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Abstract We consider finite area convex Euclidean circular sectors. We prove a vari-
ational Polyakov formula which shows how the zeta-regularized determinant of the
Laplacian varies with respect to the opening angle. Varying the angle corresponds
to a conformal deformation in the direction of a conformal factor with a logarithmic
singularity at the origin. We compute explicitly all the contributions to this formula
coming from the different parts of the sector. In the process, we obtain an explicit
expression for the heat kernel on an infinite area sector using Carslaw–Sommerfeld’s
heat kernel. We also compute the zeta-regularized determinant of rectangular domains
of unit area and prove that it is uniquely maximized by the square.

Keywords Polyakov formula · Zeta-regularized determinant · Sector · Conical
singularity · Angular variation · Rectangle · Spectrum · Laplacian · Heat kernel

Mathematics Subject Classification Primary 58J52 · Secondary 58J50 · 58C40 ·
35K08 · 58J35
1 Introduction

Polyakov’s formula expresses a difference of zeta-regularized determinants of Laplace
operators, an anomaly of global quantities, in terms of simple localquantities. The
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1774 C. L. Aldana, J. Rowlett

main applications of Polyakov’s formula are in differential geometry andmathematical
physics. Inmathematical physics, this formula arose in the study of the quantum theory
of strings [37] and has been used in connection to conformal quantum field theory [6]
and Feynman path integrals [18].

In differential geometry, Polyakov’s formula was used in the work of Osgood et al.
[35] to prove that under certain restrictions on the Riemannian metric, the determinant
is maximized at the uniform metric inside a conformal class. Their result holds for
smooth closed surfaces and for surfaces with smooth boundary. This result was gener-
alized to surfaces with cusps and funnel ends in [2]. The techniques used in this article
are similar to the ones used by the first author in [3] to prove a Polyakov formula for
the relative determinant for surfaces with cusps.

We expect that the formula of Polyakov we shall demonstrate here will have appli-
cations to differential geometry in the spirit of [35]. Our formula is a step towards
answering some of the many open questions for domains with corners such as polyg-
onal domains and surfaces with conical singularities: what are the suitable restrictions
to have an extremal of the determinant in a conformal class as in [35]? Will it be
unique? Does the regular n-gon maximize the determinant on all n-gons of fixed area?
What happens to the determinant on a family of n-gons which collapses to a segment?

1.1 The Zeta-Regularized Determinant of the Laplacian

Consider a smooth n-dimensional manifold M with Riemannian metric g.We denote
by Δg the Laplace operator associated to the metric g. We consider the positive
Laplacian Δg ≥ 0. If M is compact and without boundary, or if M has non-empty
boundary and suitable boundary conditions are imposed, then the eigenvalues of the
Laplace operator form an increasing, discrete subset of R+,

0 ≤ λ1 ≤ λ2 ≤ λ3 ≤ · · · .
These eigenvalues tend toward infinity according to Weyl’s law [43],

λ
n
2
k ∼ (2π)nk

ωnVol(M)
, as k → ∞,

where ωn is the volume of the unit ball in R
n .

Ray and Singer generalized the notion of determinant of matrices to the Laplace–
de Rham operator on forms using an associated zeta function [38]. The spectral zeta
function associated to the Laplace operator is defined for s ∈ C with Re(s) > n

2 by

ζ(s) :=
∑

λk>0

λ−s
k .

ByWeyl’s law, the zeta function is holomorphic on the half-plane {Re(s) > n/2}, and
it is well known that the heat equation can be used to prove that the zeta function admits
a meromorphic extension to C which is holomorphic at s = 0 [38]. Consequently, the
zeta-regularized determinant of the Laplace operator may be defined as
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A Polyakov Formula for Sectors 1775

det(Δ) := e−ζ ′(0). (1.1)

In this way, the determinant of the Laplacian is a number that depends only on the
spectrum; it is a spectral invariant. Furthermore, it is also a global invariant, meaning
that in general it cannot be expressed as an integral over themanifold of local quantities.

1.2 Polyakov’s Formula for Smooth Surfaces

Let (M, g) be a smooth Riemannian surface. Let gt = e2σ(t)g be a one-parameter
family of metrics in the conformal class of g depending smoothly on t ∈ (−ε, ε) for
some ε > 0. Assume that each conformal factor σ(t) is a smooth function on M. The
Laplacian for the metric gt relates to the Laplacian of the metric g via

Δgt = e−2σ(t)Δg.

The variation of the Laplacian for the metric gt with respect to the parameter t is

∂tΔgt

∣∣
t=0 = −2σ ′(0)Δg0 , g0 = e2σ(0)g. (1.2)

In this setting, Polyakov’s formula gives the variation of the determinant of the
family of conformal Laplacians Δgt with respect to the parameter t of the conformal
factor σ(t), [2,23],

∂t log det
(
Δgt

) = − 1

24π

∫

M
σ ′(t)ScaltdAgt + ∂t logArea (M, gt ) , (1.3)

where Scalt denotes the scalar curvature of the metric gt . This is the type of formula
that we demonstrate here and may refer to it as either the differentiated or variational
Polyakov formula or simply Polyakov’s formula. The classical form of Polyakov’s
formula is the “integrated form” which expresses the determinant as an anomaly; for
a surface M with smooth boundary it was first proven by Alvarez [4]; see also [35].
There are two main difficulties which distinguish our work from the case of closed
surfaces: (1) the presence of a geometric singularity in the domain and (2) the presence
of an analytic singularity in the conformal factor.

1.3 Conical Singularities

Analytically and geometrically, the presence of even the simplest conical singularity, a
corner in a Euclidean domain, has a profound impact on the Laplace operator. As in the
case of a manifold with boundary, the Laplace operator is not essentially self-adjoint.
It has many self-adjoint extensions, and the spectrum depends on the choice of self-
adjoint extension. Thus, the zeta-regularized determinant of theLaplacian also depends
upon this choice [33]. In addition, conical singularities add regularity problems that
do not appear when the boundary of the domain or manifold is smooth.
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1776 C. L. Aldana, J. Rowlett

In recent years there has been progress towards understanding the behavior of the
determinant of certain self-adjoint extensions of the Laplace operator, most notably the
Friedrichs extension, on surfaces with conical singularities. This progress represents
different aspects that have been studied by Kokotov [22], Hillairet and Kokotov [19],
Loya et al. [26], Spreafico [40], and Sher [39]. In particular, the results by Aurell and
Salomonson [5] inspired our present work. Using heuristic arguments they computed
a formula for the contribution of the corners to the variation of the determinant on
a polygon [5, Eq. (51)]. Here we use different techniques to rigorously prove the
differentiated Polyakov formula for an angular sector. Our work is complementary
to those mentioned above since the dependence of the determinant of the Friedrichs
extension of the Laplacian with respect to changes of the cone angle has not been
addressed previously. In addition, our formula can be related to a variational principle.

1.4 Organization and Main Results

In Sect. 2, we present the framework of this article and develop the requisite geometric
and analytic tools needed to prove our first main result, Theorem2 below. In Sects.
3 and 6, we prove the following theorem which is a key ingredient in the proof of
Theorem2.

Theorem 1 LetM f denote the multiplication operator by the function f, so that for
a function φ,

M f :φ 	→ f φ.

Let Sα denote a finite circular sector of opening angle α ∈ (0, π), and let e−tΔα

denote the heat operator associated to the Dirichlet extension of the Laplacian. Then,
the operatorM(1+log(r))e−tΔα on Sα is trace class and its trace admits an asymptotic
expansion at t → 0 of the form

TrSα
(
M(1+log(r))e

−tΔα
) ∼ a0t

−1 + a1t
− 1

2 + a2,0 log(t)

+ a2,1 + O
(
t1/2

)
. (1.4)

The trace in Theorem1 can be rewritten as the following integral:

TrSα
(
M(1+log(r))e

−tΔα
) =

∫

Sα
(1 + log(r))HSα (t, r, φ, r, φ)rdrdφ,

where HSα denotes the Schwartz kernel of e
−tΔα , also called the heat kernel. Our next

theorem is a preliminary variational Polyakov formula.

Theorem 2 Let {Sγ }γ∈(0,π) be a family of finite circular sectors in R2, where Sγ has
opening angle γ and unit radius. LetΔγ be the Euclidean Dirichlet Laplacian on Sγ .
Then for any α ∈ (0, π)
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A Polyakov Formula for Sectors 1777

∂

∂γ

(− log
(
det
(
Δγ

)))∣∣∣∣
γ=α

= 2

α

(−γea2,0 + a2,1
)
. (1.5)

Above, γe is the Euler constant, and a2,0 is the coefficient of log(t) and a2,1
is the constant coefficient in the asymptotic expansion as t → 0 given in Eq.
(1.4).

If the radial direction is multiplied by a factor of R, which is equivalent to scal-
ing the metrics by R2, then the determinant of the Laplacian transforms is given
as

det (Δα) 	→ R−2ζΔα (0) det (Δα) .

The proof of the preceding results comprises Sects. 2 and 4. In Sect. 5 we prove the
following theorem. Its proof not only illustrates the method we shall use to compute
the general case of a sector of opening angle α ∈ (0, π) but also shall be used in the
proof of the general case.

Theorem 3 Let Sπ/2 ⊂ R
2 be a circular sector of opening angle π/2 and radius one.

Then the variational Polyakov formula is

∂

∂γ

(− log
(
det
(
ΔSγ

)))∣∣∣∣
γ=π/2

= −γe

4π
+ 5

12π
,

where γe is the Euler–Mascheroni constant.

In Sect. 6 we determine an explicit formula for Sommerfeld–Carslaw’s heat kernel
for an infinite sector with opening angle α. This allows us to compute the contribution
of the corner at the origin to the variational Polyakov formula, completing the proof of
Theorem1. Moreover, these calculations allow us to refine the preliminary variational
Polyakov formula by determining an explicit formula.

Theorem 4 Assume the same hypotheses as in Theorem 2. Let

kmin =
⌈−π

2α

⌉
, and kmax =

⌊ π

2α

⌋
if

π

2α
/∈ Z, otherwise kmax = π

2α
− 1,

and

Wα =
{
k ∈

(
Z

⋂
[kmin, kmax]

)
\
{

π

α

}


∈Z

}
.
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1778 C. L. Aldana, J. Rowlett

Then

∂

∂γ

(− log
(
det
(
Δγ

)))∣∣
γ=α

= π

12α2 + 1

12π

+
∑

k∈Wα

−2γe + log(2) − log (1 − cos(2kα))

4π(1 − cos(2kα))

−
(
1 − δα, πn

) 2

α
sin
(
π2/α

)

∫ ∞

−∞
γe + log(2) − log(1 + cosh(s))

16π(1 + cosh(s))(cosh(πs/α) − cos(π2/α))
ds,

where n ∈ N is arbitrary and δα, πn
denotes the Kronecker delta.

Here is a short list of examples. Let us denote

S(α) := ∂

∂γ

(− log
(
det
(
Δγ

)))∣∣∣∣
γ=α

.

Then S(α) and the set Wα have the following values:

(1) α = π
4 , W π

4
= {−2, ±1}, S (π4

) = −5γe
4π + log(2)

4π + 17
12π ∼ 0.2764;

(2) α = π
3 , W π

3
= {−1, 1}, S (π3

) = −γe
2π + log(2)

2π + 5
6π ∼ 0.2837;

(3) α = π
2 , W π

2
= {−1}, S (π2

) = −γe
4π + 5

12π ∼ 0.0867;
(4) For α ∈ ]π2 , π

[
, Wα = ∅, but sin(π2/α) �= 0. Thus, the integral in Theorem4

determines S(α). For example, with α = 2π
3 , the integral converges rapidly,

and a numerical computation gives an approximate value of 0.0075015. Hence
S( 2π3 ) ∼ 0.0933723.

Generalizing our Polyakov formula to Euclidean polygons shall require additional
considerations because one cannot change the angles independently. We expect that
the results obtained here will help us to achieve these generalizations with the eventual
goal of computing closed formulas for the determinant on planar sectors and Euclidean
polygons. In the latter setting one naturally expects the following:

Conjecture 1 Among all convex n-gons of fixed area, the regular one maximizes the
determinant.

We conclude this work by proving in Sect. 7 the following result which shows that
for the case of rectangular domains, the conjecture holds.

Theorem 5 Let R be a rectangle of dimensions L × L−1. Then the zeta-regularized
determinant is uniquely maximized for L = 1, and tends to 0 as L → 0 or equivalently
as L → ∞.

2 Geometric and Analytic Preliminaries

In this section we present the framework of this article and fix the geometric and
analytic tools required to prove our results.
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A Polyakov Formula for Sectors 1779

2.1 The Determinant and Polyakov’s Formula

Let us describe briefly the classical deduction of Polyakov’s formula, since we will
use the same argument. Let (M, g) be a smooth Riemannian surface with or without
boundary. If ∂M �= ∅, we consider the Dirichlet boundary condition, in which case
Ker(Δg) = {0}.

Let Hg(t, z, z′) denote the heat kernel associated to Δg. It is the fundamental
solution to the heat equation on M

(
Δg + ∂t

)
Hg(t, z, z

′) = 0 (t > 0),

Hg(0, z, z
′) = δ(z − z′).

The heat operator, e−tΔg for t > 0, is trace class, and the trace is given by

Tr
(
e−tΔg

) =
∫

M
Hg(t, z, z)dz =

∑

λk≥0

e−λk t .

The zeta function and the heat trace are related by the Mellin transform

ζΔg (s) = 1

Γ (s)

∫ ∞

0
t s−1Tr

(
e−tΔg − PKer(Δg)

)
dt, (2.1)

where PKer(Δg) denotes the projection on the kernel of Δg.

It is well known that the heat trace has an asymptotic expansion for small values of
t [13]. This expansion has the form

Tr
(
e−tΔg

) = a0t
−1 + a1t

−1
2 + a2 + O

(
t
1
2

)
.

The coefficients a j are known as the heat invariants. They are given in terms of the
curvature tensor and its derivatives as well as the geodesic curvature of the boundary
in case of boundary. By (2.1) and the short time asymptotic expansion of the heat trace

ζΔg (s) = 1

Γ (s)

{
a0

s − 1
+ a1

s − 1
2

+ a2 − dim(Ker(Δg))

s
+ e(s)

}
,

where e(s) is an analytic function on Re(s) > −1. The regularity of ζΔg at s = 0 and
hence the fact that the zeta-regularized determinant of the Laplacian is well defined
by (1.1) both follow from the above expansion together with the fact that Γ (s) has
simple pole at s = 0.

Let {σ(τ), τ ∈ (−ε, ε)} be a family of smooth conformal factors which depend
on the parameter τ for some ε > 0. Consider the corresponding family of conformal
metrics {hτ = e2σ(τ)g, τ ∈ (−ε, ε)}. To prove Polyakov’s formula one first differen-
tiates the spectral zeta function ζΔhτ

(s)with respect to τ. This requires differentiating
the trace of the heat operator. Then, after integrating by parts, one obtains
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1780 C. L. Aldana, J. Rowlett

∂τ ζΔhτ
(s) = s

Γ (s)

∫ ∞

0
t s−1Tr

(
2Mσ ′(τ )

(
e−tΔhτ − PKer(Δhτ )

))
dt,

whereMσ ′(τ ) denotes the operator multiplication by the function σ ′(τ ). The integra-
tion by parts is again facilitated by the pole of Γ (s) at s = 0.

If the manifold is compact, and the metrics and the conformal factors are smooth,
then the operator Mσ ′(τ )e−tΔhτ is trace class, and the trace behaves well for t large.
As t → 0 the trace also has an asymptotic expansion of the form

Tr
(
Mσ ′(τ )e

−tΔhτ
) ∼ a0

(
σ ′(τ ), hτ

)
t−1 + a1

(
σ ′(τ ), hτ

)
t−

1
2

+ a2
(
σ ′(τ ), hτ

)− dim
(
Ker

(
Δhτ

))+ O
(
t
1
2

)
.

The notation a j (σ
′(τ ), hτ ) is meant to show that these are the coefficients of the given

trace, which depend on σ ′(τ ) and on the metric hτ . The dependence on the metric is
through its associated heat operator.

Therefore, the derivative of ζ ′
Δhτ

(0) at τ = 0 is simply given by

∂τ ζ
′
Δhτ

(0)
∣∣∣
τ=0

= 2
(
a2
(
σ ′(0), h0

)− dim
(
Ker

(
Δh0

)))
.

Polyakov’s formula in (1.3) is exactly this equation.

2.2 Euclidean Sectors

Let Sγ ⊂ R
2 be a finite circular sector with opening angle γ ∈ (0, π) and radius R.

The Laplace operator Δγ with respect to the Euclidean metric is a priori defined on
smooth functions with compact support within the open sector. It is well known that
the Laplacian is not an essentially self-adjoint operator since it has many self-adjoint
extensions; see, e.g., [12,25]. The largest of these is the extension to

Dommax
(
Δγ

) =
{
u ∈ L2 (Sγ

) |Δγ u ∈ L2 (Sγ
)}

.

For several reasons the most natural or standard self-adjoint extension is the
Friedrichs extension whose domain, DomF(Δγ ), is defined to be the completion of

C∞
0

(
Sγ
)

w.r.t the norm ‖∇ f ‖L2 ,

intersected with Dommax . For a smooth domain Ω ⊂ R
2, it is well known that

DomF (ΔΩ) = H1
0 (Ω) ∩ H2(Ω).

The same is true if the sector is convex which we shall assume; see [16, Theorem
2.2.3] and [24, Chap. 3, Lemma 8.1].
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A Polyakov Formula for Sectors 1781

Remark 1 Let S = Sγ,R be a planar circular sector of opening angle γ ∈ (0, π),
radius R > 0, and S′ = Sγ ′,R′ be a circular sector of opening angle γ ′ ∈ (0, π) and

radius R′ > 0. The map Υ : S → S′ defined by Υ (ρ, θ) =
(
R′ρ
R ,

γ ′θ
γ

)
= (r, φ)

induces a bijection

Υ ∗:C∞
c (S′)

∼=−→ C∞
c (S), f 	→ Υ ∗ f := f ◦ Υ.

This bijection extends to the domains of the Friedrichs extensions of the corresponding
Laplace operators. Furthermore, under this map, the corresponding L2 norms are
equivalent, i.e., there exist constants c, C > 0 such that for any f ∈ L2(S′),

c‖ f ‖L2(S′) ≤ ‖Υ ∗ f ‖L2(S) ≤ C‖ f ‖L2(S′).

The same holds for the norms on the corresponding Sobolev spaces Hk for k ≥ 0.
In spite of inducing an equivalence between the different domains, this map is not
useful for our purposes since it does not produce a conformal transformation of the
Euclidean metric.

To understand how the determinant of the Laplacian changes when the angle of
the sector varies requires differentiating the spectral zeta function with respect to the
angle

∂

∂γ
ζSγ (s) = ∂

∂γ

1

Γ (s)

∫ ∞

0
t s−1TrL2(Sγ ,g)

(
e−tΔγ − PKer(Δγ )

)
dt. (2.2)

In order to do that we use conformal transformations. Varying the sector is equiv-
alent to varying a conformal family of metrics with singular conformal factors on a
fixed domain.

2.2.1 Conformal Transformation from One Sector to Another

Let (r, φ) denote polar coordinates on the sector Sγ . We assume that the radii of all
sectors are equal to one. Let α ∈ (0, π) be the angle at which we shall compute the
derivative and Q = Sβ be a sector with opening angle β ≤ α.We use (ρ, θ) to denote
polar coordinates on Q.

Consider the map

Ψγ : Q → Sγ , (ρ, θ) 	→
(
ργ/β,

γ θ

β

)
= (r, φ). (2.3)

The pull-back metric with respect to Ψγ of the Euclidean metric g on Sγ is

hγ := Ψ ∗
γ g =

(
γ

β

)2

ρ2γ /β−2
(
dρ2 + ρ2dθ2

)

= e2σγ
(
dρ2 + ρ2dθ2

)
, (2.4)
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1782 C. L. Aldana, J. Rowlett

σγ (ρ, θ) = log

(
γ

β
ργ/β−1

)
= log

(
γ

β

)
+
(
γ

β
− 1

)
log ρ. (2.5)

We will consider the family of metrics

{
hγ , γ ∈ [β, π)} ,

defined by (2.4) on the fixed sector Q = Sβ.
The area element on Q with respect to the metric hγ is

dAhγ = e2σγ ρdρdθ = e2σγ dAg, (2.6)

and the Laplace operator Δhγ associated to the metric hγ is formally given by

Δhγ = −
(
β

γ

)2

ρ−2γ /β+2
(
∂2ρ + ρ−1∂ρ + ρ−2∂2θ

)
= e−2σγ Δ, (2.7)

where Δ := Δβ = −∂2ρ − ρ−1∂ρ − ρ−2∂2θ is the Laplacian on (Q, g).
The transformation Ψγ induces a map between the function spaces

Ψ ∗
γ :C

∞
c

(
Sγ
) → C∞

c (Q), f 	→ Ψ ∗
γ f := f ◦ Ψγ .

Proposition 1 For γ ≥ β, the map Ψ ∗
γ is an isometry between the Friedrichs domain

of Δhγ on Q and the domain of the Friedrichs extension of Δγ on the sector Sγ .
Moreover,

Ψ ∗
γ

(
Dom

(
Δγ

)) = Dom
(
Δhγ

) = H2 (Q, hγ
) ∩ H1

0

(
Q, hγ

)
,

with Δhγ = e−2σγ Δβ.

This proposition is a direct consequence of the following two lemmas.

Lemma 1 The map Ψγ defined by Eq. (2.3) is an isometry Ψ ∗
γ between the Sobolev

spaces H1
0 (Q, hγ ) and H1

0 (Sγ , gγ ).

Proof As before, let (r, φ) denote the coordinates in Sγ , and let (ρ, θ ) denote the
coordinates in Q. The volume element in Q and the Laplacian for the metric hγ are
given in (2.6) and (2.7), respectively.

The transformation Ψ ∗
γ extends to the L2 spaces. The fact that Ψ ∗

γ is an isometry
between L2(Sγ , g) and L2(Q, hγ ) follows from a standard change of variables com-
putation. For f : Sγ → R, we compute that the L2 norms of f ∈ L2(Sγ , g) and Ψ ∗

γ f

in L2(Q, hγ ) coincide:

∫

Sγ
| f (r, φ)|2rdrdφ =

∫

Q

∣∣ f ◦ Ψγ

∣∣2
(
γ

β

)2

ρ
2 γ
β

−1dρdθ

=
∫

Q

∣∣∣Ψ ∗
γ f
∣∣∣
2
e2σγ ρdρdθ.
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A Polyakov Formula for Sectors 1783

Next let f ∈ H1
0 (Sγ , g). To prove that Ψ ∗

γ f ∈ H1
0 (Q, hγ ) we show that the L2-

norms ‖d f ‖L2(Sγ , g) and ‖d f ◦ dΨγ ‖L2(Q, hγ ) are identical. Since |d f |2g = |∇g f |2 =
gl j (∂l f )(∂ j f ),

∫

Sγ

∣∣∇g f
∣∣2 dAg =

∫

Q

(((
∂ f

∂r

)2

+ 1

r2

(
∂ f

∂φ

)2
)

◦ Ψγ (ρ, θ)

)
e2σγ ρdρdθ.

Using Ψ ∗
γ f = f ◦ Ψγ (ρ, θ) we have

∂ f

∂r

(
Ψγ (ρ, θ)

) = β

γ
ρ1−γ /β

∂Ψ ∗
γ f

∂ρ
,

∂ f

∂φ

(
Ψγ (ρ, θ)

) = β

γ

∂Ψ ∗
γ f

∂θ
.

Substituting above, we obtain

∫

Sγ

∣∣∇g f
∣∣2 dAg =

∫

Q

((
β

γ
ρ1−γ /β

∂Ψ ∗
γ f

∂ρ

)2

+ ρ−2γ /β
(
β

γ

∂Ψ ∗
γ f

∂θ

)2
)
e2σγ ρdρdθ

=
∫

Q

(
β

γ
ρ1−γ /β

)2
((

∂Ψ ∗
γ f

∂ρ

)2

+ 1

ρ2

(
β

γ

∂Ψ ∗
γ f

∂θ

)2
)
e2σγ ρdρdθ

=
∫

Q
e−2σγ

((
∂Ψ ∗

γ f

∂ρ

)2

+ 1

ρ2

(
∂Ψ ∗

γ f

∂θ

)2
)
e2σγ ρdρdθ

=
∫

Q

∣∣∇hγ Ψ
∗ f
∣∣2 dAhγ .

This completes the proof. ��

Lemma 2 The map Ψ ∗
γ is an isometry between the Sobolev spaces H2(Q, hγ ) and

H2(Sγ , g). A function f ∈ H2(Q, hγ ) if and only if Ψ ∗ f ∈ H2(Sγ , g).

Proof Let f ∈ H2(Q, hγ ). By definition Ψ ∗
γ f = ( f ◦ Ψγ )(ρ, θ), so

∣∣∣Δhγ Ψ
∗
γ f
∣∣∣
2 =

(
β

γ

)2

ρ
− 4γ

β
+4

(
∂2Ψ ∗

γ f

∂ρ2 + 1

ρ

∂Ψ ∗
γ f

∂ρ
+ 1

ρ2

∂2Ψ ∗
γ f

∂θ2

)2

.

Since

∂2Ψ ∗
γ f

∂ρ2 =
(
γ

β

)2

ρ
2 γ
β

−2 ∂
2 f

∂r2
(
Ψγ (ρ, θ)

)

+ γ

β

(
γ

β
− 1

)
ρ

γ
β

−2 ∂ f

∂r

(
Ψγ (ρ, θ)

)
,
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1784 C. L. Aldana, J. Rowlett

it is easy to see that

∫

Q

∣∣∣Δhγ Ψ
∗
γ f
∣∣∣
2
dAhγ =

∫

Q

(∣∣Δg f
∣∣2 ◦ Ψγ

)
(ρ, θ)e2σγ dAg

=
∫

Sγ

∣∣Δg f
∣∣2 dAg,

where the last equality follows from the standard change of variables, and g denotes
the Euclidean metric on both Q and Sγ . ��
Example 1 Let γ ∈ [β, π), and hγ be as above. Let ϕ(ρ, θ) := ρx sin(kπθ/β). It is
easy to see that

• ϕ ∈ L2(Q, hγ ) ⇔ x > −γ /β,

• ϕ ∈ H1(Q, hγ ) ⇔ x > 0,
• ϕ ∈ H2(Q, hγ ) ⇔ x >

γ
β
.

The example above shows that the domain of the Laplacian �hγ depends on the
angle, and in particular, it will be different for different angles. As a consequence
several problems appear here that distinguish this case from the classical smooth case
and force us to go into the details of the differentiation process.

2.2.2 Domains of the Laplace Operators

Even though the description of the domains of the family of Laplace operators
{Δhγ , γ ≥ β} given in the previous section is useful for our purposes, it is not
enough. Unlike the smooth case, this family does not act on a single fixed Hilbert
space when γ varies but instead we will demonstrate below that they act on a nested
family of weighted, so-called “b”-Sobolev spaces.

Definition 1 The b-vector fields on (Sγ , g), denoted by Vb, are the C∞ span of the
vector fields

Vb := C∞ span of
{
r∂r , ∂φ

}
,

where C∞ means that the coefficient functions are smooth up to the boundary. For
m ∈ N, the b-Sobolev space is defined as

Hm
b :=

{
f | V1, . . . , Vj f ∈ L2 (Sγ , g

) ∀ j ≤ m, ∀ V1, . . . , Vj ∈ Vb

}
,

and H0
b = L2(S, g). The weighted b-Sobolev spaces are

r x Hm
b = {

f | ∃v ∈ Hm
b , f = r xv

}
.

We first apply results due to several authors, including but not limited to, Mazzeo
[28, Theorem 7.14] and Lesch [25, Proposition 1.3.11].

123



A Polyakov Formula for Sectors 1785

Proposition 2 The Friedrichs domain of the Laplace operator Δγ on the sector Sγ
with Dirichlet boundary condition is

Dom
(
Δγ

) = r2H2
b ∩ H1

0

(
Sγ , g

)
.

Proof By [29, Eq. (19)] and [28, Theorem 7.14] (c.f. [25, Proposition 1.3.11]), any
element in the domain of the Friedrichs extension of Laplacian Δγ has a partial
expansion near r = 0 of the form

∑

γ j∈]−n/2,−n/2+2]
c jr

γ jψ j (φ) + w, w ∈ r2H2
b .

In our case the dimension n = 2, and the indicial roots γ j are given by

γ j = ±√
μ j ,

where μ j is an eigenvalue of the Laplacian on the link of the singularity, and ψ j is
the eigenfunction with eigenvalue μ j . The link is in this case [0, γ ] with Dirichlet

boundary condition. These eigenvalues are thereforeμ j = j2π2

γ 2 with j ∈ N, j ≥ 1. In
particular, there are no indicial roots in the critical interval ] − 1, 1], because γ < π.

Taking into account the Dirichlet boundary condition away from the singularity, it
follows that the domain of the Laplace operator is precisely given by

r2H2
b

(
Sγ
) ∩ H1

0

(
Sγ , g

)
.

��
The operators Δhγ , albeit each defined on functions on Q, have domains which

are defined in terms of L2(Q, dAhγ ). In particular, the area forms depend on γ.

Consequently, in order to fix a single Hilbert space on which our operators act, we use
the following maps

Φγ : L
2 (Q, dAhγ

) → L2(Q, dA), f 	→ eσγ f = γ

β
ργ/β−1 f ;

Φ−1
γ : L2(Q, dA) → L2 (Q, dAhγ

)
, f 	→ e−σγ f = β

γ
ρ−γ /β+1 f. (2.8)

Each Φγ is an isometry of L2(Q, dAhγ ) and L2(Q, dA), since

∫

Q
f 2dAhγ =

∫

Q
f 2e2σγ dA =

∫

Q

(
Φγ f

)2 dA.

Proposition 3 For all γ ∈ [β, π), we have

Φγ

(
Dom

(
Δhγ

)) ⊆ ρ2γ /βH2
b (Q, dA) ∩ H1

0 (Q, dA).
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1786 C. L. Aldana, J. Rowlett

Moreover,

Φγ

(
Dom

(
Δhγ

)) ⊂ Φγ ′
(
Dom

(
Δhγ ′

))
, γ ′ < γ.

Proof Let us start by comparing the H2
b spaces. To do this, we first compute

r = ργ/β �⇒ ρ∂ρ = γ

β
r∂r ;

∂θ = γ

β
∂φ �⇒ C∞ 〈

ρ∂ρ, ∂θ
〉 = C∞ 〈

r∂r , ∂φ
〉
.

Now, let f ∈ r2H2
b (Sγ ), so by definition f (r, φ) = r2u(r, φ) with u ∈ H2

b (Sγ ).
Then

(
Ψ ∗
γ f
)
(ρ, θ) = f

(
ργ/β, γ θ/β

) = ρ2γ /β
(
Ψ ∗
γ u
)
(ρ, θ).

Consequently,

Ψ ∗
γ

(
H2
b

(
Sγ
)) = H2

b

(
Q, dAhγ

)

= ρ−γ /β+1H2
b (Q, dA),

Ψ ∗
γ

(
r2H2

b

(
Sγ
)) = ρ2γ /βH2

b

(
Q, dAhγ

)

= ργ/β+1H2
b (Q, dA),

and

Φγ

(
Ψ ∗
γ

(
r2H2

b

(
Sγ
))) = Φγ

(
ργ/β+1H2

b (Q, dA)
)

= ρ2γ /βH2
b (Q, dA) ⊆ ρ2H2

b (Q, dA),

for γ ∈ [β, π). Moreover, we have

Dom
(
Δhγ

) = ρ2γ /βH2
b (Q, dA) ∩ H1

0 (Q, dA).

It is straightforward to see that

γ ′ < γ �⇒ ρ2γ /βH2
b (Q, dA) ⊂ ρ2γ ′/βH2

b (Q, dA).

Now, we claim that

Φγ

(
H1
0

(
Q, dAhγ

) ∩ ρ2γ /βH2
b

(
Q, dAhγ

)) ⊆ H1
0 (Q, dA).

Note that C∞
0 (Q) is independent of hγ . Then, it is enough to show that for any f ∈

Dom(Δhγ ) the L2(Q, dA)-norms of Φγ f and ∇(Φγ f ), can be estimated using the
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fact that f ∈ H1
0 (Q, dAhγ )∩ργ/β+1H2

b (Q, dA).By definition,Φγ is an isometry of
L2(Q, dAhγ ) and L

2(Q, dA). So we only need to prove that∇(Φγ f ) ∈ L2(Q, dA).
To do this, we compute

∫

Q

∣∣∇hγ f
∣∣2 dAhγ =

∫

Q
e−2σγ

((
∂ρ f

)2 + ρ−2 (∂θ f )
2
)
e2σγ dA

=
∫

Q
|∇ f |2dA.

Next we compute

∫

Q

∣∣∇Φγ f
∣∣2 dA =

∫

Q

((
∂ρe

σγ f
)2 + ρ−2 (∂θeσγ f

)2) dA

=
∫

Q

{
e2σγ

((
∂ρ f

)2 + ρ−2 (∂θ f )
2
)

+ (∂ρeσγ
)2

f 2

+ 2
(
∂ρe

σγ
)
eσγ f

(
∂ρ f

)}
dA.

The first term,

∫

Q
e2σγ

((
∂ρ f

)2 + ρ−2 (∂θ f )
2
)
dA =

∫

Q
|∇ f |2ρ2 γ

β
−2 γ

2

β2 dA

≤ γ 2

β2

∫

Q

∣∣∇hγ f
∣∣2 dAhγ ,

since γ
β

≥ 1, ρ2 γ
β

−2 ≤ 1 on Q.

To estimate the second term, we use that f ∈ ργ/β+1H2
b (Q, dA), therefore

∫

Q

(
∂ρe

σγ
)2

f 2dA = c
∫

Q
f 2ρ2 γ

β
−4dA ≤

∫

Q
f 2ρ− γ

β
−1dA < ∞,

where c = γ 2

β2
(γ−β)2

β2 and we have used again that γ ≥ β. For the third term we
compute

∫

Q

(
∂ρe

σγ
)
eσγ f

(
∂ρ f

)
dA = c

∫

Q
ρ
2 γ
β

−3 f
(
∂ρ f

)
dA

≤ c

(∫

Q
f 2ρ2 γ

β
−4dA

)1/2 (∫

Q

(
ρ∂ρ f

)2
ρ
2 γ
β

−4dA

)1/2

.
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Since f ∈ ργ/β+1H2
b (Q, dA), write f = ρ

γ
β

+1u with u ∈ H2
b (Q, dA). Then

∫

Q
f 2ρ2 γ

β
−4dA =

∫

Q
u2ρ

2γ
β

+2
ρ
2 γ
β

−4dA < ∞,

since γ ≥ β, and u ∈ H2
b (Q, dA) ⊂ L2(Q, dA).

Now, for the integral
∫
Q(ρ∂ρ f )2ρ2 γ

β
−4dA we compute

(
ρ∂ρ f

)2 =
(
γ

β
+ 1

)2

ρ
2γ
β

+2u2 + 2

(
γ

β
+ 1

)
ρ
2 γ
β

+2u
(
ρ∂ρ

)
u

+ ρ
2γ
β

+2 ((
ρ∂ρ

)
u
)2

.

Since u ∈ H2
b (Q, dA) and γ ≥ β

∫

Q
u2ρ4 γ

β
−2dA < ∞, and

∫

Q

((
ρ∂ρ

)
u
)2

ρ
4 γ
β

−2dA < ∞.

By the Cauchy–Schwarz inequality,

∫

Q
u
((
ρ∂ρ

)
u
)
ρ
4 γ
β

−2dA≤
(∫

Q
u2ρ4 γ

β
−2dA

)1/2 (∫

Q

(
ρ∂ρu

)2
ρ
4 γ
β

−2dA

)1/2

<∞.

Putting everything together, we have proven that

Φγ

(
Ψ ∗
γ

(
Dom

(
Δγ

))) ⊆ ρ2γ /βH2
b (Q, dA) ∩ H1

0 (Q, dA).

In order to see that for β ≤ γ ′ < γ < π,

Φγ

(
Ψ ∗
γ

(
Dom

(
Δγ

))) ⊂ Φγ ′
(
Ψ ∗
γ ′
(
Dom

(
Δγ ′

)))
,

we first note that

Φγ

(
Ψ ∗
γ

(
Dom

(
Δγ

))) ⊂ ρ2γ /βH2
b (Q, dA) ⊂ ρ2γ ′/βH2

b (Q, dA).

Finally, in order to show that

f ∈H1
0

(
Q, dAhγ

)∩ργ/β+1H2
b (Q, dA) �⇒ Φ−1

γ ′ Φγ f ∈H1
0

(
Q, dAhγ ′

)
, γ ′<γ,

simply note that the L2 norm of ∇hγ ′ (Φ
−1
γ ′ Φγ f ) can be estimated in the same way as

above using the fact that γ ′ < γ, and therefore γ − γ ′ > 0. ��
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2.2.3 The Family of Operators

Finally, let us introduce the family of operators that we will use to prove Polyakov’s
formula. Let us define Hγ as

Hγ := Φγ ◦ Ψγ ◦ Δγ ◦ Ψ−1
γ ◦ Φ−1

γ = Φγ ◦ Δhγ ◦ Φ−1
γ . (2.9)

The domains of the family {Hγ }γ nest

β ≤ γ ′ ≤ γ �⇒ Dom
(
Hγ

) ⊂ Dom
(
Hγ ′
) ⊂ Dom(Δ),

where Δ is the Laplacian on Q.

3 Short Time Asymptotic Expansion

In order to prove the trace class property of the operatorM(1+log(r))e−tΔα on Sα and
the trace class property of the operators appearing in the proof of Proposition5 in
Sect. 4 below, we need estimates on the heat kernel. We do not need a sharp estimate;
a general estimate in terms of the time variable is enough for our purposes.

3.1 Heat Kernel Estimates

The heat kernel estimates we require follow rather quickly from [1,10].

Proposition 4 Let S denote a finite Euclidean sector. Then the heat kernel of the
Dirichlet extension of Laplacian on S satisfies the following estimates

|H(t, z, z′)| ≤ C

t
,

∣∣∂t H(t, z, z′)
∣∣ ≤ C

t2
,

for all z, z′ ∈ S, and t ∈ (0, T ), where C > 0 is a fixed constant which depends only
on the constant T > 0.

Proof Sectors are both rather mild examples of stratified spaces. Consequently, the
heat kernel satisfies the estimate (2.1) on [1, p. 1062]. This estimate is

H(t, z, z′) ≤ Ct−1, ∀z, z′ ∈ S, ∀t ∈ (0, 1), (3.1)

since the dimension n = 2.
Next, we apply the results by Davies [10] which hold for the Laplacian on a general

Riemannianmanifold whose balls are compact if the radius is sufficiently small. These
minimal hypotheses are satisfied for sectors. By [10, Lemma 1],

|H(t, z, z′)|2 ≤ H(t, z, z)H(t, z′, z′),
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1790 C. L. Aldana, J. Rowlett

for all z, z′ ∈ S, and all t > 0. If T < 1, then this estimate together with (3.1) gives
the first estimate in the proposition. In general, by [10] the function t 	→ H(t, z, z)
is positive, monotone decreasing in t, and log convex for every z. For a fixed T ≥ 1,
the estimate (3.1) together with the above shows that

|H(t, z, z′)|2 ≤ C2 ∀t ≥ 1.

So, we simply replace the constant C with the constant CT, which we again denote
by C and obtain the estimate

|H(t, z, z′)|2 ≤ C2t−2, ∀t ∈ (0, T ), ∀z, and z′ ∈ S.

Next, we apply [10, Theorem 3], which states that the time derivatives of the heat
kernel satisfy the estimates

∣∣∣∣
∂n

∂tn
H(t, z, z′)

∣∣∣∣ ≤ n!
(t − s)n

H(s, z, z)1/2H(s, z′, z′)1/2, n ∈ N, 0 < s < t.

Making the special choice s = t/2 and n = 1, we have

∣∣∂t H(t, z, z′)
∣∣ ≤ 2

t
H(t/2, z, z)1/2H(t/2, z′, z′)1/2.

Using the estimates for the heat kernel we estimate the right side above which shows
that

∣∣∂t H(t, z, z′)
∣∣ ≤ Ct−2, ∀t ∈ (0, T ), ∀z, z′ ∈ S.

��
Remark 2 By the heat equation, the estimate for the time derivative of the heat kernel
implies the following estimate for the Laplacian of the heat kernel

|ΔH(t, z, z′)| ≤ Ct−2,

for any 0 < t < T, and z, z′ ∈ S, for a constant C > 0 depending on T .

We now return to the trace class property of the operators in question.

Lemma 3 Let S denote the finite sector with angle α and radius R, S = Sα,R, with
α ∈ (0, π). LetΔ denote the Dirichlet Laplacian on S and e−tΔ be the corresponding
heat operator. Let Mψ denote the operator multiplication by a function ψ. Let ξ be
a smooth function on S\{ρ = 0} such that ξ(ρ) = m log(ρ) for a constant m ∈ R on
some neighborhood of the singular point ρ = 0. Then, for any t > 0 the following
operators

(1) Mξ e−tΔ,

(2) MξΔe−tΔ,
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(3) ΔMξ e−tΔ,

(4) Mψe−tΔ, where ψ(ρ, θ) = O(ρ−c) as ρ → 0, for c < 1.

are Hilbert–Schmidt. Moreover, the operators Mξ e−tΔ, MξΔe−tΔ, ΔMξ e−tΔ,

Mψe−tΔ, and MψΔe−tΔ are trace class.

Proof Recall that an integral operator is Hilbert–Schmidt if the L2-norm of its integral
kernel is finite. Using the estimates given in Proposition4 we have that

∥∥Mψe
−tΔ

∥∥
2 ≤ C

∫

S×S
|ψ(z)|2|H(t, z, z′)|2dAdA′

≤ C̃(α, R, t)
∫ R

0

∫ R

0
ρ−2c+1ρ′dρdρ′ < ∞,

since c < 1. Hence Mψe−tΔ is a Hilbert–Schmidt operator. Similarly,

∥∥Mξ e
−tΔ

∥∥
2 ≤ C

∫

S×S
| log(ρ)|2|H(t, z, z′)|2dAdA′

≤ C̃(α, R, t)
∫ R

0

∫ R

0
| log(ρ)|2ρρ′dρdρ′ < ∞,

since | log(ρ)|2ρ is bounded on (0, R). ThusMξ e−tΔ is also Hilbert–Schmidt. Using
the estimates for the kernel of Δe−tΔ, we can prove in the same way as above that
MξΔe−tΔ and MψΔe−tΔ are Hilbert–Schmidt.

We shall prove now that ΔMξ e−tΔ/2 is Hilbert–Schmidt. The integral kernel of
ΔMξ e−tΔ/2 is Δz(ξ(z)H(t, z, z′)). By Leibniz’s rule,

Δz(ξ(z)H(t, z, z′)) = (Δzξ(z)) H(t, z, z′) + ξ(z)
(
Δz H(t, z, z′)

)

+ 2 〈∇zξ, ∇z H〉 .

When considering the integral

∫

S×S

∣∣Δz
(
ξ(z)H(t, z, z′)

)∣∣2 dA(z)dA(z′),

using again the estimates on the heat kernel and that the function ξ is smooth away
from the singularity, it is clear that the corresponding terms are all bounded. Near
the singularity, for 0 < ρ ≤ ρ0, ξ(z) = log(ρ), and Δ log(ρ) = 0. Hence, near the
singularity, we have

Δz(ξ(z)H(t, z, z′)) = ξ(z)
(
Δz H(t, z, z′)

)+ 2ρ−1∂ρH(t, ρ, ρ′, θ, θ ′).

The first term corresponds to the operator MξΔe−tΔ that is Hilbert–Schmidt. Con-
sidering the second term, we note that, for any t > 0, the heat kernel is in the domain
of the Laplace operator. By Proposition 2 (c.f. Example 1), this requires that the
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heat kernel H ∈ H2
b (Sα, ρdρdθ) which implies that ρ−1∂ρH(t, ρ, ρ′, θ, θ ′) ∈

L2(Sα, ρdρdθ). Thus

∫

Sα,ρ0×S

∣∣∣ρ−1∂ρH(t, ρ, ρ′, θ, θ ′)
∣∣∣
2
ρdρdθρ′dρ′dθ ′ ≤ C(t, α),

where Sα,ρ0 denotes the sector with angle α and radius ρ0 and C(t, α) is a constant
that depends on α and t. Hence, the operator whose integral kernel is 2〈∇zξ, ∇z H〉 is
Hilbert–Schmidt. Since the sum of twoHilbert–Schmidt operators is Hilbert–Schmidt,
it follows that ΔMξ e−tΔ/2 is Hilbert–Schmidt.

Away to prove that an operator is trace class is towrite it as a product of twoHilbert–
Schmidt operators. Since e−tΔ is trace class, in particular it is Hilbert–Schmidt.
Therefore using the semigroup property of the heat operator we write

Mξ e
−tΔ = Mξ e

−tΔ/2e−tΔ/2,

which proves thatMξ e−tΔ is trace class. The trace class property of the other operators
listed in this lemma follows in the same way. ��

3.2 Heat Kernel Parametrix

To prove the existence of the asymptotic expansion of the trace given by Eq. (1.4) and
to compute it, we replace the heat kernel by a parametrix. We construct a parametrix
for the whole domain in the standard way: first we partition the domain and use the
heat kernel of a suitable model for each part, then we combine these using cut-off
functions. We use the following models for each corresponding part of the domain:

(1) The heat kernel for the infinite sector with opening angle α for a small neigh-
borhood, Nα, of the vertex of the sector with opening angle α. Denote this heat
kernel by Hα.We note that by [41, Lemma 6], we may use the heat kernel for the
infinite sector on this neighborhood.

(2) The heat kernel forR2 for a neighborhoodNi of the interior away from the straight
edges. Denote this heat kernel by Hi .

(3) The heat kernel for the half-plane,R2+, for neighborhoodsNe of the straight edges
away from the corners. Denote this heat kernel by He.

(4) The heat kernel for the unit disk for a small neighborhood,Na, of the curved arc
away from the corners. Denote this heat kernel by HD or Ha (this is done in order
to simplify some equations in the proof).

(5) The curved arc meets the straight segments in two corners. For these corners we
consider two disjoint neighborhoods that are denoted byNc, at these corners we
use the heat kernel of the upper half unit disk, HD+ or Hc (again, this is done in
order to simplify some of the equations).

Let ∗ represent any of the regions introduced above. We define the gluing functions
as cut-off functions {χα, χi, χe, χa, χc} and {χ̃α, χ̃i, χ̃e, χ̃a, χ̃c}. These are smooth
functions chosen such that {χα, χi, χe, χa, χc} form a partition of unity of Sα, χ∗ = 1
on N∗, and χ̃∗ = 1 on Supp(χ∗).
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Therefore, the parametrix we use is

Hp(t, z, z
′) = χ̃α(z)Hαχα(z

′) + χ̃a(z)HDχa(z
′)

+ χ̃c(z)HD+χc(z
′) + χ̃e(z)Heχe(z

′) + χ̃i(z)Hiχi(z
′). (3.2)

Above, for the sake of brevity, we have suppressed the argument (t, z, z′) of the four
model heat kernels.

The salient point, which is well known to experts, is that this patchwork parametrix
restricted to the diagonal is asymptotically equal to the true heat kernel on the diagonal
with an error ofO(t∞) as t ↓ 0.For these arguments,we refer the reader to [30, Lemma
2.2] and [3, §4 and Lemma 4.1]. Moreover, it is known that for domains with both
corners and curved boundary, the heat trace admits an asymptotic expansion as t ↓ 0,
and that this trace has an extra purely local contribution from the angles at the corners.
The proof for domains with both corners and curved boundary can be found in [27,
Theorem 2.1]; see also [30]. Even though we expect this calculation to be contained
in earlier literature we were unfortunately unable to locate it. Therefore, it is natural
to expect that the angles also appear in the variational formula for the determinant.
We shall see that this is indeed the case.

3.3 Proof of Theorem 1

For a sector, Sα, from [27, Eq. (2.13)] (c.f. also [30]) it follows that the short time
asymptotic expansion of the heat trace is given by

Tr
(
e−tΔα

) = α

8π t
− α

8
√
π t

+ 1

12
(2χ (Sα) − 3)

+ π2 + α2

24πα
+ 2

π2 + π2/4

24π(π/2)
+ O(

√
t),

where 3 is the number of corners, and the term 2π2+π2/4
24π(π/2) comes from the two corners

where the circular arcs meet the straight edges at which the angle is π/2. The t0

coefficient (also called the constant coefficient) in the short time asymptotic of the
heat trace is also ζΔα (0):

ζΔα (0) = 1

12
(2χ (Sα) − 3) + π2 + α2

24πα
+ 2

π2 + π2/4

24π(π/2)
= π2 + α2

24πα
+ 1

8
.

(3.3)

Consequently, it suffices to demonstrate that

∫

Sα
log(r)HSα (t, r, φ, r, φ)rdrdφ,

admits an expansion as in (1.4), as t ↓ 0.
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1794 C. L. Aldana, J. Rowlett

Let the error E(t, r, φ, r ′, φ′) be the difference between the true heat kernel and
the patchwork construction,

E(t, r, φ, r ′, φ′) := HSα (t, r, φ, r
′, φ′) − Hp(t, r, φ, r

′, φ′).

Then, we have

∣∣∣∣
∫

Sα
log(r)E(t, r, φ, r, φ)rdrdφ

∣∣∣∣ = O
(
t∞
)
, t ↓ 0,

because the model heat kernels decay as O(t∞) as t ↓ 0 in any compact set away
from the diagonal.

Consequently, it suffices to prove that

∫

Sα
log(r)Hp(t, r, φ, r, φ)rdrdφ,

admits a short time asymptotic expansion as in Theorem1. By definition of Hp, to
demonstrate this, we may proceed locally, by considering the model heat kernels on
their respective neighborhoods. First, note that on Sα\Nα, log(r) is a smooth function.

Therefore, the existence of an asymptotic expansion of the integral

∫

Sα\(Nα∪Nc)

log(r)Hp(t, r, φ, r, φ)rdrdφ, (3.4)

for small values of t follows from the locality principle of the heat kernel and the
existence of the expansions of the heat kernel of the corresponding models. Although
the idea is standard, we briefly explain it.

2

α

∫

Sα\(Nα∪Nc)

log(r)Hp(t, r, φ, r, φ)

= 2

α

∫

Sα\(Supp(χα)∪Supp(χc))
log(r) (χiHi + χeHe + χaHD) dA

+ 2

α

∫

(Supp(χα)\Nα)∪(Supp(χc)\Nc)

log(r)
∑

∗∈{α,i,e,a,c}
χ∗H∗dA,

where dA denotes the area element rdrdφ. Using the existence of the expansion of
the heat kernel for small times in the interior and the smooth boundary away from the
corners, we have that the asymptotic expansion of the integral exists. In addition, we
can compute the constant coefficient of the expansion of the trace using the expansion
of the heat kernels. This is:
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2

α

∫

Sα\(Supp(χα)∪Supp(χc)
log(r) (χiHi + χeHe + χaHD) dA

= 2

α

1

4π t

∫

Sα\(Supp(χα)∪Supp(χc)
log(r) (χi + χe + χa) dA

+ 2

α

1

8
√
π t

∫

∂(Sα)\∂(Supp(χα)∪Supp(χc))
log(r) (χi + χe + χa) ds

+ 2

α

1

24π

∫

Sα\(Supp(χα)∪Supp(χc)
log(r) (χi + χe + χa)ScalgdA

+ 2

α

1

12π

∫

∂(Sα)\∂(Supp(χα)∪Supp(χc))
log(r) (χi + χe + χa) κgds + O

(
t1/2

)
.

Observing that the scalar curvature is zero, the logarithm vanishes on the boundary
of Sα where r = 1, and the geodesic curvature of the straight edges is zero, we have
that the constant terms vanish:

2

α

1

24π

∫

Sα\(Supp(χα)∪Supp(χc)
log(r) (χi + χe + χa) ScalgdA

+ 2

α

1

12π

∫

∂(Sα)\∂(Supp(χα)∪Supp(χc))
log(r) (χi + χe + χa) κgds = 0.

For the integral

2

α

∫

(Supp(χα)\Nα)∪(Supp(χc)\Nc)

log(r)
∑

∗∈{α,i,e,a,c}
χ∗H∗dA,

we note that in both cases the points in Supp(χα)\Nα and Supp(χc)\Nc are either
interior points or points in the smooth boundary of Sα. It follows then from the locality
principle of the heat kernels, that this case is the same case as above. Therefore there
exists an asymptotic expansion of the integral given in (3.4) for small values of time.
Moreover, this expansion does not contain log(t) terms, and its constant term vanishes.

The existence of the asymptotic expansion of the integral over Nα is proven in
Sect. 6. In that section we compute as well the contributions of this integral to the
coefficients a2,0, and a2,1, defined in Eq. (1.4).

Unlike the neighborhoodNα, there is no “purely local” contribution from the other
two corners in the sector, apart from the contribution due to the short time expansion of
the heat trace given in (3.3). In order to prove this, we need to consider the heat kernel
of the unit half disk; let HD+ denote this heat kernel, with the Dirichlet boundary
condition. Let HD denote the heat kernel for the unit disk with Dirichlet boundary
condition. Using the method of images, the heat kernel for the half disk can be written
in terms of the heat kernel for the unit disk as follows:

HD+(r, θ, r
′, θ ′, t) = HD(r, θ, r

′, θ ′, t) − HD(r, θ, r
′, −θ ′, t). (3.5)
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We will use the fact that the unit disk is a manifold with boundary to prove that these
corners do not contribute to our formula. To accomplish this, we need to consider the
associated heat space for the unit disk, in the sense of [32, Chap. 7].

The heat space for the disk can be constructed following [31, §3.1].We shall see that
the polyhomogeneity of the heat kernel on this space follows from [31, Theorem 1.2].
This may not be immediately apparent, because in [31], the authors consider compact
manifolds with edges. A compact manifold with boundary is a particular case of a
compact manifold with edges in which the fiber of the cone is a point, F = {p}, and
the lower dimensional stratum is the boundary, B = ∂M. For more details in this
simplified case we also refer to [15,32].

3.3.1 The Heat Space

The heat space associated to the unit disk in R
2 is a manifold with corners obtained

by performing two parabolic blow-ups of submanifolds of D × D × R
+. Let

D0 := {
(p, p, 0) ∈ D × D × R

+, p ∈ D
}
.

In order to construct the heat space we need to first perform parabolic blow-up of

Db := D0 ∩ (∂D × ∂D × R
+) .

The notation for this blown-up space is

[
D × D × R

+; Db, dt
]
.

The notation dt indicates that the blow-up is parabolic in the direction of the conormal
bundle, dt. In [32, Chap. 7] (see also [28]), it is shown that there is a unique minimal
differential structurewith respect towhich smooth functions onD2×R

+ and parabolic
polar coordinates around Db are smooth in the space [D × D × R

+; Db, dt]. We
recall that the parabolic polar coordinates around Db are R = √

s2 + (s′)2 + t and
Θ = (t/R2, s/R, s′/R) onD2 ×R

+,where s and s′ are boundary defining functions
for ∂D in each copy of D. As a set, this space is equivalently given by the disjoint
union

[
D
2 × R

+; Db, dt
]

=
((

D
2 × R

+) \Db

)
� (PN+ (Db) /R

+) ,

where PN+(Db)/R
+ the interior parabolic normal bundle of Db in D

2 × R
+. This

space can also be defined using equivalence classes of curves in analogue to the b-
blowup in the b-heat space of [32, Chap. 7]; specifically see [32, pp. 274–275]. For a
schematic diagram of the first blow-up, we refer to [31, Fig. 2].

Next, the diagonal away from the boundary is blown up at t = 0. We note that
although the heat space is itself unchanged under the order of blowing up (see [28,
Proposition 3.13]), the heat kernel is sensitive to which order the blow-up is performed
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(see [32, exercise 7.19]). In the notation of Melrose (see [32, §4 and §7]), the heat
space is then

D
2
h := [D × D × [0, ∞); Db, dt; D0, dt] .

Specifically, letD1 denote the lift ofD0 to the intermediate space, [D2×R
+; Db, dt].

The second step is to blow up [D2 × R
+; Db, dt] along D1, parabolically in the t

direction. As a set, this space is given by the disjoint union

[
D
2 × R

+; Db, dt; D0, dt
]

=
([

D
2 × R

+; Db, dt
]
\D1

)
� (PN+ (D1) /R

+) ,

where PN+(D1)/R
+ is the interior parabolic normal bundle of D1 in [D2 ×

R
+; Db, dt]. This space can also be defined using equivalence classes of curves in

analogue to the b-blowup in the b-heat space of [32, Chap. 7], as explained above.
The heat space is amanifold with corners which has five codimension one boundary

hypersurfaces, also known as boundary faces. For a schematic diagram of this heat
space, we refer to [31, Fig. 3]. The left and right boundary faces,L andR are given by
the lifts toD2

h of ∂D×D×[0, ∞) andD×∂D×[0, ∞), respectively. The remaining
three boundary faces are at the lift of {t = 0}.Denote byB the face created by blowing
up Db, and by D the face created by blowing up D0. Let β:D2

h → D × D × [0, ∞)

denote the blow-down map. Then the last boundary face, the temporal boundary1

denoted by T is given by the closure of

β−1(D × D × {0})\(B ∪ D).

We denote the boundary defining functions correspondingly by ρL, ρR, ρB, ρD, and
ρT . Then we note that t lifts to D

2
h as

β∗(t) = ρT ρ2
Bρ

2
D.

3.3.2 Polyhomogeneous Conormal Distributions on Manifolds with Corners

The heat space is a manifold with corners. An important class of distributions on
manifoldswith corners is the class of polyhomogeneous conormal distributions, which
we abbreviate as pc distributions. We recall how these are defined in general. Let X
be an n-dimensional manifold with corners. By definition (see [28, §2A]), X is locally
modeled diffeomorphically near each point by a neighborhood of the origin in the
product (R+)k ×R

n−k . Here by locally modeled we mean analogous to the definition
of an n-dimensional Riemannian manifold being locally modeled by neighborhoods
of Rn . Let {Mi }Ji=1 denote the codimension one boundary faces, which we simply
refer to as boundary faces. Let Vb be the space of smooth vector fields on X which are
tangent to all boundary faces.

1 In the terminology of [31], B is known as the front face, ff,D is known as the temporal diagonal, td, and
T is known as the temporal face, tf.
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1798 C. L. Aldana, J. Rowlett

For a point q ∈ ∂X contained in a corner of maximal codimension k, choose
coordinates (x1, . . . , xk, y) near q, where xi are defining functions for the boundary
hypersurfaces Mi1 , . . . ,Mik intersecting the corner at q, and y is a set of coordinates
along this codimension k corner. Then Vb is in this context spanned over C∞(X) near
q by {x1∂x1 , . . . , xk∂xk , ∂yα }. The conormal space is

A0(X) = {
u: V1, . . . , Vlu ∈ L∞(X), ∀Vi ∈ Vb, and ∀l} .

To motivate the notion of polyhomogeneity, consider first the case in which there is
only boundary face, ∂X, defined by x . Then we say that u is polyhomogeneous if u
admits an expansion

u ∼
∑

�s j→∞

p j∑

p=0

xs j (log x)pa j,p(x, y), a j,p ∈ C∞(X).

Here the first index is over {s j } j∈N ⊂ C whereas the second sum is over a finite set
(for each j) of non-negative integers. When X has many possibly intersecting codi-
mension one boundary components, then a polyhomogeneous conormal distribution
is required to have such expansions at the interior of each boundary face with prod-
uct type expansions at the corners. To be more precise, beginning with the highest
codimension corners, which have no boundary, one demands the existence of such an
expansion, and then one proceeds inductively to the lower codimension corners and
finally to the boundary faces.

Lemma 4 The heat kernel, HD, lifted to D
2
h is a polyhomogeneous conormal distri-

bution.

Proof The polyhomogeneity and conormality of β∗(HD) both follow from [31, Theo-
rem 1.2]. Specifically, as noted above, the unit disk is an example of an edge manifold,
and in this case, the heat kernel with Dirichlet boundary condition is the Friedrichs
heat kernel. ��

Recall Eq. (3.5) where the heat kernel for the upper half disk is given by the method
of images. We define the involution f :D × D × [0, ∞) → D × D × [0, ∞) by

f (r, θ, r ′, θ ′, t) = (r, θ, r ′, −θ ′, t).

Then, the reflected term is simply HD ◦ f. Moreover, we note that f 2 is the identity
map, and thus f = f −1. Let us denote

D′
0 = {(r, θ, r, −θ, 0): (r, θ) ∈ D} ⊂ D × D × [0, ∞),

and we observe that

D′
0 = f (D0) .
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Then, it follows immediately from Lemma 4 that HD ◦ f lifts to a polyhomogeneous
conormal distribution on

[
D × D × [0, ∞); D′

0 ∩ ∂D × ∂D, dt; D′
0, dt

]
.

We therefore immediately obtain

Corollary 1 Let

D̃
2
h :=

[
D × D × [0, ∞); D0 ∩ D′

0 ∩ ∂D2, dt; D0 ∩ ∂D2, dt;
D′

0 × ∂D2, dt; D0 ∩ D′
0, dt; D0, dt; D′

0, dt
]
,

where ∂D2 denotes ∂D×∂D, andwe have slightly abused the notation by not including
the time variable when it is clear from the context. Then, the function

HD − HD ◦ f,

lifts to D̃2
h to a polyhomogeneous conormal distribution. Moreover, the product,

log(r) (HD − HD ◦ f ) ,

also lifts to D̃2
h to a polyhomogeneous conormal distribution.

Proof By the preceding lemma, HD lifts to be polyhomogeneous conormal onD2
h and

therefore also on D̃2
h. In particular, performing additional blow-ups does not introduce

any problems for HD.By the observation that f 2 is the identitymap, and f (D0) = D′
0,

the same argument shows that HD ◦ f also lifts to be polyhomogeneous conormal.
The function log(r) is already polyhomogeneous conormal on D × D × [0, ∞), and
thus it remains polyhomogeneous conormal when lifted to D̃2

h. ��
Lemma 5 Let Nc denote the union of two neighborhoods of radius ε < 1/3 about
the corners in Sα where the circular arcs meet the straight edges. Then the trace,

∫

Nc

log(r)HD+(t, r, φ, r, φ)rdrdφ,

has an asymptotic expansion as t ↓ 0 which contains only integer and half-integer
powers of t, and no log(t) terms. Let α(ε) denote the coefficient of t0 in this expansion.
Then

lim
ε→0

α(ε) = 0.

Proof By symmetry, it suffices to compute the trace near the point (1, 0). The heat
kernel for the upper half disk can be written as

HD+ = HD − HD ◦ f.
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By Corollary1, the product

log(r) (HD − HD ◦ f ) ,

lifts to a polyhomogeneous conormal distribution on D̃2
h. We compute the lift of

r = 1 − (1 − r) = 1 − s,

given by

β∗(r) = 1 − β∗(s) = 1 − ρLρB.

Then, log(r) = log(1 − (1 − r)), and so we compute its lift

β∗(log(r)) = β∗(log(1 − (1 − r))) = log (1 − ρBρL) .

This is a smooth function near B and L and admits an asymptotic expansion there,

log (1 − ρBρL) =
∑

k≥1

− (ρBρL)k

k
, nearL andB.

We know from [31] that the lifts of HD and HD ◦ f to D̃
2
h contain integer and half-

integer powers of the boundary defining functions, but they do not contain any log
terms. Hence, blowing down, or equivalently computing the trace near the lift of the
point (1, 0), by the pushforward theorem there is an expansion as t ↓ 0 which contains
only integer and half-integer powers of t, and in particular, no log(t) terms. As a
consequence, only the coefficient of t0 may enter into our Polyakov formula, hence it
is the only coefficient of interest to us. We estimate this coefficient.

Let Nε be the intersection of Sα with a disk of radius ε centered at (1, 0). We then
use the existence of the asymptotic expansion to write

∫

Nε

log(r)HD+(t, r, φ, r, φ)rdrdφ ∼ α(ε)t0 + R(ε, t), t ↓ 0.

Note that

|| log(r)||∞ = O(ε) for all points (r, θ) ∈ Nε.

Hence, we estimate

∣∣∣∣
∫

Nε

log(r)HD+(t, r, φ, r, φ)rdrdφ

∣∣∣∣ ≤ O(ε)

∫

Nε

HD+(t, r, φ, r, φ)rdrdφ.
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Now, on the right we have the asymptotic expansion of HD+ near this corner,

∫

Nε

HD+(t, r, φ, r, φ)rdrdφ ∼ |Nε|
4π t

− |∂Nε ∩ ∂D+|
8
√
π t

+ |∂Nε ∩ ∂D|
12π

+π2−(π/2)2

12π2 +O(
√
t), t ↓ 0.

Above, |Nε|, |∂Nε ∩ ∂D+|, |∂Nε ∩ ∂D| denote area and perimeters, respectively. We
note that the curvature along the boundary is one, and the angle at which the circular
arc meets the straight edge is π/2. These two observations lead to the computation
above of the t0 term. Consequently, we have the estimate,

∣∣∣∣
∫

Nε

log(r)HD+(t, r, φ, r, φ)rdrdφ

∣∣∣∣ ≤ O(ε)

( |Nε|
4π t

− |∂Nε ∩ ∂D+|
8
√
π t

+ |∂Nε∩∂D|
12π

+π2−(π/2)2

12π2 +O(
√
t)

)
, t ↓ 0.

Letting ε ↓ 0, for any t > 0, the right side vanishes. Moreover, letting ε = t, then
as t = ε ↓ 0, the right side also vanishes. This requires the coefficient, α(ε), to vanish
as ε ↓ 0, because the term α(ε)t0 is independent of t.

Finally, we note that a similar argument cannot be applied to the corner at the origin
in the original sector, that is the corner of opening angle, α, at which the conformal
factor has a logarithmic singularity. First and foremost, we cannot bring out the L∞
norm of the log there. ��

4 The Variational Polyakov Formula

Let A be an integral operator on L2(Q, hγ ) with kernel KA(z, z′). The transformed
operatorΦγ AΦ−1

γ on the Hilbert space L2(Q, g) induced by the conformal transfor-

mationΦγ f = eσγ f has integral kernel eσγ (z)KA(z, z′)eσγ (z
′). This follows from the

transformation of the area element and

(
Φγ AΦ

−1
γ f

)
(z) = Φγ

(∫

Q
KA(z, z

′)e−σγ (z′) f (z′)dAhγ (z
′)
)

= eσγ (z)
∫

Q
KA(z, z

′)e−σγ (z′) f (z′)e2σγ (z′)dA

=
∫

Q
eσγ (z)KA(z, z

′)eσγ (z′) f (z′)dA(z′),

for f ∈ L2(Q, g).
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Thus

TrL2(Q,g)

(
Φγ AΦ

−1
γ

)
=
∫

Q
KA(z, z)e

2σγ (z)dA(z)

=
∫

Q
KA(z, z)dAhγ (z) = TrL2(Q,hγ )(A).

4.1 Differentiation of the Operators

As we saw in Eq. (2.9), the domains of the family {Hγ }γ nest. In order to compute the
derivative with respect to the angle at γ = α, one would like to apply both Hγ and
Hα to the elements in the domain of Hα. There are subtleties which arise, but we can
remedy them.

Lemma 6 Let 0 < β ≤ α < π, and β ≤ γ < π. Then the following one-sided
derivatives

dHγ

dγ−

∣∣∣∣
γ=α

for β < α, and
dHγ

dγ+

∣∣∣∣
γ=α

for β ≤ α,

are well defined. In both cases we have

∂Hγ

∂γ± = Ḣγ =
(
∂σγ

∂γ

)
Hγ + Φγ

(
∂Δhγ

∂γ

)
Φ−1

γ − ΦγΔhγ

(
∂σγ

∂γ

)
Φ−1

γ . (4.1)

Proof The formal expression for Ḣγ follows from a straightforward computation. For
the left derivative, we have that γ, β < α. Since Dom(Hα) ⊂ Dom(Hγ ) for each
γ < α, we can apply both the operators Hα and Hγ to all elements of the domain

of Hα and let γ ↑ α. The derivative dHγ

dγ−
∣∣∣
γ=α

is therefore computed in this way and

given by (4.1). We can then let β ↑ α.

For the right derivative γ > α, and we let β := α. In this case we cannot apply both
operators Hγ and Hα to all elements of Dom(Hα) because there might be functions
f ∈ Dom(Hα)\Dom(Hγ ). However, for such a function there is a sequence { fn}n
in C∞

0 (Q, g) with fn → f in Dom(Hα), since smooth and compactly supported
functions are dense in the domain of the operator. Then, for f ∈ Dom(Hα)\Dom(Hγ )

we define

dHγ

dγ+

∣∣∣∣
γ=α

f := lim
n→∞

dHγ

dγ+

∣∣∣∣
γ=α

fn, (4.2)
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and we shall see that this limit is well defined. For any n ∈ N

dHγ

dγ+

∣∣∣∣
γ=α

fn = 1

α
(1 + log(ρ))Δα fn

−2
1

α
(1 + log(ρ))Δα fn − Δα

(
1

α
(1 + log(ρ)) fn

)

= − 1

α
(1 + log(ρ))Δα fn − 1

α
(1 + log(ρ))Δα fn

+2g

(
∇α

1

α
(1 + log(ρ)), ∇α fn

)
− 1

α
MΔα(1−log(ρ)) fn

= − 2

α
(1 + log(ρ))Δα fn + 2

α
ρ−1∂ρ fn .

The expression simplifies as above upon the observation that Δα(1 + log(ρ)) =
0. Since α = β, Dom(Hα) = Dom(Δ) = H1

0 (Q, dA) ∩ ρ2H2
b (Q, dA), and by

assumption fn → f in Dom(Hα). Consequently,

Δα fn → Δα f and ρ−1∂ρ fn → ρ−1∂ρ f, in L2(Q, g). (4.3)

By the Cauchy–Schwarz inequality,

∫

Q
|(log ρ) (Δα fn − Δα f )| dA ≤ || log(ρ)||L2(Q,dA) ‖Δα fn − Δα f ‖L2(Q, dA) ,

which tends to 0 as n → ∞ by the assumption that fn → f inDom(Hα).We therefore
have the L1(Q, g) convergence

(log ρ)Δα fn → (log ρ)Δα f.

This convergence together with the L2(Q, g) convergence given in Eq. (4.3) above
(which implies L1 convergence because Q is compact) shows that

lim
n→∞

dHγ

dγ+

∣∣∣∣
γ=α

fn = lim
n→∞ − 2

α
(1 + log(ρ))Δα fn + 2

α
ρ−1∂ρ fn

= − 2

α
(1 + log(ρ))Δα f + 2

α
ρ−1∂ρ f. (4.4)

The above limit is in L1(Q, g) and is well defined for all f ∈ Dom(Hα) because it is
independent of the choice of approximating sequence fn ∈ C∞

0 . This shows that we
may indeed define the right derivative in (4.2), and it is equal to (4.4). ��
Remark 3 Although the definitions of σγ , hγ , Q, and Hγ depend on the choice of β,
the final variational formula is independent of this choice since, in the end, everything
is pulled back to the original sector Sα, and β drops out of the equations. We only
require this parameter to rigorously differentiate the trace; the sector Q = Sβ and the
choice of β are part of an auxiliary construction.
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Proposition 5 Let Hγ be as in Eq. (2.9). Then the derivative of the transformed heat
operators is

d

dγ
TrL2(Q, g)

(
Φγ e

−tΔhγ Φ−1
γ

)
= −tTrL2(Q,g)

(
Ḣγ e

−t Hγ

)

= −tTrL2(Q,hγ )

(
Δ̇hγ e

−tΔhγ

)
,

where Δ̇hγ ≡ ∂
∂γ

Δhγ

∣∣∣
γ

= −2(∂γ σγ )Δhγ .

Proof Although the proof of this proposition is standard in the boundaryless case, we
include some details to show that the statement also holds in our case. Following the
same computation as in [3, Lemma 5.1] and [34],

d

dγ
TrL2(Q,g)

(
Φγ e

−tΔhγ Φ−1
γ

)
= TrL2(Q,g)

(
d

dγ
e−t Hγ

)
.

Let γ2 > γ1. Duhamel’s principle is well known and often used in the settings of both
manifolds with boundaries and conical singularities; see [9]. We apply this principle
in terms of the operators

e−t Hγ1 − e−t Hγ2 =
∫ t

0
−e−sHγ1 Hγ1e

−(t−s)Hγ2 + e−sHγ1 Hγ2e
−(t−s)Hγ2 ds.

Notice that the product Hγ1e
−(t−s)Hγ2 is well defined since e−(t−s)Hγ2 maps

L2(Q, g) onto Dom(Hγ2) and Dom(Hγ2) ⊂ Dom(Hγ1). Then for f ∈ L2(Q, g),
e−(t−s)Hγ2 f ∈ Dom(Hγ1).

Dividing by γ1 − γ2 the previous equation and letting γ2 → γ1, we obtain

d

dγ
e−t Hγ

∣∣∣∣
γ=γ1

= −
∫ t

0
e−sHγ1

(
d

dγ
Hγ

∣∣∣∣
γ=γ1

)
e−(t−s)Hγ1 ds.

Therefore since the heat operators are trace class

d

dγ
TrL2(Q,g)

(
Φγ e

−tΔhγ Φ−1
γ

)
= −tTrL2(Q,g)

(
Ḣγ e

−t Hγ

)
. (4.5)
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We computed ∂
∂γ

Hγ in Eq. (4.1). Substituting its value into our calculation above,
we obtain

TrL2(Q,g)

(
Ḣγ e

−t Hγ

)

= TrL2(Q,g)

(((
∂γ σγ

)
Hγ + Φγ

(
∂γΔhγ

)
Φ−1

γ − ΦγΔhγ

(
∂γ σγ

)
Φ−1

γ

)
e−t Hγ

)

= TrL2(Q,g)

(
Φγ

((
∂γ σγ

)
Δhγ e

−tΔhγ

+ (∂γΔhγ

)
e−tΔhγ − Δhγ

(
∂γ σγ

)
e−tΔhγ

)
Φ−1

γ

)

= TrL2(Q,hγ )

((
∂γ σγ

)
Δhγ e

−tΔhγ + Δ̇hγ e
−tΔhγ − Δhγ

(
∂γ σγ

)
e−tΔhγ

)

= TrL2(Q,hγ )

(
Δ̇hγ e

−tΔhγ

)
,

where we have used that the operators (∂γ σγ )Hγ e−t Hγ , Φγ (∂γΔhγ )Φ
−1
γ e−t Hγ , and

ΦγΔhγ (∂γ σγ )Φ
−1
γ e−t Hγ are trace class in L2(Q, g); see Lemma 3. Since the oper-

ators are all trace class, the first and third terms cancel due to commutation of the
operators when taking the trace. ��
Proof of Theorem 2 In order to prove Theorem2, we differentiate the spectral zeta
function with respect to the angle γ as in Eq. (2.2).

We start by noticing the equality of the following traces:

TrL2(Sγ ,g)

(
e−tΔγ

) = TrL2(Q,hγ )

(
e−tΔhγ

)
= TrL2(Q,g)

(
e−t Hγ

)
.

Then, from Proposition 5 we have

∂

∂γ
TrL2(Sγ ,g)

(
e−tΔγ

)∣∣∣∣
γ=α

= −tTrL2(Q,hα)

(
Δ̇hαe

−tΔhα
)

= 2tTrL2(Q,hα)

((
1

α
+ 1

β
log ρ

)
Δhαe

−tΔhα

)
,

where we have replaced (δσα) by its value
(
1
α

+ 1
β
log ρ

)
, and we have used that the

Laplacian changes conformally in dimension 2. On the other hand,

∂

∂t
TrL2(Q,hα)

(
(δσα) e

−tΔhα
) = −TrL2(Q,hα)

(
(δσα)Δhαe

−tΔhα
)
.

The convergence above follows from the invariance of the trace and the estimates
contained in Sect. 3.1, in particular Lemma 3.

Thus

∂

∂γ
TrL2(Sγ ,g)

(
e−tΔγ

)∣∣∣∣
γ=α

= −2t
∂

∂t
TrL2(Q,hα)

(
(δσα) e

−tΔhα
)
.
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Notice that using the change of variables in Eq. (2.3) we obtain

TrL2(Q,hα)

((
1

α
+ 1

β
log ρ

)
e−tΔhα

)
= TrL2(Sα,g)

(
1

α
(1 + log(r))e−tΔα

)
.

Now, going back to the computation of δζ ′
Δα

(0) and replacing the corresponding
terms we have

∂

∂γ
ζΔγ (s)

∣∣∣∣
γ=α

= − 2

Γ (s)

∫ ∞

0
t s

∂

∂t
TrL2(Sα,g)

(
(δσα) e

−tΔhα
)
dt.

Recall that upon changing variables, δσα(r, φ) = 1
α
(1 + log(r)). The next step is

to integrate by parts. In order to be able to integrate by parts, we require appropriate
estimates of the trace for large values of t and an asymptotic expansion of it for small
values of t.

The large values of t are not problematic since

TrL2(Sα,g)

(
(δσα) e

−tΔα
) = O

(
e−c′

α t
)
, as t → ∞,

for some constant c′
α > 0. This statement follows from a standard argument; see for

example [3, Lemma 5.2]. Let t > 1 and write

(δσα) e
−tΔα = (δσα) e

− 1
2Δαe

−
(
t− 1

2

)
Δα

.

The operator (δσα)e− 1
2Δα is trace class. Since the spectrum of the operator Δα is

contained in [cα, ∞) for some cα > 0, for t > 1 we have

∥∥∥∥e
−
(
t− 1

2

)
Δα

∥∥∥∥
L2(Sα,g)

≤ e
−cα

(
t− 1

2

)

.

Thus for any t > 1, the trace satisfies the desired estimate:

∣∣Tr
(
(δσα) e

−tΔα
)∣∣ ≤

∥∥∥∥(δσα) e
− 1

2Δαe
−
(
t− 1

2

)
Δα

∥∥∥∥
1

≤
∥∥∥(δσα) e− 1

2Δα

∥∥∥
1

∥∥∥∥e
−
(
t− 1

2

)
Δα

∥∥∥∥
L2(Sα,g)

$ e−c′
α t ,

where ‖·‖1 denotes the trace norm of the operator and ‖·‖L2(Sα,g) denotes the operator
norm in L2(Sα, g).

As for the small values of t, the existence of an asymptotic expansion is established
in Theorem1. Consequently, integration by parts gives

∂

∂γ
ζΔγ (s)

∣∣∣∣
γ=α

= 2s

Γ (s)

∫ ∞

0
t s−1TrL2(Sα,g)

(
(δσα) e

−tΔα
)
dt.
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Now, we insert the asymptotic expansion for the trace proven in Theorem1 to obtain

∂

∂γ
ζΔγ (s)

∣∣∣∣
γ=α

= 2

α

s

Γ (s)

∫ 1

0
t s−1

(
a0t

−1 + a1t
− 1

2 + a2,0 log(t)

+ a2,1 + f (t)
)
dt

+ s

Γ (s)

∫ ∞

1
t s−1TrL2(Sα,g)

(
2 (δσα) e

−tΔhα
)
dt,

where f (t) = O
(
t
1
2

)
. Thus

∂

∂γ
ζΔγ (s)

∣∣∣∣
γ=α

= 2

α

s

Γ (s)

(
a0

s − 1
+ a1

s − 1
2

− a2,0
s2

+ a2,1
s

+ e(s)

)
,

where e(s) is analytic in s for Re(s) > −1/2. The Taylor expansion at s = 0 of the
reciprocal Gamma function 1

Γ (s) has the form
1

Γ (s) = s+γes2 +O(s3)which implies
s

Γ (s) = s2 + γes3 + O(s4). Thus, differentiating with respect to s and evaluating at
s = 0, we obtain:

∂

∂s

∂

∂γ
ζΔγ (s)

∣∣∣∣
γ=α,s=0

= 2

α

(−γea2,0 + a2,1
)
,

where a2,0 and a2,1 are defined by (1.4). This finishes the proof of Theorem 2. ��

5 The Quarter Circle

We have proven that the derivative of the logarithm of the determinant of the Laplacian
in the angular direction on a finite Euclidean sector is given in terms of the coefficients
a2,0 and a2,1 in the small time expansion in (1.5) in Theorem2. To complete the proof
of Theorem 1, we shall simultaneously (1) complete the proof that this small time
expansion exists and (2) compute the contribution from the corner of opening angle
α. To motivate and elucidate the arguments used in the rather arduous general case,
we first consider the simplest case, when α = π/2.

5.1 Proof of Theorem 3

Let α = π/2, then the infinite sector with angle α is the quadrant C = {(x, y) ∈
R
2, x, y ≥ 0}. The Dirichlet heat kernel in this case can be obtained as the product

of the Dirichlet heat kernel on the half line [0, ∞) with itself. For x1, x2 ∈ [0, ∞)

the Dirichlet heat kernel is given by

phl (t, x1, x2) = 1√
4π t

(
e− (x1−x2)

2

4t − e− (x1+x2)
2

4t

)
.
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Let u = (x1, y1), v = (x2, y2) be in C, we have

pC (t, u, v) = phl (t, x1, x2) phl (t, y1, y2)

= 1

4π t

(
e− |u−v|2

4t + e− |u+v|2
4t − e− (x1−x2)

2+(y1+y2)
2

4t − e− (x1+x2)
2+(y1−y2)

2

4t

)
.

Writing this in polar coordinates with u = reiφ, v = r ′eiφ′
we obtain

pC (t, u, v) = e− r2+r ′2
4t

4π t

(
e
rr ′
2t cos(φ′−φ) + e− rr ′

2t cos(φ′−φ)

−e
rr ′
2t cos(φ′+φ) − e− rr ′

2t cos(φ′+φ)

)

= e− r2+r ′2
4t

2π t

(
cosh

(
rr ′ cos(φ′ − φ)

2t

)
− cosh

(
rr ′ cos(φ′ + φ)

2t

))
.

Let R > 0, and recall the factor 2
α

= 4
π
in this case. Let χSπ/2,R be the characteristic

function of the finite sector Sπ/2,R

4

π
Tr
(
MχSπ/2,R (1+log(r))e

−tΔπ/2
)

=
∫ R

0

∫ π/2

0

4

π
(1 + log(r))pC (t, r, φ, r, φ)rdrdφ

=
∫ R

0

∫ π/2

0

4

π
(1 + log(r))

e− r2
2t

4π t

×
(
e
r2
2t + e− r2

2t − e
r2
2t cos(2φ) − e− r2

2t cos(2φ)
)
rdφdr

= 1

π2t

∫ R

0

∫ π/2

0
(1 + log(r))

×
(
1 + e− r2

t − e− r2
2t e

r2
2t cos(2φ) − e− r2

2t e− r2
2t cos(2φ)

)
rdφdr.

We split this integral into two terms,

T1(t) = 1

π2t

∫ R

0

∫ π/2

0
(1 + log(r))

(
1 + e− r2

t

)
rdφdr

= 1

2π t

∫ R

0
(1 + log(r))

(
1 + e− r2

t

)
rdr

= 1

2π t

(∫ R

0
rdr +

∫ R

0
log(r)rdr +

∫ R

0
e− r2

t rdr +
∫ R

0
log(r)e− r2

t rdr

)
,
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T2(t) = − 1

π2t

∫ R

0

∫ π/2

0
(1 + log(r))

(
e− r2

2t e
r2
2t cos(2φ) + e− r2

2t e− r2
2t cos(2φ)

)
rdφdr

= − 1

π2t

∫ R

0
(1 + log(r))e− r2

2t

∫ π/2

0

(
e
r2
2t cos(2φ) + e− r2

2t cos(2φ)
)
dφrdr.

Claim 1 The integral (T1 +T2)(t) has an asymptotic expansion as t → 0 of the form

(T1 + T2) (t) = 1

2π t

(
R + R2 log(R)

2
− R2

4

)

− R log R

π
√
π t

+ log(t)

8π
− 1

4π
− γe

8π
+ O

(
t1/2

)
.

Proof By inspection, the first two terms in T1(t) contribute only to the t−1 coefficient,
and that contribution is

1

2π t

(
R + R2 log(R)

2
− R2

4

)
.

So, we look at the expansion in t of

T̃1(t) = 1

2π t

(∫ R

0
e− r2

t rdr +
∫ R

0
log(r)e− r2

t rdr

)
. (5.1)

We compute

1

2π t

∫ R

0
e− r2

t rdr = 1

4π

∫ R2/t

0
e−udu = 1

4π
− 1

4π
e−R2/t ,

and

1

2π t

∫ R

0
log(r)e− r2

t rdr = 1

8π

∫ R2/t

0
log(tu)e−udu

= 1

8π

∫ ∞

0
log(u)e−udu − 1

8π

∫ ∞

R2/t
log(u)e−udu

+ 1

8π

∫ R2/t

0
log(t)e−udu

= −γe

8π
− 1

8π

∫ ∞

R2/t
log(u)e−udu + log(t)

8π

(
1 − e−R2/t

)
,

where γe is the Euler constant.
Since we are interested in the behavior for fixed R as t ↓ 0,wemay assume R2 > t

so that

0 < log(u) < u, ∀u > R2/t.
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Then, we estimate

∫ ∞

R2/t
log(u)e−udu ≤

∫ ∞

R2/t
ue−udu = R2e−R2/t

t
+ e−R2/t .

This is vanishing rapidly as t ↓ 0 for any fixed R > 0.
Therefore for T̃1(t) we obtain

T̃1(t) = 1

4π
− γe

8π
+ log(t)

8π
+ O

(
t∞
)
, t ↓ 0.

Hence, T1(t) has the asymptotic expansion

T1(t) = 1

2π t

(
R + R2 log(R)

2
− R2

4

)

+ log(t)

8π
+ 1

4π
− γe

8π
+ O

(
t∞
)
, t ↓ 0. (5.2)

Let us consider now the second term, T2(t):

T2(t) = − 1

π2t

∫ R

0

∫ π/2

0
(1 + log(r))

(
e− r2

2t e
r2
2t cos(2φ) + e− r2

2t e− r2
2t cos(2φ)

)
rdφdr

= − 1

π2t

∫ R

0
(1 + log(r))e− r2

2t

∫ π/2

0

(
e
r2
2t cos(2φ) + e− r2

2t cos(2φ)
)
dφrdr.

The modified Bessel function of the first kind of order zero admits the following
integral representation

I0(a) = 1

π

∫ π

0
ea cos(φ)dφ,

for a ∈ R, a ≥ 0. After a change of variables

∫ π/2

0
ea cos(2φ)dφ = π

2
I0(a).

Since cos(π − x) = − cos(x), we obtain

T2(t) = − 1

π t

∫ R

0
(1 + log(r))e− r2

2t I0

(
r2

2t

)
rdr.
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Weknowhow to compute these integrals using techniques inspired by [41]. Let uswrite
T2,1 for the integral with 1, and T2,2 for the integral with log(r), so T2 = T2,1 + T2,2.
We start by changing variables, letting u = r2/2t,

T2,1 = − 1

π t

∫ R

0
re−r2/2t I0

(
r2

2t

)
dr

= − 1

π

∫ R2/2t

0
e−u I0(u)du.

Let I1(u) be the modified Bessel function of first kind of order one. By [42, (3) p. 79]
with ν = 1,

uI ′
1(u) + I1(u) = uI0(u). (5.3)

By [42, (4) p. 79] with ν = 0,

uI ′
0(u) = uI1(u). (5.4)

We use these to calculate

d

du

(
e−uu (I0(u) + I1(u))

) = e−u (−uI0(u) − uI1(u) + I0(u)

+ I1(u) + uI ′
0(u) + uI ′

1(u)
)

= e−u (−uI1(u) + I0(u) + uI ′
0(u)

)
, by (5.3)

= e−u I0(u), by (5.4).

Next, define

g(u) := e−uu (I0(u) + I1(u)) , (5.5)

and note that we have computed

g′(u) = e−u I0(u).

We therefore have

− 1

π

∫ R2/2t

0
e−u I0(u)du = − 1

π

(
g
(
R2/2t

)
− g(0)

)
.

These Bessel functions are known to satisfy (see [42])

I0(0) = 1, I1(0) = 0.
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It follows that g(0) = 0, and we therefore obtain that

− 1

π

∫ R2/2t

0
e−u I0(u)du = − 1

π
g
(
R2/2t

)
.

For large arguments, the Bessel functions admit the following asymptotic expansions
(see [42])

I j (x) = ex√
2πx

(
1 − 1

2x

(
j2 − 1

4

)
+

∞∑

k=2

c j,k x
−k

)
, x % 0, j = 0, 1.

We therefore compute the expansion of g as follows

g(u) =
√
u√
2π

(
2 − 1

4u
+

∞∑

k=2

(
c0,k + c1,k

)
u−k

)
, u % 1.

Consequently, for u = R2/2t we have

g
(
R2/2t

)
= R√

4π t

(
2 − t

2R2 +
∞∑

k=2

(
c0,k + c1,k

) ( 2t

R2

)k
)
, t $ 1.

It follows that for small t, T2,1(t) has the following asymptotic expansion

T2,1(t) = − R

π
√
4π t

(
2 − t

2R2 +
∞∑

k=2

(
c0,k + c1,k

) ( 2t

R2

)k
)
, t $ 1.

Therefore

T2,1(t) = − R

π
√
π t

+ O
(
t1/2

)
as t → 0.

Now, let us look at T2,2. Changing variables again u = r2/2t we obtain

T2,2 = − 1

π t

∫ R

0
r log(r)e−r2/2t I0

(
r2

2t

)
dr

= − 1

π

∫ R2/2t

0
log(

√
2tu)e−u I0(u)du

= − 1

2π

∫ R2/2t

0
log(u)e−u I0(u)du − log(2t)

2π

∫ R2/2t

0
e−u I0(u)du.
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For the first integral we use (5.5) and integrate by parts,

∫ R2/2t

0
log(u)e−u I0(u)du = log(u)g(u)|R2/2t

0 −
∫ R2/2t

0
e−u (I0(u) + I1(u)) du.

Since g′(u) = e−u I0(u), we have

∫ R2/2t

0
e−u (I0(u) + I1(u)) du = g

(
R2/2t

)
− g(0) +

∫ R2/2t

0
e−u I1(u)du.

Note that I ′
0(u) = I1(u). Therefore, we integrate by parts again,

∫ R2/2t

0
e−u I1(u)du = e−u I0(u)|R

2/2t
0 −

∫ R2/2t

0
−e−u I0(u)du,

= e−u I0(u)|R
2/2t

0 + g(u)|R2/2t
0 .

Putting these calculations together, we have

∫ R2/2t

0
log(u)e−u I0(u)du = log(u)g(u)|R2/2t

0 − 2
(
g
(
R2/2t

)
− g(0)

)

− e−u I0(u)|R
2/2t

0 .

Therefore, we have calculated

− 1

2π

∫ R2/2t

0
log(u)e−u I0(u)du = 1

2π

(
− log(u)g(u)|R2/2t

0

+ 2
(
g
(
R2/2t

)
− g(0)

)
+ e−u I0(u)|R

2/2t
0

)
;

− log(2t)

2π

∫ R2/2t

0
e−u I0(u)du = − log(2t)

2π

(
g
(
R2/2t

)
− g(0)

)
.

Since g(0) = 0 and I0(0) = 1, we have

T2,2(t) = 1

2π

(
− log

(
R2/2t

)
g
(
R2/2t

)
+ 2g

(
R2/2t

)

+ e−R2/2t I0
(
R2/2t

)
− 1 − log(2t)g

(
R2/2t

))

= 1

2π

(
−2 log(R)g

(
R2/2t

)
+ 2g

(
R2/2t

)
+ e−R2/2t I0

(
R2/2t

)
− 1

)
.

We use the asymptotic expansion of I0(u) for u → ∞ to compute

e−R2/2t I0
(
R2/2t

)
=

√
t

R
√
π

(
1 + t

4R2 +
∞∑

k=2

c0,k

(
2t

R2

)k
)
, t $ 1.
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We therefore obtain that the asymptotic expansion of T2,2(t) is

− 1

2π
− R log R

π
√
4π t

(
2 − t

2R2 +
∞∑

k=2

(
c0,k + c1,k

) ( 2t

R2

)k
)

+ R

π
√
4π t

(
2 − t

2R2 +
∞∑

k=2

(
c0,k + c1,k

) ( 2t

R2

)k
)

+
√
t

2πR
√
π

(
1 + t

4R2 +
∞∑

k=2

c0,k

(
2t

R2

)k
)
, t $ 1.

Putting the contributions of T1 and T2 together, we obtain

T1 + T2(t) = 1

2π t

(
R + R2 log(R)

2
− R2

4

)

− R log R

π
√
π t

+ log(t)

8π
− 1

4π
− γe

8π
+ O

(
t1/2

)
,

which completes the proof of the claim. ��
To determine the variational Polyakov formula, we combine the ingredients from

the claim together with the contribution of the other parts of the sector. Recalling the
parametrix construction in Sect. 3.2, and that we use ∗ for the index in {α, i, e, a, c},
we have that

Tr
(
M(1+log(r))e

−tΔπ/2
)=
∫ 1

0

∫ π/2

0
(1+log(r))Hp(r, φ, r, φ, t)rdφdr+O

(
t∞
)

= Tr
(
e−tΔπ/2

)+
∫ 1

0

∫ π/2

0
log(r)

(
∑

∗
χ∗(r, φ)H∗(r, φ, r, φ, t)

)
rdφdr + O

(
t∞
)

∑

∗

∫ 1

0

∫ π/2

0
log ·χ∗ · H∗ dA =

∫

Nπ/2

log ·χπ/2 · pcdA +
∫

Nc

log ·χc · HSπ/2dA

+
∫

Sπ/2\(Nπ/2∪Nc)

log ·
(
∑

∗
χ∗ · H∗

)
dA,

where to simplify the notation, dA = rdφdr.Now we have to look for the coefficients
a2,0 and a2,1 in the short time asymptotic expansion (1.4). Recall that the constant term
in the asymptotic expansion of the heat trace, Tr(e−tΔπ/2) was computed in equation
(3.3) and in this case it is

ζΔπ/2 = − 1

12
+ 3

(
π2 + π2/4

24ππ/2

)
= 11

48
.
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Recalling the factor of 2/α with α = π/2 in this case, the total contribution from the
trace of the heat kernel is

4

π
ζΔπ/2 = 11

12π
.

Since this term also includes the purely local corner contribution from the origin,
which is already contained in the calculation of

∫ R

0

∫ π/2

0

4

π
(1 + log(r))pC (t, r, φ, r, φ)rdrdφ,

in Claim 1, we need to remove this part, which is, since α = π/2,

2

α

(
π2 − π2/4

24π(π/2)

)
= 1

4π
.

So we have

11

12π
− 1

4π
= 2

3π
.

As we proved in Sect. 3.3 above, the integrals over Nc and Sπ/2\(Nπ/2 ∪ Nc) do
not contribute to the coefficients a2,0 and a2,1.

Consequently, putting all the terms which contribute to the formula together, gives

log(t)

8π
− 1

4π
− γe

8π
+ 2

3π
.

The variational Polyakov formula for the quarter circle is consequently

∂

∂γ

(− log
(
det
(
ΔSγ

)))∣∣∣∣
γ=π/2

= −γe

4π
+ 5

12π
. (5.6)

��

6 Carslaw–Sommerfeld Heat Kernel

In this section we use the explicit form of the heat kernel on an infinite angular sector
with opening angle α given by Carslaw [7] to prove the existence of the asymptotic
expansion of Tr(MχNα log(r)e−tΔα). At the same time we compute the contribution
of this part to the total Polyakov formula. This will complete the proofs of Theorems
1 and 4.
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1816 C. L. Aldana, J. Rowlett

Fig. 1 Contour Aφ in the Cz
plane

In [7], Carslaw gave the following formula for the heat kernel on an infinite angular
sector with opening angle α:

H̃α(r, φ, r
′, φ′, t) = e−(r2+r ′2 )/4t

8παt

∫

Aφ

err
′ cos(z−φ)/2t eiπ z/α

eiπ z/α − eiπφ′/α dz, (6.1)

where Aφ is the contour in theCz-plane that is the union of the two following contours:
one contained in {z|φ −π < Re(z) < φ +π, Im(z) > 0} going from φ +π + i∞ to
φ −π + i∞, and the other one contained in {z|φ −π < Re(z) < φ +π, Im(z) < 0}
going from φ − π − i∞ to φ + π − i∞. In Fig. 1 we reproduce original Carslaw’s
contour from [7].

As noted there, this contour can be deformed into a different contour, depicted in
Fig. 2, that is composed of the following curves:

(1) 
1 = {φ − π + iy, y ∈ R} oriented from −i∞ to i∞,

(2) 
2 = {φ + π + iy, y ∈ R} oriented from i∞ to −i∞, and
(3) Small circles around the poles in the interval z ∈]φ − π, φ + π [. Since we will

be considering φ close to φ′, poles on the lines will not appear.

Notice that at the lines 
1 and 
2, cos(z − φ) < 0 since

cos(z − φ) = cos(x − φ + iy) = cos(±π + iy) = − cosh(y) < 0,

the integrals over the straight lines converge and will vanish in the limit as t → 0 (c.f.
[7, (iii) on p. 367]).

Unfortunately, this kernel does not correspond to the Dirichlet Laplacian since it
does not satisfy the boundary condition. To remedy this, we use the method of images
as in [5]. We first re-write (6.1) with a change of coordinates, w := z − φ, and write
A0 for the contour Aφ defined above with φ = 0 in the Cw plane, then

H̃α(r, φ, r
′, φ′, t) = e−(r2+r ′2 )/4t

8παt

∫

A0

err
′ cos(w)/2t 1

1 − eiπ(φ′−φ−w)/α
dw.
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A Polyakov Formula for Sectors 1817

Fig. 2 Deformed contour. To
simplify the picture we assume
only one pole at z = 0

This is the so-called “direct term” corresponding toφ′−φ.By themethod of images,
to obtain the Dirichlet heat kernel, we must incorporate the term corresponding to
φ′ + φ, this is

H̃α(r, −φ, r ′, φ′, t) = e−(r2+r ′2 )/4t

8παt

∫

A0

err
′ cos(w)/2t 1

1 − eiπ(φ′+φ−w)/α
dw,

and it is called the “reflected term.” Consequently, the Dirichlet heat kernel is

Hα(r, φ, r
′, φ′, t) = e−(r2+r ′2 )/4t

8παt

(∫

A0

err
′ cos(w)/2t 1

1 − eiπ(φ′−φ−w)/α
dw

−
∫

A0

err
′ cos(w)/2t 1

1 − eiπ(φ′+φ−w)/α
dw

)
. (6.2)

6.1 Contribution from the Poles

Let us define the following functions:

f1(z) = err
′ cos(z)/2t

1 − eiπ(φ′−φ−z)/α
,

f2(z) = err
′ cos(z)/2t

1 − eiπ(φ′+φ−z)/α
.

The first thing to do is to compute the residues at the poles of f1 and f2 within the
interval ]−π, π [, for φ′ and φ close to each other but different. There are two reasons
for this assumption. The first reason is that we would like to have a general expression
for the heat kernel close to the diagonal, not only at the diagonal. The second reason is
more serious, and arises due to the possibility of non-commuting limits. For example,
to determine the terms in the heat kernel arising from the residues at the poles, the
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1818 C. L. Aldana, J. Rowlett

correct order of computations is first to compute with the heat kernel for φ′ and φ

close, and then afterwards set φ′ = φ. In some cases, if one first sets φ′ = φ and then
attempts to compute, the result is incorrect. In general the function f1 has poles at the
points

(φ′ − φ − z)π/α = 2kπ ⇐⇒ φ′ − φ − z = 2kα ⇐⇒
z = φ′ − φ + 2kα, k ∈ Z.

Similarly, f2 has poles at the points

(φ′ + φ − z)π/α = 2 jπ ⇐⇒ φ′ + φ − z = 2 jα ⇐⇒
z = φ′ + φ + 2 jα, j ∈ Z.

We first assume without loss of generality φ′ > φ, later when we want to compute
the trace we make φ′ = φ.

Then, the poles of f1 and f2 which lie in the interval ] − π, π [ are those with

k, j ∈ Z,
−π

2α
<

φ′ − φ

2α
+ k <

π

2α
, and

−π

2α
<

φ′ + φ

2α
+ j <

π

2α
, (6.3)

respectively.

6.1.1 Pole Contribution from the Direct Term

We compute the residues at the poles of f1:

Resz=φ′−φ+2kα
err

′ cos(z)/2t

1 − eiπ(φ′−φ−z)/α

= lim
z→φ′−φ+2kα

(z − (φ′ − φ − 2kα))err
′ cos(z)/2t

1 − eiπ(φ′−φ−z)/α

= α

iπ
err

′ cos(φ′−φ+2kα)/2t .

Therefore, the integrals over the contours surrounding these poles are, by the residue
theorem,

2αerr
′ cos(φ′−φ+2kα)/2t .

The poles which are contained in the interval ] − π, π [ depend on the value of the
angles φ and φ′. That is why, in order to have a comprehensive formula close to the
diagonal, we restrict their range by assuming φ′ and φ are close.We compute the range
of all these poles. Since we are assuming φ′ > φ, it follows that φ′ − φ > 0.Without
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A Polyakov Formula for Sectors 1819

loss of generality, we may assume for a short moment that φ = 0 and φ′ ≤ α/4, since
we are interested in the case when φ and φ′ are close. The equation for k becomes

−π

2α
− φ′

2α
< k <

π

2α
− φ′

2α
, with 0 <

φ′

2α
≤ 1

8
.

Consequently, the smallest pole of f1 occurs at

kmin =
⌈−π

2α

⌉
. (6.4)

For the largest pole of f1 we have two cases: π
2α /∈ Z and otherwise. If π

2α ∈ Z,

then kmax = π
2α − 1. If, on the contrary, π

2α /∈ Z then

π

2α
=
⌊ π

2α

⌋
+ δ, for some δ ∈]0, 1[.

In this case, we shall andmay assume in addition that φ′/2α < δ.This will be, in terms
of φ and φ′, φ′ − φ < δ2α. Therefore the largest pole occurs at

⌊
π
2α

⌋
. Summarizing

we obtain:

kmax =
⌊ π

2α

⌋
if

π

2α
/∈ Z, otherwise kmax = π

2α
− 1. (6.5)

Therefore the contribution to the heat kernel is:

e−(r2+r ′2 )/4t

8παt

∑

k∈[kmin,kmax]
2αerr

′ cos(φ′−φ+2kα)/2t .

To compute the Polyakov formula contributions arising from these poles, we restrict
to the diagonal by setting φ′ = φ, r ′ = r in the expression above. We then multiply
by log(r) and integrate over a finite sector of radius R:

∫ R

0

∫ α

0

∑

k∈[kmin,kmax]

e−(r2)/2t

8παt
log(r)2αer

2 cos(2kα)/2tdφ rdr

=
∑

k∈[kmin,kmax]

α

4π t

∫ R

0
e−r2(1−cos(2kα))/2t log(r) rdr.

We compute each of these integrals separately.
If cos(2kα) = 1,

α

4π t

∫ R

0
e−r2(1−cos(2kα))/2t log(r)rdr = α

4π t

∫ R

0
log(r)rdr,
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1820 C. L. Aldana, J. Rowlett

then the coefficients of t0 and log(t) as t ↓ 0 vanish; there is no contribution from
such k. We note that

cos(2kα) = 1 ⇐⇒ ∃ 
 ∈ Z with k = 
π

α
.

Assuming this is not the case, we use substitution in the integral, letting

u = r2(1 − cos(2kα))/(2t), du = rdr(1 − cos(2kα))/t.

Thus we consider

α

4π(1 − cos(2kα))

∫ R2(1−cos(2kα))/(2t)

0

e−u log
(√

2tu(1 − cos(2kα))−1/2
)
du. (6.6)

Next, using the same argument as in the computation of T̃1 in the case of the quarter
circle, we compute

∫ R2(1−cos(2kα))/(2t)

0
e−u log

(
2tu(1 − cos(2kα))−1

)
du

=
∫ ∞

0
e−u log(u)du −

∫ ∞

R2(1−cos(2kα))/(2t)
e−u log(u)du

+ (log(2/(1 − cos(2kα)) + log(t))
(
1 − e−R2(1−cos(2kα))/(2t)

)
.

In the same way as before the integral in the middle vanishes rapidly as t ↓ 0. It
follows from a straightforward calculation that the constant term in the asymptotic
expansion as t → 0 in the integral in (6.6) is

α

8π(1 − cos(2kα))

(
−γe + log

(
2

1 − cos(2kα)

))
, (6.7)

and the log(t) term is

α log(t)

8π(1 − cos(2kα))
. (6.8)

Let Wα be defined by

Wα =
{
k ∈

(
Z

⋂
[kmin, kmax]

)
\
{

π

α

}


∈Z

}
.
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Hence, the total contribution to the variational Polyakov formula will come from

α

8π(1 − cos(2kα))

∑

k∈Wα

(
−γe + log

(
2

1 − cos(2kα)

)
+ log(t)

)
. (6.9)

Recalling the factor of 2
α
and Eq. (1.5), the total contribution to the variational

Polyakov formula is:

∑

k∈Wα

1

4π(1 − cos(2kα))

(
−2γe + log

(
2

1 − cos(2kα)

))
.

6.1.2 Pole Contribution from the Reflected Term

The residues at the poles of f2 are:

Resz=φ′+φ+2 jα
err

′ cos(z)/2t

1 − eiπ(φ′+φ−z)/α

= lim
z→φ′+φ+2 jα

(z − (φ′ + φ − 2 jα))err
′ cos(z)/2t

1 − eiπ(φ′+φ−z)/α

= α

iπ
err

′ cos(φ′+φ+2 jα)/2t .

Therefore, the integrals over the contours surrounding these poles are, by the residue
theorem,

2αerr
′ cos(φ′+φ+2 jα)/2t .

Note that the location of the poles such that z ∈] − π, π [ depend on the value of
φ. In particular, the set

Vφ :=
]−π − 2φ

2α
,
π − 2φ

2α

[
∩ Z,

depends on φ. At first glance, this would seem to be problematic. However, we shall
see that by first integrating over φ ∈ [0, α], a wonderful simplification occurs; this is
made precise by the following lemma.

Lemma 7 For any α ∈]0, π [,
∫ α

0

∑

j∈
]−π−2φ

2α ,
π−2φ
2α

[
∩Z

er
2 cos(2φ+2 jα)/2tdφ = 1

2

∫ π

−π

er
2 cos(ϕ)/2tdϕ = π I0

(
r2/2t

)
,

where I0 is the modified Bessel function.
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1822 C. L. Aldana, J. Rowlett

Proof The proof goes by cases. For different values of α, we look the values of j
which satisfy the equation

−π < 2φ + 2α j < π, with 0 ≤ φ ≤ α.

The sets Vφ are constant on intervals, so we split the integral over [0, α] into the
integral over these subintervals; then we change variables ϕ = 2φ + 2 jα, rearrange,
and obtain the final result.

We consider the following cases, and note that it is straightforward to verify that
for any α ∈]0, π [, precisely one of these cases holds:

(1) α = π
2k+1 ,

(2) α = π
2k ,

(3) α = π
2k−2ε > π

2k , with k ≥ 1 and 1
2 > ε > 0, and,

(4) α = π
2k+1−2ε > π

2k+1 , with k ≥ 1 and 1
2 > ε > 0.

Case α = π
2k+1 : Here,

j ∈ Vφ ⇐⇒ −k − 1

2
− φ

α
< j < k + 1

2
− φ

α
.

Then the set V = Vφ takes three different values:

• On [0, α/2[, V = {−k, . . . , k},
• at {α/2}, V = {−k, . . . , k − 1},
• on ]α/2, α[, V = {−k − 1, . . . , k − 1},
• at α, V = {−k − 1, . . . , k − 2}.

Then, we have
∫ α

0

∑

j∈Vφ
er

2 cos(2φ+2 jα)/2tdφ

=
∫ α/2

0

k∑

j=−k

er
2 cos(2φ+2 jα)/2tdφ +

∫ α

α/2

k−1∑

j=−k−1

er
2 cos(2φ+2 jα)/2tdφ

= 1

2

k∑

j=−k

∫ 2 jα+α

2 jα
er

2 cos(ϕ)/2tdϕ + 1

2

k−1∑

j=−k−1

∫ 2α+2 jα

α+2 jα
er

2 cos(ϕ)/2tdϕ

= 1

2

k∑

j=−k

∫ α(2 j+1)

2 jα
er

2 cos(ϕ)/2tdϕ + 1

2

k−1∑

j=−k−1

∫ α(2 j+2)

α(2 j+1)
er

2 cos(ϕ)/2tdϕ

= 1

2

∫ −2kα

(−2k−1)α
er

2 cos(ϕ)/2tdϕ + 1

2

k−1∑

j=−k

∫ α(2 j+1)

2 jα
er

2 cos(ϕ)/2tdϕ

+1

2

∫ (2k+1)α

2kα
er

2 cos(ϕ)/2tdϕ

= 1

2

∫ π

−π

er
2 cos(ϕ)/2tdϕ.
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Case α = π
2k : in this case, j ∈ Vφ must satisfy−k− φ

α
< j < k− φ

α
. The set V = Vφ

again takes three different values:

• At {0}, V = {−k + 1, . . . , k − 1},
• on ]0, α[, V = {−k, . . . , k − 1},
• at {α}, V = {−k, . . . , k − 2}.

The proof in this case is quite similar to the previous case and is therefore omitted.
Case α = π

2k−2ε > π
2k , with k ≥ 1 and 1

2 > ε > 0: in this case, j ∈ Vφ must satisfy

−k + ε − φ
α
< j < k − ε − φ

α
. Then the set V takes three different values:

• On [0, αε], V = {−k + 1, . . . , k − 1},
• on ]αε, (1 − ε)α[, V = {−k, . . . , k − 1},
• on [(1 − ε)α, α], V = {−k, . . . , k − 2}.

In this case we compute

∫ α

0

∑

j∈Vφ
er

2 cos(2φ+2 jα)/2tdφ =
∫ εα

0

k−1∑

j=−k+1

er
2 cos(2φ+2 jα)/2tdφ

+
∫ (1−ε)α

εα

k−1∑

j=−k

er
2 cos(2φ+2 jα)/2tdφ +

∫ α

(1−ε)α

k−2∑

j=−k

er
2 cos(2φ+2 jα)/2tdφ

= 1

2

k−1∑

j=−k+1

∫ 2εα+2 jα

2 jα
er

2 cos(ϕ)/2tdϕ + 1

2

k−1∑

j=−k

∫ 2α(1−ε+ j)

2α( j+ε)

er
2 cos(ϕ)/2tdϕ

+ 1

2

k−2∑

j=−k

∫ 2α+2 jα

2(1−ε)α+2 jα
er

2 cos(ϕ)/2tdϕ.

Let J (ϕ) denote er
2 cos(ϕ)/2t , then

∫ α

0

∑

j∈Vφ
er

2 cos(2φ+2 jα)/2tdφ = 1

2

k−2∑

j=−k+1

∫ 2α+2 jα

2 jα
Jdϕ

+ 1

2

(∫ 2α(k−1+ε)

2α(k−1)
Jdϕ +

∫ 2α(−k+1−ε)

2α(−k+ε)

Jdϕ

+
∫ 2α(k−1+1−ε)

2α(k−1+ε)

Jdϕ +
∫ 2α(−k+1)

2α(−k+1−ε)

Jdϕ

)

= 1

2

(∫ 2α(−k+1)

2α(−k+ε)

Jdϕ +
∫ 2α(k−1)

2α(−k+1)
Jdϕ +

∫ 2α(k−ε)

2α(k−1)
Jdϕ

)

= 1

2

∫ π

−π

er
2 cos(ϕ)/2tdϕ.
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Case α = π
2k+1−2ε > π

2k+1 , with k ≥ 1 and 1
2 > ε > 0: the equation becomes

−k − 1
2 + ε − φ

α
< j < k + 1

2 − ε − φ
α
. Then the set V takes three different values:

• On [0, α ( 12 − ε
) [, V = {−k, . . . , k},

• on ]α ( 12 − ε
)
, α
( 1
2 + ε

)], V = {−k, . . . , k − 1},
• on ] ( 12 + ε

)
α, α], V = {−k − 1, . . . , k − 1}.

Here we have

∫ α

0

∑

j∈Vφ
er

2 cos(2φ+2 jα)/2tdφ =
∫ (

1
2−ε

)
α

0

k∑

j=−k

er
2 cos(2φ+2 jα)/2tdφ

+
∫ (

1
2+ε

)
α

(
1
2−ε

)
α

k−1∑

j=−k

er
2 cos(2φ+2 jα)/2tdφ +

∫ α

(
1
2+ε

)
α

k−1∑

j=−k−1

er
2 cos(2φ+2 jα)/2tdφ

= 1

2

k∑

j=−k

∫ (1−2ε+2 j)α

2 jα
er

2 cos(ϕ)/2tdϕ + 1

2

k−1∑

j=−k

∫ (1+2ε+2 j)α

(1−2ε+2 j)α
er

2 cos(ϕ)/2tdϕ

+ 1

2

k−1∑

j=−k−1

∫ 2( j+1)α

(1+2ε+2 j)α
er

2 cos(ϕ)/2tdϕ = 1

2

k−1∑

j=−k

∫ 2( j+1)α

2 jα
er

2 cos(ϕ)/2tdϕ

+ 1

2

(∫ (1−2ε+2k)α

2kα
er

2 cos(ϕ)/2tdϕ +
∫ −2kα

(1+2ε−2k−2)α
er

2 cos(ϕ)/2tdϕ

)

= 1

2

∫ (2k+1−2ε)α

(−2k−1+2ε)α
er

2 cos(ϕ)/2tdϕ = 1

2

∫ π

−π

er
2 cos(ϕ)/2tdϕ.

Recalling the formula for the modified Bessel function of the second type,

I0(x) = 1

π

∫ π

0
ex cos(θ)dθ,

we see that

1

2

∫ π

−π

er
2 cos(ϕ)/2tdϕ =

∫ π

0
er

2 cos(ϕ)/2tdϕ = π I0
(
r2/2t

)
.

This completes the proof of the lemma. ��

To compute the contribution to the Polyakov formula from these poles, we recall
that the residues at the poles of f2, restricted to the diagonal, give 2αer

2 cos(2φ+2 jα)/2t .

Furthermore, there is a factor of e−r2/2t

8απ t , and finally, the reflected term is subtracted
in the definition of the heat kernel. The preceding lemma takes care of the integration
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with respect to φ, and so it remains to analyze

− 2α

8αt

∫ R

0
e−r2/2t log(r)I0

(
r2/2t

)
rdr = −1

4t

∫ R

0
e−r2/2t log(r)I0

(
r2/2t

)
rdr

= π

4
T2,2(t),

where T2,2(t)was defined in Sect. 5 . There, we computed the t0 term in the expansion
of T2,2(t) to be − 1

2π . There is no log(t) term coming from T2,2(t).We therefore have
a contribution from the reflected term by

−π

4

1

2π
= −1

8
.

Recalling the factor of 2/α, the contribution to the variational Polyakov formula from
these poles is simply

− 1

4α
. (6.10)

6.2 Contribution from the Integrals over the Lines

The line 
1 can be parameterized by 
1(s) = −π + is, −∞ < s < ∞, and 
2(s) =
π + is, now with s going from ∞ to −∞. Write

∫


1∪
2
( f1(z) − f2(z)) dz = L1 + L2.

Note that if α = π/n, for some n ∈ N, then f1 is periodic of period 2π,

f1(z + 2π) = err
′ cos(z+2π)/2t

1 − einπ(φ′−φ−z−2π)/π

= err
′ cos(z)/2t

1 − ein(φ′−φ−z−2π)

= err
′ cos(z)/2t

1 − ein(φ′−φ−z)
= f1(z).

Therefore f1 takes the same values in the lines 
1 and 
2. Since they have contrary
orientation, the integrals sum to zero. The same holds for f2, since
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1826 C. L. Aldana, J. Rowlett

f2(z + 2π) = err
′ cos(z+2π)/2t

1 − einπ(φ′+φ−z−2π)/π

= err
′ cos(z)/2t

1 − ein(φ′+φ−z−2π)

= err
′ cos(z)/2t

1 − ein(φ′+φ−z)
= f2(z).

In the general case, consider first f1:

L1 =
∫


1∪
2
f1(z)dz

= i
∫ ∞

−∞

(
e−rr ′ cosh(s)/2t

1 − ei
π
α
(π+φ′−φ)e

π
α
s

− e−rr ′ cosh(s)/2t

1 − ei
π
α
(−π+φ′−φ)e

π
α
s

)
ds.

Restring to the diagonal, r = r ′ and φ = φ′, we re-write

L1 = i
∫ ∞

−∞
e−r2 cosh(s)/(2t)

(
1

1 − eπs/αeiπ2/α
− 1

1 − eπs/αe−iπ2/α

)
ds

= i
∫ ∞

−∞
e−r2 cosh(s)/(2t)

(
eπs/α(2i sin(π2/α))

1 + e2πs/α − eπs/α(2 cos(π2/α))

)
ds

= −2 sin
(
π2/α

) ∫ ∞

−∞
e−r2 cosh(s)/(2t) 1

e−πs/α + eπs/α − 2 cos(π2/α)
ds

= − sin
(
π2/α

) ∫ ∞

−∞
e−r2 cosh(s)/(2t)

cosh(πs/α) − cos(π2/α)
ds.

Including the factor of e−r2/2t

8απ t , as well as the log(r), we compute

1

8απ t

∫ R

0

∫ α

0
e−r2(1+cosh(s))/2t log(r)rdrdφ

= 1

8π t

∫ R

0
e−r2(1+cosh(s))/2t log(r)rdr.

Next, we do a substitution letting

u = r2(1 + cosh(s))

2t
, du = r(1 + cosh(s))

t
dr,

so this becomes

1

16π(1 + cosh(s))

∫ R2(1+cosh(s))/2t

0
e−u log(2tu/(1 + cosh(s)))du.
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It follows from our previous estimates that the integral from R2(1 + cosh(s))/2t to
∞ is rapidly vanishing as t ↓ 0. Hence, we may simply compute

1

16π(1 + cosh(s))

∫ ∞

0
e−u log(2tu/(1 + cosh(s)))du

= 1

16π(1 + cosh(s))

(
log

(
2

1 + cosh(s)

)
+ log(t) − γe

)
.

Thus, we have for L1 in the case that α �= π
n for any n ∈ N, a contribution coming

from

− sin
(
π2/α

) ∫ ∞

−∞

log
(

2
1+cosh(s)

)
− γe

16π(1 + cosh(s))(cosh(πs/α) − cos(π2/α))
ds,

− log(t) sin
(
π2/α

) ∫ ∞

−∞
1

16π(1 + cosh(s))(cosh(πs/α) − cos(π2/α))
ds.

Recalling the factor of 2/α, this gives a contribution to the variational Polyakov for-
mula

− 2

α
sin
(
π2/α

) ∫ ∞

−∞

log
(

2
1+cosh(s)

)
− γe

16π(1 + cosh(s))(cosh(πs/α) − cos(π2/α))
ds

+ 2γe
α

sin
(
π2/α

) ∫ ∞

−∞
1

16π(1 + cosh(s))(cosh(πs/α) − cos(π2/α))
ds.

In forthcoming work, we shall compute these integrals.
Fortunately, there will be no contribution to our formula coming from f2. To see

this, we compute analogously

L2 = −i
∫ ∞

−∞

(
e−rr ′ cosh(s)/2t

1 − ei
π
α
(π+φ′+φ)e

π
α
s

− e−rr ′ cosh(s)/2t

1 − ei
π
α
(−π+φ′+φ)e

π
α
s

)
ds.

Restricting to the diagonal, we obtain

L2 = sin
(
π2/α

) ∫ ∞

−∞
e−r2 cosh(s)/(2t)

cosh(sπ/α + 2π iφ/α) − cos(π2/α)
ds.

As observed by Kac, the when one integrates L2 over the domain, that is with respect
to rdrdφ, the result vanishes; see [20, p. 22]. It is not immediately clear there why
the integral vanishes, because the computation is omitted. Moreover, our setting is not
identical, because we are integrating with respect to log(r)rdrdφ rather than rdrdφ.
However, upon closer inspection, it becomes apparent that the reason the integral of L2
over the domain vanishes is due to integration with respect to the angular variable, dφ.
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For the sakeof completeness, since this computation is only statedbut not demonstrated
in [20], we compute the integral with respect to the angular variable φ,

∫ α

0

1

cosh(sπ/α + 2π iφ/α) + C
dφ, C := − cos

(
π2/α

)
.

We do the substitution

θ = sπ/α + 2π iφ/α,

and this becomes

α

2π i

∫ sπ/α+2π i

sπ/α

1

cosh(θ) + C
dθ.

The integral is

−
2 arctan

(
(C−1) tanh(θ/2)√

1−C2

)

√
1 − C2

∣∣∣∣∣∣

sπ/α+2π i

θ=sπ/α

. (6.11)

It suffices to compute that the value of the hyperbolic tangent is the same at both
endpoints,

tanh

(
sπ/α + 2π i

2

)
= sinh(iπ + sπ/(2α))

cosh(iπ + sπ/(2α))

= − sinh(sπ/(2α))

− cosh(sπ/(2α))
= tanh(sπ/(2α)).

This follows from the fact that e±iπ = −1, and so

sinh(iπ + θ) = − sinh(θ), cosh(iπ + θ) = − cosh(θ).

Consequently, since the tanh has the same values at the two endpoints, the whole
quantity (6.11) vanishes. It follows that L2 will make no contributions to our formula.

6.3 The Total Expressions

We begin with the total expression for the heat kernel on an infinite sector of opening
angle α ∈]0, π [ with Dirichlet boundary condition:
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Hα(r, φ, r
′, φ′, t) = e−(r2+r ′2 )/4t

8παt

⎛

⎝
kmax∑

k=kmin

2αerr
′ cos(φ′−φ+2kα)/2t

+
∑

Vφ,φ′
2αerr

′ cos(φ′+φ+2 jα)/2t

− sin
(
π2/α

) ∫ ∞

−∞
e−rr ′ cosh(s)/2t

cosh
(
π
α
s + i π

α
(φ′ − φ)

)− cos(π2/α)
ds

+ sin
(
π2/α

) ∫ ∞

−∞
e−rr ′ cosh(s)/2t

cosh( π
α
s + i π

α
(φ′ + φ)) − cos(π2/α)

ds

)
,

where kmin = ⌈−π
2α

⌉
, and kmax = ⌊

π
2α

⌋
if π

2α /∈ Z, otherwise kmax = π
2α − 1. For

0 < φ′ − φ < min
{(

π
2α − ⌊ π

2α

⌋)
2α, α/2

}
, if π

2α /∈ Z, and 0 < φ′ − φ < α/2
otherwise. The sets

Vφ,φ′ :=
]−π − φ − φ′

2α
,
π − φ − φ′

2α

[
∩ Z,

are the same as the sets Vφ described in the proof of Lemma 7.
The total expression of Polyakov’s formula is obtained by putting together the

previous computations, recalling the factor of 2
α
, and including contribution of the

constant coefficient of the heat trace. We combine all these ingredients to determine
the coefficients a2,0 and a2,1 in the expansion (1.4) and conclude with the variational
Polyakov formula for all sectors.

Recall that the constant coefficient of the heat trace, which is ζΔα (0) in Eq. (3.3),
was computed according to [27, Eq. (2.13)]. Including the factor of 2

α
, the contribution

to the Polyakov formula from the heat trace is

2

α
ζΔα (0) = 2

α

(
− 1

12
+ π2 + α2

24πα
+ 2

π2 + π2/4

24π(π/2)

)
.

This simplifies to

π

12α2 + 1

12π
+ 1

4α
.

Consequently, when we combine with the contribution of the reflected term (6.10) the
1
4α term vanishes. Adding the contributions of the direct term and of the line L1 we
obtain

∂

∂γ

(− log
(
det
(
Δγ

)))∣∣∣∣
γ=α

= π

12α2 + 1

12π

+
∑

k∈Wα

( −γe

2π(1 − cos(2kα))
+ 1

4π(1 − cos(2kα))
log

(
2

1 − cos(2kα)

))
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− 2

α
sin
(
π2/α

) ∫ ∞

−∞

log
(

2
1+cosh(s)

)
− γe

16π(1 + cosh(s))(cosh(πs/α) − cos(π2/α))
ds

+2γe
α

sin
(
π2/α

) ∫ ∞

−∞
1

16π(1 + cosh(s))(cosh(πs/α) − cos(π2/α))
ds,

where the set Wα is defined in the statement of Theorem 4. Notice that if the angle α
is of the form α = π

n , for some n ∈ N, then the terms with the integrals are omitted
from the formula. ��

7 Determinant of the Laplacian on Rectangles

In this section we prove Theorem 5. Consider a rectangle of width 1/L and length L .
The spectrum of the Euclidean Laplacian on this rectangle with Dirichlet boundary
condition can easily be computed using separation of variables, and it is

{
m2π2

L2 + n2π2

w2

}

m,n∈N
.

Consequently the spectral zeta function has the following expression:

ζL(s) =
∑

m,n∈N

(
1

π2m2/L2 + π2n2L2

)s

= (π)−2s
∑

m,n∈N

1

|L|2s |mz + n|2s , z = i

L2 .

Proof of Theorem 5 We would like to use the computations in [35, pp. 204–205], and
so we relate the above expression for the zeta function to the corresponding expression
in [35] for the torus by

ζL(s) = (π)−2s

2

⎛

⎝
∑

(m,n)∈Z×Z\(0,0)

1

|L|2s |mz + n|2s

−2L−2s
∑

n∈N

1

n2s
− 2L2s

∑

m∈N

1

m2s

)
.

By [35, pp. 204–205],

G(s) :=
∑

(m,n)∈Z×Z\(0,0)

1

|L|2s |mz + n|2s ,
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satisfies

G(0) = −1, G ′(0) = − 1

12
log

(
(2π)24

(η(z)η̄(z))24

(L)24

)
,

where η is the Dedekind η function. Consequently,

ζL(s) = 1

2π2s

(
G(s) − 2L−2sζR(2s) − 2L2sζR(2s)

)
,

where ζR(s) denotes the Riemann zeta function ζR(s) = ∑
n∈N n−s . Since the Rie-

mann zeta function satisfies

ζR(0) = −1

2
, ζ ′

R(0) = − log
√
2π,

we compute

ζ ′
L(0) = 1

2
G ′(0) − logπ + 2 log(2π)

= − log

(
2π |η(z)|2

L

)
− logπ + 2 log(2π)

= log(2) − log
(
|η(z)|2/L

)
.

Consequently we obtain the formula for the determinant

detΔL = e−ζ ′
L (0) = |η(z)|2

2L
= |η(i/L2)|2

2L
=: f (L).

Since the rectangle is invariant under L 	→ L−1, we also have

f (L) = 1

2
η
(
i L2

)2
L .

We briefly recall the definition and some classical identities for the Dedekind η func-
tion. First, we have

η(τ) = q1/12
∞∏

n=1

(
1 − q2n

)
, q = eπ iτ , Im(τ ) > 0.

We use the following identity from [21, p. 12],

log η(i/y) − log η(iy) = 1

2
log(y), y ∈ R

+.
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Then, we compute for

− log (detΔL) = ζ ′
L(0) = −2 log

(
η
(
i/L2

))
+ log(L) + log(2),

−i
η′(i/y)
η(i/y)y2

− i
η′(iy)
η(iy)

= 1

2y
�⇒ 4η′(i) = iη(i).

This shows that

d

dL
ζ ′
L(0) = 4iη′(i/L2)

η(i/L2)L3 + 1

L
�⇒ d

dL
ζ ′
L=1(0)

4iη′(i) + η(i)

η(i)
= 0. (7.1)

Since d
dL detΔL = ( d

dL log(detΔL)
)
detΔL , and detΔL > 0, we have that

d

dL
detΔL

∣∣∣∣
L=1

= 0.

Next, we show that f (L) is monotonically increasing on (0, 1). By symmetry
under L 	→ L−1, this will complete the proof that the zeta-regularized determinant
on a rectangle of dimensions L × 1/L is uniquely minimized by the square of side
length one.

To prove this, we begin by recalling equation (1.13) from Hardy and Ramanujan
[17, Eq. (1.13)],

η(τ) = q1/12

1 +∑∞
n=1 p(n)q

2n
, q = eπ iτ , Im(τ ) > 0.

Above, p(n) is the number theoretic partition function on n. We therefore compute
that

2 f (L) = η
(
i L2

)2
L = Le−πL2/6

(
1 +∑∞

n=1 p(n)e
−2πL2n

)2 .

It is clear to see that the denominator is a monotonically decreasing function of L .We
compute that the numerator,

Le−πL2/6 is monotonically increasing on L ∈
(
0,

√
3

π

)
.

Thus the quotient is monotonically increasing on that interval as well.
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Let us write

2 f (L) = F(L)G̃(L),

F(L) = Le−πL2/6,

G̃(L) =
(
1 +

∞∑

n=1

p(n)e−2πL2n

)−2

.

Then we have that F, G̃ > 0 on L > 0, and G̃ ′(L) > 0 on L > 0. We also have that
F ′(L) > 0 for 0 < L <

√
3/π, F ′(

√
3/π) = 0, and F ′(L) < 0 for

√
3π < L < 1.

We wish to prove that

(FG̃)′ > 0 on

[√
3

π
, 1

)
.

This is immediately true at the left endpoint by the preceding observations. Thus, it is
enough to show that

∣∣∣∣
F ′

F

∣∣∣∣ <
∣∣∣∣
G̃ ′

G̃

∣∣∣∣ on
(√

3

π
, 1

)
.

We already know that the equality |F ′/F | = |G̃ ′/G̃| holds at L = 1. Thus, after
computing |F ′/F |, we must show that

G̃ ′

G̃
>

πL

3
− 1

L
,

√
3

π
< L < 1.

We compute

G̃ ′(L) = −2

⎛

⎝1 +
∑

n≥1

p(n)e−2πL2n

⎞

⎠
−3⎛

⎝−4πL
∑

n≥1

np(n)e−2πL2n

⎞

⎠ .

Thus

G̃ ′

G̃
= 8πL

∑
np(n)e−2πL2n

1 +∑ p(n)e−2πL2n
,

and we are bound to prove that

G̃ ′

G̃
= 8πL

∑
np(n)e−2πL2n

1 +∑ p(n)e−2πL2n
>

∣∣∣∣
F ′

F

∣∣∣∣ = πL

3
− 1

L
,

√
3

π
< L < 1.
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Consequently, re-arranging the above inequality, we are bound to prove that

A(L) > B(L),

√
3

π
< L < 1,

where

A(L) =
∑

n≥1

np(n)e−2πL2n,

B(L) =
(

1

24
− 1

8πL2

)⎛

⎝1 +
∑

n≥1

p(n)e−2πL2n

⎞

⎠ .

To prove that A(L) > B(L) for
√
3π < L < 1, we first observe that A(L) > 0

for all L > 0. Moreover, A(L) is clearly a monotonically decreasing function of L .
We have calculated that f ′(1) = 0, and 2 f (L) = F(L)G̃(L), which shows that

G̃ ′(1)
G̃(1)

= − F ′(1)
F(1)

=
∣∣∣∣
F ′(1)
F(1)

∣∣∣∣ = π

3
− 1.

Hence, A(1) = B(1). It is plain to see that B(
√
3/π) = 0. Thus since A is monoton-

ically decreasing on (
√
3/π, 1), and A(

√
3/π) > B(

√
3/π), it suffices to show that

B is strictly increasing on (
√
3/π, 1). If this is the case, then the graphs of A and B

can only cross at most once on (
√
3/π, 1]. Since we know that at the left endpoint of

this interval, we have A > B, and at the right endpoint, we have A = B, this shows
that on the open interval (

√
3/π, 1), A > B.

We therefore compute

B ′(L) = 2

8πL3

(
1 +

∑
p(n)e−2πL2n

)

+
(

1

24
− 1

8πL2

)∑
−4πLnp(n)e−2πL2n

= 1

4πL3

(
1 +

∑
p(n)e−2πL2n

)

+
(
1

6
− 1

2πL2

)
(−πL)

∑
np(n)e−2πL2n .

On (
√
3/π, 1),

1

4πL3

(
1 +

∑
p(n)e−2πL2n

)
> 0,

whereas
(
1

6
− 1

2πL2

)
(−πL)

∑
np(n)e−πL2n < 0.
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Thus, it suffices to prove that

1

4π2L4

(
1 +

∑
p(n)e−2πL2n

)
>

(
1

6
− 1

2πL2

)∑
np(n)e−2πL2n,

for L ∈ (
√
3/π, 1). We have on this interval

1

4π2L4

(
1 +

∑
p(n)e−2πL2n

)
>

1

4π2 .

So, it will be enough to prove that

1

4π2 >

(
1

6
− 1

2πL2

)∑
np(n)e−2πL2n .

On this interval

1

6
− 1

2πL2 ≤ 1

6
− 1

2π
= π − 3

6π
.

So, it is enough to prove that

6π

(π − 3)

1

4π2 = 3

(π − 3)2π
>
∑

np(n)e−2πL2n .

For one final simplification, since the sum on the right is a monotonically decreasing
function of L , it will suffice to prove this inequality holds for the smallest possible
L = √

3/π. Thus, it is enough to prove that

3

(π − 3)2π
>
∑

np(n)e−6n .

Now, we recall a recent estimate of the partition function ([11, p. 114])

p(n) ≤ ec
√
n

n3/4
, c = π

√
2/3 < 2.6, ∀n ≥ 1.

It is straightforward to verify that for all n ≥ 2 we have

n1/4e2.6
√
n ≤ e2n .

Thus we estimate

∑
np(n)e−6n = e−6 +

∑

n≥2

np(n)e−6n ≤ e−6 +
∑

n≥2

e−4n

= 1

e6
+ 1

e8 − e4
< 0.003.
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On the other hand

3

(π − 3)2π
> 3.

This completes the proof. ��

8 Concluding Remarks

Isospectral polygonal domains are known to exist [14], and one can construct many
examples by folding paper [8]. A natural question is: how many polygonal domains
may be isospectral to a fixed polygonal domain? Osgood, Phillips and Sarnak used
the zeta-regularized determinant to prove that the set of isospectral metrics on a given
surface of fixed area is compact in the smooth topology [36]. Can one generalize
this result in a suitable way to domains with corners? Is it possible to define a flow,
as [35] did, which deforms any initial n-gon towards the regular one over time and
increases the determinant? How large is the set of isospectral metrics on a surface with
conical singularities? These and further related questions will be the subject of future
investigation and forthcoming work.
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Appendix: Carslaw’s Formula for the Dirichlet Heat Kernel of the Quad-
rant

In the case α = π/2, the Dirichlet heat kernel for the (infinite) quadrant in polar
coordinates was given in Eq. (5.1)

pC (r, r
′, φ, φ′, t) = e− r2+r ′2

4t

2π t

(
cosh

(
rr ′ cos(φ′ − φ)

2t

)

− cosh

(
rr ′ cos(φ′ + φ)

2t

))
.
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We shall verify that this coincides with the formula in (6.2) with α = π/2. The
Dirichlet heat kernel by the method of Carslaw is

HC (r, φ, r
′, φ′, t) = e−(r2+r ′2 )/4t

8παt

(∫

A0

err
′ cos(w)/2t 1

1 − ei2(φ′−φ−w)
dw

−
∫

A0

err
′ cos(w)/2t 1

1 − ei2(φ′+φ−w)
dw

)
. (8.1)

We determine the poles of

f1(w) = err
′ cos(w)/2t

1 − ei2(φ′−φ−w)
, and f2(w) = err

′ cos(w)/2t

1 − ei2(φ′+φ−w)
,

located in ]−π, π [. In general, the poles of f1 are at the points φ′ −φ +π j for some
j ∈ Z. By symmetry, we may assume without loss of generality that φ′ > φ, and that
φ′ − φ ≤ π/2. Then, the only j ∈ Z such that φ′ − φ +π j ∈] −π, π [ are j = 0 and
j = −1. We compute the residues at these poles:

Resz=φ′−φ+π j
err

′ cos(z)/2t

1 − ei2(φ′−φ−z)
= lim

z→φ′−φ+π j

(z − (φ′ − φ − π j))err
′ cos(z)/2t

1 − ei2(φ′−φ−z)

= 1

2i
err

′ cos(φ′−φ+π j)/2t .

For f2, the poles are in general at w = φ′ +φ +π j, for j ∈ Z. Those poles within
the interval ] − π, π [, assuming without loss of generality φ′ ≥ φ are again those
with j = −1, and j = 0. The residues at these poles are:

Resz=φ′+φ+π j
err

′ cos(z)/2t

1 − ei2(φ′+φ−z)
= lim

z→φ′+φ+π j

(z − (φ′ + φ + π j))err
′ cos(z)/2t

1 − ei2(φ′+φ−z)

= 1

2i
err

′ cos(φ′+φ+π j)/2t .

Since the angle is π/2, the integrals over the lines vanish, so putting everything
together we obtain:

HC (r, φ, r
′, φ′, t) = e−(r2+r ′2 )/4t

4π t

(
err

′ cos(φ′−φ)/2t + err
′ cos(φ′−φ−π)/2t

−err
′ cos(φ′+φ)/2t − err

′ cos(φ′+φ−π)/2t
)

= e−(r2+r ′2 )/4t

4π t

(
err

′ cos(φ′−φ)/2t + e−rr ′ cos(φ′−φ)/2t

−err
′ cos(φ′+φ)/2t − e−rr ′ cos(φ′+φ)/2t

)

= pC (r, r
′, φ, φ′, t).
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It is also interesting to verify that for the case of the quarter circle, although the
Polyakov formula given in Theorem 4 is quite complicated, it is nonetheless consis-
tent with the result of Theorem 3. Especially, this is interesting because the proof of
Theorem 3 is independent of the proof of Theorem 4.

For the quarter circle, the only contribution from the poles of f1 corresponds to
k = −1, and this gives

− γe

4π
.

The contribution from the poles of f2 is simply

− 1

2π
.

The heat trace gives a contribution of

− 1

3π
+ 1

3π
+ 1

12π
= 11

12π
.

Putting all of these together, we have

− γe

4π
+ 5

12π
,

which indeed coincides with our calculation in (5.6).
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