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Abstract 
Lipids are important naturally occurring components in all living cellular organisms. They 
serve as the main building blocks of cellular membranes, participate in many signaling 
pathways and are also stored as an energy source. Due to the extreme complex cellular 
chemistry and structure of lipids, there is a real need to have a label-free technique with high 
chemical specificity, high accuracy and high sensitivity for study of lipids within the cell 
membrane. Mass spectrometry imaging (MSI) is capable of providing information on the 
chemical composition and spatial distribution of complex biological molecules. MSI is a 
powerful label-free tool for lipid analysis across biological materials. Both matrix-assisted 
laser desorption/ionization (MALDI) and secondary ion mass spectrometry (SIMS), the two 
most common MSI techniques, have recently undergone many developments to improve 
spatial resolution and provide high sensitivity, mainly for higher mass species. These two 
techniques offer different capabilities in the analysis of a biological system. The main 
differences are that larger molecules can be ionized and detected using MALDI, whereas 
SIMS is capable of detecting mainly small molecules but at higher spatial resolution 
compared to MALDI. This thesis mainly focuses on two scopes of investigation with different 
sample modifications and also on the overall applicability of MSI for analysis of tissue 
samples. In recent years, some surface modifications have been developed to enhance the 
yield of intact molecular species in SIMS. One of them is matrix enhancement secondary ion 
mass spectrometry (ME-SIMS), which is the combination of the protocol for MALDI sample 
preparation and normal SIMS. In paper I, the possible mechanism of the signal enhancement 
in ME-SIMS was studied. Here, sublimation was used to deposit a thin layer of an organic 
matrix on the surface of a brain tissue slice analyzed with SIMS. In this work, I showed that 
sublimation could successfully provide enhancement in ion yields for a multitude of lipid 
species in SIMS. The mechanism of this enhancement could be due to a lower ion suppression 
followed by removal of the cholesterol crystals from the surface of sample allowing detection 
for less abundant species. It is also possible that the extraction of some specific lipids into the 
deposited matrix directly leads to an increase of higher mass lipid ion yield.  In paper II, two 
different surface modifications, including matrix sublimation and nanoparticle deposition 
were applied on Drosophila brain samples and lipid information obtained from MALDI 
analysis were compared. Here, it was shown that each technique can be used in a 
complementary approach to detect a variety of lipid species. In paper III, SIMS imaging was 
employed to investigate the effect of specially processed cereals, as a specific diet on the 
alteration of lipid composition across the rodent intestine tissue. In paper IV, I continued the 
study of changes in lipid content, this time on brain samples of animals exposed to the same 
diet. Intake of such cereals increases active antisecretory factor (AF) in plasma, an 
endogenous protein with proven regulatory function on inflammation and fluid secretion. 
Although, the exact mechanism for the activation process of AF at the cellular level remains 
unclear. The results show changes in lipid content of cell membrane in response to this cereals 
intake suggesting a relation to activating AF.  In paper V, the techniques for developing of 
sample preparation in SIMS imaging were investigated to improve the signal intensity of 
intact molecules at higher resolution. 
  
Keywords: Mass spectrometry imaging, SIMS, ME-SIMS, MALDI, Sample preparation, Lipid.  



IV 
 

List of publications 
 
The thesis is based on the work contained in the following papers: 

I. An investigation on the mechanism of sublimed DHB matrix on molecular ion yields in 
SIMS imaging of brain tissue. 

Masoumeh Dowlatshahi Pour, Per Malmberg, and Andrew G. Ewing, Anal Bioanal Chem., 
2016 May, 408, pp 3071–3081. 

 

II. Laser Desorption Ionization Mass Spectrometry Imaging of Drosophila Brain Using 
Matrix Sublimation versus Modification with Nanoparticles. 

Nhu T. N. Phan, Amir Saeid Mohammadi, Masoumeh Dowlatshahi Pour and Andrew G. 
Ewing, Anal. Chem., 2016 Feb, 88 (3), pp 1734–1741. 

 

III. Mass spectrometric profiling of lipids in intestinal tissue from rats fed cereals 
processed for medical conditions.  

Masoumeh Dowlatshahi Pour, Eva Jennische, Stefan Lange, Andrew G. Ewing and Per 
Malmberg, Biointerphases, 2016 Jun, 11(2), pp 02A3101- 02A3107. 

 

IV. Food induced changes of lipids in rat neuronal tissue visualized by ToF SIMS 
imaging. 

Masoumeh Dowlatshahi Pour, Eva Jennische, Stefan Lange, Andrew G. Ewing and Per 
Malmberg, Sci Rep., 2016 Sep, 6, pp 327971- 327979. 

 

V. Improved molecular imaging in rodent brain with time of flight secondary ion mass 
spectrometry using gas cluster ion beams and reactive vapor exposure. 

Tina B. Angerer, Masoumeh Dowlatshahi Pour, Per Malmberg, and John S. Fletcher, Anal 
Chem., 2015 Apr, 87(8), pp 4305-4313. 

 

 

 

 

 



V 
 

Related publications not included in the thesis 
 

Zinc Regulates Chemical-Transmitter Storage in Nanometer Vesicles and Exocytosis 
Dynamics as Measured by Amperometry 

Lin Ren, Masoumeh Dowlatshahi Pour, Soodabeh Majdi, Xianchan Li, Per Malmberg, and 

Andrew G. Ewing, Angew. Chem., Int. Ed. 2017, 56, pp 4970 –4975. 

 

New frontiers in investigation of Psoriasis skin tissue by lable-free multi-modal imaging: 
a pilot study on phototherapy treated patient 

Nisha Rani Agarwal¥, Masoumeh Dowlatshahi Pour¥, Maria Siekkeri Vandikas, Annika 
Enejder, Amra Osmancevic, Per Malmberg, (Submitted). 

 

Imaging mass spectrometry as a novel approach to measure hippocampal zinc.  

Masoumeh Dowlatshahi Pour, Lin Ren, Andrew G Ewing and Per Malmberg, (Manuscript). 

 

Zinc Changes Lipid Composition of Cells and Mediates Plasticity in Exocytosis: 
Combining ToF SIMS with Electrochemical Quantification 

Lin Ren¥, Masoumeh Dowlatshahi Pour¥, Per Malmberg and Andrew G Ewing, (Manuscript). 

  

 

¥ Authors share first authorship with equal contribution to the paper. 
 

 

 

 

 

 

 

 



VI 
 

Contribution report 
 

Paper I. I took part in planning and designing the project with co-authors. I performed the 
experimental part and discussed the experimental issues with Per Malmberg and Andrew G. 
Ewing. I was responsible for analyzing and interpreting the data, and writing the first draft of 
the manuscript and responding to reviewer comments in consultation with other authors.  

 

Paper II. I took part in planning and designing the project with co-authors. I assisted with 
sample preparation using sublimation for MALDI analysis. I contributed in writing part of the 
manuscript. 

 

Paper III. I took part in planning and designing the project with co-authors. I performed and 
contributed to experiments, data analysis, and interpretation. I wrote the majority of the first 
draft of the manuscript and responded to reviewer comments in consultation with co-authors. 

 

Paper IV. I took part in planning and designing the project with co-authors. I performed and 
contributed to experiments, data analysis, and interpretation. I wrote the majority of the first 
draft of the manuscript and responded to reviewer comments in consultation with co-authors. 

 

Paper V. I took part in experimental part with Tina B. Angerer and contributed in performing 
sample preparation, data analysis, and interpretation. I contributed in writing part of the 
manuscript. 

 

 

 

 

 

 
 
 
 
 
 
 



VII 
 

List of abbreviations 
 
 AA – Arachidonic acid 

 AF – Antisecretory factor 

 AuNP – Gold nanopartilces 

 CHCA – α-cyano-4-hydroxycinnamic acid 

 DAG – Diacylglycerol 

 DHB – Dihydroxybenzoic acid 

 FA – Fatty acid 

 GCIB – Gas cluster ion beam 

 ITO – Indium tin oxide  

 LDI – Laser desorption ionization 

 LMIG – Liquid metal ion gun 

 MALDI – Matrix-assisted laser desorption ionization 

 ME-SIMS – Matrix-enhanced secondary ion mass spectrometry 

 MetA-SIMS – Metal-assisted secondary ion mass spectrometry 

 MSI – Mass spectrometry imaging 

 NP – Nanoparticle 

 OPLS-DA – Orthogonal partial least squares discriminant analysis 

 PC – Phosphatidylcholine 

 PE – Phosphatidylethanolamine 

 PG – Phosphatidylglycerol 

 PI – Phosphatidyinositol 

 PS – Phosphatidylserines 

 SALDI – Surface assisted laser desorption ionization 

 SEM – Secondary electron microscopy 

 SIMS – Secondary ion mass spectrometry 

 SM – Sphingomyelin 

 SPC – Specially processed cereals  

 TAG – Triacylglycerides 

 TFA – Trifluoroacetic acid 

 ToF –Time of flight 

 UHV – Ultra-high vacuum  

 



VIII 
 

Contents 
 
1 The Brain and Neuronal Communication………………………………….  1 
 
1.1. Neurons…………………………………………………………………………………    1 
1.2. Glia cells……………………………………………………………………………….     3 
1.3. Gray and white substances in the brain………………………………………………..     4 
1.4 Animal models for biological studies…………………………………………………..     4 
       1.4.1 The rodent’s nervous system……………………………………………………..    4 
                 1.4.1.1 Cerebellum region and functions………………………………………..     5 
       1.4.2 Drosophila melanogaster brain …………………………………………………     7 
 
2 Lipids and Biological Functions of Lipids………………………………..  10 

2.1Categories of lipids …………………………………………………………………....    10 
     2.1.1 Fatty acyls………………………………………………………………………..    11 
     2.1.2 Glycerophospholipids……………………………………………………………    12 
              2.1.2.1 Phosphatidylcholine (PC)………………………………………………..    12 
              2.1.2.2 Phosphatidylethanolamine (PE)………………………………………….    13 
              2.1.2.3 Phosphatidylserine (PS)………………………………………………….    14 
              2.1.2.4 Phosphatidylinositol (PI)…………………………………………………   14 
              2.1.2.5 Phosphatidylglycerol (PG)……………………………………………….   15 
     2.1.3 Sphingolipids…………………………………………………………………….    16 
              2.1.3.1 Sphingomyelin (SM)……………………………………………………..   17 
              2.1.3.2 Gangliosides……………………………………………………………..    17 
     2.1.4 Sterol lipids (cholesterol)………………………………………………………..    17 
2.2 Biological functions of lipids…………………………………………………………    18 
      2.2.1 Lipids as the integral components of cell membranes………………………….    18 
      2.2.2. Lipids serve as an energy source……………………………………………….    19 
      2.2.3. Lipids as second messengers in cellular signaling……………………………..    19 
2.3 Neural membrane lipids alterations in neurological disorders……………………….     20   
 
3 Biological Mass Spectrometry Imaging………………………………….  22  
 
3.1 The mass spectrometry (MS): brief introduction and history…………………………    22 
3.2 Time-of-flight mass analyzer…………………………………………………………     23  
3.3 Mass spectrometry imaging…………………………………………………………..     25 
3.4 Advantages of MSI…………………………………………………………………...     26 
3.5 Biological sample preparation for MSI……………………………………………….    26 
      3.5.1 Tissue preparation………………………………………………………………     27 
      3.5.2 Cell sample preparation…………………………………………………………    28 
3.6 Pitfalls of MSI…………………………………………………………………………   29 
      3.6.1 Resolution and Sensitivity………………………………………………………    29 
 
4 Matrix Assisted Laser Desorption Ionization (MALDI)………………..  30 
 
4.1 Principles of MALDI…………………………………………………………………..   30 
4.2 Spatial resolution in MALDI imaging…………………………………………………   31 
4.3 Overview of sample preparation for MALDI imaging………………………………..    32 



IX 
 

      4.3.1 Sample washing………………………………………………………………....     32 
      4.3.2 MALDI matrix choice and application……………………………………….. ..     33 
      4.3.3 Nanoparticles application; an alternative to the organic matrix………………. ..    36 

5 Secondary Ion Mass Spectrometry (SIMS)……………………………..    37 
 
5.1 Basic principles………………………………………………………………………..     37  
5.2 Generation of secondary ions……………………………………………………….....     38 
      5.2.1 Sputtering………………………………………………………………………..     38 
      5.2.2 Ionization………………………………………………………………………...    39 
5.3 Basic equation for SIMS……………………………………………………………….    40 
      5.3.1 Matrix effect……………………………………………………………………..     40 
      5.3.2 Damage cross-section and secondary ion formation efficiency……………….. .     41 
5.4 Operational modes of SIMS……………………………………………………………    42 
      5.4.1 Dynamic SIMS…………………………………………………………………...    42 
      5.4.2 Static SIMS………………………………………………………………………    42 
5.5 SIMS imaging………………………………………………………………………….    43 
5.6 Primary ion sources for SIMS………………………………………………………….    44 
      5.6.1 Liquid Metal Ion Guns (LMIG)………………………………………………….    44 
      5.6.2 Electron Impact (EI) Sources…………………………………………………….    45 
5.7 Comparison of primary ion sources……………………………………………………    46 
5.8 Technical improvements of SIMS for biological analysis……………………………..    47 
5.9 SIMS data analysis……………………………………………………………………..    49 
 
 
 Summary of Papers………………….……………………………………… 51 
 
Concluding of Remarks…………………………………………………….   54 
 
Acknowledgments…………………………………………………………… 55 
 
References………………………………………………………………........  58 
 
 
 
 



1 
 

1. The Brain and Neuronal Communication 
 

The human brain is one of the main parts of the central nervous system (CNS). It is the most 

complex organ, which controls biological processes in the human system, from simple bio-

processes in single cells to complicated processes in complex organs. In fact, the brain is 

involved in a wide range of specific body functions, including motor control and physical 

motions, hormone regulation, cognition processes, thought, perception, emotion and many 

other biological activities and processes. The brain comprises two main groups of cells 

including nerve cells (neurons) and support cells (glia cells) 1,2 which are described in detail in 

following sections in this chapter.  

 

1.1 Neurons 

Due to the massive variety of brain-controlled processes, the brain necessarily links and 

communicates with the whole body through a very complicated communication system called 

the neuronal network. The human brain has been estimated to consist of a billion neurons 

which are responsible for cellular communication, signaling and transition of information 

within the network. Neurons can communicate with each other via a junction called a 

synapse, which is a region about 12-20 nm between two adjacent neurons 3,4 Figure 1.1 shows 

a schematic of a neuron and the synaptic connection between two neurons. Compared to the 

other cell types of the body, neurons are structurally different. They are polarized and 

typically composed of dendrites, a cell body, and an axon with the axon terminals.. Each of 

these possesses a specific function.5,6  

The cell body (soma or perikaryon) comprises the nucleus and also some other intracellular 

organelles containing microtubules, ribosomes, golgi, mitochondria, and exclusively 

neurofilaments which are essential for cell functioning. The dendrites are short processes that 

extend from the cell body and they are generally divided into smaller branches. The function 

of the dendrites is to receive signals and information from neighbouring neurons in the 

synaptic space and then carry signals to the cell body. And at the cell body, small electrical 

impulses are formed from chemical signals received from presynaptic neurons. These small 

impulses are then integrated forming a larger potential called an action potential, which 
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travels along the axons and allows the neuron to transmit electrical signals over some 

distance. Axons are long extensions projecting from the cell body to transfer neuronal outputs 

typically to dendrites of adjacent neurons via a synaptic junction.1,2 

To help better conduction of the action potential, the axons are periodically covered by a thick 

non-conductive layer composed of lipid substances called the myelin sheath. The process of 

adding and accumulation of myelin on the axon is called myelination, which is performed by 

glial cells.  The electrically insulating myelin sheaths wrapped around the axon allow 

transmission of the action potential along the nervous system at considerably higher speeds.2,7  

 

Figure 1.1 An illustration of neuronal structure. Neurons contain 3 main parts; the cell body, the dendrites and 

the axon. Neurons are typically connected to each other through a structure called a synapse where cellular 

communication occurs either electrically or chemically. Image reproduced with permission from Fischbach.8 
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Neurons differ in many ways based on their morphology and function. Also, based on 

polarity, neurons are placed in three different categories of unipolar, bipolar and multipolar 

(Figure 1.2). In this regard, neurons can be recognized as unipolar when the axon and 

dendrites grow from the same place on the cell body. Neurons are considered bipolar when a 

single dendrite and the axon branch from opposite sides of the cell body. If neurons contain 

one axon with multiple dendrites allowing them to receive signals from other neurons via 

multiple synaptic points, they are considered multipolar.1,2,7  

 

 

Figure 1.2 Schematic for structures of three different classes of neurons based on their polarity: unipolar, bipolar 

and multipolar. 

 

1.2 Glial cells 

Another abundant cell type in the brain is the neuroglial cells, which are 10 times more 

abundant than neurons and indeed compose the bulk of the nervous system. Glial cells have 

been recognized in two main categories of macroglia and microglia. Macroglia in turn 

consists of three different classes; 1. oligodendroglia cells, which serve to form myelin sheets 

around the axon in the central nervous system (CNS); 2. ependyma cells that make myelin 

sheets in the peripheral nervous system (PNS); and  3. astrocytes play crucial roles such as 
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providing the neurons with nutrients by releasing growth factors, supporting the structure of 

the nervous system, improving the efficiency of cell signaling between the neurons and also 

aiding neuronal migration. Microglia cells act as an important agent in the destruction of 

pathogens and removal of dead neurons.7 

Moreover, as glial cells are key factors in maintaining the proper functioning of nervous 

system, significant alteration in their function can be observed in disorders and diseases such 

as Parkinson’s disease (PD), Alzheimer’s disease (AD) and Amyotrophic lateral sclerosis 

(ALS).9 

 

1.3. Grey and white matter in the brain  

In general, there are two different kinds of tissue in the CNS, grey and white matter. The grey 

matter, which appears as gray in color is largely comprised of cell bodies, dendrites, and 

axonal terminal of neurons. Typically, synaptic communication between neurons mostly 

occurs in this region. White matter, which is referred to as the area with an off-white colour, 

mainly contains myelinated axons and in this area, neuronal signals are transmitted via axons 

over long distances.2 

 

1.4 Animal models for biological studies 

1.4.1 The rodent nervous system 

There are common similarities known between rodents, particularly rats and mice, and human 

beings in terms of mammalian genes and biochemical pathways. More importantly, both 

rodents and humans suffer from many of the same diseases due to having the same basic 

physiology, organs, and body plans. In recent years, genetic engineering has produced rodent 

models of disease for clinical, behavioral, and physiological investigations. A remarkable 

variety of studies using rat models have been presented to characterize the causes of 

neurological diseases, to find insights into neuronal mechanisms, and also to assess potential 

drugs and new therapeutic options for humans.10-12 
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 A detailed anatomic and structural study of the rat brain has been comprehensively done by 

Tsujino and Sakurai.13 Figure 1.3 depicts anatomy and structure of different regions in a 

sagittal section of the rat brain.  

 

 

 

Figure 1.3 Schematic illustration of a sagittal section displaying the main parts of the rat brain. Image reproduced 

with permission from Nuñez et al.14 

 

1.4.1.1 Cerebellum region and functions 

The main tissue type used in this thesis is rat brain cerebellum. The cerebellum is also called 

the little brain as it is found in the posterior brain hemispheres, located above the brainstem; 

the structure which forms the connection between spinal cord and brain. The cerebellum 

makes up about 10 percent of the total weight of the brain, and it has a symmetrical structure 

with two hemispheres surrounded by cerebellar cortex which is made up of grey matter. The 

cerebral cortex in the cerebellum is the outermost layer which is composed of neurons densely 

folded to pack as much surface area as possible into the small space. The cerebellum contains 

roughly about half of the total number of neurons within the entire mammalian brain. 15,16  
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Figure 1.4a, shows a dorsal view of the cerebellum of a rat brain depicting its geometrical 

structure which contains three divisions of one midline vermis as the major axis in the middle 

of two lateral hemispheres positioned at each side. A sagittal slice of the rat cerebellum, 

illustrated in Figure1.4b, indicates ten various lobules of the cerebellar cortex making up the 

entire structure of cerebellar region. The cortical layer in each lobule basically consists of 

three different layers with the molecular layer (ML) as the outermost layer, the Purkinje 

Perikarya layer (PL) located in the middle and the bottom layer which is called the Granule 

Cell (GL) layer (Figure 1.4c). Also, a thin sheet of white matter can be seen in the middle of 

the structure.17 

The cerebellum is involved in a variety of functions related to body movement and 

coordination such as maintaining balance, posture, and gait. 18,19 Also, some recent evidence 

has been found to implicate the involvement of the cerebellum in a wide range of non-motor 

higher cognitive functions20 including language,21 planning and prediction,22 learning, 

emotional memory and emotional experience,23-27 sex and orgasm,28,29 and perceptual 

ability.30 

In addition, dysfunction of the cerebellum has been reported to be involved in some disorders 

including Bipolar disorder, Schizophrenia, and Specific Language Impairment.31-33  
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Figure 1.4 The ret cerebellum. a: An illustration from dorsal view of the cerebellum in the rat brain. The 

structure shows an ellipse with a central area called the vermis surrounded by two lateral hemispheres. b: A 

sagittal cross-section of the rat cerebellum showing 10 different lobules in the structure of the cerebellar cortex. 

c: An expanded view of Lobule 7 illustrating three different layers of cerebellar cortex: Molecular Layer (ML) as 

the outermost layer, Purkinje Perikarya Layer (PL) located in the middle and the bottom layer which is called the 

Granule Cell (GL) layer (Figure 1.4 c). Also, a thin sheet of white matter is filled in the middle of the structure 

cortical. Image reproduced with permission from Miquel and et al.17 

 

 

1.4.2 Drosophila melanogaster brain 

Drosophila melanogaster (fruit fly) is known as an ideal model organism in biological studies 

with many advantages.34-37 Flies reproduce fast (around 100 eggs per day), which is very 

advantageous for large population studies, statistical analysis, and genetic experiments 

requiring different generations. In this model, molecular mechanisms such as metabolism, 

organogenesis, and also neural development have been found to be comparable to humans and 

mammals. In addition, the fly possesses a variable range of behavioral patterns including 

learning and memory, sleeping, stress, aggression, drug addiction, and alcohol tolerance, 

which all imply the existence of refined and developed motor systems, cognitive processes, 

and coordinated sensory inputs. The nervous system of the fly is very similar to the nervous 
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systems of mammals, particularly the neurotransmitter system and neurological functions 

related to different parts of the brain.38-40 The Drosophila brain is small, with a volume about 

5 nL, and contains more than 100 000 neuronal cells forming complex nervous circuits to 

carry out a variety of higher order neurological processes.40 

Figure 1.5 depicts a view from the structure of the adult head of Drosophila melanogaster (a) 

and also a colored schematic of the fly brain showing the main regions and related structures 

(b).    

 

 

Figure 1.5 The fly head and brain. a: Drawing of the adult head of Drosophila melanogaster showing different 

related parts. Image reproduced with permission from Atkins et al.41 b: Color-coded representation of the main 

regions of the fly brain. Image reproduced with permission from Heisenberg et al. 42  

 

As can be seen in Figure 1.5b, the Drosophila brain contains of two main parts, the central 

brain and the optical lobes. The central brain, the so-called protocerebrum, mainly consists of 

several regions facilitating different neurological processes. The essential region is the 

mushroom body which is located in the dorsal and posterior portions of the central brain. The 

mushroom body region is a center of learning, memory, and olfactory as well as multisensory 

functions processing. Another part is the central complex, a structure found along the midline 

of the central brain, which serves a key role in connecting many parts in the central brain and 

is also involved in integrating and guiding behavior and activities, particularly motor, 

locomotion, sensory, learning, and memory functions.43,44  
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The antennal lobes region is another part of the central brain, which is placed in the anterior 

area and forms the primary olfactory center in Drosophila. The lobes possess the olfactory 

receptor neurons that are essential for the flies to detect odor and identify food and distinguish 

their partners and predators.45 These lobes are connected to each other and also to the 

mushroom body as well as other parts of the brain by several kinds of neurons including local 

neurons, projection neurons, and centrifugal neurons. The final region is the suboesophageal 

ganglia, a region in the central brain which is associated with regulation of gustatory neuron 

activities.46 The optical lobes region contains about 60 000 neurons on each side and is 

another part of the fly brain which is responsible for vision activities.47   

In this thesis, the brain tissue sections from both rat and fruit fly models have been 

successfully used to demonstrate as proof of principle the methods, but also to study new 

neuroscience. These models will be further discussed for the experimental analysis with 

greater details later in this thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 



10 
 

2. Lipids and Biological Functions of Lipids 
 

Lipids are small naturally occurring molecules in all living organisms. As they have a 

hydrophilic polar head group and hydrophobic nonpolar tails in their structure, all lipid 

molecules in the cell membrane are naturally amphipathic.48 Lipids play different critical 

functions in biological systems. The key function of lipids is the formation of lipid bilayers in the 

cell membrane (Figure 2.1). Here the lipids provide the structural integrity required for protein 

function as well as serving as lipid anchors to bind proteins to the cell membrane. Also, lipids 

are involved in signaling pathways acting as secondary messengers in signal transduction and 

synaptic transmission. Furthermore, lipids are well-known energy storage molecules, 

particularly in the form of fatty acids (FA) and triacylglycerols (TAG). Another function of 

lipids is to serve as vitamins and hormones.49,50 

 

 

Figure 2.1 Schematic representation of the cell plasma membrane illustrating different chemical constituents 

containing lipids as the main structure of the membrane. Image reproduced with permission from Marieb et al. 51 

 

2.1 Categories of lipids 

Lipids differ considerably in structure and chemical properties. Different biochemical 

transformations and pathways can make the lipid structures more complex during their 

biosynthesis. Due to this level of diversity, a comprehensive classification and chemical 
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representation system is required to properly cover the broad range of lipids. Accordingly, a 

number of classification systems have been developed which classify lipids by different 

characteristics, such as polarity, solubility or degree of saturation. A comprehensive 

classification system for lipids was published in 2005 by Fahy et al. to establish a universal 

nomenclature for lipids.52 From this, biological lipids are defined as amphipathic small 

molecules that are originally made of two biochemical subunits: ketoacyl groups and isoprene 

groups (Figure 2.2). Using this approach, lipids can be classified into eight different groups: 

sphingolipids, saccharolipids, fatty acyls, glycerolipids, glycerophospholipids, polyketides, 

prenol lipids, and sterol lipids. This lipid classification includes almost all subgroups of lipids; 

however, only the lipid groups that are abundant in brain tissues will be discussed here. 

 

Figure 2.2 Lipid building blocks. The LIPID MAPS classification system is based on two fundamental 

biosynthetic concepts “building blocks”: isoprene and ketoacyl groups. Image reproduced with permission from 

Fahy et al.52 

 

 2.1.1 Fatty acyls 

Fatty acyl is a general name for describing fatty acids, their conjugates, and derivatives. The 

fatty acid as one of the most fundamental classes of biological lipids is essentially made of a 

terminal carboxylic acid with a long saturated or unsaturated aliphatic chain. The fatty acid 

structure is commonly used as a building block of complex lipids. Since they are commonly 

being formed from two carbon acetyl-CoA molecule extensions, most naturally occurring 

fatty acids are straight-chain carboxylic acids with an even number of carbon atoms. 

However, odd-chained and branched fatty acids have also been found, for instance in protozoa 

and bacteria.53 Fatty acids exist as either free fatty acid (FFA) molecules or fatty acyl esters in 

more complex lipid components such as phospholipids, diglycerides, and triglycerides in the 

body. The majority of the fatty acids found in lipids are monocarboxylic acids.54 
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2.1.2 Glycerophospholipids 

The glycerophospholipids are abundant in nature and are key components of the lipid bilayer 

of cells. Glycerophospholipids, which are glycero-containing lipids can be considered to be 

glycerolipids, but due to their abundance and importance, they are placed in a separate 

category. Glycerophospholipids, with an amphiphilic structure, are essentially formed from 2 

fatty acid tails as the nonpolar part of the lipid, connected to a polar head-group which 

contains a phosphate group esterified to a glycerol backbone (Figure 2.3). Depending on the 

polar head group structure, different subgroups with different biological functions are defined 

for the lipids in this category. Correspondingly, the main subclasses are phosphatidylcholine 

(PC), phosphatidylethanolamines (PE), phosphatidylserines (PS), phosphatidylinositols (PI), 

and phosphatidylglycerol (PG). Among them, the most abundant phospholipids in the brain 

are PE, PC and PS and the amount and distribution of these lipids vary significantly within 

specific brain regions.55,56  

 

 
 

Figure 2.3 General structure of glycerophospholipids displaying the polar head group and hydrophobic tail. 
 

 

2.1.2.1 Phosphatidylcholine (PC) 

Phosphatidylcholines (PCs) (Figure 2.4) are the most abundant lipid species in the class of 

glycerophospholipids and incorporate choline as a head-group. They are the major 

constituents in the lipid bilayer of cell membranes, specifically in brain tissue. PCs with head 

and tail groups of approximately the same size are lamellar in (cylindrical) shape, and as such 

are dominantly distributed in the outer leaflet of cell membranes.57 Since the choline head-

group contains nitrogen in its structure, PC molecules can be either net neutral in charge as 

zwitterions with a positive amine combined with a negative phosphate group, or gain a 

positive charge by protonation in mass spectrometry.58 
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Figure 2.4 Typical molecular structure of phosphatidylcholines comprised of a glycerophosphoric acid and a 

choline head group, with various kinds of fatty acids (R1 and R2 that can be saturated or unsaturated). 

 

2.1.2.2 Phosphatidylethanolamine (PE) 

Phosphatidylethanolamine (PE) (Figure 2.5) covering about 15–25% of the total lipid content 

in mammalian cells is the second most abundant phospholipid after PC. The main building 

block to form PE is ethanolamine (H2N-CH2-CH2-OH), which occurs in every cell in the 

human body as the head group of PE. Owing to a small head group compared to its 

hydrophobic tails, PE has a conical shape causing curvature properties to the cell membrane. 

PE is therefore enriched in the inner leaflet of membranes and as a zwitterionic molecule is 

able to yield both positive and negative molecular ion species in mass spectrometry.59,60 

 

 

 

Figure 2.5 General structural formula of phosphatidylethanolamine displaying a combination 

of glycerol esterified with two fatty acids and phosphate group that are linked to an ethanolamine group. 

 

 

 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Glycerol
https://en.wikipedia.org/wiki/Fatty_acids
https://en.wikipedia.org/wiki/Ethanolamine
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2.1.2.3 Phosphatidylserine (PS) 

Phosphatidylserine (PS) is another lipid in the glycerophospholipid category. It consists of 

two fatty acids linked to an ester connection to the first and second carbon of glycerol and 

serine. The serine molecule is attached through a phosphate group linkage to the third carbon 

of the glycerol lipid (Figure 2.6). Similar to other conical shaped lipids, it is mainly 

distributed in the inner leaflet of membranes. However, surface-exposed PS occurs during cell 

death or damage since PS is transported to the outer cell membrane on cells undergoing 

apoptosis.61,62 

 

 
Figure 2.6 General structural formulation of phosphatidylserines presenting attachment of two fatty acids to the 

first and second carbon of glycerol backbone and serine which is attached through a phosphate group linkage to 

the third carbon of the glycerol lipid.  

 

 
 
2.1.2.4 Phosphatidylinositol (PI) 

Phosphatidylinositol (PI) is formed from a glycerol backbone, with an inositol ring and a 

phosphate at the sn−3 position and two acyl chains esterified at the sn−1 and sn−2 positions. 

The inositol ring can be phosphorylated at different places in which seven unique species 

known as phosphoinositides (PIPns) can be generated (Figure 2.7). PIs are well known as 

both signaling molecules and key structural constituents of the cell membrane in various 

eukaryotes. They can be found in all tissues; however, they are mostly present in the brain. 

Since PI has several OH groups on its head-group, it can easily carry a negative charge and be 

detected as [M-H]- species in ToF-SIMS.63 
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Figure 2.7 The structural formula, arrangement and also the production of phosphatidylinositol. 

Phosphatidylinositol is formed from a glycerol backbone (blue), two acyl chains at the sn−1 and sn−2 positions 

(red) and an inositol headgroup (green). The hydroxyl groups can be phosphorylated at positions 3, 4 and 5, 

generating seven typical phosphoinositide species. Image reproduced with permission from D'Souza et al.63 

 

 

 

2.1.2.5 Phosphatidylglycerol (PG) 

Phosphatidylglycerol (PG) as the simplest glycerophospholipid consists of a glycerol 

molecule in which the hydrogen of one of the primary hydroxy groups has been replaced by a 

phosphatidyl group (Figure 2.8). PG is the second most abundant lipid species in bacterial cell 

membranes. Also, it occurs in plant and in mammalian cells (mainly in mitochondria) but in 

low abundance.64  
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Figure 2.8 General chemical structure of a phosphatidylglycerol showing a phosphatidyl group which is replaced 

with the hydrogen of one of the primary hydroxy groups in glycerol molecule.  

 

 

 
2.1.3 Sphingolipids  

The amino group of sphingosine is acylated with long chain fatty acids and the N-acylated 

product is termed a ceramide, which is linked to different head groups to form various 

membrane lipids. Indeed, ceramide is a sphingolipid with an R group composed of only a 

single hydrogen atom. The R group comprising phosphocholine yields a sphingomyelin, and 

numbers of sugar monomers or dimers, yield cerebrosides and globosides, respectively 

(Figure 2.9). Contrary to the glycerophospholipids, simple sphingolipids with sufficiently 

amphipathic structure can freely diffuse and flip between the inner and outer leaflet of the cell 

membrane.65 

 
Figure 2.9 Structural representation of sphingolipids: contains a sphingosine, a long chain aliphatic amino 

alcohol, long chain fatty acid and different head groups (as R) yielding major classes of sphingolipids.  

 



17 
 

2.1.3.1 Sphingomyelin (SM)  

Sphingomyelin (SM) is the most abundant complex type of sphingolipid found in mammalian 

cell membranes, especially in the membranous myelin sheath, which surrounds nerve cell 

axons. Among the membrane phospholipids in humans, sphingomyelin is the only one not 

derived from glycerol. Structurally, it is the phosphodiester of ceramide and choline, which is 

generated by a reaction that transfers the head group of PC to ceramide. 66,67  

Similar to PC, the choline head group makes it zwitterionic with no net charge; however, it is 

also capable to be ionized as a positively or negatively charged species by the loss of a methyl 

group.  

2.1.3.2 Gangliosides 

Gangliosides, as the most abundant lipids in the nervous system, are a varied group of lipids 

composed of a glycosphingolipid with one or more sialic acids linked to a sugar chain. These 

complex lipid species are generally characterized based on heterogeneity and diversity of the 

structures in their carbohydrate chains. Accordingly, 188 gangliosides with different 

carbohydrate structures have been identified so far. In cells, gangliosides are primarily 

localized in the outer leaflets of plasma membranes. The expression levels and patterns of 

brain gangliosides are considerably changed during brain development. For instance, simpler 

forms of gangliosides are present in developing brains, while more complex gangliosides are 

found in the adult brain.68 Because of their acidic nature, they produce a negatively charged 

species in mass spectrometry. 

2.1.4 Sterol lipids (cholesterol) 

Sterol lipids have the unit structure of a five-carbon branched chain. The most abundant lipid 

component from this category in the brain is cholesterol (Figure 2.10), which is an essential 

structural component of animal cell membranes and is necessary for providing both the 

structural integrity and fluidity of the cell membrane. Cholesterol is capable of freely 

traveling between the inner and outer leaflet of the membrane. It plays a key role in the 

formation of lipid rafts and is responsible for protein trafficking and signaling at the cell 

surface.69 In mass spectrometry, cholesterol can be ionized to [M+H-H2O]+ and to the 

negative species of [M-H]+ but in lower abundance. 

https://en.wikipedia.org/wiki/Glycosphingolipid
https://en.wikipedia.org/wiki/Sialic_acid
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Figure 2.10 Representative structure of cholesterol (a combination of steroid and alcohol) with its polar hydroxyl 

group which can be esterified by a fatty acyl residue.  

 

 

2.2 Biological functions of lipids  

2.2.1 Lipids as the integral components of cell membranes 

The plasma membrane creates the protective barrier surrounding all cells. The main 

constituents of the plasma membrane are lipids which provide an efficient shield against the 

aqueous environment owing to their hydrophobic and hydrophilic sections in their 

structures.48 Notably, among different lipid groups, cholesterol and glycerophospholipids are 

the two main lipid components in the lipid bilayer of the cell membrane. Specifically, brain 

tissue mainly consists of three major categories of lipids; cholesterol, glycerophospholipids 

(phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol) and sphingolipids 

(sphingomyelin, cerebrosides, sulfatides, and gangliosides) to such an extent that brain 

contains 20% of the body’s total cholesterol and also 20-25% of brain’s dry weight is 

composed of glycerophospholipids.56,70 

In the cell membrane, lipids arranged in cholesterol and sphingolipid-rich microdomains are 

called lipid rafts. 71 These rafts are enriched with transmembrane proteins and ion channels. 

Lipid rafts have also been implicated to serve as protein anchors to attach proteins to the cell 

membrane and to aid regulate protein functions as well. Moreover, K+ and Ca+ channels 

functions are affected by lipids and fatty acids such as arachidonic acid a lipid-based second 

messenger.49  This will be discussed in more details later in this section.  

Lipid organization in the cell membrane can be associated with regulation of bioprocesses in 

cells such as exocytosis; the process of membrane fusion of an intracellular trafficking vesicle 

with the cellular membrane of the presynaptic neuron to release neurotransmitters. Lipid 
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composition and their geometry can play a regulatory role in the membrane fusion of the 

vesicle and the plasma membrane. In fact, glycerophospholipids based on their shape and 

geometry, rearrange their localization across the cell membrane during exocytosis. Such that 

the lamellar shaped lipids including PC and sphingomyelin are highly localized away from, 

whereas conically shaped lipids such as PI, PE and PS accumulate in the high curvature 

fusion pore site. These changes in lipid structure and distribution of various lipid 

compositions provide sufficient flexibility of the membrane during fusion process facilitating 

exocytosis.57 

2.2.2. Lipids serve as an energy source  

In general, fatty acids (FA) and triacylglycerols (TAG), are viewed as the main reservoirs of 

energy for biological systems. FAs and TAGs are efficiently reduced producing higher energy 

(38 kJ/g) than the other types of energy sources including carbohydrates and proteins 

(17kJ/g). In addition, since lipids have hydrophobic properties, they are stored in anhydrous 

forms which provide a highly concentrated energy source for biological reactions.54  

2.2.3. Lipids as second messengers in cellular signaling 

Lipids play the role of second messengers in many cellular signaling pathways via 

biosynthetic and metabolic reactions with different enzymes. Second messengers are 

generated via different complex catalytic mechanisms from different precursors in biological 

reactions. Also, there is in general a relation among biochemical reactions involved in this 

process and one single pathway can affect other related signaling pathways. Arachidonic acid 

(AA), a 20 carbon polyunsaturated fatty acid and one of the most important lipid-based 

second messengers is essentially produced via the hydrolysis of glycerophospholipids by 

phospholipase. AA is also generated from a serial metabolic process in which AA is produced 

by the hydrolysis of phosphatidylinositol 4,5-biphosphate to diacylglycerol (DAG) and 

subsequently, the hydrolysis of DAG by phospholipase C.56,72 AA serves as modulating of 

Ca2+, K+ ion channels and protein kinase C activities and also the monoamine transporters by 

inhibiting glutamate uptake.57,73 

Diacylglycerols (DAGs), another major group of second messengers are generated by the 

catalytic cleavage of glycerophospholipids, mostly PI, PC, and PE. In addition, DAGs 

generally serve as precursors for second messengers such as PA and AA.56  
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Ceramides are metabolites, which are essentially generated from hydrolysis of sphingomyelin 

by sphingomyelinase. These lipid components have been implicated in several physiological 

cellular functions including cellular reaction to stress and injury, apoptosis, cell growth arrest, 

differentiation, cell senescence, cell migration and adhesion. Also, it has been shown that the 

ceramide level in the cells exposed to chemotherapy agents is increased and leads to the 

inflammation response and ultimately the cell death. Typically, the ceramide targets are a 

variety of biomolecules and enzymes such as ceramide-activated protein kinase (CAPK), 

ceramide-activated protein phosphatase (CAPP), protein kinase C, and phospholipase D. 

Moreover, phosphoproteins in cells can be affected by ceramides altering many biological 

functions of the cell.74,75  

2.3 Neural membrane lipids alterations in neurological disorders    

After white adipose tissue, the brain is the organ most enriched with lipids in the body.76 

Therefore, it is obvious that any lipid alternation can heavily influence brain structure and 

function and it has been well established that many neurological diseases such as Alzheimer’s 

disease (AD), Parkinson’s disease (PD), multiple sclerosis, schizophrenia, ischemic stroke, 

anxiety, depression, and epilepsies are associated with lipid perturbations in the brain. To 

date, the actual cause and cascade of events in the progression of these diseases are not fully 

known due to the extensive complexity of the brain. Recently, the study of possible lipid 

alternation during these neurodegenerative disorders has been strongly focused in the hope of 

finding underlying pathogenic mechanisms and also treatments.56,77 An overview of some of 

these disorders, their symptoms and the lipid systems involved are discussed here.  

Alzheimer’s disease as the most common form of dementia is a progressive brain disorder 

affecting the regions controlling memory and cognitive functions in the brain. In this 

worldwide neurodegenerative disease, a person’s memory, ability to learn, reason, 

communicate, and daily activities are progressively impaired. According to previous studies, 

one of the molecular mechanisms suggested for this disease is lipid peroxidation by which the 

levels of lipids such as polyunsaturated fatty acids, PE, and PI are notably reduced in different 

regions of AD brains. Accordingly, changes in the composition of membrane lipid lead to a 

dangerous reduction of signal transduction and synaptic function and also to a series of 

serious neural membrane defects in AD brain regions.78,79 

Parkinson’s disease (PD) is another disorder, which is signified by selective degeneration of 

dopaminergic neurons, tremor, and rigidity. The etiology of PD remains unclear yet, lipid 
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peroxidation and oxidative stress caused by free radicals have been proposed to play a key 

role in the pathogenesis of PD. Recent studies in this regard demonstrated a role for oxidative 

stress in PD by marked increases in 8-hydroxy-2’-deoxyguanosine, a hydroxyl radical-

damaged guanine nucleotide typically used to evaluate oxidative damage to DNA. A variety 

of markers of lipid peroxidation appeared to be notably raised in PD brain.80,81 

Multiple Sclerosis (MS) is an autoimmune inflammatory attack against the myelin insulation 

sheath of nerve cells in the brain and the spinal cord harmfully disturbing the central nervous 

system and the communication between the brain and the body. Yet the reason for this 

neurodegeneration is not completely understood, but lipid peroxidation has evidently been 

believed to occur in MS.82 

Schizophrenia is a genetic and chronic mental disorder affecting a person’s thinking, 

emotional reactions, social behaviour along with hallucinations and delusions. The 

mechanism of this mental illness remains one of the most puzzling, although recent studies on 

the neurological deficits of schizophrenia have shown that alterations in membrane lipids may 

be involved in schizophrenia pathophysiology. Accordingly, abnormal changes in 

concentration and distribution of PC, ceramides, and fatty acids have been observed in the 

schizophrenic brain. Also, the levels of PC and PE in cell membrane are diminished in the 

brain during schizophrenia. These abnormalities occurring in lipid composition of the cellular 

membrane possibly change the structure and function of the cell membrane and thus the 

function of membrane-bound proteins, availability of cell signaling molecules, and the 

behaviour of neurotransmitter systems. This can offer new insight into the role of lipid 

profiles in schizophrenia pathophysiology.82-84  

Ischemic stroke occurs as a result of an obstruction of a blood vessel supplying blood to the 

brain by a blood clot, which then leads to the loss of neurological function and brain injury. 

This is marked by failure in lipid functions giving rise to lipid alteration and ultimately cell 

death. Recent studies have revealed that a variety of lipid disturbances appear to occur in rat 

brain exposed to ischemic stroke. In the ischemic brain region, the potassium ion adduct of 

PC exists at a lower concentration; whereas the sodium ion adduct of PC is present at higher 

concentration. Considerably higher levels of glysoglycerophospholipids, sphingomyelin, and 

DAGs are accumulated in the injured brain showing that the metabolic pathways of lipids are 

altered in the inflammatory cellular response.85,86 
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3. Biological Mass Spectrometry Imaging  
 

For decades, the study of biological samples in particular tissues and cells have offered many 

challenges to the biologist due to their complex chemical and structural properties. So far, 

microscopic techniques and fluorescent labeling have been well known as the most powerful 

tools to image the distribution of biological molecules and to investigate the physiological 

processes happening within a biological system. However, these techniques basically suffer 

from a limitation that they do not provide direct chemical information, and they require an 

antibody label, probe, or stain to function. These labels might lead to a change in the chemical 

and physical properties of the labeled molecule thereby changing its intracellular distribution. 

Finally, to visualize the molecules of interest in biological systems, probes and antibodies 

might not always available or be too unspecific to give accurate results.  

In the past few decades, mass spectrometry imaging (MSI) has evolved as a powerful label-

free (although isotopic labels are sometimes used) technique for identifying, imaging and 

visualizing the intensity distribution of endogenous biological molecules such as peptides and 

lipids in the biological samples. The MSI technique provides many advantages compared to 

microscopy such as extremely low detection limits, parallel detection of multiple analytes in 

complex biological samples, and the ability to provide spatial as well as chemical information 

at once.87-89 

 

3.1 Mass spectrometry: brief introduction and history 
Mass spectrometry (MS) is a powerful analytical method used to elucidate the structural and 

chemical composition of different molecules in a sample based on measuring the mass to 

charge ratio (m/z) of charged particles. It is used to identify the composition of various 

chemical compounds. In general, MS instruments consist of three major components; ion 

source, mass analyzer, and detector. First, molecules of the sample are introduced into the gas 

phase and are ionized in the ion source. The ions produced are then subjected to the mass 

analyzer where they are separated and sorted based on their m/z ratio. The separated ions 

reach the detector and a signal is then sent to a data system which creates a mass 

spectrum.90,91 

J. J. Thomson, a physicist who described the electron in 1897, developed the first crude ‘mass 

spectrograph’ by which he measured the atomic weights of elements. In this device, ions 
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created in discharge tubes were introduced into electric and magnetic fields where they travel 

through parabolic trajectories. Subsequently, the produced particle rays were detected on a 

fluorescent screen or photographic plate. A later version of his instrument was completed by 

Thomson’s students who built a real mass spectrometer. In this device, ions could be 

distributed by mass and then focused by velocity.92 

In the 1940s Professor Alfred O. C. Nier designed and built some devices providing more 

sensitive and precise measurements of isotopes and their ratios. This was a revelation in mass 

spectrometry making this technique attractive for public attention. He designed a 60° sector 

field instrument, the so-called Nier-Johnson mass spectrometer, in which electrostatic and 

magnetic analyzers were combined in an exclusive combination. By further industrial 

development, the double-focusing magnetic sector instruments were introduced in which an 

electric sector was employed to correct kinetic energy spread of ions before separation in the 

magnetic field, in spite of the fact that this generation of mass spectrometers led to better mass 

accuracy, peak capacity, and resolution, those instruments were very expensive. This 

drawback led to developing some cheaper alternatives such as time-of-flight (ToF), 

quadrupole, and ion trap mass spectrometers.93 

 

3.2 Time-of-flight mass analyzer  
The time-of-flight (ToF) mass analyzer, introduced by William E. Stephens in 1946, led to a 

significant increase in the MS sensitivity due to a very high transmission and wide mass 

range.94 The unique advantages of a ToF analyzer include detection of all the ions generated, 

high mass resolution, parallel detection and direct examination of multiple ionic species from 

the sample making this analyzer ideal for the analysis of complex biological samples.95  In the 

ToF analyzer, ions are accelerated with a high voltage into a field-free zone where they are 

separated by differences in their velocities. With the same kinetic energy, the velocity of an 

ion in the flight tube is directly proportional to its mass and inversely proportional to its 

charge. This relationship is described in Equation 3.1 where kinetic energy (E Kinetic) is a 

function of mass (m) and velocity (v), as well as a function of particle charge (q=Ze) and 

potential (V).95,96  

 

𝐸𝐸 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑐𝑐 = 𝑞𝑞𝑞𝑞𝑞𝑞 = 𝑍𝑍𝑘𝑘𝑞𝑞𝑞𝑞 = 1
2
𝑚𝑚𝑣𝑣2 = 1

2
�𝑚𝑚 𝑙𝑙2

𝑡𝑡2
�      Equation 3.1 
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Time of flight for a specific ion can be calculated by Equation 3.2, given the length of the 

flight tube (𝑙𝑙).          
 

𝑘𝑘 = 𝑙𝑙 1
√2𝐸𝐸

 �𝑚𝑚/𝑧𝑧      Equation 3.2 

 

The lighter ions move faster in the flight tube and reach the detector sooner than heavier ions. 

Despite the fact that ions with the same mass to charge ratio should have the same flight time, 

the initial temporal, energetic, and spatial distributions among generated ions species can 

result in poor mass resolution even for ions with the same m/z ratio. As linear ToF mass 

analyzers were not capable of resolving these issues properly, their mass resolution is 

considerably reduced. However, several technological advances have been developed over the 

years, such as delayed extraction techniques and dual stage reflectrons to improve the 

resolving power of ToF mass analyzers. In the delayed extraction technique, there is a time-

specific delay applied on the ions generated before they are extracted into the mass analyzer 

using high voltage pulses. This leads to a decrease of the variation in kinetic energy between 

ions with very similar m/z ratio. In the reflectron (Figure 3.1), the ions are decelerated and 

reflected back into the drift tube by a series of electrostatic rings at the end of the flight tube. 

The reflectron increases the length and distance of the flight path and also remedies the 

energy spread among ions with similar m/z ratios. High energy ions penetrate longer into the 

reflectron than lower energy ions with the same m/z ratio, thus the ions with similar m/z but 

different kinetic energy reach the detector at the same time leading to improvement of the 

mass resolution.97-99  

 
Figure 3.1 Schematic illustration of Time of Flight (ToF) analyzer with ion reflectors.  
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3.3 Mass spectrometry imaging 
Mass spectrometry imaging (MSI), a rapidly growing subfield of chemical imaging is capable 

of combining the molecular mass analysis and spatial information to provide visualization and 

localization maps for a variety of atoms and molecules on complex surfaces. Generally, in 

MSI techniques, ion images are produced by rastering across the surface of the sample to 

collect a series of mass spectra from an ordered array of spots. After the data acquisitions, ion 

images for the analytes of interest is mapped and visualized by a color scale which represents 

the intensity distribution for individual chemical species along the sample surface (Figure 

3.2). In recent years more interest in MSI, particularly for biological studies, has rapidly and 

continuously grown leading to the development and application of secondary ion mass 

spectrometry (SIMS) and matrix-assisted laser desorption ionization (MALDI). SIMS allows 

detection of small molecules (<1000 Da) at a higher spatial resolution over a lower mass 

range, whereas MALDI with the ability to ionize larger molecules is well suited for detection 

of much broader mass range (~500 Da to >100 kDa), albeit at lower spatial resolution. These 

imaging techniques will be discussed in more details later in this thesis.87  

 
Figure 3.2 Representation of creating the ion images in MSI. The sample is analyzed in a raster array in the mass 

spectrometer and consequently, by collecting mass spectra for each spot and processing this array, an ion density 

map of a chosen m/z can be obtained across the sample in a two dimensions image. Image reproduced with 

permission from Greer et al.100  
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3.4 Advantages of MSI 
MSI is a promising technique for sample surface analysis. Complimentary to other imaging 

approaches, MSI advantageously allows label-free or isotopically labeled species detection, 

high chemical specificity, high accuracy, and broad analyte coverage. The ability of MSI 

techniques in combination of the chemical specificity and spatial analysis of surfaces allows 

the analyst to obtain spatial localization of several different compounds, complex 

biomolecules and parallel detection of multiple analytes. MSI offers high sensitivity to image 

molecules present at very low abundance inside systems as small as cells. Current instruments 

are able to detect molecules in concentrations of approximately 500 attomol allowing 

components from a single cell to be detected.101  

MSI methods provide high spatial resolution biomolecular analysis. Depending on the 

ionization technique used, the spatial resolution obtained varies. For instance, MALDI can be 

focused to the size of 10 μm in diameter,102,103 whereas ToF-SIMS routinely provides 

submicron spatial resolution.104,105 The new generation of mass spectrometers is capable of 

separating and thus detecting ions with very high mass resolution. High mass resolving power 

is typically used to provide spatial features which routinely are not able to be revealed with 

low-resolution techniques.106 The time required for analysis and imaging of sample is also 

considered as a crucial aspect of any imaging technique. For MSI, the image acquisition time 

is determined by the sample area, the desired spatial resolution, and also the repetition rate of 

the probe beam and generally takes minutes to quite a few hours. Due to these unique 

characteristics, MSI is well known as a powerful analytical tool in biological studies to 

measure the distribution of many classes of compounds ranging from atoms to larger intact 

molecules such as peptides and proteins.87,100,107  

 

3.5 Biological sample preparation for MSI 
The quality of the sample directly influences the sensitivity, reproducibility, and accuracy of 

the imaging experiment in MSI. Therefore sample handling and preparation is an important 

concern for any biological imaging study. A good sample preparation for MSI experiments 

needs a practical and productive procedure for routine analysis. Additionally, several 

important properties of samples including minimal sample contamination, sample integrity 

under ion bombardment, morphological preservation, and minimal redistribution of diffusible 

species have to be achieved in an appropriate sample preparation. Among these requirements, 

in particular, preserving the chemical and spatial integrity of biological samples can be 
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challenging for MSI since it has to be performed under biologically unfavourable vacuum 

conditions. A variety of protocols have been established for both tissue and cellular samples, 

the most commonly used procedures are reviewed here as below.87,108 

 

3.5.1 Tissue preparation 

MSI protocols for tissues commonly require steps in which the tissue samples are fixed, 

sectioned, mounted, and/or dried. Cellular samples are also fixed and then analyzed in a 

frozen hydrated state,108,109 which will be discussed in more detail later in the cell preparation 

section. 

To minimize sample degradation or delocalization and also to keep the sample stable under 

high vacuum, fixation needs to be applied on tissue samples immediately after dissection and 

also on cellular samples after removal from culture media. Traditional chemical based fixation 

procedures, which influence the location of ions and molecules, thereby change the natural 

cell chemistry and should be avoided especially for lipid-based analysis.110-112 In contrast, 

cryofixation methods which involve plunge freezing, high-pressure freezing, and possibly 

subsequent freeze-drying are able to preserve the integrity of the tissue samples gaining great 

interest for IMS techniques. In plunge-freezing, the tissue sample is submerged in liquid 

propane at -185°C and subsequently transferred and stored in liquid nitrogen or in a -80 °C 

freezer. In high-pressure freezing, the sample is pressurized to 2000 bar in a small container 

and at the same time the outer surface of the container is cooled with a jet of liquid 

nitrogen. The freezing process in both methods is so fast that amorphous ice is formed from 

the water content on the surface of the specimen. This is advantageous since the formation of 

ice crystals leading to molecular and morphological displacement is considerably remedied in 

plunge-frozen samples thereby structural damage of the sample can be prevented.110,113 

 After freeze-fixation, tissue samples are brought to -20º C and sliced into 5-15 μm thick 

using a cryomicrotome. The tissue section is then thaw-mounted on a conductively coated 

glass or metal sample plate. Prior to MSI analysis, tissue sections are freeze-dried in which 

the water content of the sample is gradually sublimated and then brought to room temperature 

and dehydrated under vacuum conditions (mbar). Freeze-drying is an acceptable procedure 

for the preparation of tissue samples where fine spatial resolution is not needed.112,114 

 In addition to cryomicrotoming, there are other protocols widely used for surface preparation 

of tissue samples including freeze fracture, frozen hydrated analysis, etching by temperature, 

or etching with a defocused etching gun such as C60
+ or low energy Ar gas cluster ion beam 
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(GCIB). These are also used for cellular samples109,115 and are discussed in cell preparation 

section. 

 

3.5.2 Cell sample preparation  

Different methods of plunge-freezing combined with freeze-fracturing and frozen hydration 

are widely used for cultured cells.116-118 In particular, frozen hydrated sample protocols for the 

MSI analysis of cells, first described by Chandra and coworkers, have become the gold 

standard for cell-based studies.119,120  

In this technique, cells are cryo-fixed via the freeze plunging method, which was described 

above. Samples are then analyzed without drying while they are kept frozen by a liquid 

nitrogen cooled stage throughout the analysis. Cell morphology and spatial integrity of 

diffusible molecules are preserved with this method. Moreover, a significant enhancement of 

the molecular ion signal, especially for phospholipids, has been revealed using the frozen-

hydrated sample preparation procedure due to the reduction of damage accumulation in liquid 

nitrogen temperatures. Also, the condensed water matrix covering the surface of the sample 

can act as a proton source to protonate and to enhance the signals of protonated ion species. In 

the freeze-fracture procedure, the samples are plunge frozen while being sandwiched onto two 

silicon shards which are opened in the instrument under vacuum.121 Subsequently, the 

fractured and fresh surface of the sample is exposed to analysis. The protocol eliminates 

human and external influences protecting the sample from possible environmental 

contamination. Furthermore, the method can also be used in subcellular studies fracturing of 

the inner sections of the cells is possible, although achieving a consistent, reliable and 

reproducible fracture plane is an issue here and this hinders the analysis. Accordingly, some 

alternative strategies including etching by use of a slightly elevated temperature or sputtering 

with cluster ion guns can be used to overcome the topographic problems observed with freeze 

fracture. In etching by temperature, the temperature is gradually increased to a critical point 

so that the top layer of condensed water is slowly sublimed revealing the biological sample 

below. When sputtering with a C60
+ gun or Ar GCIB is used, the water overlay from the 

sample is removed without damaging the subsurface. These two methods help flatten the 

sample surface and thereby remedy the topographic problems. With these methods, it is also 

possible to preserve sample morphology and keep the sample from environmental 

contamination, although the sample handling is complicated and time-consuming for these 

procedures.109,115 
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3.6 Pitfalls of MSI 
Compatibility of the samples with room temperature as well as high vacuum that is usually 

used with MSI experiments is important. Unfortunately, some molecules are very sensitive 

and easily degraded at room temperature in a couple of minutes. In essence, there is the 

possibility of molecular diffusion in all types of sample treatments at room temperature, 

which negatively influences spatial resolution, data reproducibility, and the quality of the 

images. The sample preparation process should therefore be very fast, and not expose the 

samples to the air, moisture, or high temperature. There are various compounds present in 

biological tissue sections such as matrix ions, lipids, proteins, oligonucleotides, 

carbohydrates, and salts which can unfavorably impress efficiency of desorption and 

ionization and also inhibit the optimal detection. This phenomenon, called ion suppression, in 

which the ionization process is less efficient causes reduction the quality of the MSI 

analysis.87,122 

 

3.6.1 Resolution and Sensitivity 

In general, there is a trade-off between lateral resolution and the number of ions generated. 

This is considered to be the main analytical issue for analysis limitations in instrumental work 

at the cellular level. At high lateral resolution, there is a significant decrease in the number of 

available analytes to be ionized and detected. In other words, lateral resolution is increased at 

the cost of sensitivity. However, there have been some surface treatment methods developed 

to improve sensitivity which 109 will be discussed in more details later in this thesis. 

 

In this thesis, I mainly focused on the use of two common techniques of MSI including 

MALDI and SIMS in biological samples studies. In the following two chapters, I will discuss 

these innovative analytical techniques, strengths, weaknesses, and current efforts to address 

the main challenges in this area. 
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 4. Matrix Assisted Laser Desorption Ionization (MALDI) 

MALDI is a soft ionization laser-based method applied in mass spectrometry. It has been 

known as one of the most powerful methods for analysis and detection of a wide range of 

biomolecules from several hundred to several tens of thousands of Daltons, which covers a 

variety of biomolecules including intact lipids, peptides, proteins, and polymers.87 

 

4.1 Principles of MALDI 

The combination of a matrix and laser desorption is the main characteristic of MALD. As 

illustrated in Figure 4.1, sample to be analysed is first coated with a thin homogeneous layer 

of a matrix, typically a low molecular weight organic acid. In this step, the matrix application 

on the sample surface plays a key role for the soft ionization of the analyzed biomolecules. In 

fact, a large amount of the proper crystallized matrix molecules is mixed with the analyte at a 

molar matrix to analyte ratio of 103-105:1. By vaporization of solvent, the biomolecules from 

the sample surface are co-crystallized with matrix and extracted which forms analyte-doped 

matrix crystals.87,123 

The matrix crystals containing analyte are irradiated with a pulsed laser and the matrix 

molecules absorb the majority of the laser energy. The absorbed energy of the laser with the 

matrix/analyte mixture causes desorption of the analyte molecules into the gas phase. 

Moreover, in the gas phase the organic matrix molecules aid the ionization of analytes via 

some chemical and physical ionization mechanisms. These mechanisms include excited state 

proton transfer, gas-phase photoionization, and ion-molecule reactions. Among the known 

mechanisms, ion formation through proton transfer in the solid phase before desorption or in 

the gas-phase is the most recognized. Here, matrix serves as a proton donor or acceptor 

ionizing the gas analyte molecules to form molecular ions commonly in the singly charged 

state. Proton transfer between the matrix and the analyte yields protonated ([M+H]+) or 

deprotonated ([M-H]-) ions from neutral analyte molecules [M]. The resulting ions by 

protonation are detectable in positive ion mode and the deprotonated species can be identified 

in negative ion mode. Analytes can also form adducts with salts ([M+Na]+) through cation 

transfer. Furthermore, some multiply charged ions and a lot of fragments can be usually 

detected, although as MALDI is a soft ionization technique, still little fragmentation of 
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molecules occurs during ion formation. Typically as the analyte must be incorporated into the 

matrix crystals causing a complete separation of analyte from contaminants in the solid phase, 

this makes MALDI less sensitive to contaminants such as salts, buffers and detergents 

compared to other ionization techniques. A high concentration of contaminants such as 

buffers can, however, have a negative effect on the desorption and ionization steps. In order to 

eliminate this effect from contaminants, prior purification is typically carried out.87,91,124 

 

 

Figure 4.1 Principle of MALDI ionization: the formation of ions during MALDI. Image reproduced with 

permission from Chughtai et al.87 

 

4.2 Spatial resolution in MALDI imaging 

Spatial resolution is governed by the distance between two pixels, and generally defines the 

quality of images. The commercial MALDI instruments that are currently available can 

provide a typical spatial resolution about 10 μm, which is the minimum achievable laser beam 

size in MALDI. In fact a high spatial resolution (<10 μm), which is indeed desirable for 

biological imaging down to cellular level, is not practically attainable.125 Therefore, the spatial 

resolution can be one of the major challenges in MALDI imaging for biological applications. 

In essence, the spatial resolution in MALDI is practically determined by the spot size of laser 

and the matrix crystal size. Modification of any of these two parameters can help to improve 
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the spatial resolution. Strategies have been introduced to decrease the spot size of the laser in 

imaging applications. One of them is called the oversampling approach in which the laser 

entirely ablates the sample at positions smaller than the laser step size leading to the 

acquisition of signals from adjacent spots spaced in an area smaller than the spot size of the 

laser and enhancing spatial resolution.126 Some instrumental approaches have been also 

developed using lenses or other optic devices to achieve high spatial resolution imaging in 

MALDI. For instance, Caprioli and co-workers developed a specific geometry to irradiate the 

laser from the back side of the sample, which was located on a transparent substrate. They 

were able to successfully focus the diameter to less than 1-2 μm for laser beam size.127 

 

4.3 Overview of sample preparation for MALDI  

As discussed in chapter 3 of this thesis (Biological Mass Spectrometry Imaging), the quality 

of the sample has a direct impact on the sensitivity, reproducibility, and accuracy of MS 

imaging. Also in MALDI imaging, sample handling is again critical requirement for ensuring 

that integrity and spatial organization of the analytes on the sample are preserved with the 

minimum delocalization and degradation. All of the treatment procedures from the sample 

collection to analysis need to be adequately fast to avoid rapid tissue degradation. To choose 

an experimental strategy, the nature of the sample and the biomolecules of interest are major 

considerations. The sample preparation protocol, particularly in case of tissue sections, 

consists of different steps including sample collection, sectioning into thin slices, mounting on 

conductive indium tin oxide (ITO) coated glass slides, freeze-drying, washing of the tissue 

and application of matrix. Among the above steps, two phases of the washing and matrix 

deposition will be debated here.124,128 

 

4.3.1 Sample washing 

Washing is required to remove native salts and other undesirable molecules from the surface 

of the tissue so that they do not influence the measurement. In fact, salts, which are easily 

diffusible molecules, practically suppress ionization through direct ionization or adduct 

formation with the proteins and peptides. This obscures the signals of the analyte to be 

detected. In addition, the salt content of the sample surface can negatively affect the matrix 

crystallization process. Washing is carried out either by immersion of the slide carrying the 
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tissue in washing solution or application of the solution is applied on top of the tissue by use 

of a pipet. Based on the analyte of interest, there are several washing procedures and 

solutions. The standard washing protocol generally uses a brief 70% ethanol wash to remove 

salts and is followed by temporary fixation with 90% ethanol. In lipid analysis, a low 

concentration (5-10 mM) of a volatile and MS friendly salt solution such as ammonium 

formate is usually recommended for washing high salt containing samples to partially remove 

the salt content. For analysis of high mass compounds, for instance peptides and proteins, 

washing with an organic solvent such as chloroform or xylene is applied to remove high lipid 

content. However, washing procedures using organic solvents can cause delocalization of the 

biomolecules of interest. 87,124,129 

 

4.3.2 MALDI matrix choice and application 

Matrix deposition on the sample surface is usually the last step of sample treatment and plays 

a crucial role in MALDI imaging. Analyte detection is critically affected not only by the 

choice of a proper matrix and solution composition but also by the matrix deposition method 

which is needed to preserve spatial distribution of analytes across the sample leading to high-

quality spectra and ion images. In this regard, it is necessary to select a proper matrix 

compound and also matrix application method in MALDI analysis. A suitable matrix 

molecule needs to have several practical features including the stability of matrix in vacuum 

conditions, the ability in absorbance at laser wavelength, solubility of both matrix and analyte 

in solvents used in matrix solution. Additionally, the chemical properties and mass range of 

the matrix molecule has to be considered in order to minimize interfering between analyte and 

applied matrix. Many different kinds of matrix and solvent combinations have found 

applications in MALDI for the detection of different classes of molecules in the mass range 

from several hundred Da to several hundred kDa. There are several kinds of matrices that are 

derivatives of benzoic acid, cinamic acid, and picolinic acid with different properties 

commonly used in MALDI analysis. Alpha-cyano-4-hydroxycinnamic acid (CHCA), which 

has good solubility in organic solvents, is commonly used for lower molecular weight 

peptides, small proteins, and glycopeptides. CHCA has the ability to produce small 

homogenous crystals, which leads to obtaining a good spatial resolution especially in the 

imaging analysis of peptides. Additionally, it is possible to wash samples on the target with 

water as part of the preparation since this matrix is not soluble in water. A large amount of 



34 
 

fragmentation occurs with CHCA and is its main disadvantage. Another organic matrix 

commonly used in MALDI analysis is 2,5-dihydroxybenzoic acid (DHB), which is simply 

soluble in both water and organic solvents. DHB is suitable for phospholipid detection and 

has an advantage that it is less sensitive to contaminants such as salts and detergents than 

other common matrices. The DHB matrix typically forms large crystals after drying on the 

surface of samples. These large crystals can alter the homogeneity of the sample surface from 

spot to spot leading to a significant decrease in the spatial resolution, which is the main 

disadvantage for this matrix compound. Sinapinic acid (3,5-dimethoxy-4-hydroxycinnamic 

acid, SA) is a common organic matrix for higher MW proteins. In contrast to CHCA and 

DHB, which have been commonly used for detection of lipids in positive ion mode, 9-

aminoacridine is properly used as a suitable matrix for detection of lipids and metabolites in 

the negative ion mode of MALDI.87,128,130  

A matrix solution typically consists of an organic solution such as ethanol, methanol or 

acetonitrile, an organic matrix substance, and trifluoroacetic acid (TFA). In the matrix 

solution, the solvent extracts the analyte from the sample and the matrix crystallization occurs 

after rapid evaporation of the organic solvent. TFA is a proton donor and increases the 

number of available protons for ionization thereby assisting the protonation of the analyte 

molecules. The ratio of matrix to the organic solvent combination, the concentration of 

matrix, and the concentration of TFA are key factors influencing the incorporation of the 

matrix with the analytes of interest and also the crystallization process. The percentage of the 

organic solvent is generally prepared depending on the hydrophobicity of the analyte 

molecules of interest and for tissue analysis the ratio of 50:50 of acetonitrile/water or 

ethanol/water is commonly used. A typical concentration of TFA for most MALDI analyses is 

0.1 %.87  

Deposition of the matrix on the sample surface, which must be performed before MALDI 

analysis, is a crucial step in sample preparation. The reproducibility of matrix deposition on 

the sample surface and the homogeneity of the deposited layer of organic matrix are important 

factors in order to obtain similar and uniform desorption of analytes along the sample surface. 

In MALDI imaging it is significant that the organic matrix deposited on the sample surface 

forms crystals with a size equal to or smaller than the size of the laser spot size in order to 

obtain high spatial resolution ion images. On the other hand, if the crystal size of the organic 

matrix for detection of intact biomolecules is too small it will deliver low sensitivity for MSI 

detection. Thus, the size of crystals has an important role in determining the sensitivity in MSI 
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detection. Desorption and ionization techniques, required sensitivity, and spatial resolution, 

are parameters defining the proper crystal size of the dried organic matrix when performing 

MALDI analysis. Another fundamental factor in MALDI imaging analysis is the thickness of 

the organic matrix layer deposited in which insufficient matrix on the sample surface gives 

rise to unstable analyte signals.89,128  

In recent years, different methods have been developed to deposit the organic matrix on the 

surface of tissue sections. These methods, which can be dry or wet, are used based on a 

required spatial resolution for imaging and the abundance of the analytes in the sample. 

Deposition of the matrix can also be performed either manually or automatically. Manual 

procedures suffer from poor reproducibility, whereas automated devices provide better 

reproducibility and control during the extraction process leading to the possibility of 

comparison between different samples. In both cases, a particular issue is the formation of 

possible homogenous crystals that can trap most of the analytes without significant diffusion 

of molecules.87,131,132 The most commonly used method is spotting, where sample surface is 

covered by nano or micro-droplets of matrix solution. Another method employs a sprayer by 

which smaller droplets of matrix solution are sprayed resulting in a thin coating of matrix on 

the surface and better spatial resolution compared to spotting. However, if the sample gets too 

wet during spraying, chemical delocalization of biomolecules might occur across the sample 

lessening the reproducibility of this method. Spotting and spraying can be done manually 

using a micropipette and an airbrush, respectively. Most recently, automated devices 

including inkjet printers and acoustic dispensers developed to use for spotting, and also 

automatic pneumatic sprayers (pneumatic sprayer, airbrush, the TM sprayer system from 

HTX) and vibrational sprayers (ImagePrep Device from Bruker Daltonics) for spraying have 

become commercially available.133-135  

In addition to wet matrix deposition methods, a non-commercial and a solvent-free method 

called sublimation has been developed in which the matrix is sublimed and deposited on the 

sample surface in a vacuum. A homogenous coverage of the sample surface by the organic 

matrix with very small crystals that is appropriate for high spatial resolution MALDI imaging 

can be obtained by the sublimation method. Deposition of the organic matrix by sublimation 

method provides a high purity matrix directly deposited on the sample and also as a solvent-

free technique it prevents analyte delocalization on tissue surface, which is a notable issue for 

MALDI imaging. As an advantage the system designed for deposition of organic matrix by 

sublimation is relatively straightforward and inexpensive.87,128  
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However, sublimation as a solvent-free matrix deposition suffers from the poor extraction of 

the analytes compared to wet methods. In order to compensate for this disadvantage, re-

wetting of the sample surface using TFA or an organic solvent can be helpful enhancing the 

miscibility of matrix and analyte molecules at the surface of the sample.103  

 

4.3.3 Nanoparticle application; an alternative to the organic matrix 

Nanoparticles (NPs) made from a number of substances can be applied as an alternative 

surface modification to the standard organic matrices.136 This surface modification is well 

known as a new technical approach called surface assisted laser desorption ionization 

(SALDI). The use of NPs in the range from 2 to 100 nm from several materials reveals their 

ability to absorb the laser energy and then transfer it into heat allowing ejection and ionization 

of molecular species. The use of NPs offers some advantages to common organic matrix 

deposition. First, due to the lack of formation of matrix crystals using NP deposition, a higher 

spatial resolution can be achieved if a smaller laser beam diameter is applied. Compared to 

the common organic matrices deposition, the use of NP sample modification offers a better 

selectivity and sufficient sensitivity for biomolecules.137  

Among several NP materials, gold nanoparticles (Au NPs) have been extensively used in 

SALDI to analyze glycosphingolipids, triacylglycerides, and carbohydrates.138-141 In analysis 

using NP surface modification; ejection and ionization of molecular species appear to be 

achieved by a heating process. The interaction of laser irradiation excites electrons in the Au 

NPs producing heat, that is transferred to the analytes, leading to desorption and ionization 

process.142,143   

In comparison with MALDI, the use of NPs is a potentially beneficial matrix material for 

laser desorption ionization (LDI) since they enable submicron spatial imaging and also offer 

complementary chemical information to the organic matrices commonly used on biological 

studies. This approach was used as part of the work presented in paper II. 
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 5. Secondary Ion Mass Spectrometry (SIMS) 

SIMS is an ultra-surface sensitive, ultra-high vacuum (UHV) analytical technique in which a 

solid sample is bombarded by a focused and often pulsed energetic particle beam, a so-called 

primary ion beam. Impact of primary ions leads to ejection of secondary species (positive, 

negative, and neutral) from the surface of the target. The charged particles are collected, 

separated, and analyzed in a mass analyzer (Figure 5.1). The secondary ions are representative 

of the species present on the surface, and so SIMS allows one to obtain the chemical 

composition of a surface.144 

 

 
Figure 5.1 A simple illustration of a SIMS instrument. A solid sample is bombarded by a focused primary ion 

beam leading to emitting a fraction of the charged particles called secondary ions from the surface of the target. 

In mass spectrometry extraction, collecting, and analyzing of the secondary ions provides information about 

chemicals and composition of the analyzed surface. Image reproduced with permission from Boxer et al. 145  

 

 
5.1 Basic principles  

Species ejection in SIMS occurs when a primary ion beam with an appropriately high energy, 

about 5-40 keV, impacts the sample surface and causes a cascade of collisions in the target 

rising to the surface by transferring kinetic energy in the lattice of sample atoms or molecules 

(Figure 5.2). As some of these collisions return back to the surface and if an atom or groups of 

atoms receive enough energy in a suitable direction enabling them to overcome the surface 

binding forces then species can be ejected from the surface.  The majority of these ejected 

molecules are neutral and only around 1% of them are ionized as they leave the surface.87,109           
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SIMS is widely used in two modes, static and dynamic. Basically, static SIMS is performed 

using a low energy pulse of the primary ion beam to extremely sputter the surface with low 

ion doses. In static SIMS, the sample surface is not significantly damaged and less than 1% of 

the top monolayer is impacted by primary ions providing atomic or molecular information. In 

the dynamic SIMS mode, a much more energetic primary ion flux is used to probe the sample, 

which leads to interrogation of the sample surface with significant alteration by the primary 

ion beam. This mode of SIMS is best known for bulk analysis of elements, small fragments of 

molecules and depth profiling.145,146 These two operational modes of SIMS will be discussed 

more in section 5.4 in this thesis. 

 

Figure 5.2 Schematic representation of sputtering through a collision event generated from the impact of the 

primary ion (green) upon the sample (blue) thereby transferring energy to the sample, which is then distributed 

through different atoms (green lines) and leads to ejection of secondary ion (red) from sample surface.  

 

5.2 Generation of secondary ions 
 

There are two processes can be considered for secondary ion formation during SIMS analysis. 

First is sputtering in which atoms and multi-atomic clusters are desorbed from the surface, 

and the second is that sputtered species are ionized gaining or losing electrons. 

 

5.2.1 Sputtering 
 
Sigmund’s linear cascade theory introduced in 1981 has been the most accurate model to 

describe the sputtering process caused by a monoatomic primary ion beam impinging on a 
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surface.147 Sigmund assumes the atoms of the solids to be hard spheres that follow Newtonian 

mechanics that can be sputtered using a beam at low current and fluence. Based on this 

theory, the sputtering process using high-energy beams implicates a knock-on effect and 

electronic sputtering effect. For the low energy beam (few keV), the theory was developed to 

involve elastic collisions. In this process, as the primary ions strike over a sample surface, 

they penetrate into the sample and transfer its energy to the atoms/molecules of the surface. 

The ejection of atoms and molecules happens when sufficient impact energy is provided to 

overcome the surface binding energy. This theory has been successfully used to describe a 

monatomic primary ion impacting a single component sample with yields depending on the 

mass and the energy of primary ions. It is important to note that this model might not be 

suitable for multi-component systems since the transfer of energy is directional and not 

isotropic. In this case, another model might be needed to describe these complex systems.  

 
5.2.2 Ionization 
 
Based on the nature of the sample and the technique used which has an effect on the ionization of 

the sputtered species, only a small fraction of particles which are ejected from sample surface is 

ionized in the SIMS process. The ion yield is highly dependent on the electronic properties of the 

environment of the analyte in the sample, known as the matrix effect. In general, metalic samples 

become ionized by swift electronic transitions while in organics, ionization occurs by losing or 

gaining a charged species, typically a proton, to form [M+H]+ or [M-H]- ions, but salt adducts of 

sodium, chlorine and potassium are also commonly detected. Various models have been 

developed to explain the ionization occurring during a SIMS process. One of them is the 

desorption-ionization model which was introduced by Cooks and Busch in1983.148 This model 

regards desorption and ionization processes as two separate processes with different 

mechanisms. Ions are generated by desorption followed by two chemical reactions. The first is 

ion/molecule reactions or electron emitting reactions, which can occur at the top of the sample 

surface. The second involves dissociation of the parent ions, which can possibly generate 

fragment ions as well. 
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5.3 Basic equation for SIMS 
As described above, the SIMS technique is based on the analysis of secondary ions with the yields 

depending on the electronic state of the surface. The relationships between the factors used to 

govern the secondary ion yield are represented in the SIMS equation 149 as shown in Equation 5.1 

 

 

Im=Ip Ym α±θm η        Equation 5.1 

 

Here, Im is the secondary ion current, Ip is the primary ion current, Ym is the sputter yield of 

secondary species including ions and neutral, α± is the ionization probability of the species m 

to positive and negative ions, θm is the fractional concentration of species m in the surface 

layer, and η is the transmission fraction of the analysis system. 

Two key parameters that govern sample extraction in SIMS are sputter yield and ionization 

probability. The sputter yield is the total particles, including neutrals and ions, which are 

desorbed from a surface per primary ion impact. The yield depends on topography and the 

nature of the sample and also the mass, charge, energy and primary ion current. The primary 

ion density is operator dependent but the transmission is commonly constant for each 

instrument.150 

5.3.1 Matrix effects 

Ym and α± are the two fundamental parameters that are highly dependent on the properties of 

the species in the sample and the surrounding environment (the matrix). Matrix effects can 

lead to different secondary ion yields for the same compounds with the same concentration 

when two different matrices are used despite all other parameters being equal. This is known 

as the matrix effect, which plays a key role in SIMS quantitative analysis. Matrix effects lead 

to enhancement or suppression of the ionization rate of an analyte in the presence of other 

species and the secondary ion yield is not directly proportional to its concentration in the 

sample rather but is influenced by the chemistry of the environment. Therefore, it is normally 

not possible to precisely quantify components on a sample surface and quantitative SIMS 

analysis is difficult. SIMS can be considered a “semi-quantitative” technique, by comparison, 

the signal intensity of one species in one sample to the intensity of the same species in another 

sample.144,151  
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5.3.2 Damage cross-section and secondary ion formation efficiency 

Two other important parameters are the damage cross-section (σ), and the efficiency (E) of 

ionization. The damage cross section has been defined as “the average surface area depleted 

resulting from a single ion impact” by Kötter et al.152 in 1998 and can be described as 

Equation 5.2: 

 

σ = Ndes/No                Equation 5.2 

where Ndes is the average number of molecular species that disappear from the surface upon 

one single primary ion impact. No is total number of molecular species M in the unit area of 1 

cm2 of the topmost monolayer.  
In essence, the damage cross-section refers to the area of the sample surface that is altered 

following a single primary ion collision; thereby the molecules of interest thought to be 

damaged. It depends on the nature of the primary ion beam, properties of the secondary 

particles, the structure and the composition of the sample surface.  

In order to provide a relation between the secondary ion yields and damage cross-section, the 

efficiency was introduced. This provides a measure of the signal available that can be 

obtained from an area before the surface becomes damaged. It is defined as a ratio of 

secondary ion yield (Y) to the damage cross-section (σ): 

E = Y / σ          Equation 5.3 

 

The secondary ion yield (Y) can be defined by Equation 5.4: 
 
Y = NS / Np                  Equation 5.4 
 
where NS is the number of secondary ions detected and Np is the total number of applied 

primary ions. 

The damage cross-section and the efficiency of secondary ion formation are useful parameters 

for comparing the performance of primary ion sources, which can be found in section 5.7. 
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5.4 Operational modes of SIMS  
As discussed previously, there are two different modes to use SIMS investigations including 

dynamic and static SIMS, which are discussed in more detail here.  

 

5.4.1 Dynamic SIMS 

This mode of SIMS implements a constant and continues bombardment of the sample by high 

primary ion dose (>1013 primary ions/cm2) producing mostly atomic and elemental species. 

Basically, dynamic SIMS is a highly destructive technique in which many monolayers of 

samples are quickly sputtered and removed by rastering a high flux of primary ion beam in x 

and y-direction over a defined area on the sample surface. This creates an etched crater in 

which the secondary ion signals of specific components are monitored from a certain small 

area and chemical information is acquired as a function of depth.153  

In essence, dynamic SIMS and depth profiling are mostly used for analysis of inorganic 

materials in the semiconductor industry,154-156 and also highly used in geoscience;157  

however, it has been recently progressed and been developed towards analysis of biological 

samples such as cells and tissue.158,159 A high-resolution imaging secondary ion mass 

spectrometry technique called NanoSIMS has been commercialized, which employs the high 

energy Cs+, O- or O2 + primary ion beams to probe the sample at a spot size of several tens of 

nanometers.160-162 The technique commonly uses isotopic labeling of the molecules of interest 

and can provide molecular information from the sample surface offering a potent SIMS based 

imaging technique at the nano-scale in biological studies.163-165 

 

5.4.2 Static SIMS 

Static SIMS uses a low primary ion beam current (at 1×1013 ions/cm2 or below) to probe the 

sample surface and provides molecular information from the uppermost layer of a sample. In 

this mode, less than 1 % of surface molecules are probed leading to the extremely low 

probability of impacting the same area twice. Thus, a small amount of secondary ions can be 

produced under static conditions. As mentioned above, static SIMS allows the analysis of 

intact molecular species, which is beneficial for the analysis of intact biomolecules from the 

tissue surface,88,128 nevertheless, the occurance of low secondary ion signals still challenges 

SIMS users to increase sensitivity and detection of low concentrations of analytes in complex 

biological samples. The introduction of the time-of-flight (ToF) mass analyser (described in 

details in chapter 3) to SIMS in the late 1980s by Benninghoven (1983) and Chait (1981) 
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provided high ion transmission and detection of a wider mass range, and led to a remarkable 

increase in the sensitivity.166,167  The ToF mass analyzer properties have almost satisfied all 

the requirements for a surface mass spectrometer including detection of all the ions generated, 

a greatly expanded mass range, and high mass resolution.168 Further improvements in 

sensitivity have been also achieved through the development of new primary ion sources and 

also some specific sample treatments which will be discussed later in this chapter. 

 

5.5 SIMS imaging 
SIMS imaging can be performed using either the microscope or the microprobe modes. The 

microscope mode, which is less common, is equipped with the astigmatic ion optical lens 

system similar to an optical microscope to produce images following bombardment a large 

area of the sample surface by a defocused primary ion beam. In this mode, the original spatial 

position of the desorbed secondary ions is maintained as they travel through the mass analyser and 

subsequently an image similar to the sample is generated. The spatial resolution is dependent on 

the instrumental features such as quality of ion optics and the detector but is independent of the 

beam size.169 

In the microprobe mode, which is the most common acquisition approach in SIMS imaging, a 

focused primary ion beam is used to continuously scan a selected area of analysis in the x and 

y directions, spot by spot or pixel by pixel. The secondary ions generated are extracted and 

analyzed separately by the mass analyzer producing a mass spectrum from each pixel and by 

selecting a specific peak related to a chemical species present in that pixel, the intensity of 

each of these signals can then be plotted to construct a two dimensional ion image for the 

particular signal on the sample surface (Figure 5.3). The beam size, which should be within 

the range of pixel size of the analyzing area, limits and sometimes determines the spatial 

resolution. 170 If the beam diameter of the primary ion is larger than the pixel size, there is a 

possibility of over-sampling; as a result, small features of a sample are hard to be highlighted 

within a sample. But if the spot size is too small, under-sampling occurs in which the pixel 

might not be accurately representative of the area under analysis. 
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Figure 5.3 Principles and schematic of SIMS imaging in microprobe mode performed on the bone tissue. A 

focused primary ion beam is used to sputter the sample in a small area called pixel. From each pixel a full mass 

spectrum is produced. Consequently, an analyte signal from the array of mass spectra is selected and plotted to 

obtain a 2D ion image for the particular signal representing the distribution of individual molecular ions across 

the tissue sample. Image reproduced with permission from Henss et al. 171 

 

 

5.6 Primary ion sources for SIMS 

5.6.1 Liquid Metal Ion Guns (LMIG) 

At first, LMIGs were developed and made mainly for microfabrication for many years; 

gradually their advantages have been explored for SIMS uses as well.172,173 LMIGs, which 

produce highly focused ion beams, use a large electric field that is applied to a sharp tip 

coated with a thin layer of liquid metal inducing the emission of the metal ions. Then ions are 

generated and extracted from in the form of a Taylor cone and directed in a column (Figure 

5.4) creating an extremely focused ion beam stream. This is accurately aimed and deflected to 

raster the sample surface at specific points called pixels. LMIGs are capable to offer ultrahigh 

brightness and typical spatial resolutions as low as about 100 nm in the pulsed mode; 

however, this number should continue to be made smaller by utilizing the most recent 

instrumental developments.174,175 The most common LMIGs are Ga+, In+, Aun
+ (n=1, 3) and 

Bin
+ (n=1, 3, 5, 7 as well as Bi3

++). However, monoatomic primary ion sources which have 

been successfully used for the analysis of biochemicals in biological samples,176,177 still suffer 

from the lack of molecular information. The reason for that is when a monoatomic projectile 
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strikes a sample; it penetrates deep below the sublayers of surface leading to higher 

fragmentation of molecules in sub-surface layers by breaking intramolecular bonds. In 

contrast, when metal cluster ions hit a surface, they deposit energy nearer to the surface 

resulting in smaller damage and also they break into their constituent atoms creating 

overlapping collision cascades. This leads to multiple sputtering, high interaction and high ion 

yield events as shown with molecular dynamic simulations by Delcorte and Garrison in.178  

 

 

Figure 5.4 Schematic depiction of the principle of the liquid metal ion gun. A Taylor cone is formed by applying 

an electric field on a small tip of ion gun. Image reproduced with permission from Seifert. 179 

 

5.6.2 Electron Impact (EI) Sources  

In comparison with LMIGs in which only ions from metals that make a liquid coating on a tip 

are typically used; electron impact (EI) primary ion guns are more flexible and any atom or 

molecule with the ability to be ionized by electron bombardment in the gas phase can be 

utilized. Thus, there are typically a variety EI sources ranging from ions of simple gases such 

as Ar+ and O2
+  to more advanced sources including C60

+ and GCIB of Arn
+, 174,180  (H2O)n

+, 181  

and (CO2)n
+. 182 In the Ar GCIB source (Figure 5.5), giant cluster ions of Ar are generated in a 

supersonic expansion taking place through a small nozzle aperture that shapes the gas flow 

and forms a jet of clusters.  The high-pressure region, which is necessarily applied on gas-

phase atoms of Ar to expand and then condense them into the clusters, is separated from the 
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vacuum stage using a skimmer between the nozzle and electron impact ionization chamber. In 

the C60 source, a solid C60 material is heated and facilitates the formation of gas-phase C60 

molecules that then form C60
+ ions by electron bombardment. 174  

 

 The C60 source has high efficiency183,184 and has been employed to successfully depth profile 

organic films185 and biomolecular samples.158,186 In a dual-beam approach, C60 has been also 

used for sputtering while analysis was performed using a LMIG 187 as an approach that has 

been successfully applied to biology and for 3D profiling of cells and tissue. 188,189 C60 is also 

able to do both sputtering and analysis in one experiment.190 However, more recently, massive 

GCIB argon sources with a larger amount of sputtered materials and also less accumulation of 

the chemical background noise compared to C60 are being progressively used in the 

experiments.191-193 

 

 

Figure 5.5 Schematic illustration of Ar gas cluster ion beam. The Ar clusters are generated when a high-pressure 

gas expands into a vacuum through a nozzle facilitating the formation of a jet of clusters. 

 

5.7 Comparison of primary ion sources 

The comparison of performance of several monatomic (Ga+, Cs+, Au+) and polyatomic 

primary ion sources (Au2
+, Au3

+, SF5
+, C60

+) done by Kersting et al. has shown that heavier 

monatomic primary ions have more efficient secondary ion generation (for an explanation of 

efficiency see Equation 5.3) than lighter ions in the source, whereas all polyatomic ion 

sources are more efficient than any of monatomic primary ion sources.184  

Another study, which was performed by Kollmer,194 compared the secondary ion emission 

behaviour caused by bombarding organic and pharmaceutical samples with of a variety of the 
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atomic and polyatomic ion sources including Ga+, Aun
+, Bin

+, C60
+. The major conclusions 

were that the secondary ion yield was significantly increased from atomic Ga+ to Au+ and 

finally to polyatomic C60
+. Based on the results in this study, C60

+ was concluded to have the 

highest efficiency to produce secondary ions.  

Touboul et al.195 compared the performance of Bin
+ and Aun

+ ion beams on the rat brain 

samples. They examined different size clusters from the same material and also similar cluster 

sizes from different projectiles. A significant increase of secondary ion yield efficiency 

occurred from Bi+ to Bi3
+. Moreover, same size and mass of cluster ion beams such as Au3

+ 

and Bi3
+ provided similar properties including secondary ion yields, damage cross sections, 

efficiencies, and also proper spatial resolution for imaging across brain tissue samples. 

However, Bin
+ had higher beam current than the Aun

+ beam as a function of cluster size in 

similar experiment leading to shorter imaging acquisition times. In total, the Bin
+ beam was 

preferred by the authors to the gold LMIG as a primary ion source for high spatial resolution 

biological imaging with static SIMS owing to its proper spot size, secondary ion yield, and 

faster analysis time. 

Another key primary ion beam is the C60
+ source which provides high secondary ion yield and 

low damage cross section. Furthermore, the spot size of the C60
+ beam is typically ~1 μm; 

however, Fletcher et al. reported a sub-200 nm spot size using a C60
+ primary ion source.196  

In another study recently done by the Fletcher group, the performances of 40 keV C60
+, 20 

keV Ar4000
+, and 40 keV Ar4000

+ GCIB guns have been compared on brain tissues and human 

hair samples. They found that the 40 keV Ar4000
+ source yielded the highest signal compared 

to the other guns and also the spatial resolution was less than 3 μm. In total, GCIB sources 

compared to the other guns used to date appear to be highly useful as potential primary ion 

beams which can be used for both analysis and etching and also they are beneficial to imaging 

lipid and lipid related compounds in biological samples.180 

 

 

5.8 Technical improvements of SIMS for biological analysis 

Apart from the ability of SIMS as a promising analytical technique in analysis of many 

organic, polymeric and biomolecular species, it still suffers from a high level of fragmentation 

for small molecules and low ion yield for higher mass molecules. 87,128,197 However, the 

modern generation of SIMS instruments using polyatomic and cluster primary ion sources 

such as C60, SF5, Bin, Aun, Csn, and Ar4000 have been able to successfully extend the 
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applicability of SIMS for intact secondary ions of larger species and to effectively improve 

the performance of SIMS particularly in biological fields. 180,198-201  

To enhance molecular ion yield enabling the use of conventional SIMS for intact 

biomolecules analysis, some surface modification methods have been developed. One of them 

is metal assisted-SIMS (MetA-SIMS) proposed by Delcorte et al.202 in which a thin layer of a 

noble metal such as silver, gold or platinum is deposited on the sample surface by thermal 

evaporation or using sputtering-coating. It has been clearly illustrated to increase the 

production of intact biomolecules (<5 kDa) such as fatty acids, lipids, and peptides in SIMS 

experiments.202-205 And also it allows molecular information to be obtained from biological 

tissue even when using monoatomic ion sources.206 

 Another way to modify the bio-organic surface is matrix-enhanced secondary ion mass 

spectrometry (ME-SIMS). ME-SIMS can be regarded as a combination of MALDI and SIMS 

in which the surface of the sample is coated by a thin layer of small molecule organic matrices 

in similar ways used for MALDI analysis.  Two main advantages of this method are its low 

cost and ease of use. 87,128 A successful use of the MALDI sample preparation protocol in 

SIMS experiment was reported by Wu and Odom in 1996 when they showed significant 

enhancement in the yield of intact molecular species.207 A few years later, many studies on 

ME-SIMS successfully revealed the ability of this technique to enhance the signals of high 

mass molecules in the range 1-15 kDa including proteins, peptides, lipids, polymers and 

organic dyes.208-213 Also, results with biological tissue studies using ME-SIMS,214-218 showed 

significant improvement in the sensitivity and molecular yields of high mass species (m/z 

≥2500) enabling SIMS for the study of subcellular distributions of analytes across the tissue 

sections which is difficult for standard SIMS.87,214  

Sjövall et al. presented a specific sample modification method in which an imprint of a 

biological sample was made on a silver surface prior to SIMS analysis. The results showed a 

significant ion yield enhancement. This method could successfully be used to identify and 

image the lipid species across the cell membrane in single cells at a spatial resolution less than 

0.5 micron using a monoatomic primary ion beam.219  

Another approach in this regard is the application of Trifluoracetic acid (TFA), which is 

commonly added to MALDI matrices to assist ionization. Some studies revealed a significant 

signal enhancement in SIMS when they applied a dilute TFA solution to the surface of 

samples of polyurethanes 220  and insulin.221 The Winograd group also determined the 
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molecular weight of small peptides in femtomole quantities bound to the surfaces of 

polystyrene beads when the samples were exposed to TFA vapor prior to SIMS analysis. The 

TFA was used here to break the bond between the polystyrene beads and peptide coatings 

which led to improvement in the molecular ion signals of covalently bounded species.222 Also, 

the application of spraying or inkjet printing of TFA solution to enhance peptide and protein 

signals in SIMS has been recently reported.223-225 

 

5.9 SIMS data analysis 

A typical mass spectrum obtained from SIMS analysis contains hundreds of peaks with 

different intensities based on the chemical composition and structural properties of the sample 

surface being analyzed. Therefore, SIMS data are intrinsically highly detailed and complex. 

The complexity and variety of SIMS data can be exacerbated by the use of biological samples 

most of which are multicomponent and complex in their natures.  Additional challenges then 

result from an enormous SIMS dataset containing multiple spectra originating from multiple 

samples. To reduce this complexity and dimensionality of SIMS data sets, numerous 

statistical analysis techniques are being developed among which multivariate analyses (MVA) 

techniques have to date proved to be the most successful methods aiding interpretation and 

processing of SIMS datasets without adding human bias.226,227  

Among the MVA techniques, PCA is the most popular method, which is commonly used in 

SIMS data analysis to put the data into a comprehensible format. PCA essentially reduces the 

complexity and simplifies the dataset without loss of information. This method discriminates 

similarities and differences in SIMS spectra and classifies spectra into groups. PCA is a 

variant of factor analysis that decreases the number of observations of possibly correlated 

variables (the peaks in m/z values in SIMS spectra) from many hundreds to smaller values of 

linearly uncorrelated variables called principal components where the first principal 

component (PC1) captures the greatest variance in the dataset and each succeeding 

component expresses the remaining variance. The outputs of PCA are the scores and loadings 

plots which display separation of different groups of samples and the variables causing the 

group separation, respectively.226,228 

Another MVA method is orthogonal partial least squares discriminant analysis (OPLS-DA), 

which is a classification and grouping approach relying on a projection of samples as PCA 
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does. OPLS-DA has been recently presented and thus far successfully performed on SIMS 

data to discriminate and examine chemical differences between two groups.229-231 Briefly, this 

method is able to discriminate and separate predictive (known) variances presenting the 

discrimination between groups from non-predictive (orthogonal) variances showing 

differences within the groups and it can exclusively focus on the effect of interest which 

might be covered by unwanted variations.229,230,232 In this thesis, both PCA and OPLS-DA 

were successfully used to treat the SIMS data providing valuable results shown in several 

papers.  
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Summary of Papers 

The main aim of this thesis has been to probe, analyze and image lipid compounds across 

biological samples by use of MSI techniques including SIMS and MALDI imaging. The 

samples used in the thesis were brain and intestine tissue sections from rodent models as well 

as fruit fly brain sections. This thesis can be divided into two units. In the first part including 

papers I, II and V, different sample modification methods for SIMS (papers I and V) and 

MALDI (paper II) have been examined with the aim to improve the information acquired for 

a variety of the lipid components. Also, the possible mechanisms have been investigated. The 

second section, which includes papers III and IV, is a general investigation and application of 

SIMS for lipid analysis on tissue samples. Following is a short summary of each of the five 

papers that make up the body of the thesis. 

Despite the promising ability of the SIMS technique for the analysis of biomolecular species, 

it still suffers from high fragmentation for small molecules and low ion yield for higher mass 

molecules. One possible remedy in this regard is ME-SIMS, which is a common surface 

modification method to improve intact ion yield and sensitivity in conventional SIMS. In 

paper I, the possible mechanism underlying the ion yield enhancement in ME-SIMS using a 

solvent-free deposition method has been characterized. I utilized sublimation to deposit a thin 

layer of DHB, a conventional MALDI matrix, on the surface of rat brain cerebellum tissue 

sections. Then samples were exposed to SIMS analysis using a Bi cluster ion gun as a primary 

ion source. Additionally, scanning electron microscopy (SEM) was used to evaluate the 

deposited matrix layer, which confirmed the quality and coverage of the sublimed DHB layer 

on the samples. To assess lipid changes here, data acquired from untreated and DHB sublimed 

samples analyzed with SIMS were compared using PCA for the white and grey matter 

separately. Results illustrated a significant enhancement of ion yields for a multitude of lipid 

species in the higher mass region (specifically in the range of 700-950 m/z) and also a major 

reduction of cholesterol signals in the sublimed tissue samples for both grey and white matter. 

The fact that enhancement was observed for both protonated and non-protonated species as 

well as Na- and K-adduct species, supports the hypothesis that the enhancement is not caused 

by direct proton donation in the solid or gaseous phases. Rather it is derived by removal or 

suppression of the cholesterol crystals from the surface of the sample, which allows other 

species to be detected more readily. It is also possible that the extraction of some specific 
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lipids into the deposited matrix directly leads to an increase of higher mass lipid ion yield. In 

addition, images acquired in this work indicated that matrix deposition doesn’t influence the 

spatial resolution, which is retained around 2 µm.  

In paper II, various lipid species and their spatial distribution in fruit fly brain sections were 

detected and investigated using laser desorption ionization (LDI). In this work, prior to 

analysis, fly brain sections were treated with two different methods including sublimation (as 

a solvent-free matrix deposition technique) and gold (Au) nanoparticles with a “spray-on” 

deposition. Sublimation was used to deposit two different organic matrices, DHB and CHCA 

on the samples. The samples were also modified with trifluoroacetic acid (TFA) vapor 

exposure, causing recrystallization of the matrix. This recrystallization enhances the 

incorporation of analytes into the matrix leading to higher ionization efficiency. These sample 

preparation methods in comparison showed different abilities for lipid molecular ion detection 

and imaging and therefore they can be combined to provide complementary information for a 

specific group of lipid species including diacylglycerides, phosphatidylcholines, and 

triacylglycerides. Furthermore, ion images with enhanced contrast and more spatial details 

could be achieved using deposition of Au nanoparticles, and this is a potent technique for 

cellular and subcellular imaging. Development of different sample modification approaches 

here with both MALDI and SALDI offers the best and most varieties of lipid chemical images 

of the fly brain so far with LDI.  

In paper III, SIMS imaging using a Bi-cluster ion source was used to study possible changes 

in the lipid cell membrane across intestine tissue samples from rats fed specially processed 

cereals (SPC) compared to control rats fed ordinary diet. This cereal is known to help the 

activity of antisecretory factor (AF), an endogenous protein with proven regulatory effect on 

the hyper-fluid secretion and inflammation decreasing some intestinal symptoms in 

inflammatory bowel disease. To date, the exact mechanism for the AF activation process at 

the cellular level is unknown. In this work, to achieve insight into the possible mechanisms 

involved, SIMS analysis was performed to track food-induced alterations in the lipid 

composition of intestinal tissue sections from two groups of control and SPC-fed animals. 

SIMS data were then subjected to OPLS-DA data analysis, which was used to discriminate 

and differentiate between the two groups. The significant changes in lipid content, particularly 

in vitamin E, phospholipids, and phosphosphingolipids that were observed here, indicates the 

lipids might be directly associated with the working mechanism of an SPC-induced AF 

activation in intestinal tissue.  
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Some studies have shown the effect of an SPC diet on the activation of AF in the brain, 

leading to a decrease of intracranial pressure (ICP). In paper IV, I continued to study and 

compare the lipid content of cell membranes in brain sections of rat exposed to an SPC diet 

with control rats fed a normal diet. In this paper, I used SIMS imaging equipped with a Bi 

cluster ion source to analysis the lipid composition of the brain section samples. PCA data 

analysis was performed on the SIMS data to differentiate and discriminate between the two 

groups. Results illustrated significant changes for some lipid species including cholesterol, 

vitamin E, phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphinothricin, and 

fatty acids such as palmitic and oleic acid between the control and the SPC-fed group. The 

changes of lipid components in the brain following SPC feeding, which were observed here, 

might provide insight into the working mechanisms for AF activation in the brain. 

In paper V, I investigated a sample treatment method to increase the detectable mass range of 

SIMS, which is critical for biological analysis. SIMS imaging can provide ion images with 

high spatial showing the intensity distribution of detected chemicals but is often restricted to 

low mass species which is a notable disadvantage for SIMS. In this paper, rat brain 

cerebellum tissue sections were analyzed. It was demonstrated that applying GCIBs as a 

primary ion source in combination with sample pretreatment with TFA vapor exposure could 

significantly enhance the mass range for intact biomolecular imaging. Additionally, different 

exposure times were investigated in order to obtain the optimum TFA treatment conditions for 

enhancing the high mass signals as well as detecting new species in the mass spectrum that 

previously could not be observed. TFA removes the cholesterol enrichment and crystals at the 

surface of white matter in the brain sections and thus a wide range of lipid species are 

uncovered to be ionized and detected by SIMS. This sample pretreatment proved to be able to 

expand the potential detectable mass range of SIMS analysis for neurological studies. This 

technical improvement enables high molecular mass imaging at high spatial resolutions 

closing the gap between SIMS and MALDI.   
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Concluding Remarks 

In this thesis, specific sample treatments were developed to improve sensitivity and intact ion 

yields in SIMS and as a part of possible mechanisms involved in this enhancement, removing 

cholesterol crystals from the sample surface to allow detection of other species has been 

suggested. In addition, to investigate the biological application of SIMS, I have shown that we 

SIMS imaging can be successfully applied to analyze the lipid content of cell membranes in 

the brain and intestinal tissue sections from rats fed a special, SPC, diet. The results indicated 

significant alteration in lipid composition of the cell membrane in response to this food intake 

suggesting a lipid and cell membrane involvement in the activating of AF protein.  

Also, I developed an alternative imaging technique using nanoparticle LDI-MS with gold 

nanoparticles deposited on fruit fly brain samples. Also, comparison of different matrices 

using different deposition methods showed that the type of lipid species detected in each 

method depends on the strategy of sample preparation as well as the type of material used. I 

conclude that each method can be used in a complementary approach to detect a variety of 

lipid species.  

In conclusion, technological improvements, innovations, and the results presented in this 

thesis offer great potential to utilize MSI more efficiently in further lipid studies. Access to 

higher mass ranges and higher yields of intact biomolecules can open the doors to better 

understand the mechanisms of diseases that involve lipids and help find possible treatments.  
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