a PEO of the underlying chordal graph and mark the vertices of C therein. We
scan the PEO from left to right until we find the first vertex u ∈ C. Let v and w be
its neighbors in C (in the circular list). Then u, v, w form a triangle, due to the PEO.
If this triangle is directed, we can stop. If not, then we update C by removing u and
its two incident arcs, and inserting the arc (v, w) or (w, v) instead. The shortened
cycle is still directed, and the update is done in O(1) time. We keep on scanning the
PEO until the next vertex of C is found. Since the cycle is shortened each time and
remains directed, eventually we get a directed triangle.

We are ready to state a result on MFAS enumeration when the underlying graph is
chordal.

Theorem 1 In a directed graph with chordal underlying graph, at most 3k MFAS of
at most k arcs exist, and they can be enumerated in O(3kk(n + m)) time.

1432 Theory Comput Syst (2018) 62:1427–1442

Proof We pick any directed triangle T and branch on it. That means, we generate at
most three sub-instances of the problem as follows: In every branch we choose one
arc of T , reverse it and mark it. Marked arcs are not reversed again in later steps
(dealing with other triangles). If all three arcs in T were already marked, then the sub-
instance is discarded. Each of the, at most 3k , paths of branching steps is followed
until k steps are done or the obtained directed graph is free of directed triangles. We
collect the latter graphs. By Lemma 2, each of them is acyclic, hence the reversed arcs
form a FAS. Eventually we throw out all FAS that are not MFAS or are duplicates of
other MFAS.

For correctness it remains to show that every MFAS F with at most k arcs is found
in this collection. We use Lemma 1 and fix an order σ where F = B(σ). We follow
a path of reversals where only arcs of F get reversed. As long as the obtained graph
is not acyclic, by Lemma 2, it retains a directed triangle. The algorithm picks some;
let us call it T . Clearly, some of the three arcs in T is still backward in σ , thus the arc
is in F and not yet reversed and marked, and one of the branches reverses just this
arc. As soon as the obtained graph is acyclic, the graph without the reversed arcs is
acyclic, too, but since F is an MFAS, it follows that all arcs of F have already been
reversed. These two cases show that our path never gets stuck with a proper subset of
F reversed.

We have O(3k) branching steps, and the main work in each of them is to find a
directed triangle. By Lemma 2 this us done in O(n+m) time. Every FAS F not being
an MFAS is detected easily: For every arc e we check whether F \ {e} is still a FAS,
in O(n + m) time. This costs O(3kk(n + m)) time for all collected FAS. Duplicates
are recognized by bucketsorting.

We conclude this section with a few remarks. One could also make the enumera-
tion repetition-free by sorting the edges in each triangle and marking the reversed arc
and the preceding arcs, but we remove duplicates anyhow, and the base in the 3k fac-
tor is optimal, even for tournaments. To see this, take for instance k disjoint directed
triangles, arrange them in an order, and insert all possible forward edges between
vertices of different triangles. Then each of the 3k selections of one arc from each
triangle is an MFAS. By this 3k lower bound, none of the faster algorithms that com-
pute a minimum FAS can be turned into a faster algorithm that enumerates all MFAS
as an explicit list.

4 MFAS and the Solution Space of Faulty Sorting

In this section we characterize the family of all orders of a set being compatible with a
comparison graph, by virtue of an MFAS enumeration and additional transpositions.

Lemma 3 An order σ of the vertex set of a directed tournament D = (V , A) is
minimal backward if and only if no backward arc has length 1.

Proof One direction is trivial: If some backward arc has length 1, then a transposition
makes it a forward arc, hence σ is not minimal backward.

Theory Comput Syst (2018) 62:1427–1442 1433

Conversely, assume for contradiction that no backward arc in σ has length 1, but
there exists an order τ with B(τ) ⊂ B(σ). Consider an arc (u, v) ∈ B(σ) \ B(τ) that
has minimum length in σ , among all arcs in this set difference. Since this length is
not 1, there exists a vertex w ∈ V such that v, w, u appear in this order in σ . Clearly,
u appears before v in τ , hence w swaps its position relative to u or v or both. We look
at the conceivable cases:

Assume that w appears before v in τ ; the other case is symmetric. If (v, w) ∈ A

then (v, w) /∈ B(σ) and (v, w) ∈ B(τ), which contradicts the choice of τ . If (w, v) ∈
A then (w, v) ∈ B(σ) and (w, v) /∈ B(τ), but since (w, v) is shorter than (u, v), this
contradicts the choice of (u, v).

Theorem 2 For a tournament D = (V , A) and an integer k, every compatible
order can be obtained from a compatible, minimal backward order by a sequence of
transpositions, each turning a (current) forward arc into a backward arc.

Proof Consider any compatible order σ . If σ is not minimal backward, then, by
Lemma 3, it has a backward arc of length 1. A transposition at this place removes
exactly this arc from B(σ). By an inductive argument, a sequence of such transposi-
tions ends in some minimal backward order. (We remark that this final order is not
unique.) Trivially, this order is compatible, too. The assertion follows by reversing
the sequence of transpositions.

Suppose that we have done all

(
n

2

)
comparisons, that is, the comparison graph is

a tournament. Then, the results provide a simple implicit description of all compatible
orders, which is also practical for rare faults, that is, for small numbers k:

Enumerate all MFAS with at most k arcs in the comparison graph, in O∗(3k)

time (as in Theorem 1). For any solution, reverse the arcs in the MFAS, and output
the resulting order. By Lemma 1 it is a compatible, minimal backward order If the
number of backward arcs is b < k, all other compatible orders are obtained by up
to k − b transpositions that preserve the backward arcs; subject to this condition,
the transpositions are arbitrary. Equivalently, these orders have Kemeny distance at
most k − b from the minimal backward orders. We emphasize that Theorem 2 is
not an isolated observation but an integral part of the characterization of the solution
space. It implies that algorithms for fault-tolerant sorting need to care about minimal
backward orders only.

We have not illustrated the concepts and theorems by small single examples of
comparison graphs, since they would not be very “respresentative”. Instead we have
chosen to discuss some classes of examples whose structure may be of particular
interest (see below).

If no backward arcs exist (b = 0), then the compatible orders are exactly those
which can be turned into the correct order by k steps of Bubblesort. Next consider an
order with a single backward arc (b = 1):

Example: Single Backward Arc Let (v, u) be the only backward arc, where u is d

positions to the left of v. One MFAS consists of only (v, u), and the corresponding

1434 Theory Comput Syst (2018) 62:1427–1442

minimal backward order is the given order. Any MFAS not containing (v, u) must,
for each of the d − 1 vertices w between u and v, contain (u, w) or (w, v). We get d
different MFAS, each with d − 1 arcs, as follows: Divide the segment between u and
v into a prefix and a suffix. (One of them can be empty.) Take (u, w) for all w in the
prefix, and take (w, v) for all w in the suffix. The corresponding minimal backward
order is obtained by swapping u (v) with all vertices of the prefix (suffix), and finally
swapping u and v. (Indeed, all backward arcs get lengths larger than 1.) Since all
directed triangles are of the form (v, u, w), these d +1 MFAS are all possible MFAS,
even if k > d−1 is permitted. Reversing the backward arcs in any minimal backward
order yields a topological order. Below we refer to the d + 1 alternative MFAS as
“branches”.

Example: Non-Overlapping Backward Arcs Extending the previous example,
consider an order with several backward arcs (v1, u1), (v2, u2), (v3, u3), etc., such
that every vi is to the left of ui+1. That is, the segments spanned by the backward arcs
are pairwise disjoint. Let di denote the length of (vi, ui). Since the backward arcs do
not “interfere”, the above branches apply independently to the backward arcs, which
yields

∏
i (di + 1) different MFAS. The case of non-overlapping backward arcs may

be typical, since comparison faults may be more likely for elements being close in
the correct order.

For instance, these two backward arcs of lengths d1 = 2 and d2 = 3

u1 ←− v1 u2 ←− · · · −v2
1 2 3 4 5 6 7

lead to (2 + 1) · (3 + 1) = 12 MFAS and the following orders:

(1, 2, 3, 4, 5, 6, 7) (2, 3, 1, 4, 5, 6, 7) (3, 1, 2, 4, 5, 6, 7)
(1, 2, 3, 5, 6, 7, 4) (2, 3, 1, 5, 6, 7, 4) (3, 1, 2, 5, 6, 7, 4)
(1, 2, 3, 5, 7, 4, 6) (2, 3, 1, 5, 7, 4, 6) (3, 1, 2, 5, 7, 4, 6)
(1, 2, 3, 7, 4, 5, 6) (2, 3, 1, 7, 4, 5, 6) (3, 1, 2, 7, 4, 5, 6)

5 A Certificate for Sorting with Recurring Faults

Sorting without faults (the case k = 0) needs only O(n log n) comparisons. There-
fore the next natural question is whether we can construct the solution space for
faulty sorting without doing all O(n2) comparisons, at least when k is small. We
will provide an affirmative answer. First we give a short intuitive explanation of our
approach, however the reader may skip the next paragraph and go straight to the
technical details.

If we just applied any standard O(n log n)-time sorting algorithm and temporarily
believed all comparison results, we would get some order being consistent with them,
but in general we would not recognize potential faults. Now the main idea is to spot
errors by additionally comparing all pairs of elements at small distances (depending
on k) in a given ordering. Actually, we will see that comparing all elements at dis-
tances at most 2k + 1 is sufficient to certify that a given order is compatible with

Theory Comput Syst (2018) 62:1427–1442 1435

Ak , and then all pairs of elements at larger distances are already in the correct order.
The final algorithms, however, will mimic standard sorting algorithms but will do
the additional comparisons of nearby elements already during the construction of
compatible orders.

Definition 1 Given an order σ of the vertex set V , let D(σ) be the comparison graph
consisting of V and all arcs of length at most 2k + 1 in σ .

Note that D(σ) has O(kn) arcs, and its underlying graph is chordal. (The latter is
seen, e.g., as follows: Every cycle has a leftmost vertex in σ , and its two neighbors
in the cycle are within distance 2k + 1 of each other in σ , hence there is an edge
between them.)

Consider the case when, after running an O(n log n)-time sorting algorithm, we
get an order σ such that D(σ) happens to have at most k backward arcs. In this
case we are in a good position: The next theorem says that further comparisons do
not add more information, thus the instance of the sorting problem would be solved
after O(n log n+ kn) comparisons, namely O(n log n) and O(kn) comparisons from
sorting and from D(σ), respectively.

Theorem 3 Consider an ordered comparison graph that contains all arcs of length
at most 2k + 1, where at most k of them are backward arcs. Let u and v be any two
vertices such that v appears more than 2k + 1 positions to the right of u. Then we
can safely conclude u < v. (In other words, the arcs not being in D(σ) are forward
in all compatible orderings.)

Proof We use induction on the distance d between u and v in the order. Suppose that
the assertion holds for all distances between 2k + 1 and d . Let w be any of the d − 1
vertices between u and v. We have either (1) u < w by the induction hypothesis, or
(2) (u, w) is a forward arc, or (3) (w, u) is a backward arc. Similarly, we have either
(1) w < v by the induction hypothesis, or (2) (w, v) is a forward arc, or (3) (v, w) is
a backward arc.

Since at most k backward arcs exist, for at least d − 1 − k of the vertices w, only
cases (1) and (2) apply, with respect to both u and v. Since at most k arcs are false,
for at least d − 1 − 2k ≥ 1 of the vertices w, we have both u < w and w < v,
where each of the two inequalities holds either by the induction hypothesis or since
the forward arc, (u, w) or (w, v), is true. Note that we do not know which forward
arcs are true, yet we can infer the existence of a vertex w with u < w < v. This
concludes the induction step and the proof.

By Theorem 3, a graph D(σ) with at most k backward arcs is a certificate that all
other arcs are forward. Thus, the solution space description from Section 4 can be
based on D(σ), as we know the directions of all other arcs without actually testing
them. Since D(σ) has m = O(kn) edges and is chordal, by Theorem 1 we can
enumerate its MFAS already in O(3kk2n) time, which is O(n) for any fixed k.

However, of course, we cannot expect in general to be lucky and obtain some
D(σ) with at most k backward arcs already in one pass of a usual sorting algorithm.

1436 Theory Comput Syst (2018) 62:1427–1442

The following sections deal with the actual construction of an order that satisfies the
condition in Theorem 3. We conclude this section with another structural property
that will be needed.

Definition 2 Consider a tournament and an order of its vertices. We partition it into
components with the following properties: every component is a consecutive set of
vertices; every backward arc is within a component; and for every position between
two vertices in a component there exists a backward arc from a vertex on the right
side to a vertex on the left side of this position. A trivial component has only one
vertex, and a nontrivial component has more than one vertex.

From the definition it is evident that the components are uniquely determined. We
index them from left to right by C1, C2, C3, and so on. Let bi denote the minimum
number of backward arcs in an optimal order of Ci , and let b := ∑

i bi . We define
the following routine:

Procedure MB In every nontrivial component Ci , compute a minimum FAS. Due to
Lemma 1, topological sorting then yields a minimal backward order of Ci . Rearrange
the vertices within each Ci accordingly, but keep the order of the components.

Lemma 4 The order obtained from MB has exactly b backward arcs, which is
optimal.

Proof The minimal backward order of every Ci has bi backward arcs. Since we keep
the order of components, and there exist no backward arcs between components, it is
evident that exactly b backward arcs exist. To show optimality, consider any order of
the whole set. The order induced on every Ci still has at least bi backward arcs, since
bi is optimal in Ci . Since the components are disjoint, no backward arcs are counted
twice. It follows that at least b backward arcs are needed.

6 Insertion in a Compatible Minimum Backward Order

Now we want to efficiently construct an order of the vertex set V with at most k

backward arcs.
Suppose that we have already found an order σ of a subset U ⊂ V , such that

D(σ) exhibits at most k backward arcs. Due to Theorem 3 this also implies that all
longer arcs are forward. We can further suppose that the number of backward arcs in
σ , or equivalently, in every component, is minimized (see Lemma 4). Let us store the
sequence σ in an array indexed with consecutive integers. The next goal is to insert
another vertex v /∈ U and to find an order τ of U ∪ {v} that still enjoys the same
properties. Such an order must exist, if at most k comparison faults are present, but
it is not obvious how to get τ efficiently from σ . We begin with a transitivity lemma
and then establish a fault-tolerant binary search that runs, so to speak, on an almost
sorted set blurred by comparison faults.

Theory Comput Syst (2018) 62:1427–1442 1437

Lemma 5 Suppose that u′ stands to the left of u, at a distance larger than 2k + 1. If
(u, v) is true, then u′ < v. A similar assertion holds in the symmetric case.

Proof By the assumed distance and Theorem 3, we have u′ < u. Since (u, v) is true,
we also have u < v, hence u′ < v.

Lemma 6 We can find two elements � and r with distance O(k) in σ and with � <

v < r , by using O(k log n) comparisons of elements of U with v, in O(k log n) time.

Proof Let us append dummy vertices to σ : one at the left end which is smaller than
all real elements, and one at the right end which is larger than all real elements.
Initially let � and r be these dummy elements, hence � < v < r is true. To “query a
vertex” means to compare it to v. Since σ is stored as an array, we have access to the
indices and can find the center of an interval in O(1) time.

We query consecutive vertices u around the center of the interval [�, r], until k +1
of them give the same answer, say u < v. Clearly, this happens after at most 2k + 1
comparisons. Since at most k comparisons are false, we know that u < v is true
for some queried vertex u, but we cannot say which. However, Lemma 5 ensures
u′ < v for all u′ more than 2k + 1 positions to the left of u. Thus it is safe to
update � to the vertex at distance 2k + 2 to the left of the leftmost queried vertex.
Similarly we proceed with r in the symmetric case. Thus, the property � < v < r is
preserved. In each step we halve the interval [�, r] and add an offset of O(k). Clearly,
after O(log n) such steps with O(k log n) comparisons, the length of [�, r] is reduced
down to O(k).

This simple procedure may be viewed as binary search with error correction by
majority vote. Next we finalize the procedure. Recall the FAST time bound F(n, k)

(which is subexponential in k) from Section 2, recall the notion of components from
Definition 2, and note that a component has O(k2) vertices, since at most k backward
arcs exist, all of length O(k).

Lemma 7 Given an order σ of U such that D(σ) has a minimum number of back-
wards arcs, bounded by k, we can get an order τ of U ∪{v} with the same properties,
by O(k log n) comparisons in O(k log n + F(k2, k) + n) time.

Proof After running the procedure in Lemma 6 we insert v anywhere in [�, r] and
denote by σ ′ the resulting order of U ∪{v}. By Theorem 3, � is larger than all vertices
to the left, and r is smaller than all vertices to the right, with the exception of at
most 2k + 1 vertices next to � and r , respectively. From Lemma 6 we have |[�, r]| =
O(k) and � < v < r . Thus v is only involved in backward arcs of length O(k) in
σ ′. (Longer backward arcs from comparisons with v that contradict these relations
are now recognized as false and can be reversed.) The backward arcs incident to v

create a new component that may include some components from σ and contains
only O(k2) vertices.

1438 Theory Comput Syst (2018) 62:1427–1442

We have now learned the complete comparison graph of U ∪ {v} by doing only
O(k log n) comparisons. By Lemma 4 it remains to apply MB to σ ′, and to output the
resulting order τ . Actually it suffices to optimize the component including v, since
all other components were already optimal in σ and have not changed. At this point,
D(τ) has at most k backward arcs (otherwise more than k faults exist, and we can
stop), and their number is minimized. This establishes correctness of the insertion
procedure.

In addition we need F(k2, k) time to optimize the new component of lengthO(k2),
and O(n) time to update the indices, due to the insertion of v.

Lemma 7 is complemented with a simpler insertion procedure that we will apply
first in our main algorithm (Theorem 4 below). The idea is to defer the appearance
of backward arcs as long as possible, and until then the insertion steps are faster.

Lemma 8 Given an order σ of U such that D(σ) has no backwards arcs, we can
construct an order τ such that D(τ) has no backwards arcs and: (i) either τ is an
order of U ∪ {v}, or (ii) τ is an order of U \ {u, u′} for some u, u′ ∈ U where some
comparison among u, u′, v is false: Moreover, τ is obtained by using O(log n + k)

comparisons and O(n) time.

Proof First we do usual binary search and temporarily believe the results. We insert
v at the resulting position in σ . Note that all arcs of length 1 are forward. Only now
we compare v to all vertices at distance at most 2k + 1. If we get only forward arcs,
then we define τ as the so obtained order of U ∪{v}. Otherwise we take some shortest
backward arc. Since its length is not 1, it forms a directed triangle with two forward
arcs. We remove the three involved vertices u, u′, v and let τ be the remaining order.
Trivially, some of the arcs in the directed triangle is false.

The number ofO(log n+k) comparisons is obvious. We needO(n) time to update
the indices, and the time for all other operations is no larger.

Theorem 4 For k <
√

n, sorting with at most k recurring comparison faults can be
accomplished with O(n log n + kn + k2 log n) comparisons.

Proof We do fault-tolerant Insertion Sort, that is, beginning with the empty order we
insert all n elements one by one in a minimum backward order. If k is small compared
to n, actually the special case of no backward arcs is the more frequent one. In detail:

Phase 1: We apply Lemma 8 as long as possible. Since in total at most k compar-
isons are false and the removed triples of vertices (named v, u, u′ in Lemma 8) are
mutually disjoint, at most 3k vertices are removed from the order. We put these
vertices aside. This needs O(n log n + kn) comparisons and O(n2) time.

Phase 2: We switch to Lemma 7 and insert the remainingO(k) vertices. This needs
O(k2 log n) comparisons and O(k2 log n + kn + kF (k2, k)) time.

While the number of comparisons is already O(n log n) for any fixed k, this
method would need O(n2 + k2 log n + kF (k2, k)) computations. As a final step we

Theory Comput Syst (2018) 62:1427–1442 1439

will do the insertion procedures in a more economic way, to get rid of the O(n2)

term.

7 Fault-Tolerant Treesort and Quicksort

For ease of presentation we did not pay much attention to the data structures so far.
The downside of using an array for the order is that O(n2) time is needed, just for
updating the indices n times. Of course, fault-tolerant Insertion Sort cannot be faster
than in the error-free case. But we can also maintain the order and at the same time
use a balanced search tree for the comparisons, as in Treesort. This does not affect
the comparison graphs D(σ) and accelerates the updates.

Theorem 5 Sorting with at most k recurring comparison faults can be accom-
plished with O(n log n+kn+k2 log n) comparisons and with auxiliary computations
requiring O(n log n + kn + k2 log n + kF (k2, k)) time.

Proof We explain the modifications of the method from Theorem 4.
We maintain a partitioning of σ into buckets, which are sets of at least 2k + 2 but

at most 4k + 3 consecutive vertices. The leftmost vertex of each bucket is the leading
vertex. Since the leading vertices have distances larger than 2k + 1, by Theorem 3,
they appear in the correct order.

The leading vertices are stored in a balanced binary search tree. Instead of using
indices for the positions of vertices in σ we use the search tree to find the appropriate
position for insertion of the new vertex v. During Phase 1, in every node of the search
tree we compare v to the leading vertex only. During Phase 2, in every node of the
search tree we compare v to the leading vertex and its entire bucket. Since the buckets
are larger than 2k + 1, majority vote sends v in the correct direction (as we have seen
before), and since the buckets have size O(k), also the last comparisons during this
search cost only O(k) time. For every vertex we used O(log n + k) comparisons and
O(log n+k) time in Phase 1, and O(k log n) comparisons and O(k log n+F(k2, k))

time in Phase 2.
Optimizing and re-ordering the O(k)-sized component of v affects only O(1)

buckets. If the new vertex v exceeds the size limit of buckets, we also split one bucket
in two smaller ones. Then we update the search tree in O(log n) time. Altogether we
get the claimed complexity bounds.

A practical drawback of Treesort, already in the error-free case, is the overhead
for tree manipulations which deteriorates the constant factor in the the time bound.
Therefore we also present an alternative: to equip Quicksort with fault tolerance.
Interestingly enough, it is possible to invoke our insertion procedure from Lemma 7
also in Quicksort. The reason why it works is that Quicksort divides an instance recur-
sively in two smaller instances which, informally speaking, are independent in the
error-free setting and interact only a little in the case of a few faults. In the following
theorem, the (expected) complexity in O-notation is the same as for the determinis-
tic algorithm, however the gain is in the hidden constant factor (similarly as for plain

1440 Theory Comput Syst (2018) 62:1427–1442

Quicksort compared to other, deterministic sorting algorithms). We also remark that
the expected O(n log n) bound for Quicksort holds for every instance, and the only
randomness is in the choice of pivots; loosely speaking, there is no interference with
the deterministic comparison faults.

Theorem 6 Sorting with at most k recurring comparison faults can be accom-
plished with O(n log n + kn + k2 log n) expected comparisons and with auxiliary
computations requiring O(n log n + kn + k2 log n + kF (k2, k)) expected time.

Proof First remember how Quicksort works. A random pivot element p is compared
to all other elements. A set L (R) collects all elements smaller (larger) than p, then L

and R are sorted recursively, and L, p, R is the sorted order. In expectation this costs
O(n log n) comparisons and time. Now, some extra work is needed due to possible
comparison faults.

Instead of sorting L and R completely, we only produce minimum backward
orders recursively. Since some comparisons with p may be false, some vertices in
L should actually be in R and vice versa. We call them the dislocated vertices. Due
to Theorem 3, dislocated vertices can only exist in a segment of length O(k) at the
right end of L and at the left end of R. Each of the O(k) candidates v for a dislo-
cated vertex in L is compared to the first 2k + 1 vertices in R. If the majority claims
that v is smaller, then Lemma 5 yields that v is actually smaller than all vertices of
R, with O(k) exceptions at the left end. In the other case we insert v in R as in
Lemma 7. We proceed similarly with dislocated vertices in R. To turn the concatena-
tion L, p, R into a minimum backward order, it remains to optimize the component
of p.

Only O(n/k) pivots are considered, because segments of length O(k) are not fur-
ther split recursively. The dislocation tests requireO(k2) comparisons for every pivot,
in total O(kn). Since at most k vertices are dislocated in total (not only per pivot),
all insertions together are done within a time bound O(k2 log n + kF (k2, k) + kn).
For every pivot p, the component of p has length O(k2), thus in can be optimized in
F(k2, k) time. We need to call an FPT algorithm at most k times, since every non-
trivial component exists due to a comparison fault. Altogether the claimed expected
complexity follows.

8 Further Work: Decision Diagrams

We presented the first efficient algorithms for sorting with recurring faults. The meth-
ods are elementary but their combinations are not so obvious. For instance, it is
unclear whether the approach of error detection and correction by majority voting
would also work together with Mergesort. (It does work in [8], but in a different
error model.) Simplicity should make the proposed algorithms practical at least for
rare faults, i.e., when only small k are expected. For growing k however, the depen-
dency on k, which is subexponential but still has k in the exponent, becomes an issue.
Further research may find improved bounds, e.g., by more sophisticated Quicksort
versions. Our aim in the present study was mainly to characterize the structure of the

Theory Comput Syst (2018) 62:1427–1442 1441

solution space. There might also exist relationships to both permutation graphs and
poset dimension, but we have not explored these directions.

Another concern is how the solution space can be represented. As we have seen
in Section 3, there can exist up to 3k MFAS which, up to further transpositions,
describe all compatible orders. Their naive explicit enumeration can be avoided by
decision diagrams, a well known kind of data structures that can compactly represent
exponentially many objects in a natural way, as the system of paths in an layered
(thus acyclic) directed graph. (See, e.g., [12] for an introduction.) To avoid confusion,
we refer to vertices and arcs of decision diagram as nodes and links. A family of
permutations of a set V (in our case, the compatible orders) can be represented by
labeling the links by the elements of V in such a way that the sequence of labels
along every directed path forms a permutation from that family.

We sketch a possible approach to construct decision diagrams for our problem.
We may start from one compatible order (v1, . . . , vn), as obtained from fault-tolerant
sorting. Suppose that we have already a decision diagram for the compatible orders of
{v1, . . . , vj−1}. (For j = 1 it consists of only one node.) We decide on the placement
of vj in the order of {v1, . . . , vj }; note that it must be one of the last 2k +1 positions.
We update the last 2k + 1 layers by inserting appropriate nodes and links with label
vj . Nodes can be merged if the incoming paths carry the same suffix of 2k+1 labels,
and the number of backward arcs within {v1, . . . , vj } is the same. (These numbers
are stored at the nodes.) Therefore the width of the decision diagram depends only
on k but not on n, whereas its length is n.

For example, in an order with non-overlapping backward arcs (see the end of
Section 4), the decisions on the placement of elements are independent for elements
from segments spanned by different backward arcs. Hence the nodes of the decision
diagram need to memoize only the number of backward arcs decided so far, such that
its width is k although the number of MFAS is exponential. For the general case with
arbitrary backward arcs it would be interesting to get an upper bound on the width,
smaller than the trivial bound 3k . To this end one has to study branching rules for the
reversal of arcs, and their characteristic polynomials (as in the analysis of search tree
algorithms for FPT problems).

Let us call a pair of elements u and v uncertain if there exist two compatible orders
where u is to the left of v, and v is to the left of u, respectively. We have seen that, in
any compatible order, only pairs with distance at most 2k + 1 are uncertain. Hence
only O(k2n) uncertain pairs exist. The decision diagram may be used to identify all
uncertain pairs. An interesting question is whether there is a faster way.

Going one step further, using the decision diagram one may count, for any given u

and v, the compatible solutions where u is to the left (right) of v. (Counting paths in
an acyclic directed graph is straightforward.) In this way one could identify “infor-
mative” pairs where u < v and v < u holds in roughly half of the compatible orders.
Now imagine a model similar to [10], where every pair allows a cheap and an expen-
sive comparison. The cheap ones may have up to k faults, and the latter ones are
always correct. In this scenario one may first do a cheap fault-tolerant sorting and
then perform further expensive comparisons on informative pairs.

Regarding parameterized complexity, besides the total number k of faults one
could introduce another parameter for the number of overlapping faults in the correct

1442 Theory Comput Syst (2018) 62:1427–1442

order, that is, for elements p < q < r < s such that comparisons would claim r < p

and s < q. This is motivated by the observed simplicity of the non-overlapping case,
and by the natural assumption that comparison faults are more likely for elements
being close in the correct order.

Acknowledgments The author would like to thank Stefan Funke for hinting to a related paper [10],
the participants of IWOCA 2016 for further interesting suggestions, and the anonymous reviewers for a
number of helpful comments.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided you give appropriate credit to the original author(s)
and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Bessy, S., Fomin, F.V., Gaspers, S., Paul, C., Perez, A., Saurabh, S., Thomassé, S.: Kernels for
feedback arc set in tournaments. J. Comput. Syst. Sci. 77, 1071–1078 (2011)

2. Bodlaender, H.L., Boros, E., Heggernes, P., Kratsch, D.: Open problems of the Lorentz Workshop
“Enumeration Algorithms using Structure”. Techn. Report UU-CS-2015-016 Utrecht Univ (2015)

3. Braverman, M., Mossel, E.: Noisy Sorting without Resampling. In: Teng, S.H. (ed.) 19Th Annual
ACM-SIAM Symp. Discrete Algor. SODA 2008, pp. 268–276 (2008)

4. Braverman, M., Mossel, E.: Sorting from noisy information. CoRR arXiv:0910.1191 (2009)
5. Cicalese, F.: Fault-Tolerant Search algorithms – reliable computation with unreliable information.

Springer (2013)
6. Feige, U.: Faster FAST (Feedback arc set in tournaments). CoRR arXiv:0911.5094 (2009)
7. Felsner, S., Kant, R., Pandu Rangan, C., Wagner, D.: On the complexity of partial order properties.

Order 17, 179–193 (2000)
8. Finocchi, I., Grandoni, F., Italiano, G.F.: Optimal Resilient Sorting and Searching in the Presence of

Memory Faults. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) 33Rd Int. Colloq. Autom.
Lang. Program. ICALP 2006. LNCS, vol. 4051, pp. 286–298. Springer, Heidelberg (2006)

9. Fomin, F.V., Pilipczuk, M.: Subexponential Parameterized Algorithm for Computing the Cutwidth of
a Semi-Complete Digraph. In: Bodlaender, H.L., Italiano, G. (eds.) 21St Annual Eur. Symp. Algor.
ESA 2013. LNCS, vol. 8125, pp. 505–516. Springer, Heidelberg (2013)

10. Funke, S., Mehlhorn, K., Näher, S.: Structural filtering: a paradigm for efficient and exact geometric
programs. Comput. Geom. 31, 179–194 (2005)

11. Geissmann, B., Mihalák, M., Widmayer, P.: Recurring Comparison Faults: Sorting and Finding the
Minimum. In: Kosowski, A., Walukiewicz, I. (eds.) 20Th Int. Symp. Fundam. Comput. Theory FCT
2015. LNCS, vol. 9210, pp. 227–239. Springer, Heidelberg (2015)

12. Knuth, D.E.: The Art of Computer Programming, Vol. 4A, Combinatorial Algorithms Part I. Addison–
Wesley, Reading (2011)

13. Raman, V., Saurabh, S.: Parameterized algorithms for feedback set problems and their duals in
tournaments. Theor. Comput. Sci. 351, 446–458 (2006)

14. Rose, D., Lueker, G., Tarjan, R.E.: Algorithmic aspects of vertex elimination on graphs. SIAM J.
Comput. 5, 266–283 (1976)

http://creativecommons.org/licenses/by/4.0/
http://arXiv.org/abs/0910.1191
http://arXiv.org/abs/0911.5094

	The Solution Space of Sorting with Recurring Comparison Faults
	Abstract
	Introduction
	Our Contributions
	Other Related Literature

	Preliminaries
	Characterizing and Enumerating MFAS
	MFAS and the Solution Space of Faulty Sorting
	Example: Single Backward Arc
	Example: Non-Overlapping Backward Arcs

	A Certificate for Sorting with Recurring Faults
	Procedure MB

	Insertion in a Compatible Minimum Backward Order
	Fault-Tolerant Treesort and Quicksort
	Further Work: Decision Diagrams
	Acknowledgments
	Open Access
	References

