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Abstract

Overheating has been a problem for microelectronics devices for decades, and the
problem is exacerbated by the continued trend of miniaturization of features and the
corresponding increase in power density. Thermal interface materials (TIMs) target
one of the main bottlenecks in heat transfer: the interface between two materials,
such as between a heat-generating microchip and a heatsink. By filling out microgaps
caused by the roughness of the mating surfaces, TIMs improve the heat transfer over
the interface by orders of magnitude. Nonetheless, even with a TIM the interface
can be a limiting factor for the overall cooling. Thus, the development of new and
improved TIMs is a big challenge for the electronics field.

This thesis thoroughly reviews the overall status of the field of TIM research,
and identifies three main tracks for novel research. First, particle laden polymers,
which utilizes thermally conductive particles inside a polymer matrix which can
conform to surfaces. Second, continuous metal phase TIM, which forms metallurgical
bonds to both surfaces, and utilizes the inherently high thermal conductivity of
metals. Third, carbon nanotube (CNT) array TIMs, which utilize the incredible
thermal conductivity of CN'Ts. Here, an array of vertically aligned CN'Ts is used
as nanosprings to connect the two surfaces together. In addition to these main
tracks, various novel ideas based on polymers, metal and carbonaceous materials are
explored.

From the reviewed categories, continuous metal phase TIM in the form of solder
is already widely used in industry, but comes with severe drawbacks in terms of
mechanical properties and handling issues. Solder matrix fiber composites (SMFCs)
have been shown to address these challenges, but have so far required complicated
procedures and components. In this thesis, we present the fabrication of a new SMFCs
based on commercially available polymer and carbon fiber networks infiltrated with
Sn-Ag-Cu alloy (SAC) or Indium using equipment for large volume production. The
composite material exhibits similar thermal properties compared to pure solder, and
mechanical properties that can be tailored towards specific applications. We also
show that the handling properties of the SMFC allows it to be used in process flows
where multiple reflow cycles are required, and can achieve a well-defined bond line
thickness and good bonding using fluxless reflow under pressure.

Keywords: thermal management, thermal interface material, solder, composite
materials.
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Chapter 1

Introduction

1.1 Background

The first and second law of thermodynamics state that energy is always conserved
within a closed system, and that the entropy of a closed system always increases,
respectively. In other words, that energy is never created or destroyed, only converted,
and this conversion leads to a less ordered state. In general, the highest entropy state
is the random movement of individual atoms, or in other words, heat. And as such,
chemical and physical reactions tend to increase the temperature of the system.

Electrical currents are no exceptions, and, disregarding the case of supercon-
ductors, all electrical circuits create some amount of heat. In some cases, this is
by design, but usually it is unwanted waste heat, which in certain applications
can cause significant problems, in addition to the energy inefficiency. The field of
microelectronics is one such field, the decreasing feature size and increasing density
has increased the thermal waste generation to the point where active cooling solutions
are necessary to prevent overheating of the active components. In fact, active cooling
is responsible for a significant fraction of the total power consumption in modern
data centers [1]. Even despite the active cooling solutions, thermal management
presents a bottleneck towards further miniaturization. Therefore, there is a need for
better materials to efficiently remove heat from heat generating components.

When designing the cooling solution for microelectronic systems, invariably,
different materials and components will be included. Heat spreaders, heat pipes
and heat sinks among others, can all have a place within the total system, and new
materials and designs for all these components are continuously explored. However,
regardless of the efficiency of individual components, in order to bring them together
into a complete system, connections between different components and the heat
source itself is required. Since the surfaces of components are never perfectly flat, a
simple mechanical connection between two surfaces usually results in a very limited
fraction of the total area of the surfaces in actual contact, with air trapped between
the contacting peaks. This severely restricts the heat flow between them, to the
point where these interfaces are significant bottlenecks for the heat conduction. In
order to fill these air gaps, thermal interface materials (TIMs) are used. A TIM is a
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material, placed between connecting surfaces, that can conform to irregularities and
fill out the air gaps in order to facilitate heat transfer.

A perfect TIM would fill out only the original air gaps with a material of a
thermal conductivity as high as the mating materials. Naturally, such a material
does not actually exist for most applications, and so the results will be a compromise
between thermal conductivity, conformability, ease of application, cost, reliability,
etc. In the end, despite the application of TIM, thermal interfaces can still represent
a large part of the thermal budget for a system, and the development of better TIM
is crucial for the continued overall development in the field of microelectronics|2].

This need has led to a large variety of solutions in use in industry for different
applications, and an even larger variety being actively researched. As a researcher or
someone working in the field, having a broad knowledge of different types of existing
and future TIM is vital, including their properties, features and applications. As a
part of this thesis, a systematic review over TIM research has been done, focusing
especially on nanostructured materials.

One type of TIM of particular note for the scope of this thesis is the solder
TIM. Here, a low melting point metal alloy is used to join two surfaces, in a similar
manner to the attachment of electronic components on a printed circuit board (PCB).
The molten metal can fill out surface irregularities, and when cooled and solidified,
form metallurgical bonds to the joined surfaces. In addition, while the thermal
conductivity of solder alloys are lower than most pure metals, it is still relatively
high compared with most other TIM types.

However, solder can have reliability issues, due to its relatively high stiffness,
which makes it unable to absorb the stress created when the two joining surfaces are
of materials with different coefficient of thermal expansion (CTE), which can lead to
delamination or crack formation. In addition, solder can be difficult to process on
large areas, such as molten solder pumping out of the interface, or a slight imbalance
can cause the thickness of the TIM layer, or the bond line thickness (BLT), to
become uneven over the surface. This thesis concerns the effort to create a composite
structure which retains the thermal and connecting properties of solder TIMs, while
addressing the problems with using pure solder.

1.2 Outline

This thesis is divided into two parts. Chapter 2 introduces in detail the research area
of thermal interface materials. First, the working principle of TIMs is introduced
together with important properties and figures of merit which are relevant for TIM
selection. Second, a brief overview of existing TIMs used in industry is provided.
Finally, novel research on TIMs is presented, divided into four general areas, together
with a review of the status of the respective areas in terms of progress and academic
height.

The second part of this thesis, chapter 3, presents the experimental research into
a specific type of TIM, the solder matrix fiber network composite (SMFC), which
consists of a nonwoven horizontal randomly aligned fiber network inside a solder
matrix. Two different kinds of fibers, silver coated nylon (PA6,6) and carbon fiber
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(CF), and two different matrix alloys, Indium and Sn-Ag-Cu, are explored. The
chapter details the fabrication of the composite materials, as well as the thermal and
mechanical characterization of the TTIM.






Chapter 2

Thermal Interface Materials

A surface is never completely flat, and will, at the microscopic scale, always have
some degree of roughness. Pressing two such surfaces together will thus lead to a very
limited contact, as seen in figure 2.1a. These contacting choke points will constrict
the heat flux (red lines) and lead to a large temperature drop over the interface.

To reduce the temperature drop, a thermal interface material (TIM) can be
placed in between mating surfaces to fill the trapped voids and increase the effective
contact area. The thermal conductivity of the TIM is normally lower than the mating
substrates, and for this reason an ideal TIM would only fill out the voids between
the mating surfaces as seen in figure 2.1b. In reality, the application of a TIM will
cause a gap between the surfaces, as seen in figure 2.1c, called the bond line thickness
(BLT).

The most important figure of merit for a TIM is the thermal interface resistance
(Rrry), which is a measure on how difficult it is for heat to dissipate over the
interface. It is related to the temperature drop (AT') over the interface according
to Fourier’s law as AT = Rrry @, where @ is the heat flux. Minimizing Ry, is

a)

Figure 2.1: a) The principle for the heat flow in a bare interface. b) In ideal TIM
filling out the remaining voids. ¢) A realistic TIM with a bond line thickness.



a general goal of thermal interface materials development. The thermal interface
resistance can be divided into resistive components, for a TIM typically

BLT

)\TIM

Rriv = Re, + + R, (2.1)
where Rpyys is the total thermal interface resistance, R., and R., is the contact
resistances at the interface between the TIM and the two substrates, Aryys the thermal
conductivity of the TIM and BLT is the bond line thickness i.e. the thickness of
the TIM. Depending on the type of TIM and application, the different terms of
the equation will have more or less impact on the overall performance, and when
choosing or designing a TIM it is important to identify which parameters to address.

R, - Between substrate and TIM there is a contact resistance depending on the
thermal contact. This contact resistance depends on how well the TIM conforms
to the substrate and fills out voids. It is affected by the compliancy of the TIM
as well as how well it wets to the substrates, and is often related to the applied
pressure. There is also a thermal boundary resistance between two different
material even if atomically smooth, due to phonon or electron scattering at
the interface. This effect is called Kapitza resistance[3].

BLT - The bond line thickness of the TIM is a measure of how separated the two
surfaces are i.e. how thick the TIM is. As the TIM typically still has significantly
lower thermal conductivity than either of the surfaces it is desirable to minimize
the bond line thickness. In addition, lower BLT means less material used, and
thus usually a lower cost as well. Ideally the TIM only fills out the voids in
the original interface. However, in practice a very thin bond line can result in
voiding due to uneven TIM coverage as well as reliability issues during thermal
cycling due to mismatch in coefficient of thermal expansion (CTE).

For TIMs in liquid form, the BLT is influenced by the amount of material but
also the viscosity of the material as well as clamping pressure. In addition,
for TIM loaded with solid filler particles, the size of the fillers can introduce a
limit on how thin BLT is possible. For a TIM applied as a pad the bond line
thickness is limited by handling and mechanical requirements.

A - The thermal conductivity of the thermal interface material is the measure on
how well the material conducts heat within itself. The importance of a high
thermal conductivity is proportional to the BLT i.e. for very low bond line
thicknesses the contact resistance dominates over the resistance due to thermal
conductivity, but for thick TIMs the thermal conductivity becomes a critical
parameter.

Aside from the thermal performance, there are a number of considerations to
take into account when choosing or developing TIMs. Examples include:

e If the TIM is electrically conductive or not.
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Heatsink

TIM2

IHS
TIM1

Chip

Figure 2.2: A typical BGA package with TIMs between chip and internal heat
spreader (IHS), and between THS and heatsink.

e If the TIM is in liquid or solid form, both when applied and in use. TIMs
that are liquid during handling can lead to a somewhat messy process and
uncertain BLT, but are generally able to infiltrate voids well if the viscosity is
low enough. On the other hand, TIMs that are solid during application, like a
pad, are easier to process but might not be able to conform to the substrates
as well as liquid TIM.

e During operation, if the TIM is liquid it can be susceptible to pumping out of
material from the interface.

e For TIMs that are solid in operation there can be significant stress induced
due to difference in coefficient of thermal mismatch (CTE) between the mating
surfaces. In this case, the TIM needs to be soft enough to flex and absorb this
stress in order to prevent cracking or delamination.

e If the TIM has an adhesive function or if a constant pressure is required during
operation.

Depending on application, any and all of these parameters can be important,
with different weights. This means that the research into novel TIMs can have a
variety of different focuses, not all of them necessarily on the thermal aspect.

Two different applications for TIMs can be seen in figure 2.2. It shows a typical
ball grid array (BGA) package with a heat sink, which has two instances of TIM.
The first instance is placed between the heat generating chip and the internal heat
spreader (IHS), in a TIM1 application. TIMs not placed directly into contact with
the heat generating chips are called TIM2, in this case between the IHS and the heat
sink.

TIM1 application typically operate at higher temperatures and power densities,
and thus have stricter requirements on thermal performance. They also connect a
semiconductor on one side with a metal or ceramic on the other, which can have
very different CTE (e.g. 3 ppm/K for silicon and 24 ppm/K for aluminum), which
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Type Thermal conductivity BLT Thermal interface resistance Pump-out Absorbs stress Reusable Replaceability
(W/mK) (pm) (Kmm?/W)

Thermal grease 04-4 20-150 10 - 200 Yes Well No Medium
Thermal Pad 0.8-3 200-1000  100-300 No Well Yes Excellent

Phase Change Material 0.7-1.5 20-150 30-70 Yes Well No Medium
Thermal Gel 2-5 75-250 40-80 No Medium No Medium
Thermally Conductive Adhesive 1-2 50-200 15-100 No Medium No Poor

Solder 20-80 25-200 <5 No Poorly No Poor

Table 2.1: Common types of commercial thermal interface materials and typical
properties [4-15]

in turn means that TIM1 applications are at risk of reliability issues unless the TIM
can absorb the stress.

2.1 Current Thermal Interface Materials

Current commercial TIMs can be divided into several categories, that each have
different properties and applications. A summary of the properties of different
common TIM types is given in table 2.1.

Thermal grease — Thermal grease consists of thermally conductive filler in a
silicone or hydrocarbon oil and has historically been widely used in industry. It
conforms well to the substrates and can form thin BLT, leading to thermal interface
resistance approaching 10 Kmm?/W for the highest performing thermal greases|[4].
It is also cheap compared to other TIM types, hence its popularity. It is applied as a
paste leading to a somewhat messy processing, which is one of the large drawbacks.
Since it is in liquid form, it is affected by the pump-out effect, which negatively
affects the reliability. Also specifically for thermal grease, the matrix surrounding the
fillers preferentially flows out of the interface, leading to a dry-out of the interface.

Thermal Pads — Like thermal grease, thermal pads consist of thermally conduc-
tive fillers in a polymer matrix. However, in the case of thermal pads the polymer
matrix is heavily cross-linked, leading to a solid pad, which is much easier to handle.
This leads to corresponding weaknesses of thick BLT (around 200-1000 gml5]) and
requiring high pressure to properly conform to substrates. To be able to conform to
the substrates the softness of the pad is very important, and higher filler fractions
of conducting particles increase the stiffness of the composite. However, this will
negatively affect the thermal conductivity, the overall performance is severely limited
by this trade-off between softness and thermal conductivity.

Phase Change Materials — Phase Change Materials (PCMs) aim to combine
the best properties of thermal grease and pads. They consist of a matrix material
with a melting temperature between room temperature and operating temperature.
This allows them to be handled like a pad, but melts during operation and is able
to conform to the substrates and form a thin BLT like thermal grease[7]. It is also
possible to have a PCM with a melting temperature above the operating temperature,
in which case the TIM is reflowed during processing and kept solid during operation.

Gels — Yet another particle laden polymer type, gel matrices generally consist
of silicone polymer which are weakly cross-linked, enabling both liquid and solid
behavior[16]. It is dispensed like a liquid, but cured afterwards to form a more
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solid structure[5], eliminating pump-out, while still keeping a low modulus to absorb
stress.

Thermal Conductive Adhesives — Thermal Conductive Adhesives (TCAs)
form bonds to both substrates and eliminates the need for external pressure or
fastening. Like the above-mentioned TIMs, they consist of a thermally conductive
fillers in a polymer matrix, in this case typically epoxy. Like gels, TCAs are generally
dispensed as liquids and cures to form a solid joint. TCAs are similar to gels, but
are more rigid and provide stronger adhesion between the substrates. Solid versions
of TCA also exist, which work as a double-sided tape.

Solders — Solder TIMs are reflowed after application to form metallurgical bonds
between substrates. They can be applied either as solder paste or as a preform foil.
Since the TIM consists of metal, the inherent thermal conductivity of solder TIM is
much larger than polymer based TIMs. Together with liquid form which can fill out
voids and wet to substrates during reflow, a very low thermal interface resistance
can be achieved[6]. The main concern for solder TIMs is voiding during reflow[17],
and the high modulus of solder joints, leading to stress-induced cracking. Also, the
cost and complexity in processing is a concern|[17].

2.2 Recent Thermal Interface Materials Develop-
ment

For a large number of applications, it would be beneficial to use TIM with superior
or alternative qualities compared to existing TIMs. This has led to large amount of
research into new materials and structures that can be used for thermal interfacing.
Paper A is a thorough review into the various research avenues of TIMs. In particular,
three main categories of TIM which have attracted significant attention have been
identified: Particle laden polymers (PLPs), continuous metal phase TIM and carbon
nanotube (CNT) array TIM.

2.2.1 Particle Laden Polymers

Particle laden polymers (PLPs) are compounds which consist of filler micro- or
nanoparticles inside a polymer matrix. PLP TIMs come in a variety of forms, and
can be liquid, solid or cured after application. Most commonly used commercial
TIMs fall under this category, such as thermal grease, thermal pads, PCMs, gels, or
thermal conductive adhesives. Despite the large variety, from a research perspective
they are quite similar, and focus is mainly on the fillers used, their material properties,
shapes and filler fraction.

PLPs function by utilizing the polymer matrix to spread, adhere and conform
to the mating surfaces. The polymers themselves generally have very low thermal
conductivity (< 0.2 W/mK), and for this reason, filler particles with high thermal
conductivity are introduced into the matrix in order to conduct the heat. Since the
thermal conductivity of the matrix is so low, in order to create an efficient TIM,
the heat needs to be able to flow between particles through inter-particle contact
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Figure 2.3: Percolation in PLPs. a) Insufficient filler fraction for percolation and
thus no continuous heat paths. b) Filler fractions above percolation threshold,
and thus continuous heat paths between surfaces.

without going through the matrix. For this, the density of fillers needs to exceed the
percolation threshold, as demonstrated in figure 2.3. At the percolation threshold, the
composite thermal conductivity sharply increases. Further increase in filler fraction
further increase the composite thermal conductivity, although at a continuous pace.
Nonetheless, the final thermal conductivity of PLPs is usually much lower than
the filler bulk thermal conductivity, and commercial PLP compounds usually range
between 1-10 W/mK.

On the other hand, the mechanical properties, especially the viscosity, of the
compound is dependent on the filler fraction. Too high filler fraction will cause the
compound to become difficult to apply, and may not conform well to the surfaces and
therefore cause significant contact resistances. The main goal of the research into
PLPs is therefore to achieve as high thermal conductivity as possible at a sufficiently
lower filler fraction.

As mentioned before, the most important figure of merit is the thermal interface
resistance according to equation 2.1. However, in the case of PLPs, most reports
only mention a value for the thermal conductivity, without any actual measurements
of a TIM application. For this reason, the thermal conductivity and filler fraction
are the comparative figures of merit for this section.

Filler materials

The filler particles in PLPs can consist of a number of different materials. A list of
materials encountered within this study can be seen in table 2.2, together with their
respective bulk thermal conductivity. Within these materials, three groups can be
distinguished: ceramics, metals and carbon allotropes.

Ceramic materials are electrically insulating, which can be important for many
applications. Out of the ceramics, BN has the highest thermal conductivity, and
even higher thermal conductivity has been reported for very thin sheets, making it
an increasingly interesting material for thermal management applications. As early
as 1998 Ishida et al.[18] reported a thermal conductivity value of 32.5 W/mK for BN
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Material ~ Conductivity (W/mK)
Graphene 6000

SWCNT 3500

MWCNT 3000

Graphite  100-400 (in-plane)
BN 250-300

Ag 427

Cu 393

Au 315

Al 237

AIN 170

Al,O3 39

Table 2.2: Thermal conductivity of common types of fillers

Figure 2.4: Filler combinations to achieve percolation at lower filler fractions. a)
High aspect ratio fillers. b) Bimodal particle size distribution.

filled polybenzoaxine which still stand as the highest value to date, although at a
very high filler fraction (88 wt%). It has more recently been investigated further in
silicone thermal pads[19], epoxy[20, 21] and other polymer matrices[22, 23]. Another
ceramic which has attracted academic interest is AIN[24, 25], which is also together
with Al;O3 popular in commercial applications.

Carbon allotropes come in many forms, such as diamond, graphite, CNTs
or graphene. Out of these, CNTs and graphene stand out due to their potentially
incredible thermal conductivity [26-28]. Another interesting property is the 1D
and 2D nature of these materials respectively. By using fillers with a high aspect
ratio, it is possible to achieve percolation at much lower filler fractions than by using
spherical fillers, as seen in figure 2.4a. For CNTs, percolation has been achieved at
filler fractions as low as 0.1-0.2 wt% [29, 30].

However, there is a very high thermal contact resistance between CNT and matrix
[31-34], as well as phonon dampening due to their interaction [35]. The thermal
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conductivity improvement of PLPs with CN'Ts is quite modest, and much lower than
what would be expected from a rule of mixtures [36].

However, unlike CN'Ts, graphene and graphite flakes has been shown to increase
the thermal conductivity of epoxy by about 20-30 times at 20-30 wt%][37-41] filler
fraction. The thermal conductivity improvements in graphene/graphite composites
are much higher than for CNTs, even at the same filler fraction[42], as well as
significantly cheaper and easier to manufacture.

Metals have very high intrinsic bulk thermal conductivity and good handling
properties. The best commercially available thermal greases have a thermal con-
ductivity of about 8 W/mK with a filler of Ag flakes. Most recent progress using
metal fillers are focused on using metal nanowires (NWs) rather than spherical fillers.
Similarly to CNTs, metal nanowires can, due to their 1-D shape, form percolating
networks at very low filler fractions.

Ag is the most popular metallic filler in commercial compounds and is a natural
candidate, and has been demonstrated as TIM filler by electrodeposition of a tem-
plate[43, 44] or a chemical process[45, 46]. The electrodeposition method forms a
highly aligned network, which allows for a significantly higher thermal conductivity
than using a random dispersion, 30.3 W/mK [44] compared to 1.4 W/mK][46]. In addi-
tion to these methods, Pashayi et al. demonstrated a self-structured metallic nanowire
network based on agglomeration and sintering of PVP-coated Ag-nanoparticles which
exhibits a thermal conductivity of up to 38.5 W/mK at 48 vol%[47, 48].

Other metals have also been investigated. Wang et al. found that CulNWs
gave a larger conductivity enhancement at a lower filler fraction than AgNWs, and
achieved a thermal conductivity of 2.46 W/mK at a low filler fraction of 0.9 wt%[46].
Nanowires of Ni[49, 50] and Au[51] have also been investigated.

Filler combinations

A method of increasing the thermal conductivity at a lower filler fractions is to
combine different fillers into the same TIM matrix. Different fillers create synergistic
effects that increases the effective thermal conductivity beyond what would be
expected from models. The most common mechanisms behind the synergistic effects
are size variations and variations in aspect ratio of fillers. Size variation can help
forming percolating networks (see figure 2.4 b) and improve packing ratio[23, 38, 52].
Variations in aspect ratio can combine the percolation-forming networks formed by
high aspect ratio fillers with the bulk thermal transport properties of bulk and 2D
fillers[53].

Filler combinations reported typically includes filler materials with different
dimensionality (1D, 2D or 3D). Lee et.al. demonstrated the concept of mixing 1D
rods with spherical particles[54] in 2006. Recent progress includes studies of Boron
Nitride (BN)/CNTs[55-57], BN/CNFs[58] and graphene oxide (GO)/CNT[59, 60]
hybrid composites, which all combine 1D and 2D fillers, which are more effective for
creating conducting networks than 1D /spherical filler combination[56].

Since spherical 3D and 2D flake fillers already exist as commercial compounds,
the addition of a high aspect ratio filler into commercial thermal grease has proven



Chapter 2. Thermal Interface Materials

13

Q
N

Thermal Conductivity [W/mK]

Thermal Conductivity [W/mK] ~—

Figure 2.5: Thermal conductivity as a function of filler fraction for various PLPs,
colored based on different categories of fillers: carbon allotropes (black), ceramics
(green), metal (blue), hybrid fillers (red) and a commercial compound (pink).
The data is divided into two graphs depending on whether the filler fraction is
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a popular method of investigating the synergistic effects of spherical /high aspect
ratio hybrid fillers[38, 61-63]. Among these the highest thermal conductivity value
reported to date is 14 W/mK by the addition of an optimized mixture of graphene

100

and multi-layer graphene into thermal grease at a low filler fraction of 2 vol%][38].
Also, the addition of MWCNTs to thermal grease has been directly shown to decrease
the temperature of a running microprocessor|[63].
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Conclusion

A summary of recent reports on PLPs can be seen in figure 2.5, including some
reports not otherwise discussed in this thesis [58, 64-71]. The thermal conductivity of
the presented compound is plotted against total filler fraction. The figure is split into
two graphs as filler fraction value reported is alternatively given in volume fraction
or weight fraction. The volume fractions give a more accurate representation of the
effect of higher filler fractions, but general trends can be distinguished in both cases.

It is clear that alignment of high-aspect ratio fillers such as carbon nanofibers and
metal nanowires can provide a magnitude higher thermal conductivity at the same
filler fraction compared to unaligned fillers, and is generally the only way to increase
the thermal conductivity beyond 10 W/mK. Also noteworthy is that although CNTs
have shown rather unimpressive performance as fillers, other carbon allotropes such
as graphene and GNP have shown better performance than other kinds of fillers at
similar fractions.

Aside from these few exceptions, the actual performance of PLPs has not increased
significantly during the last decade, and recent reports have similar performance to
commonly available industrial TIMs. Despite this, the research area of PLPs has
seen a relatively large amount of publications. A possible explanation is that it is
relatively easy experimentally to test new fillers or mix together a new combination,
even though the end result is rarely groundbreaking. Further evidence of this is that
there are few publications on PLPs in high impact journals compared to the other
categories.

The current industry is dominated by PLPs in different varieties, and there is
a large infrastructure already in place for developing new compounds. This means
that any breakthrough in research has the potential to quickly reach the market.
The matrix material has little effect on the thermal conductivity, allowing filler
development to have an effect on a wide range of TIMs.

2.2.2 Continuous Metal Phase TIM

Solder based thermal interface materials are used in industry in applications where a
low thermal interface resistance is critical. Solder is the only commercially available
TIM which can provide low thermal interface resistances of <5 Kmm?/W, due to
the inherently high thermal conductivity of metals, and the reflow process which
largely eliminates voids and forms metallurgical bonds. Solders can be applied either
as solder paste or as a thin foil sheet with or without flux. It provides a continuous
metal phase for heat transfer at a high thermal conductivity, nearly eliminating
internal interface resistance. However, their rigid structure can lead to poor stress
absorption further leading to cracking during thermal cycling due to CTE mismatch.
As such, research on metal TIM tends to focus on decreasing modulus or otherwise
improve the reliability of the TIM, rather than further thermal interface resistance
improvements.

Historically, the most widely used solder alloy is tin-lead (SnPb), however due to
the toxicity of lead, their use is now mostly forbidden in the European Union[72].
This presents a challenge for both traditional soldering and solder based TIMs, as
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lead free solders typically have higher melting points, modulus and are more brittle
than SnPb solder[73]. The development to find better replacements are ongoing, and
for research into TIMs based on solders it is important to have an overview of this
research field as well. Kotadia et al.[74] have recently provided an extensive and up
to date review article for this purpose.

The most common solder to be used in thermal interface applications in industry
today is indium. It is a comparatively soft metal, allowing it to conform to substrates
and absorb stress, and has a relatively low melting temperature of 157°C. Both
AMDI75] and Intel[76] have developed and used indium as TIM in TIM1-applications
for high-end processors. On the other hand, Indium is a relatively rare metal with a
high price and limited supply[77]. There is a drive away from indium dependency,
and therefore alternative alloys are also under being investigated, such as Sn-Ag-Cu
(SAC) [78] and Sn-Bi [79].

Solders are typically solid in operation, but there are alloys with very low melting
temperature (LMAs), such as Ga, Ga-In and In-Bi-Sn with melting points at 30°C,
16°C and 60°C respectively. These alloys can be used as TIM, and melt during
operation, which allows for simultaneous mechanical decoupling and wetting, resulting
in a very low thermal interface resistance [80-82]. However, LMA TIMs are susceptible
to material pumping out of the interface, Ga containing alloys are corrosive to must
substrates [83], and In-Bi-Sn has a rapid growth of brittle intermetallic compounds
at the surfaces [81].

Metal TIMs are usually limited to alloys with a melting temperature low enough
to prevent damage to components, which usually excludes any alloy with a melting
temperature above that of the solder used for the electronics assembly. However,
higher melting point materials can be used in the form of nanoparticles (NPs) which
sinter together at a much lower temperature than the melting point. This has been
demonstrated with AgNPs, which can achieve a thermal interface resistance of less
than 1 Kmm?/W [84].

Metal matrix composites

One of the most interesting avenues for potential breakthrough technologies is the
research into novel nanostructured composite materials. A combination of different
materials can, through careful structuring of the components at small scales, combine
the best thermal and mechanical properties of the different constituents. Since
solder has an unmatched thermal performance, the use of solder alloys as a matrix
material in a composite is attractive. By combining the solder matrix with fillers or
other nanostructures the mechanical properties can be significantly enhanced while
retaining the high thermal conductivity of the solder.

One such composite consists of bulk solder in a liquid phase sintered solder
composite material [85]. High-melting phase material such as Sn or Cu was embedded
in a matrix of a low-melting phase such as In. The resulting composite combines the
attractive properties of In, such as melting point and low shear strength, with the
compressive creep strength and price of Sn or Cu [85, 86]. Surface modification of
Cu particles to prevent IMC formation created a composite with high mechanical
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Description Ry, BLT Reference
(Kmm?/W) ()
In-Bi-Sn 3 <30 [81
Gallium 2.6 3 [80]
Sn-Bi solder paste 5 50 [79]
Liquid Phase Sintered Sn-In Composite 21 25 [85]
Liquid Phase Sintered Cu-In Composite 2.1 100 [87]
Sintered AgNP (250°C) 2 10 84]
Aligned Graphite Solder Composite 3.5 200 [62]
Solder Graphite Network Composite 3.8 50 [95]
SAC-Polymer Fiber Composite 24 35-65 [97]
SAC-Carbon Fiber Composite 2-7  65-160 98]

Table 2.3: Summary of recent continuous metal phase TIM progress

strength and a thermal interface resistance of 2.1 Kmm?/W [87]. Modeling further
suggests that the composite may be improved further by disc-shaped inclusions
instead of spherical particles [88].

Raj et al. demonstrated a concept of coelectrodeposition of metal films with
filler particles incorporated [89], using SiC and graphite fillers in a Sn matrix. A
similar concept was used by Nagabandi et al., wherein functionalized boron nitride
nanosheets were included into an Ag matrix [90]. They showed a composite with a
thermal conductivity of over 80% of that of pure Ag, together with a significantly
reduced modulus.

Alternatively fillers can be mixed with solder paste to produce the composite
after reflow which has been reported with fillers of CNTs [91], graphite [92], Zn [93]
and Cu [94] into various solders. Despite some successful results in increasing creep
resistance [92, 94| and reducing CTE [91] and IMC formation [93], there has been
no TIM applications reported until recently, when Sharma et al. [95] demonstrated
a solder-graphite network composite. Graphite forms a self-assembling network
through mechanical compression, after which a flux-less reflow forms a network in
the solder matrix. The resulting composite provides thermal resistance as low as 1.4
Kmm?/W at 0.92 MPa and a CTE of 10 ppm/K.

As an alternative to a self-assembling composite, Chen et al.[96] proposed a
vertically aligned solder-graphite sheet composite in which alternating vertically
aligned graphite sheets and solder forms a composite. By varying the amount of
solder to graphite the CTE of the composite can be controlled directly. Finally,
another top-down approach on metal matrix composite fabrication is the solder
matrix fiber composite (SMFC) which is discussed in detail in chapter 3.

Outlook

Table 2.3 shows recent results on continuous metal phase TIMs. The thermal interface
resistance is very consistent in the 2-5 Kmm?/W range owing to the high thermal
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Figure 2.6: a) Schematic of a CNT array TIM. b) Scanning electron microscopy
(SEM) image of a CVD grown CNT array.

conductivity of metals and excellent compliancy after reflow. The challenge is still
to increase the reliability through improving mechanical properties.

Solders already have widespread industrial applications and is a very mature
research field. As such, the path from new research to applications is, as with
PLPs, relatively short. Much research is based on small incremental changes upon
existing technology, where application and a large part of the manufacturing methods
are already established. In addition, since solders are the sole currently existing
alternative for high-performance TIMs, improvements would be relatively easy for
industry to adopt compared with completely novel types of TIMs.

2.2.3 Carbon Nanotube Arrays

Instead of using CNTs as fillers in PLPs, having an array of CN'Ts that individually
span the whole BLT, as seen in figure 2.6, would completely eliminate the internal
resistances. Such a CNT array could therefore be a practical way of harnessing the
high thermal performance of CNTs in a TIM application [99]. Vertically aligned CNTs
are grown by a chemical vapor deposition (CVD) process and pressed against an
opposing surface. The mechanisms for CNT CVD is based on the thermal breakdown
of a hydrocarbon gas in the presence of a metal catalyst particle [100]. The carbon
then precipitates and crystallizes into a CNT that grows from the catalyst particle.
With a high enough density of CNTs, geometrical constraints from neighbours will
then align the CNTs vertically, forming an aligned array.

In a TIM application, the CN'Ts act like small springs, which bends and conforms
to the surface. Additionally, each CNT would be independent in the x-y plane,
allowing the array to easily absorb any CTE mismatch between the two surfaces and
completely avoid the large drawback of metal based TIMs.

The thermal conductivity of a carbon nanotube can reach as high as 3000 W/mK
[27, 28], but the bulk value for CNT arrays is much lower, both due to low CNT
density, defects and imperfections in the CNTs themselves [101]. A typical value for
a CNT array is on the order of 10 W/mK [101]. While there is a large discrepancy
between measured and theoretical thermal conductivity values, at moderate bond
lines (<30 pm) the thermal conductivity will have relatively low effect on the thermal
interface resistance compared to the contact resistances [102-104]. For instance,
B. Cola et al. [105] measured the thermal interface resistance components for a
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Si-CNT-Ag interface at 0.241 MPa using a photoacoustic method, and while the
contact resistance was found to be 1.7 Kmm?/W at the Si-CNT and 14 Kmm?/W
at the CNT-Ag interface, the thermal resistance from the bulk CNT array was less
than 0.1 Kmm?/W.

The dominance of the contact resistance, especially at the attached surface, on
the overall thermal interface resistance can mostly be explained by a limited number
of the CNTs in actual contact to the opposing substrate [104, 106]. There is little
conduction between adjacent CNTs in the array, and so only the fraction of CN'Ts in
contact with both sides can significantly contribute to the heat transfer. Additionally,
the intrinsic contact resistance (Kapitza resistance) between CNTs and metals is
significant[107].

As shown by Cola et al., the bulk thermal conductivity of the CN'T array has
relatively little effect on the overall thermal interface resistance. However, the
geometrical and mechanical properties of the CN'T array are still important, and
multiple studies have confirmed that the CVD growth parameters of the CNT array
greatly affects the resulting TIM [108-111]. In particular the compliance of the CNT
array is a dominant parameter, with lower modulus allowing more CNTs in effective
contact with opposing substrate.

Bonding of CNT arrays

Since the largest contributor the thermal interface resistance of CNT array TIM
is the contact between the tip of the CNT array and the opposing surface, much
research has been focused on reducing this contact resistance by bonding the surface
to the tips. The goal is two-fold: increasing the number of CN'Ts in contact with the
surface, and reducing the Kapitza resistance at individual CNT tips. Typically this
is done by using an additional layer which partly penetrates into the CNT array to
come into contact with additional CNTs.

An established method for bonding materials together is metal bonding, using
metals as the intermediate layer. Tong et al.[103] demonstrated a bonding approach
using a In solder layer at the free CN'T ends, which partly penetrates the array and
contacts a larger fraction of CN'T. This results in a decrease in the total thermal
interface resistance of an order of magnitude, down to 1.7 Kmm?/W. Other metal
bonding methods include metallization of Ti/Au onto both CNT array and bonding
surface, which bonds at 220°C due to Au-Au self-diffusion[112], and palladium
thiolate used to coat the sidewalls of CNTs with Pd nanoparticles[113], forming a
Pd weld after baking at 250°C.

To avoid increased bonding temperatures, Barako et al.[114] proposed a bonding
solution in which a Sn-coated foil comprised of many thin layers of alternating Au
and Ni is used as a bonding layer. A pulsed electrical current initiates an exothermic
reaction to alloy the layers into AugsNig 5, which locally heats up the foil enough to
melt the Sn layer to the CN'T array.

While metal bonding has shown significant improvements in thermal performance,
it does nothing to address the large Kapitza resistance at the CNT-metal interface.
For this reason, progress has been made towards non-metal bonding of CNT arrays
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Figure 2.7: Bonding and transfer process for a CNT array TIM. a) CNT array is
grown on a sacrificial silicon chip. b) The array is bonded to another substrate.
¢) The sacrificial silicon chip is peeled off. d) A new active silicon chip can be
attached instead.

using polymer coatings[115-117] or chemical functionalization[118-120]. Polymer
bonding can serve to increase real contact area, as demonstrated using a spray
on polymer coating together with a solvent, which pull CNTs into contact using
capillary forces[116]. In addition, chemical functionalization, either directly or in
conjunction with a polymer coating can create bonds between CNTs and substrate,
greatly reducing the thermal contact resistance.

Ni et al.[115] introduced an azide polymer based thermal glue which also bonds
covalently with CN'Ts through C-N bonds, achieving a low thermal interface resistance
of 1.40 Kmm?/W. They further suggests that bonding with an element lighter than
carbon gives lower contact resistance due to higher vibrating frequencies. Kaur et
al.[119] also managed a six-fold reduction of the thermal resistance at CNT-Al and
CNT-Au interfaces using covalent bonding of short organic molecules, also bonding
to CNTs with a covalent C-N bond. Taphouse et al.[120] showed a similar reduction
of thermal resistance using a pyrenylpropyl-phosphonic acid surface modifier to bond
CNT arrays to metal oxide substrates, although this bonds to CNTs using 7 — 7
bonds rather than covalent bonds.

Transfer of CNT arrays

While CNT array bonding can reduce the thermal resistance of the interface, there is
a fundamental problem to overcome before CNT arrays can be commercially viable.
In a majority of studies, the CNT array is synthesized directly on the silicon chip
which is to be cooled. However, the CVD process require high temperature, typically
at least 700°C, which is incompatible with modern CMOS electronics (max 500°C).
There has been some effort into optimizing a low temperature CVD process [100,
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109], but so far it has proven challenging to synthesize CNT arrays of sufficient
quality at low enough temperatures. Another option is to grow the CNTs on the
heat sink side, and this has been demonstrated on both Cu [121] and Al [122, 123].

However, the most promising alternative appears to be the transfer of the CNT
array from a sacrificial growth substrate into the interface. A bonding method as
discussed in the previous section can be used to attach the array onto one surface.
Then, the original growth substrate can be peeled off, and the other mating surface
can be attached. An illustration of this is seen in figure 2.7

Transfer has been demonstrated for solder[124, 125], metallization[112] and ther-
mocompression[126, 127] bonding. Despite bonding, the thermal contact resistance
of the growth substrate/CNT array interface is an order of magnitude lower than at
the bonding interface, and a corresponding increase in thermal interface resistance is
seen after transfer compared to just bonding the free ends[112].

A more flexible alternative to transfer of bonded CNT arrays is to grow CNTs
directly on both sides of a thin foil[128-130]. This allows to TIM to be applied
anywhere in the same manner as a thermal pad. While the arrangement is in principle
equal to two conventional CN'T array TIMs, in reality the foil can conform to the
substrates, increasing the fraction of CN'T contacts on both sides. Cola et al. achieved
thermal interface resistance less than 10 Kmm?/W at moderate pressures[128], on
par with single-sided CN'T array TIMs, suggesting that the added conformability
and real contact outweighs the higher number of interfaces.

Another way to create a freestanding film that can be applied as a thermal pad
is to infiltrate the CN'T array with a polymer, forming a composite material which
can easily be applied. Several investigations into CNT array polymer composites
have been conducted, both as freestanding films [131-133] and attached to original
substrate [34, 134]. However, in each case the thermal conductivity of the composite
is lower than for a naked array. Proposed explanations are polymer preventing
some CNTs to contact with a substrate, decreased alignment due to processing and
damping of phonon modes in the CNTs by the polymer matrix[132].

Outlook

Research done on CNT array TIMs is summarized in figure 2.8, which shows the
reported thermal interface resistance values versus total CNT array height [135-139].
The correlation between thermal interface resistance and CNT array height is very
weak, which is consistent with performance limited by contacts between CNT array
and substrates. The importance of a good bonding is apparent, and further research
should continue to investigate the possibilities of a facile, scalable bonding method.

The main limitation preventing widespread industrial use of CNT array TIMs is
the production capacity of CNT arrays, which is currently lacking scale and process
controllability. While production of randomly aligned CNTs are starting to reach
industrial scale[100], growing a uniform vertically aligned CNT array poses additional
limitations on scaling. For an introduction of commercial CNT array TIMs the CVD
process has to be improved and scaled up significantly. Roll-to-roll CVD systems for
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Figure 2.8: Summary of CNT array TIM results, plotted as thermal interface re-
sistance versus CN'T array height. The results are divided into different categories:
bare CNT arrays (black), Metal bonded CNT arrays (green), chemically bonded
CNT arrays (blue), polymer bonded CNT arrays (magenta), transferred CNT
arrays (orange) and double sided CNT array foils (red). Dashed line represents the
thermal interface resistance of the best available thermal greases, at 10 Kmm?/W.

graphene[140] and CNT[141] production have recently been demonstrated, which
could potentially increase volume, although controlling the process remains an issue.

In addition to the manufacturing issues, unlike for PLPs and solder TIM, there
is little research on the reliability of interfaces with CNT arrays. Theoretically,
the mechanical decoupling of surfaces that CNT arrays allows for should result
in excellent mechanical properties, but there is a lack of experimental studies to
corroborate this.

2.2.4 Other Novel Concepts

In addition to the previous categories of TIM research, there are a number of novel
concepts which have been proposed. These can be divided into three additional
smaller categories: mechanically deformed metal, thermally conductive polymer and
carbon based TIM.

Unlike continuous metal phase TIM, a mechanically deformed metal does not
use melting of the metal to create metallurgical bonds. Rather, in this category,
the metal is textured in such a way that mechanical pressure allows it to bend and
conform to the surfaces. This has been demonstrated for microtextured metal foils
[142-144], tin [145]and copper [146] nanowire arrays and copper nanosprings [147].
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The metal nanowire arrays could potentially combine the thermal stress absorption
of CNT arrays with the low contact resistance associated with continuous metal
phase TIM, if bonded with solder at the interface. This was demonstrated with
copper nanosprings for a low thermal interface resistance of 1 Kmm?/W.

The second category, thermally conductive polymers, utilize the recent discovery
that polymers can be modified by increasing crystallinity and alignment of crystallites
and chain orientation to increase the thermal conductivity by several orders of
magnitude [148, 149]. A polymer nanofiber array was found to be applicable similarly
to CNT array TIM with a thermal interface resistance of 12.8 Kmm?/W.

The third category is that of carbon based TIM aside from CNT array TIMs.
The exceptional thermal properties of graphene-like structures can be harnessed in
other ways than just CNT arrays and fillers in PLPs. The challenge is to create
macroscale 3D structures out of what originates as 1D or 2D (CNT and graphene
respectively). One way of creating such a 3D structure out of graphene is to deposit
graphene on the surface of a highly porous template, and then selectively etch away
the template. Left will be a freestanding graphene foam structure. Zhang et al.
demonstrated the possibility of such a graphene foam as TIM, and found that the
structure is exceptionally compliant and could achieve a thermal interface resistance
as low as 4 Kmm?/W at a contact pressure of only 0.1 MPa [150]. A similar foam like
structure has also been created by a self-assembled method through a hydrothermal
reduction of a graphene oxide (GO) dispersion [151].

Alternatively, instead of a random foam network, a more deliberate alignment
can be done. Films of graphite or reduced GO can have a very high degree of
alignment and a thermal conductivity in excess of 1600 W/mK [152]. However,
this alignment is in the in-plane direction, orthogonal to the heat flow in a TIM
application. If graphene sheets could be efficiently aligned in the z-direction instead,
it could potentially provide a good TIM candidate. Direct stacking of multiple
graphene films has been demonstrated to some success [153], but a more efficient
way of aligning the graphene sheets is needed for a practically usable TTIM.

Finally, graphene is only the first out of many possible 2D materials, and the
attractive properties of graphene could very well be found in other materials as well.
One such interesting material is hexagonal boron nitride (h-BN), which has a similar
structure to graphene and also high thermal conductivity. However, unlike graphene,
it is electrically insulating, which may be important in certain applications. It has
already been used as conducting fillers in polymers, both in the form of platelets|22],
nanotubes[154], and as a BN foam[155], echoing the use of graphene while retaining
its insulating properties.

2.2.5 Summary

Figure 2.9 shows the thermal interface resistance versus BLT from all reports treated
within this review where such data could be obtained, including some reports not
previously mentioned [156-159]. A few commercial compounds are also included as
reference[139, 160]. It contains selected reports in which thermal interface resistance
measurements have been done at a given BLT. While not exhaustive, it gives
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Figure 2.9: Thermal Interface Resistance versus Bond Line Thickness for recent
results, based on different categories: Particle Laden Polymers (red), Carbon
Nanotube array TIMs (black), continuous metal phase TIMs (blue), other carbon
based TIMs (green), mechanically compliant metal TIMs (orange), polymer
nanowire array (purple) and commercial TIM references (pink). References for
TIMs with a thermal contact resistance of 1 Kmm?/W and a thermal conductivity
of respectively 5, 20 and 40 W/mK are also plotted (dashed grey). The colored
?llipzes show the approximate region in which the different categories of TIM are
ound.

an overview of the field in its entirety, and some general trends can clearly be
distinguished, as seen from the colored ellipses. Particle laden polymers, despite
attracting much interest, has still not improved significantly over the last decade
in terms of thermal performance. Indeed, where comparable the performance of
commercial thermal grease actually performs better than newer compounds. Metal
nanowire filler is a potential breakthrough technology, but as can be seen, despite a
very high thermal conductivity, the thermal interface resistance is still very high due
to high contact resistance and large BLTs.

Reports on continuous metal phase TIMs all follow a similar relationship between
BLT and resistance. Which is consistent with the idea that research within this
area is more focused on mechanical properties rather than thermal performance, and
actual progress in that area will not be represented in this type of comparison.

As previously discussed, CNT array TIMs perform slightly worse than solders
with dry contact, and on par or even better when bonded to a substrate. There is no
clear relationship between BLT and thermal interface resistance, which is consistent
with the resistance being dominated by contact resistances at the edge of the CNT
arrays. It is clear that performance is not the factor limiting CNT array TIMs
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from becoming commercially available. Nonetheless, CNT array TIM is the most
promising new breakthrough technology to enter commercial markets within the
relatively near future.

These categories, together with the previously mentioned other novel concepts,
build up a picture of the total status of the field.



Chapter 3

Solder Matrix Fiber Composites

3.1 Introduction

The most common use of Solder is to attach components on a PCB and to form
electrical connections between them. However, the same properties and technologies
that enable excellent electrical connections, also creates good thermal connections.

Due to their ability to form metallurgical bonds towards other metal surfaces
together with their high thermal conductivity, solders have been widely used in
TIM applications, and is the only commercially available alternative when thermal
interface resistances of < 5 Kmm?/W is required. However, as explained in section
2.2.2, solders can have significant drawbacks in terms of reliability due to a high
elastic modulus and rigid structure. This issue is exacerbated as the size of the
interface increases, as the strain due to CTE mismatch between the two surfaces is
larger. In addition, solder can be difficult to handle during reflow, causing uneven
and/or to thin BLT.

As a potential way to address these issues, the solder matrix fiber composite
(SMFC) concept was introduced by Carlberg et al. in 2008 [161]. The concept
consists of a randomly aligned network of fibers inside a metal matrix as seen in

Y \\V'”" u‘&’\:v
=N / Metal infiltration
Non-woven fiber network SMFNC

Figure 3.1: SMFC concept, consisting of a non-woven fiber network which is
infiltrated with molten metal to form a composite structure.
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figure 3.1. The metal part of the composite acts as the solder in normal solder TIM.
The fiber network is highly porous, which allows the metal to form continuous heat
paths through the TIM. This allows for a high total thermal conductivity despite
the presence of a fiber network, which is not necessarily a good thermal conductor.
The end result is a composite material which has very similar thermal properties as
regular solder TIM.

The fiber network on the other hand, serves several purposes:

e To tailor the mechanical properties of the TIM. Depending on fiber composition
the fiber can serve to make the material softer or stronger.

e To prevent crack propagation through the metal phase.

e To act as a spacer during reflow, in order to establish a well-defined and uniform
BLT and prevent metal from escaping the interface during molten state.

Both metal matrix and fiber network can consist of a number of different materials.
The metal matrix could be any suitable alloy, depending on the requirements for each
application in terms of thermal properties, temperature and surface metallization.
SMFCs have been demonstrated with In [162-165], Sn-Ag-Cu (SAC) alloys [97,
98] and In-Bi-Sn [161] as metal matrix component. The fiber network can consist
of any material available as a non-woven fiber network, depending on desired end
properties. So far, the concept has been demonstrated using fibers made out of Ag
coated polyimide[97, 164, 165], Carbon Nanofibers[98] and BN[162].

All previous reports have relied on the electrospinning technique for the manu-
facturing of the fiber network. However, current electrospinning processes are too
slow and expensive to be viable for a commercial application. In order to bring the
technology closer to industry, it would be desirable to be able to simplify the fiber
fabrication, or outright use existing commercial alternatives.

This chapter described the experimental research work done on SMFCs within the
scope of this thesis. Instead of using electrospun nanofibers, commercially available
non-woven fiber networks have been explored in order enable mass production and
potentially commercially viable materials. Two different fibers have been investigated:
Silver plated nylon fibers (Paper C) and carbon fiber (Paper B).

Pressure assisted infiltration of molten solder

Regardless of fiber and alloy composition, the principle for forming the composite
structure is the same. It is based upon pressure assisted infiltration of solder in
the molten state into the fiber network. The difficulty of infiltration depends on
the wetting between the solder and fiber. Molten metal has a relatively large
surface tension , and has poor wetting towards most polymers. Therefore, surface
modifications such as metal coatings and high pressure during infiltration can be
needed on order to ensure proper infiltration of the matrix [97, 166].

For the infiltration process, custom in-house constructed tools were used. The
fiber network was placed inside a thin mold cavity, which was heated to 30°C above
the melting point of the metal. Molten metal from a separate melt cavity is then
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injected under pressure into the mold, and the pressure is maintained for several
seconds. The end result is a thin preform foil of the composite material, which can
be cut into arbitrary shapes in order to fit desired application.

Two different versions of the infiltration tool were used. The first is a lab scale
prototype which has been used in previous works in our group, which can produce
single round pieces with a diameter of 30 mm. The second is a newly developed
automated machine, for volume production on a roll-to-roll basis. This machine can
produce 100x100 mm pieces at a rate of tens per hour.

Thermal characterization

To evaluate the performance of the fabricated SMFCs in a TIM application, the
fabricated SMFCs were sandwiched between Electroless Nickel Immersion Gold
(ENIG) coated Cu surfaces. A pressure of 200 kPa was applied to the stack, and
fluxless reflow was carried out using a temperature profile optimized depending on
solder material used. After reflow, the resulting three-layer sandwich structure was
used to characterize the thermal properties of the TIM.

The main tool for thermal characterization used in this thesis was the transient
laser flash method. The principle is based on heating one side of a specimen with a
laser pulse and monitoring the time-dependent temperature change on the opposite
side using an IR detector. Under perfect adiabatic conditions, the temperature
response from the laser pulse depends on the thickness d and thermal diffusivity «
of the specimen according to:

13882

a = (3.1)

7T2t1/2
where 2,5 is the half rise time of the temperature. With additional corrections, it is
possible to extract the thermal diffusivity even under non-adiabatic conditions. The
thermal diffusivity is further related to the thermal conductivity A according to:

A = pCpa (3.2)

where p is the density and C), is the specific heat capacity of the specimen.

From this we can calculate its effective thermal conductivity. In a multilayer
setup, it is possible to extract the thermal resistance contribution of a single layer
given that the the properties of the other layers is known. In a three-layer model,
with a TIM between two substrates, the thermal interface resistance Rrjjs relates to
the measured Mg fective by the following equation:

dtotal _ dsl + ds2

R 3.3
)\effective )\sl )\32 v ( )

where dg, ds are the thickness and A, Ay the thermal conductivity of the two
substrates. In practice, this is best done using more complex numerical analysis
software, but the equation above serves to demonstrate the principle.
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Figure 3.2: SEM images of carbon fiber network, pristine (a,b) and with a Ag
plating layer (c,d)

3.2 Carbon Fiber Composite

Carbon fiber (CF) is widely used as a component in high performing composite
materials, primarily owing to its high strength. In addition, like other carbon
allotropes, CFs have high thermal conductivity, which could be increase the thermal
performance of a CF composite [167]. Murugesan et al. demonstrated a SMFC with
SAC solder matrix and electrospun CFs from mesophase pitch [98]. However, as
previously explained, it would be desirable to be able utilize fibers that are available
at a commercially relevant scale.

In paper B we instead use a procured non-woven CF veil, which is available in
large quantities on rolls. SEM images of the fiber network can be seen in figure 3.2 a
and b. The fiber networks consists of CF with a diameter of 8 £2 p m and the total
mat thickness is 82 + 3 um, with a total fiber volume fraction of around 4 %.

This fiber size is around one order of magnitude larger than that of the fibers
produced by electrospinning, and the pore size between fibers is similarly larger. For
the electrospun CF network, a metal coating to facilitate wetting between fiber and
matrix was required in order to properly manage inflitration, despite the fact that
the wetting between solder and graphite is relatively good [168]. However, with a
more sparse matrix, this metal coating might not be required. Thus, the infiltration
was attempted both with pristine fiber networks and with Ag coated fibers. The Ag
coating was formed by a chemical method. A silver nitrate solution was saturated
with ammonia to form diamine silver complex, which in turn was mixed with a
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s

Figure 3.3: a) Photo of the infiltrated CF-SMFC preform. b) X-ray image of the
assmebled TIM sandwich structure.

mixture of glucose and tataric acid to form deposit silver on the fiber network. The
silver plated fiber can be seen in figure 3.2c and d.

Despite the fact that the CF fiber is available as a roll, the manual prototype
infiltration equipment was used for the fabrication of the CF-SMFC in this work, due
to a process incompatibility. The problem is not insurmountable, and future works
aims to adapt the process in order to create high volume TIM. SAC305 (96.5%Sn-
3%Ag-0.5%Cu) alloy was used as matrix material, as it is one of the most common
solders used in industry today.

The resulting preform TIM after infiltration can be seen in figure 3.3 a. After
subsequent reflow the internal structure of the TIM without Ag plating was charac-
terized using X-ray imaging, the result of which can be seen in figure 3.3 b. The x-ray
image provides contrast based on difference in density, and is useful to detect voids
and imperfect infiltration. As seen from the image, the density is uniform throughout
the sample, with only the outline of the fibers themselves providing any contrast.
This indicates that the wetting between the fibers and the matrix is good despite the
lack of metallization on the fiber surface. This is further confirmed by later thermal
characterization, and so only the pristine CF TIM was further investigated.

3.3 Nylon Fiber Network Composites

Among the different fiber compositions investigated for SMFCs in the past, the
majority have used polymer fibers, mainly polyimide (PI) [163-165]. The reason for
this is that polymers are soft materials which may help decrease the modulus of the
TIM and reduce thermal stresses. Similarly to the case with CF, a commercially
available fiber alternative would be desirable, and in paper C we investigate new
version of SMFC based on commercially available polymer fibers.

Instead of PI fibers, these commercial fibers consists of polyamide (PA), or nylon,
more specifically PA6,6. It is one of the most common type of nylon in the plastics
and textile industries, making it cheap and abundant. The fiber procured (Statex,
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Figure 3.5: a) Resulting TIM on the fiber roll. b) SEM image of fabricated TIM
surface.

Bern) is a non-woven PAG,6 fabric with a Ag coating. The Ag coating is necessary
since PA6,6 has very poor wetting towards solders unlike CF. Since the fabric is
already coated, no additional treatment of the fibers is needed before infiltration.
The fiber is available on rolls, as can be seen in figure 3.4 a. The microstructure of
the fiber network can be seen in figure 3.4 b. The fiber network consists of randomly
aligned fibers with a fiber diameter of 8 yum, which forms a mat with a thickness of
80 pm at a volumetric filling factor of 4%.

In this study, a newly developed automated infiltration equipment was used.
Instead of placing the fiber inside a cavity into which the molten metal is injected,
the cavity is formed from two tooling halves clamping onto the fiber, forming a cavity
around part of the fiber, with the fiber mat itself sealing the cavity between the
tooling halves. After this, molten metal is injected under high pressure, filling up
the cavity and infiltrating the fibers.

The result is a 50x50 mm square TIM sample still attached to the fiber film,
which can be seen in figure 3.5 a. Note that around the TIM sample, the fiber is
compresed during infiltration, and is supposed to provide a seal. However, as can be
seen in the image, some metal has penetrated the fiber around the sample, which may
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Table 3.1: SMFC sample configurations

Sample Metal No. of fiber Thickness after ~ BLT after

configuration: mat layers  infiltration (um) reflow (um)
A SAC 1 220 68 £ 3
B SAC 2 220 90 £ 13
C SAC 3 220 117+3
D In 1 175 44 £3
E In 2 175 86 £13

relax the pressure somewhat. Thus, it is difficult to tell the true pressure attained
during this infiltration, though the infiltration appears to be successful from visual
as well as SEM inspection (figure 3.5 b).

Multiple layers of fiber mat were stacked before infiltration in order to investigate
the effect of fiber concentration in the SMFC. The fiber mat layers will compress
into each other during reflow, increasing the concentration of fiber compared to the
matrix with increasing number of fiber mat layers. Two different matrix materials
were used, SAC305 and pure indium, as these are the two most common materials
for solder TIM, as well as the most studied matrices in previous reports [97, 165]. In
total, five different matrix/fiber configurations were investigated, according to table
3.1

The thickness of the TIM sample depends on the cavity halves together with the
thickness of the fiber network, although it is significantly compressed. By exchanging
cavity the thickness can be varied, while differing number of fiber layers compress
into each other enough that no discernible difference could be found on the final
thickness. Regardless, during the reflow process, excess material was pressed out
of the interface, thinning the composite until the fiber phase supports the applied
pressure, leading to a reduced BLT compared to the initial thickness.

To compare the SMFC to regular solder, reference samples with pure SAC and
indium at the interface were prepared from solder preforms (Indalloy #4 and #256,
Indium Co.) using an identical reflow profile. However, without the fiber component,
the applied pressure will squeeze out almost all material from the interface, creating
a very thin bond line. In order to make a comparison, copper spacers were created
to ensure a similar BLT as for the SMFC TIM.

An X-ray microscope was used in order to investigate the internal structure of
The assembled TIM structures. Figure 3.6 a-b, d-e and g-h show the assembled
structure for sample condition A, B and C respectively. Light parts indicate regions
of lower density, while the dark regions show continuous metallic thermal paths
between the joined surfaces. The contrasting features consist of the fiber network
together with intermittent small voids throughout the material. While voids inside
a solder joint can affect the thermal and mechanical performance negatively[169,
170], it is mainly through large voids, which can lead to hot spots and delamination.
Small, evenly spread voids do not necessarily contribute to decreased reliability at
moderate void levels[171], and could even potentially be beneficial through stress
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Figure 3.6: X-ray images of the composite material in a TIM assembly, after reflow,
for one (a,b), two (d,e) and three (g,h) fiber network layers (sample condition A,
B and C respectively) Same samples after thermal cycling (c,f,i).

relaxation and as crack propagation barriers. In this case the voids are evenly spread
out at the millimeter scale, although the amount of voids starts to raise concerns at
three fiber network layers. However, how much this affects the thermal properties
can be measured directly by thermal interface resistance measurements.

Tensile analysis

One of the main motivations for the polymer composite is to modify the mechanical
properties of the TIM compared to pure solder. To investigate this phenomenom,
the samples were subjected to a pulling test in order to measure Young’s modulus
and tensile behavior of the different configurations. The SMFC was cut into strips of
10 x 50 mm, clamped at each edge and pulled with a strain rate of 0.1 mm/minute
for indium based samples and 0.3 mm/minute for SAC based samples, with metallic
foils of pure indium and SAC as references.

Figures 3.7 a and b show the stress-strain curves for SAC based and Indium
based composites respectively. Figure 3.7 ¢ shows all test conditions in the linear
regime at low strain, from which the Young’s modulus can be calculated. The values
for the Young’s modulus are presented in table 3.2.

The values of the reference SAC and indium foils significantly differ from the
bulk literature values (Indium: 88 W/mK[172], SAC: 60 W/mK][10]) of the alloys.
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Figure 3.7: Tensile behavior of a) SAC based SMFCs with pure SAC reference, b)
Indium based SMFCs with pure indium reference. c¢) Initial linear regime tensile
slope for all samples with pure solder references.

However, the tested material has been exposed to processing with high temperatures
and pressure, which may significantly alter the mechanical properties[173, 174]. In
addition, size effects due to the low thickness can have a large effect on the properties
of thin metallic foils[175]. The lower Young’s modulus measured in this work is
consistent with earlier reports of tensile measurements on thin metallic foils[176-178].
Thus, while the values reported here should not be taken at face value, they can still
be useful for comparative purposes.

For the SAC based composite, a clear trend of decreased stiffness with increased
fiber content can be seen (figure 3.7 a). A contribution both from the low Young’s
modulus of the fibers as well as an increase in voids trapped inside the material can
be expected to contribute to this decrease. This depression in stiffness is consistent
with a similar report by Zandén et al. [97], in which a SMFC based on SAC and
electrospun polyimide was investigated.

Indium based SMFCs on the other hand, show an inverse trend, with increased
elastic modulus and increased strength with additional fiber network layers (figure
3.7 b). This behavior is more difficult to explain, as the individual components in
the composite all have a lower modulus. But again, this is consistent with a previous
work, where Luo et al. investigated the tensile behavior of a SMFC based on Indium
and electrospun polyimide fiber[162]. Luo et al. found a mutual strengthening
mechanism between the fiber and matrix, which increased the total strength of the
composite. The tensile behaviour of the SMFC in this work indicates that the same
mechanism plays a role in this case as well, despite a large difference in average fiber
diameter (780 nm vs 8 pm in this work).

Figure 3.7 ¢ shows the linear regime of all sample configurations. By varying
the matrix material and fiber density, the elastic modulus can be tailored in the
regime between the two pure materials. Further optimisation would allow for the
engineering of composite materials with very specific mechanical properties.

Note that the tensile testing is done directly on the SMFC prior to assembly and
reflow in an application. Since a significant amount of metal is ejected from the
interface during reflow, the actual fiber density of the TIM in application will be
higher. Thus, the changes in mechanical properties can be expected to be even more
pronounced, although to what degree is to be further investigated in future works.
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Figure 3.8: a) Thermal interface resistance versus BLT for all test conditions
(Filled squares) and pure solder references (unfilled squares). b) BLT as a function
of number of reflow cycles for test condition B (blue), E (red) and CF (black).
c¢) Thermal interface resistance as a function of number of reflow cycles for test
condition B (blue), E (red) and CF (black).

3.4 Thermal Results

As the most important figure of merit, the thermal interface resistance was measured
for all configurations, both with CF and PA6.6 fibers. The results are shown in
figure 3.8 a, plotted versus the BLT. As expected, increasing the amount of fiber
network layers increases the BLT and the thermal interface resistance. However, the
difference in thermal interface resistance with respect to variation of the number
of layers is larger than for a material with uniform thermal conductivity. With
increasing amount of fiber network layers, the layers compress into each other and
the total fiber network density increases. Increasing fiber density leads to a decreased
thermal conductivity due to the drastically lower thermal conductivity of PA6,6 (0.25
W/mK) compared to SAC alloy (60 W/mK) and Indium (82 W/mK). The increased
fiber density also reduces the infiltration effectiveness and traps additional voids in
the interface, further reducing the effective composite thermal conductivity.

SAC based and Indium based samples have a similar thermal interface resistance
compared to number of fiber mat layers. A lower thermal interface resistance
of samples based on Indium could be expected considering the increased thermal
conductivity of Indium compared to SAC, and the absence of such difference indicates
that the bulk thermal conductivity of the solder material is not the limiting factor
for the total thermal interface resistance, and that SAC is possibly slightly more
compatible with the infiltration process. It should be noted however, that the higher
effective thermal conductivity of configuration A as compared to configuration D
can be explained by a higher fiber density due to the same amount of fibers inside a
thinner interface. The total thermal interface resistance is instead primarily based
on the number of fiber layers rather than the BLT.

Using a single fiber mat layer, the thermal interface resistance of the composite is
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Figure 3.9: Thermal interface resistance as a function of number of cycles during
temperature cycling for PA6,6 based SMFCs.

still close to the reference samples with pure solder, which indicates that any extra
voids due to the presence of the fiber network is limited for single-layer fiber networks.
However, we can see the superior wetting characteristics of SAC/CF compared with
the other configurations, as the thermal resistance here is almost identical with the
SAC reference sample. This indicates that the presence of fibers in the CF TIM does
not harm the thermal performance in any way.

While the thermal interface resistance of the SMFC is comparable to pure solders,
a potential benefit of the composite compared to conventional solders is the possibility
of a fluxless reflow process without using complicated spacers or frames to prevent
metal pump-out of the interface. The fiber network in the composite acts as a spacer,
ensuring a well-defined and uniform BLT throughout the sample. To confirm that a
consistent BLT is achievable over several reflow cycles, samples from configuration
B, D, and CF were subjected to additional reflow cycles while monitoring BLT and
thermal interface resistance.

Figure 3.8 shows the BLT (3.8b) and thermal interface resistance (3.8¢) across 10
reflow cycles. A slight decrease in BLT and increase in thermal interface resistance
is seen at first, attributed to a slight additional compression of the fibers, but the
performance subsequently remains stable. Note that the interface does compress
during the initial reflow until the fiber network is compressed enough to withstand
the applied pressure. However, subsequent additional melting of the interface does
not cause additional material to escape.

A comparable reflow cycle with pure solder without the use of a spacer immediately
collapses the interface (BLT <10 pm) and the melt leaks out of the interface. To be
able to apply the composite in an application as a preform with built-in BLT control
could potentially eliminate the need for spacer usage, and allow for significantly
simplified process flow for TIM assembly.
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Table 3.2: Thermal and mechanical results for SMFC configurations

Sample BLT Aeff Ry Young’s modulus
configuration (um) (W/mK) (Kmm?/W) (GPa)

A 68 + 3 25 +4 2.7+0.5 11.6

B 90+ 13 19+5 46+1.8 9.5

C 117+ 3 13+2 89+1.9 7.8

D 44 £+ 3 18+1 24+0.1 3.0

E 8613 17+2 5.0+£0.9 3.8

CF 474+ 1 35+ 2 1.4+04

SAC references 50+ 1 3441 1.4+£0.5 18.0

78 + 10 28 +4 28+04
Indium references 56 £ 8 36 +5 1.5+0.6 1.9
123422 4648 2.74+0.9

Additionally, the reliability of the PA6,6 based SMFCs was tested using thermal
cycling in accordance with JEDEC standard test condition 1. The samples were
subjected to 500 cycles, with a temperature profile ranging from -40°C to 115°,
at 2 cycles/h and 5 min soak time at each extreme. Thermal interface resistance
measurements were carried out periodically to monitor the change in thermal interface
resistance. Figure 3.9 shows measured thermal interface resistance values during
thermal cycling. Each test case is an average of at least 3 samples. All samples
across showed a variation of less than 20% over the full amount of cycles, indicating
that internal structure of the TIM does not change significantly due to thermal stress.
This is seen clearly in figure 3.6, where images of the same spot before (b, e, h)
and after (c, f, i) 500 thermal cycles show the same distribution of fibers and voids.
The X-ray images show an absence of even minor structural changes which could be
indicative of reliability issues further along.

3.5 Summary and Conclusion

The thermal and mechanical characterizations of the different versions of SMFCs are
summarized in table 3.2. Figure 3.10 further shows the thermal performance versus
BLT of the different SMFCs compared to a selection of previously reported metal
based TIM (blue) and commercial thermal greases (pink) from the earlier review in
chapter 2. The dashed lines indicates hypothetical TIMs with thermal conductivity
as indicated and a thermal contact resistance of 1 Kmm?/W as comparison. SMFCs
from earlier works typically fall in the range between the hypothetical 20 W/mK
and 40 W/mK TIMs. Pure metals or alloys, such as Gallium|[80, 81], In-Bi-Sn[81],
Sn-Bi[79] and sintered silver nanoparticles[84] are typically slightly higher, although
by achieving very thin bond lines it is still possible to achieve a low thermal interface
resistance. Composite stuctures such as the solder-graphite network reported by
Sharma et al.[95] follow the same trend, and the only outlier is a liquid phase sintered
Cu-In composite[87] which takes advantage of the much higher thermal conductivity
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Figure 3.10: Comparison of thermal interface resistance versus BLT for various
metal based TIM (blue), commercial thermal grease (pink) and this work (blue,
red and black filled squares).

of Cu.

Most metal based TIMs still have a similar thermal performance as pure solder,
and this will not change without the addition of other materials with significantly
higher intrinsic thermal conductivity, such as carbon based materials[109] or non-
solderable metals[87, 179]. However, despite little further improvement in thermal
interface resistance, solder based TIMs can still be improved with regards to me-
chanical properties and handling characteristics. The TIMs in this work fall in the
same range for one and two-layer samples, indicating that the these SMFCs can act
as replacement for solder. For the CF based TIM, it is even lower than previously
reported metal TIM.

In conclusion, with the CF TIM, we have shown that it’s possible to make SMFCs
with very low thermal resistance using commercially available fibers. However, CFs
have very high stiffness, and might not improve the mechanical properties of the
TIM significantly, although the benefits in BLT control and handling is still present.
For the PA6,6 based TIM, we have shown how the mechanical properties of the
TIM can be modified based on different material selections and compositions, while
retaining good thermal properties. This allows us to tailor the TIM towards specific
applications where current materials are unsatisfactory.






Chapter 4

Conclusion and outlook

This thesis contributes to the field of thermal interface materials research through
a thorough review of the field as well as experimental work on solder matrix fiber
composite TIMs.

The first part of the thesis investigates the different trends within novel TIM
research. Three main categories are identified, and each treated in terms of novel
research, trends and potential for future research. First, particle laden polymers have,
despite investigations into high thermal conductivity fillers such as graphene and
carbon nanotubes, not been able to improve the performance of novel compounds
over that of already existing commercial compounds. Second, continuous phase
metal TIM have excellent thermal conductivity, but reliability is a concern, and
most research is focused on modifying the mechanical properties while retaining
low thermal interface resistance. Third, CNT array TIM show great promise as
future TIM with thermal performance in the range of solders, together with complete
thermomechanical decoupling. However, the reliability has not yet been confirmed,
and methods for producing CNTs in a large scale is required before widespread
application is possible.

Finally, several novel types of TIM are presented, including thermally conductive
polymers, mechanically deformed metal and novel carbon based TIM. Together they
give an overview of the field and could be a useful tool to gain an overview of the
field for new researchers or researchers from other fields.

The second part of the thesis describes experimental work on solder matrix fiber
composite TIM. The concept has already been investigated by researchers from out
lab, but previous research was reliant on complicated and expensive processing. In
this thesis, we investigate SMFCs using two different commercially available fibers:
carbon fibers and Ag coated nylon fibers. The fibers were investigated as composites
together with In and SAC solder matrices.

The studies show how the fiber phase modify the thermal, mechanical and
handling properties of the original solder. By varying the concentration of fibers in
the TIM, the properties of the composite can be tailored towards specific applications,
potentially opening up new applications which place particular demands on the TIM.
At moderate fiber concentrations, the thermal interface resistance was similar to
pure solder TIM, indicating that the fiber presence does not significantly affect the

39



40

thermal performance. The SMFC presented in this work represents a step on the
path from research to industrial applications.
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