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Abstract Substituted norbornadienes are useful in a wide range of ap-
plications, including molecular solar-thermal (MOST) energy storage
systems. An important precursor for 2,3-substituted norbornadienes is
2-bromo-3-chloronorbornadiene, where the two halogen atoms can be
substituted selectively through two consecutive Suzuki cross-coupling
reactions. Previous routes to 2-bromo-3-chloronorbornadiene have
used 1,2-dibromoethane as a brominating agent, a substance known to
be carcinogenic and the use of which is restricted in certain countries.
Herein is reported a one-pot route to 2-bromo-3-chloronorbornadiene
in 50% yield using p-toluenesulfonyl bromide as a bromine source. In
addition, the procedure has been adapted to allow synthesis of 2,3-di-
bromonorbornadiene in 37% yield.

Key words bromine, chlorine, organometallic reagents, regioselectiv-
ity, alkenes

Norbornadiene (1) was first obtained through a Diels–
Alder reaction between cyclopentadiene and acetylene and
reported in a patent from 1951.1 It was soon found that nor-
bornadiene and its derivatives undergo a photoinduced in-
tramolecular [2+2] cycloaddition to yield its valence isomer
quadricyclane (2, Scheme 1).2 This reaction is reversible,
and since 2 is a strained molecule this reaction can be used
to store solar energy.

This approach to store solar energy has recently been
referred to as molecular solar-thermal (MOST) energy stor-
age,3 and studies of norbornadienes as potential MOST sys-
tems have been reviewed.4 Not only are norbornadienes in-
teresting for energy storage, but norbornadienes have
found a wide range of other applications in science.5 We
have a special interest6 in 2-bromo-3-chloronorbornadiene
(3), since the 2- and 3-positions can be selectively substi-
tuted through two consecutive Suzuki cross-coupling reac-
tions, one at ambient temperature and one at elevated tem-
perature.7 The previously published routes to 2- and 2,3-di-
halogenated norbornadienes are summarized in Scheme
2.1,8–14

Early attempts to deprotonate 1 with alkyllithium or al-
kylsodium failed due to rapid decomposition into sodium
cyclopentadienide and sodium acetylenide.15 Later, it was
found that 1 is readily deprotonated by Schlosser’s base in
THF at low temperature,16 and treatment of the metalated
norbornadiene with 1,2-dibromoethane or p-toluenesulfo-
nyl chloride affords 2-bromonorbornadiene (4), or 2-chlo-
ronorbornadiene (5), in 34% or 40% yield, respectively.13

Synthesis of 2,3-dihalogenated norbornadienes is less
straightforward, since 2,3-dimetalated norbornadiene is
unstable due to decomposition into metal cyclopentadi-
enide and metal acetylide. Also, 2-bromonorbornadiene
undergo fast lithium–bromine exchange when treated with
alkyllithium, thus forming 2-lithionorbornadiene rather
than 2-bromo-3-lithionorbornadiene,13 so the two sites
cannot be deprotonated successively. It was found, howev-
er, that 2-potassionorbornadiene (6) was a strong enough
base to deprotonate 4 to yield 2-bromo-3-potassionorborn-
adiene (7). Consecutive reaction with 1,2-dibromoethane
gives 2,3-dibromonorbornadiene (8).13 This strategy was
further investigated by Tam and co-workers who developed
a practically useful route to 8.14 By treating 8 with tert-bu-Scheme 1  Reversible isomerization of 1

hν
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catalyst
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tyllithium followed by water, p-toluenesulfonyl chloride, or
iodine, they obtained 4, 3, or 2-bromo-3-iodonorborna-
diene in 61%,  75%, and 82% yield, respectively.

The use of 1,2-dibromoethane as a brominating agent is
problematic since it has been known for a long time to be
carcinogenic,17 and its use is restricted in some countries
(including Sweden). Although unrestricted in other coun-
tries, its use should be strongly discouraged. In this context,
it should also be noted that some products obtained by bro-
mination of norbornadiene with bromine have also been
reported to be toxic.18 Alternative routes to 3 via 5,5,6-halo-
norbornenes (Scheme 2) requires high temperatures and
pressures, and we were not able to obtain 3 by these proce-
dures. Thus, we set out to modify the procedure introduced
by Tam and co-workers to produce 3, using an alternative
brominating agent and to reduce the long reaction times al-
lowing halonorbornadienes to be conveniently produced
during a normal working day.

Since metalated norbornadiene can be conveniently
chlorinated by p-toluenesulfonyl chloride, a logical choice
for a replacement of 1,2-dibromethane would be p-toluene-

sulfonyl bromide, which is easily prepared19 from commer-
cially available p-toluenesulfonyl hydrazide.20 When stored
in the dark at –20 °C, p-toluenesulfonyl bromide was stable
for at least one month.

To deprotonate norbornadiene (Scheme 3), n-butyllith-
ium is slowly added to a solution of norbornadiene and po-
tassium tert-butoxide in THF to give a yellow solution of the
metalated norbornadiene 6 where, for the sake of simplici-
ty, it is assumed that potassium rather than lithium coordi-
nate the deprotonated norbornadiene. Addition of butyl-
lithium should be slow, and an excess of norbornadiene ap-
pears to be necessary, since treating norbornadiene with a
stoichiometric amount of Schlosser’s base did not give a
clean metalation. We found that adding 0.5 equivalents of
p-toluenesulfonyl bromide to such a solution followed by
stirring at –41 °C gave a thick brown gel. These conditions
are circumvented by using an excess of norbornadiene. Tam
and co-workers14 used two equivalents (meaning that the
maximum conversion of norbornadiene is 25% in the syn-
thesis of 8; we reduced this excess to 1.2 equivalents).

Scheme 2  Synthesis of 2- and 2,3-halogenated norbornadienes1,8–14
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Scheme 3  Synthesis of 3 and 8 from 1

To prepare 3, the solution of 6 is treated with p-toluene-
sulfonyl chloride to give 5, which is not isolated. Compound
5 can be deprotonated in situ with n-butyllithium to give 9.
On treating the resulting brown suspension with p-toluene-
sulfonyl bromide, the brown color is lost within a few min-
utes, and 3 can be extracted from the reaction mixture.21

This allows 3 to be produced in a one-pot reaction, rather
than first preparing and isolating 8.

Having found a route to 3, we also adapted this proce-
dure to the synthesis of 8: 0.5 equivalents p-toluenesulfonyl
bromide are added to the solution of 6, which gives a brown
solution of 6 and 4. At –41 °C, this mixture gives 7 and 1
and the color remains dark brown. This deprotonation is
apparently incomplete and we, as did Tam and co-workers,
obtained 4 as a byproduct. When another 0.5 equivalents of
p-toluenesulfonyl bromide are added, the dark color disap-
pears within a few minutes, and 8 is obtained by extraction
and distillation.22

The yield of 3 was 50%, close to the previously reported
yield of 49% over two steps. However, our yield based on 1,
the most expensive starting material, was 42%, while the
previous protocol had a 12% yield based on 1. The yield of 2
reported in the literature is 65%, but obtaining these high
yields requires great care, and we typically obtained around

35% in our lab, very similar to the 37% we obtained in this
study. The yield based on 1 was 15% compared to 16% in the
previously published procedure. In conclusion, we have re-
ported modified routes to 3 and 8 avoiding the use of toxic
1,2-dibromoethane and significantly reducing the reaction
times.
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(22) 2,3-Dibromonorbornadiene (8)
Potassium tert-butoxide (11.2 g, 0.10 mol) was dissolved in THF
(200 mL), and the solution was cooled to –84 °C. Norbornadiene
(12.2 mL, 0.12 mol) was added followed by n-BuLi (2.5 M in
hexanes, 40 mL, 0.10 mol) under 60 min. The yellow solution
was stirred for 5 min at –84 °C and 60 min at –41 °C. The solu-
tion was cooled again to –84 °C, and p-toluenesulfonyl bromide
(11.7 g, 0.050 mol) was added. The mixture was stirred for 15
min at –84 °C and 60 min at –41 °C. The solution was cooled to
–84 °C, and p-toluenesulfonyl bromide (11.7 g, 0.05 mol) was
added. The mixture was stirred for 15 min and was then heated
to ambient temperature on a room-tempered water bath. The
reaction mixture was quenched with H2O (50 mL), the phases
were separated, and the aqueous phase was extracted with Et2O
(3 × 20 mL). The solvents from the combined organic phases
were slowly removed on a rotary evaporator (40 °C, 300 mbar).
The residue was dissolved in pentane (50 mL), washed with H2O
(10 × 10 mL), brine (20 mL), and dried over Na2SO4. The solvent
was removed in vacuo (40 °C, 300 mbar) and the product dis-
tilled (5 × 10–2 mbar) using a short Vigreux column, collecting
the main fraction at 29–31 °C. This afforded 8 as a colorless
liquid; yield 4.63 g (37%). Analytical data were consistent with
previous reports.14 The product was stored at –20 °C and should
be used within a few weeks to avoid decomposition.
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