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ABSTRACT
Purpose: Protective effects of estradiol against H2O2-induced oxidative stress have been demonstrated in
lens epithelial cells. The purpose of this study was to investigate the effects of 17β-estradiol (E2) on the
different superoxide dismutase (SOD) isoenzymes, SOD-1, SOD-2, and SOD-3, as well as estrogen
receptors (ERs), ERα and ERβ, in primary cultured human lens epithelial cells (HLECs).
Materials and methods: HLECs were exposed to 0.1 µM or 1 µM E2 for 1.5 h and 24 h after which the
effects were studied. Protein expression and immunolocalization of SOD-1, SOD-2, ERα, and ERβ were
studied with Western blot and immunocytochemistry. Total SOD activity was measured, and gene
expression analyses were performed for SOD1, SOD2, and SOD3.
Results: Increased SOD activity was seen after 1.5 h exposure to both 0.1 µM and 1 µM E2. There were
no significant changes in protein or gene expression of the different SODs. Immunolabeling of SOD-1
was evident in the cytosol and nucleus; whereas, SOD-2 was localized in the mitochondria. Both ERα
and ERβ were immunolocalized to the nucleus, and mitochondrial localization of ERβ was evident by
colocalization with MitoTracker. Both ERα and ERβ showed altered protein expression levels after
exposure to E2.
Conclusions: The observed increase in SOD activity after exposure to E2 without accompanying increase
in gene or protein expression supports a role for E2 in protection against oxidative stress mediated
through non-genomic mechanisms.
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Introduction

When comparing the incidence of cataract for men and
women of the same age, women after menopause have an
increased risk of developing cataract, as shown by several
epidemiological studies.1–3 The dramatic reduction of estra-
diol at menopause has been hypothesized to lead to increased
risk of cataract in women and accordingly, with studies show-
ing reduced risk of cataract by exogenous estrogens, that is,
hormonal replacement therapy, estrogens have been suggested
to protect against cataract.4–6 The primary estrogen, estradiol,
is found both in men and women and the most potent form,
17β-estradiol (E2), binds to estrogen receptors (ERs), ERα and
ERβ. Both types of receptors have been found in the human
eye lens.7,8 Protective effects of E2 against H2O2-induced
oxidative stress have been demonstrated in lens epithelial
cells (LECs).9–11 In addition, several animal models have
demonstrated effects of estrogen in the lens indicating pro-
tective effects against cataract formation.12,13 The mechanism
for estrogen-mediated protection is not fully elucidated, and
both genomic and non-genomic mechanisms have been

demonstrated. Estrogens can exert their effects through the
classic genomic pathway by binding to ERs, thereby regulating
gene expression via estrogen response elements (EREs) or by a
non-classical genomic mechanism through ligand-activated
ER interactions with co-regulators and transcription factors,
such as activator protein 1 (AP-1) and transcription factor
Sp1.14,15 Non-genomic effects of steroids in general do not
depend on gene transcription or protein synthesis and involve
cytoplasmic or membrane-bound regulatory proteins or
membrane-localized ERs. There are also ligand-independent
pathways where ER activity can be regulated through activa-
tion of several different signal transduction pathways such as
extracellular signal-regulated kinases (ERKs) included in the
mitogen-activated protein kinase (MAPK) pathway.16 Non-
genomic effects of E2 have been demonstrated in LECs by
MAPK activation and prevention of mitochondrial membrane
potential collapse during oxidative stress.17 Moreover, studies
have shown estrogen-mediated protection against oxidative
stress through upregulation of antioxidative enzymes includ-
ing superoxide dismutases (SODs).18–20
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The purpose of the present study was to investigate the
effects of 17β-estradiol (E2) on the activity, immunolocaliza-
tion, protein and gene expression of the different SOD iso-
enzymes, SOD-1, SOD-2, and SOD-3, as well as the effects on
protein expression and immunolocalization of ERα and ERβ
in primary cultured human lens epithelial cells (HLECs).

Materials and methods

Human lens epithelial cell culture

Capsulorhexis specimens from patients undergoing cataract sur-
gery were obtained, and primary cell cultures of HLECs were
essentially cultured as previously described.21 Capsulorhexis spe-
cimens and eventually HLECs were all cultured in a humidified
CO2-incubator using Eagle’s minimum essential medium (MEM)
with phenol red supplemented with 100 U/ml penicillin, 100 µg/
ml streptomycin, 2 mM L-glutamine, 2.5 µg/ml amphotericin B
(Sigma-Aldrich, St Louis, MO, USA), and 10% fetal bovine serum
(FBS) (Thermo Fisher Scientific, Rockford, IL, USA). In all experi-
ments, three or more different primary cell cultures of HLECs
derived from separate individuals were used. Each cell culture was
grown in monolayers, and passages between IV and XV were
used. Prior to each experiment, cells were washed with Dulbecco’s
phosphate buffered saline (PBS) without calcium and magnesium
(Thermo Fisher Scientific, Rockford, IL, USA), after which the
medium was changed to MEM without phenol red (Gibco,
Paisley, Scotland, UK) and 5% FBS for 22–24 h before exposure
to 17β-estradiol (E2) in serum free medium. Stock solution of E2
(10mM) was prepared in 99.5% ethanol (Sigma-Aldrich, St Louis,
MO, USA). HLECs were incubated in triplicates with E2 (0.1 µM
and 1 µM) for 1.5 h or 24 h. Control cells were used in all
experiments and were incubated simultaneously, in an ethanol
concentration equivalent to the highest E2 concentration, for 1.5 h
or 24 h. Cells were cultured in 6-well culture dishes (TPP,
Trasadingen, Switzerland) and collected with cell scrapers before
further analyses in all experiments except for visualization with
immunofluorescence, then cells were cultured in 8-well chamber
slides (Lab-Tek, Nalge Nunc International, Rochester, NY, USA).
The Regional Research Ethics Committee in Gothenburg
approved the study, and the tenets of the Declaration of
Helsinki were followed.

Gene expression analysis

After exposure to E2, the cells were collected and pellets were used
for extraction of total RNA, performed on the Maxwell 16
Instrument (Promega Corporation, Madison, WI, USA) accord-
ing to the manufacturer’s protocol. The quality and integrity of
RNAwas determined in all samples with Agilent R6K ScreenTape
on the Agilent 2200 TapeStation (Agilent Technologies
Waldbronn, Germany). All samples had RNA integrity number
(RIN) >8 and 28S/18S ratio >2, showing high quality and integrity
of the total RNA extracted from HLECs. RNA concentration was
measured on NanoDrop 1000 (Thermo Fisher Scientific,
Rockford, IL, USA) and Infinite M200 PRO NanoQuant Plate
(Tecan group Ltd., Männedorf, Switzerland). cDNA synthesis was
performed with reverse transcription polymerase chain reaction
(RT-PCR) and SuperScript VILO cDNA Synthesis Kit

(Invitrogen, Carlsbad, CA, USA) using 0.6 µg of total RNA.
Real-time quantitative polymerase chain reaction (qPCR) was
performed using 2 µl cDNA (10 ng/µl) in a final volume of 10 µl
with TaqMan Gene Expression Master Mix and TaqMan Gene
Expression Assays specific for the genes studied: SOD1
(Hs00533490_m1) SOD2 (Hs00167309_m1) and SOD3
(Hs00162090_m1). Eight reference genes were tested, and ulti-
mately the relative gene expression data were normalized to the
reference genes: RPLP0 (Hs99999902_m1) and PPIA
(Hs99999904_m1). Each reaction was performed in triplicate on
384-well plates on the ABI 7900HT (Applied Biosystems, Foster
City, CA, USA).

Protein expression analysis

HLECs exposed to E2 were rinsed in ice cold PBS, followed by
lysis in modified NuPage 0.5% lithium dodecyl sulfate (LDS)
sample buffer (Novex, Life Technologies, Carlsbad, CA, USA).
The cell lysates were heated at 70°C for 10 min and sonicated
for 20 s at 50% amplitude (Branson Ultrasonic corporation,
Danbury, CT, USA). All cell and lysate handling was per-
formed on ice. Immediately before gel loading, the reducing
agent (DTT; dithiothreitol) was added to a final concentration
of 50 mM. Triplets of the samples were loaded on NuPage
4–12% Bis-Tris gradient minigels using NuPage MES or
MOPS SDS running buffer and the Novex Sharp Pre-Stained
Protein Standard (Novex, Life Technologies, Carlsbad, CA,
USA). After electrophoresis, the proteins were transferred to
nitrocellulose membranes followed by a blocking in 5% non-
fat milk powder in PBS overnight in +4°C. Primary antibodies
used for Western blotting included polyclonal rabbit anti-ERα
(H-184; 1:50), ERβ (H-150; 1:50), SOD-1 (FL-154; 1:500), as
well as monoclonal mouse anti-SOD-2 (B-1; 1:500), β-actin
(C4; 1:500) (Santa Cruz Biotechnology, Dallas, TX, USA).
Primary antibody binding was detected with the correspond-
ing secondary antibodies conjugated to horseradish peroxi-
dase (Santa Cruz Biotechnology, Dallas, TX, USA). Protein
expression bands were visualized with Luminata Forte
Western HRP Substrate (Millipore Corporation, Billerica,
MA, USA) in ImageQuant LAS 500 (GE Healthcare,
Piscataway, NJ, USA), followed by densitometric analysis
using ImageJ software version 1.37 (National Institute of
Health, USA). β-actin was used for normalization of densito-
metric data, and results were expressed as area under the
curve (AUC).

Immunocytochemistry

After E2 exposure, the cells were rinsed in PBS and fixed in
4% paraformaldehyde (pH 7.4). The cells were rinsed again
and permeabilized by 0.25% triton-X in PBS for 10 min at
room temperature (Sigma-Aldrich, St Louis, MO, USA).
Following standard protocols for immunocytochemistry, the
cells were labeled with antibodies (same as used for Western
Blot) against ERα (1:50), ERβ (1:50), SOD-1 (1:50), and SOD-
2 (1:50) and visualized by Alexa Fluor 488 Goat Anti-Rabbit
or Anti-Mouse IgG (H + L) antibodies (1:200) (Molecular
Probes, Eugene, OR, USA). Nuclear morphology was viewed
using cell permeable Hoechst 33342 (Sigma-Aldrich, St Louis,
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MO, USA) at final concentration of 10 μg/ml. Prior to fixa-
tion, cells were incubated with MitoTracker Deep Red FM
(Molecular Probes, Eugene, OR, USA), which was used for
mitochondrial localization at final concentration of 500 nM.
The cells were viewed using a fluorescence microscope (Nikon
Eclipse TE300; Nikon, Tokyo, Japan).

Total superoxide dismutase activity

HLECs exposed to E2 were rinsed with PBS, and the cell
pellets were sonicated after which SOD activity was measured
using the Superoxide Dismutase Assay kit, according to the
manufacturer’s protocol (Cayman Chemical Company, Ann
Arbor, MI, USA). Absorbance was measured at 440 nm on the
microplate reader Infinite M200 PRO (Tecan group Ltd.,
Männedorf, Switzerland). The SOD assay uses tetrazolium
salt to detect superoxide radicals generated by xanthine oxi-
dase and hypoxanthine. One unit (U) of SOD is defined as the
amount of enzyme needed to exhibit 50% dismutation of the
superoxide radical. The SOD assay measured total SOD activ-
ity (U/ml) in whole cell lysate and protein concentration was
determined with BCA protein assay reagent (Pierce, Perbio
Science, Cheshire, UK) using bovine serum albumin as stan-
dard. Total SOD activity levels (U/ml) were related to cell
protein levels (mg/ml) and expressed as U/mg.

Statistical analyses

Total SOD activity and Western blot experiments were
repeated at least once with similar results, and data from
triplicate samples (n = 3) are shown in figures as mean ±
SD after analysis with one-way ANOVA with Dunnett’s post
hoc test. Relative gene expression data were normalized to the
reference genes, RPLP0 and PPIA, and compared to the
expression in control cells according to the 2−ΔΔCt method.22

Data were analyzed using a linear mixed model and expressed
as fold change. Statistical analyses were performed using IBM
SPSS Statistics version 21 (IBM Corp., Armonk, NY, USA),
and p-values ≤0.05 were considered statistically significant.

Results

Gene expression of superoxide dismutases

After normalization to the reference genes, no significant
changes in SOD1, SOD2, or SOD3 gene expression were
seen after 1.5 h or after 24 h exposure to 0.1 µM and 1 µM
E2, when compared to the expression in control cells
(Figure 1). The SOD3 gene expression was generally lower
compared to SOD1 and SOD2 (qPCR amplification curves not
shown).

Protein expression of superoxide dismutases

A slight increase in both SOD-1 and SOD-2 protein expres-
sion was seen at 0.1 µM after 1.5 h, and elevated SOD-2 levels
were also seen at 1 µM E2 after 24 h. However, these results
were not statistically significant compared to the control cells
(Figure 2).

Immunolocalization of superoxide dismutases

Strong immunolabeling with SOD-1 was seen in the cytosol
and nucleus in contrast to SOD-2 where mitochondrial loca-
lization dominated for SOD-2. No subcellular redistribution
of SOD-1 or SOD-2 was seen with E2 exposure (Figure 3).

Superoxide dismutase activity

Significant increase in total SOD activity was seen in whole
cell lysate from HLECs after exposure to 0.1 µM and 1 µM E2
for 1.5 h. By 24 h, however, the SOD activity was back to
baseline values (Figure 4).

Protein expression and immunolocalization of estrogen
receptors

Significantly decreased ERα expression was detected in cells
exposed to the higher (1 µM) E2 concentration after 1.5 h as
well as after 24 h exposure; whereas, significantly increased
ERβ protein expression was seen at both 0.1 µM and 1 µM E2
after 1.5 h exposure and at 1 µM after 24 h, as compared to
control cells (Figure 5). Both ERα and ERβ were present in the
nucleus and mitochondrial localization of ERβ was evident by
colocalization with MitoTracker. The immunolabeling of ERβ
increased slightly after exposure to 1 µM E2 (Figure 6).

Discussion

Reactive oxygen species (ROS) can induce oxidative modifica-
tions to lens proteins, lens fiber membranes, and DNA, thereby
contributing to cataract formation.23 The SOD isoenzymes are
part of the antioxidative defense in the lens and catalyze the
dismutation of superoxide into hydrogen peroxide, which is
further processed by catalase and glutathione peroxidase
(GPx).24 In humans, SOD-1 is primarily found in the cytosol
and the nucleus and the predominant SOD isoenzyme in mito-
chondria is SOD-2, while SOD-3 on the other hand is secreted
and found in the extracellular matrix of tissues.25–27 The crystal-
line lens is largely built up of tightly stacked lens fibers containing
cytoplasm devoid of organelles, where SOD-1 is the predominant
isoenzyme.28 In the lens epithelium and the superficial lens fibers
—the only parts of the lens that contain mitochondria—both
SOD-1 and SOD-2 are found; whereas, SOD-3 is secreted extra-
cellularly and found in the cell culture medium when lens
epithelial cells are cultured. Thus, only SOD-1 and SOD-2 were
studied with immunocytochemistry, and immunolabeling with
SOD-1 was evident both in the nucleus and cytosol in contrast to
SOD-2, which was localized mainly to the mitochondria. It has
previously also been shown with immunocytochemistry that
SOD-1 is widely distributed both in the nucleus and cytosol of
human cells.29 As expected, we observed lower gene expression
levels of SOD3 in HLECs as compared to SOD1 and SOD2 levels.
However, the relative gene expression data did not show any
effects of E2 in gene expression of SOD1, SOD2, or SOD3
compared to control cells. The total SOD activity measured
included all three SODs, and increased activity levels were seen
after 1.5 h exposure to E2 although this effect did not correlate
with protein or gene expression of the different SODs. These

CURRENT EYE RESEARCH 641



results are in accordance with Gottipati et al. who showed a
significant increase in SOD-2 activity levels in transformed lens
epithelial cells (HLE-B3) after exposure to E2 without any
changes in either mRNA or protein expression levels.30 In addi-
tion, studies have also reported that E2 increased SOD-2 activity
levels without alteration of SOD-2 protein levels in
mitochondria.20,31 However, other studies demonstrated both
upregulated gene and protein expression of SOD-2 and SOD-3
in an E2 concentration- and time-dependent manner mediated
by ERs, in vascular smooth muscle endothelial cells.18 In addition,
E2 showed antioxidative effects by upregulation in gene expres-
sion of GPx and SOD-2 via activation of MAPK pathway through

ERK phosphorylation.19 The discrepancies regarding E2 effects
on SOD in both protein and gene expression may be attributed to
difference between cell lines. However, the rapid, transient
increase in activity seen in HLE-B3 was explained by Gottipati
et al. to not influence mRNA or protein expression. This can also
explain why we only observed an increase in activity after 1.5 h
exposure in HLEC, indicating non-genomic mechanisms of E2.

Even though we have observed a slightly higher rate of cell
growth in capsule-epithelium specimens derived from female
cataract patients,32 no difference in results were seen between
cells from different genders in our previous study of estrogen
effects. Therefore, HLECs, only derived from women over

Figure 1. Effects of 17β-estradiol (E2) on gene expression levels of superoxide dismutases, SOD1, SOD2, and SOD3, in human lens epithelial cells (HLECs).
No significant changes were seen in the gene expression levels of SOD1, SOD2, or SOD3 after exposure to E2 for 1.5 h or 24 h. Relative gene expression data
normalized to reference genes, RPLP0 and PPIA, and shown as fold change compared to control cells (0 µM E2). Each dot in the same color represents samples from
the same cell culture, and the three different colors represent the three different cell cultures (n = 3).
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Figure 2. Effects of 17β-estradiol (E2) on superoxide dismutase protein expression levels in human lens epithelial cells (HLECs).
No significant changes were seen in SOD-1 (A, B) or SOD-2 (C, D) expression levels after exposure to E2 for 1.5 h or 24 h. Data presented from densitometric analyses
of Western blot bands normalized to β-actin (n = 3) and shown as mean ± SD.

Figure 3. Immunolocalization of superoxide dismutases, SOD-1 and SOD-2, in human lens epithelial cells (HLECs) after exposure to 17β-estradiol (E2) for 1.5 h.
Nuclear morphology is shown with Hoechst 33342 and MitoTracker Deep Red FM was used for mitochondrial localization. Cells were labeled with antibodies against
SOD-1 and SOD-2 and visualized by Alexa Fluor 488. Immunolabeling in the cytosol and nucleus was seen with SOD-1 antibody (A, B, C) Mitochondrial localization
was evident by colocalization of SOD-2 with MitoTracker (D, E, F). Original magnification: 1000×. Scale bar: 20 µm.
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60 years undergoing cataract surgery, were used in this study.21

Flynn et al. has shown that estrogen protection and distribution
of ER splice variants in HLECs are gender independent, and the
estrogen-induced mitochondrial cytoprotection is wtERβ1
dependent. They also showed a difference in ERβ variants dis-
tribution and RNA expression as well as responsiveness to
oxidative stress between primary cultured HLECs and the trans-
formed lens epithelial cell line, HLE-B3.33 However, the sub-
cellular localization of wild-type ERβ was the same for the
primary cultured HLECs as HLE-B3 and in accordance with
our results; ERβ was found in both the nucleus and in mito-
chondria, colocalized with MitoTracker, while ERα was loca-
lized to the nucleus and cytosol and not found in
mitochondria.34,35 Under normal physiological conditions, the
ERα to ERβ ratio in breast tissue is determined by the plasma E2
levels. In postmenopausal women, the dramatic drop in E2
levels leads to elevated expression of ERα, and Cheng et al.

showed that ERα and not ERβ was downregulated when E2
levels increased.36 Our results also showed reduced ERα expres-
sion levels as well as the reversed effect, elevated ERβ expression
levels, with increased E2 concentration. This may be explained
by several studies demonstrating that ERα is inhibited to bind to
the estrogen-responsive promoters by ERβ. E2-dependent AP-1
mediated transactivation by ERα is also suppressed by ERβ
suggesting that ERβ exhibits an inhibitory effect on ERα-
mediated gene expression, when ERs are coexpressed.37–39

Both estrogen receptors, ERα and ERβ, were immunolocalized
in primary cultured HLECs and showed altered protein expres-
sion levels. The mitochondrial localization and elevated expres-
sion levels of ERβ owing to E2 exposure indicate mitochondrial
involvement. Moreover, this is consistent with the suggestion that
E2-induced mitochondrial cytoprotective effects are mediated
through ER-dependent mechanisms in HLECs. However, no
such conclusions can be drawn, and further investigations of

Figure 4. Increased superoxide dismutase (SOD) activity levels after exposure to 17β-estradiol (E2) in human lens epithelial cells (HLECs).
Significant increase in activity levels after exposure to 0.1 µM and 1 µM E2 for 1.5 h (A). No significant changes were seen in activity after 24 h exposure (B) Data
presented as SOD units related to protein concentration (U/mg) shown as mean ± SD. Asterisks indicate statistical significance p ≤ 0.05 for comparison with control
cells (0 µM E2).

Figure 5. Altered protein expression levels of estrogen receptors (ERα and ERβ) after exposure to 17β-estradiol (E2) in human lens epithelial cells (HLECs)..
Decrease in ERα expression levels after exposure to 1 µM E2 for 1.5 h and 24 h (A, B). Elevated ERβ expression levels after exposure to 0.1 µM and 1 µM E2 for 1.5 h
(C) and 1 µM E2 for 24 h (D). Data presented from densitometric analyses of Western blot bands normalized to β-actin (n = 3) shown as mean ± SD. Asterisks indicate
statistical significance p ≤ 0.05 for comparison with control cells (0 µM E2).
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E2-mediated antioxidative effects are essential. We observed
increased SOD activity levels after 1.5 h exposure to E2, thereby
implying non-genomic mechanisms of E2 because no changes
were seen in neither gene nor protein expression levels of SODs.
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