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ABSTRACT
Objectives: To quantify trunk muscle activation levels during whole body accelerations that simulate pre-
crash events in multiple directions and to identify recruitment patterns for the development of active
human body models.
Methods: Four subjects (1 female, 3 males) were accelerated at 0.55 g (net �v = 4.0 m/s) in 8 directions
while seated on a sled-mounted car seat to simulate a precrash pulse. Electromyographic (EMG) activity
in 4 trunk muscles was measured using wire electrodes inserted into the left rectus abdominis, internal
oblique, iliocostalis, and multifidus muscles at the L2–L3 level. Muscle activity evoked by the perturbations
was normalized by each muscle’s isometric maximum voluntary contraction (MVC) activity. Spatial tuning
curves were plotted at 150, 300, and 600 ms after acceleration onset.
Results: EMGactivity remainedbelow40%MVC for the three timepoints formost directions. At the 150- and
300ms time points, the highest EMG amplitudes were observed during perturbations to the left (–90°) and
left rearward (–135°). EMG activity diminished by 600 ms for the anterior muscles, but not for the posterior
muscles.
Conclusions: These preliminary results suggest that trunk muscle activity may be directionally tuned at
the acceleration level tested here. Although data from more subjects are needed, these preliminary data
support the development of modeled trunk muscle recruitment strategies in active human body models
that predict occupant responses in precrash scenarios.
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Introduction

Numerical human bodymodels with active muscles are promis-
ing tools for assessing vehicle safety systems (Iwamoto and
Nakahira 2015; Meijer et al. 2013; Östh et al. 2015). To replicate
the initial conditions of crash events, it is important for these
models to predict occupant postural responses and restraint sys-
tem interaction during vehicle precrash maneuvers. To achieve
this goal, the models first need to be developed and validated
usingmuscle recruitment schemes observed in volunteers. Prior
work has shown that low back muscle activity increases during
emergency braking (Ólafsdóttir et al. 2013); however, temporal
and spatial data for trunk muscle activity during multidirec-
tional precrash maneuvers are currently unavailable. Therefore,
the objective of this study was to quantify trunk muscle acti-
vation levels during whole-body accelerations that simulate
precrash events in multiple directions to identify recruitment
patterns for the development of active human body models.

Methods

Four volunteers (1 female, 3 males, ages 23–56 years) gave their
informed consent to participate, and the study was reviewed
and approved by the University of British Columbia’s Clinical
Research Ethics Board. The volunteers were accelerated in
eight directions (0°, ±45°, ±90°, ±135°, 180°) while seated
on a sled-mounted car seat (2005 Volvo S40 driver’s seat). An
acceleration level of 0.55 g (net �v = 4.0 m/s, �t = 0.76 s) was
chosen to simulate possible precrash vehicle maneuvers (typi-
cally below 1 g). The volunteers were seated with their hands on
their lap and were restrained by a lap belt. The seatback angle
was 22° and the feet were supported by footplates angled 55°
from horizontal and longitudinally adjusted to form a 115° knee
angle. Five sequential exposures in each of the eight directions
were presented in four blocks, with each block containing two
opposing directions. Block order and within-block direction
order were randomized. Subjects experienced two practice
trials, one in the forward (0°) and one in the rearward (180°)
direction, before starting the experiment to familiarize them
with the perturbation and to promote a habituated response.
Subjects were unaware of the precise timing of each perturba-
tion, which occurred unpredictably between 5 and 35 s after
being instructed a trial was starting.

Electromyographic (EMG) activity in four trunkmuscles was
measured using indwelling wire electrodes inserted into the left
rectus abdominis (RA), internal oblique (IO), iliocostalis (ILC),
and multifidus (MU) muscles at the L2–L3 level. All EMG data
were band-pass filtered at 140–1000 Hz (106th-order Butter-
worth) to remove motion artifacts and electrical noise, and then
notch filtered to attenuate harmonics of 60 and 100 Hz within
the bandpass region.

EMG data were normalized by each muscle’s isometric max-
imum voluntary contraction (MVC) activity recorded during
seated trunk flexion, extension, left lateral bending, or left rota-
tion. EMG data from the MVC trials were filtered using a 50 Hz
high-pass filter (second-order dual-pass Butterworth). During
trunk flexion, lateral bending and rotation MVCs subjects sat
on a stool and were constrained by a vertical seatback and

a strap tightened around their upper torso. Trunk extension
MVCs were performed on the car seat. Subjects were instructed
to contract maximally for approximately 5 s during each MVC
and received verbal encouragement during the contraction.
The root mean square (RMS, 20 ms window) was calculated
for all EMG data. Baseline activity was removed from both
the MVC and perturbation data before normalizing the per-
turbation data by the MVC data for each muscle. The median
normalized RMS activity across all volunteers for each muscle
in each perturbation direction was extracted to determine the
spatial tuning patterns at 150, 300, and 600ms after acceleration
onset. The 150 ms time point was chosen by visual inspection
of the EMG time histories to approximate the instant of the
peak initial EMG burst. The 300- and 600 ms time points
were consequently selected to represent time points midway
and late into the acceleration phase. ILC recordings from one
–90° trial from a single subject were excluded due to signal
artifact.

Results

Figure 1 shows exemplar EMG data for a single trial of one
subject, and the median spatial tuning curves for all subjects.
Median EMG activity remained below 40%MVC for the 3 time
points for most directions. At the 150- and 300 ms time points,
left (–90°) and left rearward oblique (–135°) perturbations gen-
erally resulted in the highest EMG amplitudes. Median activ-
ity diminished by 600 ms for the anterior muscles, RA and IO,
but not for the posterior muscles, ILC and MU; however, close
inspection of the posteriormuscle signals at 600ms suggests that
electrical noise may account for some of the signal at this time
point.

Discussion

These preliminary results suggest that trunkmuscle activitymay
be directionally tuned at the acceleration level tested here. An
initial burst of activity at ∼150 ms was seen in most muscles
in most directions, and amplitude varied between directions.
Notably, all muscles had relatively high activity during the left
and left rearward oblique (–90° and –135°) perturbations, sug-
gesting a direction-dependent co-contraction of the trunk mus-
cles. A similar, though smaller, co-contraction was seen in IO,
ILC, and MU during acceleration to the right (90°). Preuss and
Fung (2008) also reported direction-specific recruitment pat-
terns of the same trunkmuscles for seated perturbations in eight
directions. They found higher RA and IO activity in left forward
oblique (–45°) perturbations compared to left rearward oblique
(–135°) but similar patterns for MU. However, their lower per-
turbation kinematics (�v = 0.45 m/s over 250 ms), lack of back
support, and different event duration make a direct comparison
to our data difficult.

Further work is needed to acquire data from additional sub-
jects and to assess whether the preferred directions of activation
of the muscles tested here are statistically significant. Moreover,
electrical noise generated by the sled motors was present in the
EMG signals, particularly in the ILC and MU muscles. Custom
filtering methods were applied to attenuate this electrical noise,
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Figure . Left: Exemplar filtered EMG time histories for left muscles from a single subject during a left rearward oblique acceleration (–°). Dashed line shows t =  ms,
and the gray lines indicate the ms intervals that include the data contained in the RMS EMG extracted for the spatial tuning curves. Blue line shows the sled acceleration.
Right: Median spatial tuning patterns of normalized (%MVC) muscle activation levels at  ms (black),  ms (blue), and  ms (green) after acceleration onset; ° on
the perimeter represents a forward acceleration.

but these filters likely attenuated valid EMG signals in the 50 to
140 Hz range and thusmay have affected the preliminary tuning
curves presented here. Better isolation of the lower trunk from
the sled will be implemented for future tests.

Although the volunteers did not know the exact onset of
acceleration, they did get a warning 5–35 s prior to onset and
the direction of the pending acceleration was evident. Anticipa-
tion of an imminent perturbation timing and direction has been
shown to influence trunkmuscle onset responses but not ampli-
tudes (Milosevic et al. 2016). Nevertheless, it is possible that the
subject’s level of awareness influenced our results. More work is
needed to evaluate the effects of subject awareness and pertur-
bation acceleration levels on the temporal and spatial patterns
of trunk muscle recruitment.

Despite these limitations, our initial findings provide a basis
for estimating trunk muscle recruitment for human body mod-
els that simulate neuromuscular control in precrash conditions.
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