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We simulate the dynamics of a single-electron source, modeled as a quantum dot with on-site Coulomb
interaction and tunnel coupling to an adjacent lead in time-dependent density-functional theory. Based
on this system, we develop a time-nonlocal exchange-correlation potential by exploiting analogies with
quantum-transport theory. The time nonlocality manifests itself in a dynamical potential step. We explicitly
link the time evolution of the dynamical step to physical relaxation timescales of the electron dynamics.
Finally, we discuss prospects for simulations of larger mesoscopic systems.
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Time-dependent density-functional theory (TDDFT) is
a widely used tool for the calculation of time-dependent
phenomena in interacting quantum systems [1–3]. In
TDDFT, the time-dependent electronic density of interact-
ing electrons moving in an external potential vðr; tÞ is
calculated from noninteracting electrons, which are placed
in the artificial Kohn-Sham (KS) potential vKSðr; tÞ. The
difference vKSðr; tÞ − vðr; tÞ is given by the Hartree (H)
and the exchange-correlation (XC) potentials, which pro-
vide electrostatic and all further many-body effects, respec-
tively. According to the Runge-Gross theorem [4], the XC
potential is universal and depends on the full history of the
electronic density and on the choice of initial states in the
interacting and in the KS systems. Incorporating these
dependencies in calculations is a formidable task, see e.g.,
[5–10]. In practice, the XC potential is, therefore, almost
exclusively approximated by adiabatic, i.e., time-local
density functionals, such as the popular adiabatic local-
density approximation.
In this Letter, we apply TDDFT to describe time-

dependent charge transport in single-electron tunneling
devices. As a physical application, we analyze a single-
electron source built by a quantum dot weakly tunnel
coupled to a nearby lead, see Fig. 1(a). The emission of
single charges into the lead is triggered by a time-periodic
gate voltage. By using insights from quantum-transport
theory, we develop a nonadiabatic XC potential based on
this system. The developed XC potential reveals features
relevant for electron tunneling, in particular, in the presence
of time-dependent driving. We then employ this XC
potential for the time propagation of multiple quantum
dots with weak tunnel coupling to a shared electron
reservoir, see Fig. 3(a), to demonstrate its applicability
to larger mesoscopic systems. Both settings, the single-
electron source and the multiple quantum dots, have been
analyzed in recent experiments [11,12].

The controlled emission of single electrons from a
quantum dot into a solid-state device has been reported
in Ref. [11], which, together with the advance of further
single-electron sources [14,15], has sparked interest in the
dynamics of mesoscopic systems at the single-particle level
[16–22]. The basic physics of these systems is often well
described by model Hamiltonians with Hubbard-like inter-
action terms, where the interaction parameters can be
extracted from experiments. However, even when relying
on interacting model systems, it is a challenge to obtain the
dynamics, see e.g., [23,24]. The TDDFT treatment of the
dynamics of single-electron tunneling devices, which is
outlined in this Letter, thus mutually benefits the meso-
scopic transport and the TDDFT community: first, it offers

(a) (b)

(c)

FIG. 1. (a) Energy diagram of a single-level quantum dot with
tunnel coupling Γ to a lead. (b) Adiabatic HXC (XC plus Hartree)
potential from [13]. (c) Nonadiabatic HXC potential derived
in Eq. (8). Parameters are U ¼ 16Γ, T ¼ 2Γ, and _n=Γ ¼
1.2; 0.8;…;−1.2 (left to right lines). The black arrow indicates
the dynamical step.
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prospects of simulating time-resolved electron dynamics in
interacting mesoscopic systems with TDDFT, which is
numerically efficient, as it only requires a time propagation
of noninteracting electrons. Second, this approach points
out nonadiabatic features of the universal XC potential,
which are essential for an accurate TDDFT description.
The XC potential derived in this Letter has two key

properties. (1) For a stationary system, it reproduces the
derivative discontinuity (DD)—a potential step at a half-
filled quantum-dot energy level [25]. The DD [26–30] is
relevant to reproduce Coulomb-blockade physics in a
noninteracting KS system [31–33]. (2) For the density
on the quantum dot changing in time, e.g., due to a time-
dependent gate voltage, the potential step shifts and appears
at quantum-dot occupations, which differ from the static
case. We find that this dynamical step improves the TDDFT
description by impeding electron tunneling in the KS
system, see also Ref. [34]. Related dynamical steps have
been reported for two-electron systems with long-range
Coulomb interaction [9,28,34,35] and for a 1D semi-
conductor [36]. Importantly, we connect this step to
electronic timescales by identifying charge relaxation rates
of the single-electron source in the evolution of this step.
The quantum dot coupled to a lead, which acts as an

electron reservoir, is illustrated in Fig. 1(a). The reservoir
temperature is denoted by T, and electron-electron inter-
action in the reservoir is considered to be fully screened. On
the contrary, electrons occupying the quantum dot interact
strongly due to their spatial confinement. We take into
account a single quantum-dot energy level ϵðtÞ ¼ −αVgðtÞ,
assuming a linear dependence on the applied gate voltage
VgðtÞ, with α > 0. All energies are given with respect to the
Fermi energy, and e, ℏ, and kB are set to one. The system is
modeled by the Anderson Hamiltonian

H ¼
X
σ

ϵðtÞd†σdσ þUd†↑d↑d
†
↓d↓

þ
X
k;σ

ϵkc
†
kσckσ þ

X
k;σ

ðγckσd†σ þ H:c:Þ; ð1Þ

where dσ ðd†σÞ denote the annihilation (creation) operators
for quantum-dot states with spin index σ ¼↑;↓. The
reservoir is described by a single energy band ϵk, whose
annihilation (creation) operators for states with momentum
k and spin σ are ckσ (c

†
kσ). We assume spin degeneracy for

both the reservoir and the quantum dot and an energy-
independent coupling γ between the two. The tunnel-
coupling strength is defined as Γ ¼ 2πjγj2ν0, with ν0 being
the density of states (DOS) at the Fermi energy. The
charging energy U accounts for Coulomb repulsion on
the quantum dot in the case of double occupation.
We first describe the time-dependent dynamics of this

system by a master equation. In a second step, the obtained
insights are applied to derive a nonadiabatic XC potential
for the noninteracting KS system related to Eq. (1). We
consider the regime of weak reservoir-dot coupling Γ ≪ T,

where the dynamics is Markovian whenever the reservoir
memory time τr ¼ T−1 is smaller than timescales [37–40]
introduced by the particular driving scheme. In this regime,
the dynamics of the single-electron source is well described
by the sequential-tunneling picture [41], which has the
advantage of yielding an explicit analytic expression for the
nonadiabatic XC potential derived below. We note that our
formalism can be readily extended to include higher-order
tunneling corrections and also corrections with respect
to non-Markovian dynamics by applying the real-time
diagrammatic technique developed in Refs. [37–39,42].
We consider the reduced density matrix ρdotðtÞ of the

quantum dot, which is related to the full density matrix ρðtÞ
of the reservoir-dot system by a partial trace over the
reservoir degrees of freedom. The reduced Hilbert space
includes the many-particle states fj0i; j ↑i; j↓i; j2ig denot-
ing an empty, singly (with spin ↑;↓), and doubly occupied
dot. The diagonal part of ρdotðtÞ defines the vector of
occupation probabilities PðtÞ ¼ ½P0ðtÞ; P1ðtÞ; P2ðtÞ�T ,
where P1ðtÞ ¼ P↑ðtÞ þ P↓ðtÞ captures both possible spin
configurations for single occupation. The electronic density
on the quantum dot is nðtÞ ¼ nTPðtÞ, with nT ¼ ½0; 1; 2�.
We express the occupation vector in terms of the density
nðtÞ and a further degree of freedom pðtÞ, which is related
to the parity of the quantum dot [43] by

PðtÞ ¼

0
B@

1 − nðtÞ
nðtÞ
0

1
CAþ pðtÞ

0
B@

1

−2
1

1
CA; ð2Þ

with nðtÞ=2 ≥ pðtÞ ≥ max (0; nðtÞ − 1). For our spin-
degenerate system, the time evolution of the occupation
vector decouples from the off-diagonal elements in ρdotðtÞ
[42] and is well approximated by the master equation [44]

_PðtÞ ¼ WðtÞPðtÞ: ð3Þ
The kernelWðtÞ is derived with parameters frozen at time t
and reads

WðtÞ
Γ

¼

2
64
−2fϵ f−ϵ 0

2fϵ −f−ϵ − fϵþU 2f−ϵþU

0 fϵþU −2f−ϵþU

3
75; ð4Þ

with ϵ ¼ ϵðtÞ, the Fermi functions fϵ ¼ 1=ð1þ eϵ=TÞ and
f−ϵ ¼ 1 − fϵ. In the remainder of this Letter, we exploit the
well-known Eqs. (3) and (4) to develop a nonadiabatic XC
potential for the noninteracting KS system related to
Eq. (1). In addition, we use them as a reference for the
time evolution of the interacting system.
We now describe the dynamics of the single-electron

source in TDDFT. First, we make the usual assumption of
noninteracting v representability, i.e., the existence of a
noninteracting KS system, which shares the same time-
dependent electronic density with the interacting system
[1–3]. The KS Hamiltonian is obtained from Eq. (1) by
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setting U to zero and by taking into account the H and XC
potentials. We model the combined effect of both potentials
by an energy-level shift, and hence, ϵðtÞ is replaced by
ϵðtÞ þ ϵHXC½n�ðtÞ in Eq. (1). Furthermore, we assume that
ϵHXC½n�ðtÞ solely depends on the electronic density on the
quantum dot nðtÞ and its history [45].
To derive a nonadiabatic approximation of the HXC

potential, we express the dynamics of the KS system in
terms of a master equation. This requires the additional
assumption of Markovian dynamics to hold also in the KS
system. Its time evolution is then given by

_PKSðtÞ ¼ WKSðtÞPKSðtÞ; ð5Þ

with the KS occupation vector PKSðtÞ and the quantum-dot
electronic density nðtÞ ¼ nTPKSðtÞ. The KS kernelWKSðtÞ
is calculated from the expression in Eq. (4) by setting
U → 0 and ϵðtÞ → ϵðtÞ þ ϵMHXC½n�ðtÞ. The superscript M
reminds that the Markov approximation is applied in
Eqs. (3) and (5).
Based on the master Eqs. (3) and (5), we now derive a

nonadiabatic approximation of the HXC potential. The key
observation is that the position of the quantum-dot energy
level is uniquely fixed by the density and its first time
derivative. In the interacting system, the latter is written,
with Eq. (3), as _nðtÞ ¼ nTWðtÞPðtÞ. Inserting the repre-
sentation of the occupation vector (2) into this equation,
only the contribution stemming from the first term on the
rhs of Eq. (2) remains [43]. This means that the time-
dependent energy level of the quantum dot ϵðtÞ only
depends on nðtÞ and _nðtÞ. Explicitly, we write ϵðtÞ as a
function g, with

ϵðtÞ ¼ g(nðtÞ; _nðtÞ;Γ; T;U); ð6Þ

where Γ, T, and U are constants. The same inversion in the
noninteracting KS system leads to

ϵðtÞ þ ϵMHXC½n�ðtÞ ¼ g(nðtÞ; _nðtÞ;Γ; T; 0); ð7Þ

where we have used the fact that the KS and the interacting
system have the same density nðtÞ. Solving Eqs. (6) and (7)
for ϵMHXC, we obtain the first key result

ϵMHXC(nðtÞ; _nðtÞ)ðtÞ ¼ T logfC(nðtÞ; _nðtÞ)g; ð8aÞ

with

1

Cðn; _nÞ¼
_nþeU=T( _nþ2Γðn−1Þ)
2eU=T( _nþΓðn−2Þ)

×

�
1−

�
1−

4eU=T(ð _nþΓnÞ2−2Γð _nþΓnÞ)
f _nþeU=T( _nþ2Γðn−1Þ)g2

�1
2

�
:

ð8bÞ

Equation (8) defines an HXC potential, which is non-
adiabatic due to its dependence on the first time derivative
of the density. We remark that a general functional
dependence is denoted by [n], but, in our specific approxi-
mation, the HXC potential becomes a function of nðtÞ
and _nðtÞ. Importantly, for vanishing _nðtÞ, the expression in
Eq. (8) equals the adiabatic HXC potential derived in
Ref. [13], ϵadHXC(nðtÞ)ðtÞ ¼ ϵMHXC(nðtÞ; 0)ðtÞ, which we use
for comparison.
To outline the nonadiabatic property of the derived HXC

potential in Eq. (8), we first compare the form of both
the adiabatic and the nonadiabatic HXC potentials in
Figs. 1(b)–1(c). As visible in (b), the adiabatic potential
shows a step, previously denoted as DD, which is centered
at the electron-hole symmetric point n ¼ 1 and smeared out
by temperature [13,33,50]. This feature is strikingly modi-
fied in the nonadiabatic HXC potential, shown in Fig. 1(c).
Here, a nonzero time derivative of the density shifts the
position of the step to different density values, giving rise to
a dynamical step. This dynamical step clearly emerges from
the DD of the stationary system. The position of the
dynamical step as a function of the time derivative of
the density reads as

n ¼ 1 − _nðτU¼0
c − τU≠0

c Þ; ð9Þ

where τU¼0
c ¼ Γ−1 denotes the timescale of charge relax-

ation in the noninteracting system, while τU≠0
c ¼

Γ−1
c ð−U=2Þ denotes the respective timescale in the inter-

acting system, evaluated at electron-hole symmetry. The
charge relaxation rate of the interacting system is given by
ΓcðϵÞ=Γ ¼ 1þ fϵ − fϵþU [38,39]. This link of the dynami-
cal step to physical timescales of electron dynamics is the
second key result of this Letter. Furthermore, Eq. (9) shows
that only if the second term on the rhs is small during the
full time propagation j _nj ≪ jτU¼0

c − τU≠0
c j−1, the dynamical

step is always close to n ¼ 1, and the adiabatic HXC
potential ϵadHXC becomes a sufficient approximation.
We now investigate the performance of the nonadiabatic

HXC potential developed here in TDDFT simulations of
the single-electron source. Therefore, we assume a finite
but sufficiently large number of states for the reservoir
and numerically propagate the KS density matrix of the
combined reservoir-dot system in time until periodicity has
been established [51]. Our ensemble TDDFT calculations
begin with an equilibrium KS density matrix with temper-
ature T > 0. Since the KS system is noninteracting, this
involves the time propagation of single-particle wave
functions using a continuously updated KS Hamiltonian.
We emphasize that the HXC potential is the only approxi-
mation in a TDDFT calculation, while no further approx-
imations, e.g., with respect to weak tunnel coupling or to
Markovian dynamics, are made for the time propagation.
Our results are compared to the ones obtained by applying
the adiabatic HXC potential as well as Eq. (3).
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First, we analyze the time-dependent charge flow
between the quantum dot and the reservoir induced by a
step-pulse gate-voltage driving, see Fig. 2(a). For weak
reservoir-dot coupling, as considered here, the time-
dependent density nðtÞ is well described by an exponential
decay towards its new equilibrium value after each gate-
voltage step. The characteristic decay rate is given by ΓcðϵÞ
[38,39], where ϵ is the new position of the energy level.
This is shown by the solid line in Fig. 2(a) and compared to
the calculated TDDFT densities. Interestingly, the density
related to ϵadHXC first follows the dashed-dotted line, which
shows the exponential decay for a system without inter-
action (U ¼ 0) obtained from a TDDFT calculation with
ϵHXC ¼ 0. Thus, we conclude that the adiabatic HXC
potential leads to charge relaxation with the characteristic
decay rate of a noninteracting system. The density even-
tually overestimates its equilibrium value, and strongly
decaying oscillations occur, which are visible in the inset
(dotted line) of Fig. 2(a), showing the time evolution of the
adiabatic HXC potential. On the contrary, the TDDFT
density in Fig. 2(a), which corresponds to the nonadiabatic
HXC potential ϵMHXC (dashed), clearly features the expected
exponential behavior with the decay rate of the interacting
system. The time evolution of ϵMHXC in the inset of Fig. 2(a)
also indicates that the density increases monotonically
towards the new equilibrium value without any oscillating
behavior. It is remarkable that the dependence on _nðtÞ in the
HXC potential is already sufficient to generate the charge-
relaxation behavior of an interacting system in a non-
interacting KS system. We also checked that at the time at

which the two HXC potentials begin to differ tΓ≳ 1=4,
the respective TDDFT densities in Fig. 2(a) evolve with
different decay rates. Finally, we note that minor
differences between the TDDFT and the master equation
data, which are visible in the beginning of the time
evolution, are related to non-Markovian dynamics, which
is fully neglected in Eq. (3) but partially included in a
TDDFT calculation.
As a second application, we analyze a large-amplitude

harmonic driving of the gate voltage, see Fig. 2(b),
presenting the resulting time-resolved currents
IðtÞ ¼ − _nðtÞ. The two peaks correspond to the first and
the second electron entering the initially empty quantum
dot during a half period of the drive. The frequency
increases linearly from bottom to top lines, and all further
parameters are chosen to illustrate the transition from the
adiabatic to the nonadiabatic regime. The solid lines
represent the result of Eq. (3) and serve as a reference
point, allowing for a comparison with the TDDFT currents
related to the adiabatic HXC potential, which reveals the
breakdown of ϵadHXC for driving beyond the adiabatic
regime. For larger frequencies, the left peak in the charge
current is increasingly overestimated, while the right peak
is underestimated. The poorly reproduced charge relaxation
rate causes electrons in the KS system of the adiabatic HXC
potential to tunnel too quickly. In contrast, the nonadiabatic
potential leads to a good agreement between the TDDFT
currents and the result of Eq. (3) for all displayed driving
frequencies.
Third, we turn to a larger structure and analyze the

experiment reported in Ref. [12], where a self-assembled
layer of quantum dots is located on top of a two-
dimensional electron gas. We model this setup by weakly
coupling 70 quantum dots to a shared electron reservoir as
shown in Fig. 3(a). To include parameter variations of a real
setup, we consider Gaussian-distributed energy levels (ϵl),
reservoir-dot couplings (γl), and interaction strengths (Ul)
for the quantum dots with site index l. The spatial distances
between adjacent dots are modeled by multiplying γl
with an energy-dependent phase factor [51,53]. In the

(a) (b)

FIG. 2. Comparison of TDDFT results obtained using ϵadHXC
(dotted lines), ϵMHXC (dashed lines), and no HXC potential
(dashed-dotted lines) with analytic results from Eq. (3) (solid
lines). (a) Densities of the quantum dot subject to a square pulse
(inset: HXC potentials) with parameters U ¼ 16Γ, T ¼ 2Γ,
ϵðt < 0Þ ¼ 10Γ, ϵðt > 0Þ ¼ −6Γ. (b) Currents in the case
of a harmonic gate-voltage drive plotted for driving frequencies
in the range ½0.1Γ; 0.5Γ� with ΔΩ ¼ 0.1Γ (note that for
visibility lines are shifted by 1). Further parameters are
U ¼ 12Γ, T ¼ 3Γ, ϵðtÞ ¼ −6Γþ 18Γ cosðΩtÞ.

(a) (b)

FIG. 3. (a) Setup of 70 quantum dots tunnel coupled to the same
electron reservoir. (b) Absolute density change summed over all
quantum dots jΔnðtÞj ¼ P

70
l¼1 jnlðtÞ − nlðt1Þj with t1 ≫ t for a

sudden rise (charging) or drop (discharging) of the gate voltage at
t ¼ 0, calculated using either ϵMHXC or ϵadHXC for all dots. See text
for gray area and Ref. [51] for parameters.
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experiment, these distances are larger than the reservoir
coherence length, which justifies the application of the
HXC potentials ϵM=ad

HXC for each dot separately. Figure 3(b)
presents TDDFT calculations for a step-pulse gate-voltage
driving, leading to the periodic charging or discharging of a
fraction of quantum dots. While for both HXC potentials,
we observe the overall signature [12] of interaction, namely
that the relaxation dynamics after positive or negative gate-
voltage steps differ, the explicit evolution is physical only
for ϵMHXC. For times exceeding the reservoir memory time
τr, the density changes in Fig. 3(b) have to lie in the gray
region bounded by jΔnð0Þje−Γt and jΔnð0Þje−2Γt, since
Γ ≤ ΓcðϵÞ ≤ 2Γ for a single dot. The charging process
calculated with ϵadHXC violates this constraint because each
dot which is supposed to become singly occupied evolves
towards double occupation initially, see also Fig. 2(a).
We emphasize that our TDDFT treatment can include the
geometry of interest and therefore allows for future
analyses beyond the statistical method applied in
Ref. [12], e.g., with reduced quantum-dot distances. We
also note that the numerical costs of time evolving the
setups of Figs. 2 and 3 are comparable.
To summarize, we applied TDDFT to time evolve a

single-electron source in the presence of Coulomb inter-
action. For this purpose, we developed a nonadiabatic HXC
potential, with the key feature of a dynamical step, which
shifts if the electronic density changes in time. We provided
an explicit link between density values where the dynami-
cal step occurs and charge-relaxation timescales evaluated
at the electron-hole symmetric point. Since the exact HXC
potential is a universal quantity, our results have relevance
beyond the single-electron source studied here. We already
demonstrated the applicability of our approach to a struc-
ture containing multiple quantum dots. Related studies of
other complex mesoscopic systems, e.g., including several
leads, are in reach.
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