
Fuzzy Set Abstraction

Downloaded from: https://research.chalmers.se, 2019-05-11 18:15 UTC

Citation for the original published paper (version of record):
Lidman, J., Svenningsson, J. (2018)
Fuzzy Set Abstraction
Electronic Notes in Theoretical Computer Science, 334: 17-29
http://dx.doi.org/10.1016/j.entcs.2018.03.003

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

Fuzzy Set Abstraction

Jacob Lidman and Josef Svenningsson1

Computer science and engineering,
Chalmers University of Technology,

Gothenburg, Sweden

Abstract

Program analysis plays a key part in improving modern software. Static (sound) analyses produce globally
correct, but often pessimistic results while dynamic (complete) analyses yield highly precise results but with
limited coverage. We present the Fuzzy set abstraction which generalizes previous work based on 3-valued
logic. Our abstraction allows for hybrid analysis where static results are refined dynamically through the
use of fuzzy control systems.

Keywords: Abstract interpretation, static program analysis, dynamic program analysis

1 Introduction

Static and dynamic analysis are complementary. Static analysis is sound because it

summaries all possible executions, whereas dynamic analysis provides more precise

information because it summaries the executions which actually happen in practice.

Over-approximation in static analysis is sometimes a sever problem for appli-

cations that rely on the results. Static alias analysis often produce point-to sets

several times larger than dynamic alias analysis[8],[9] and in extension inhibits sev-

eral opportunities for parallelization.

Being able to combine both kinds of analyzes can greatly improve results, for

instance in non-functional verification (e.g. deducing worst-case benefit of com-

piler optimizations) when pessimistic assumptions about input state/environment

is used. In this case, sound results are interesting at compile-time so that optimiza-

tions that are guaranteed to be detrimental is not applied. In contrast, complete

results are interesting at run-time where the actual set of inputs are known and

hence the benefit of an optimization can be accurately evaluated. The fuzzy data-

flow framework[5] showed how program analyzes based on fuzzy logic can uncover

1 Email: lidman@chalmers.se, josefs@chalmers.se

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 334 (2018) 17–29

1571-0661/© 2018 The Author(s). Published by Elsevier B.V.

www.elsevier.com/locate/entcs

https://doi.org/10.1016/j.entcs.2018.03.003

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:lidman@chalmers.se
mailto:josefs@chalmers.se
http://www.elsevier.com/locate/entcs
https://doi.org/10.1016/j.entcs.2018.03.003
https://doi.org/10.1016/j.entcs.2018.03.003
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/4.0/

optimization opportunities that classical frameworks would not. The generalization

to many-valued fuzzy logics allow program properties to be true or false to a certain

degree. The truth values are elements of the unit interval 2 and denote bias of the

program property. For instance, a result of 0.1875 would indicate that the property

tends to false since it is closer to 0 (false) than to 1 (true).

The increased expressiveness offered by using fuzzy logic in program analysis

however motivates additional research into the properties of the analysis framework,

in particular soundness and completeness.

We introduce the Fuzzy Set Abstraction that generalize the three-valued logic

abstraction[10]. We present the theoretical foundation of the fuzzy set abstraction

and prove soundness for the static analysis (Section 3.1). We also present a dynamic

analysis (Section 3.2) where we use an adaptive fuzzy inference system from fuzzy

control theory to gradually specialize the analysis results to improve accuracy.

2 Preliminaries

We briefly introduce several concepts from the fuzzy set community. Our static

analyses manipulate fuzzy sets using predicate transformers, expressed using fuzzy

logic (Section 2.1), and collector functions motivated by possibility theory (Section

2.2). Similarly our dynamic analyses start from the results of the static analysis

and iteratively specialize it to increase the accuracy of our results. This process

relies on a fuzzy classifier (Section 2.3).

2.1 Fuzzy set and logic

Fuzzy sets assign a partial membership to each element as opposed to classical sets

where the membership is binary. We use the common point-wise ordering to relate

two fuzzy sets: 〈S, μA〉 ≤ 〈S, μB〉 ⇔ ∀s ∈ S : μA(s) ≤ μB(s).

Definition 2.1 Let S be a set of elements and μS a membership function that

assigns a membership value from the unit interval [0, 1] to each element. Then

〈S, μS〉 is a fuzzy set.

A fuzzy set over a singleton set can be considered a description of partial truth.

Fuzzy logic defines logical connectives to manipulate such fuzzy sets. Here, com-

plement ¬̃ is often defined as negation (i.e., 1−x) and, in the Min-max fuzzy logic,

the max operation is used for disjunction ∨̃ and min operator for conjunction ∧̃.
Definition 2.2 Fuzzy logics

〈∧̃, ∨̃, ¬̃〉 satisfy the De Morgans laws. ∧̃ and ∨̃ are

two binary functions [0, 1]2 → [0, 1] that are commutative, associative and monoton-

ically decreasing/increasing and have identity elements (x ∧̃ 1 = x and x ∨̃ 0 = x).

Similarly ¬̃ is a unary function ¬̃ : [0, 1]→ [0, 1] that is decreasing, involutory (i.e.

¬̃(¬̃(x)) = x) and satisfy the boundary conditions ¬̃(0) = 1 and ¬̃(1) = 0 3 . The

2 To guarantee termination we use a finite congruence set of the unit interval.
3 In the fuzzy logic literature the conjunction operator is called a Triangular norm (T-norm), the disjunction
operator called Triangular conorm (S-norm) and complement the C-norm

J. Lidman, J. Svenningsson / Electronic Notes in Theoretical Computer Science 334 (2018) 17–2918

logical connectives are lifted point-wise for non-singleton sets of elements.

2.2 Possibility theory

Possibility theory is a non-classical theory for reasoning about uncertainty. Whereas

probabilities are self-dual, i.e. P (x) = 1−P (x), possibilities Π are dually related to

necessities N , i.e. Π(x) = 1−N(x). Underlying these two measures is a possibility

distribution π that encode the partial knowledge of a universe Ω: for x ∈ 2Ω,

π(x) = 1 mean x is totally possible and π(x) = 0 mean x is rejected as impossible 4 .

Definition 2.3 The possibility and necessity measure is defined by Π(X) =

supu∈X π(u) and N(X) = infu�∈X 1 − π(u) respectively, where π : 2Ω → [0, 1] is a

possibility distribution that given a universe of discourse Ω with measurable subsets,

satisfies:
• π(∅) = 0
• π(Ω) = 1
• For any set U of pair-wise disjoint subsets Ui ⊆ Ω: π(

⋃
i Ui) = supi π(Ui)

Although concepts parallel to probability theory (e.g., independence, condition-

ing) can be defined for possibility theory [2] we restrict attention to partial orders

between distributions. An information order sort distributions based on their in-

formative content by comparing a measure to its negation (i.e., Π(x) = 1 − Π(x)

or N(x) = 1−N(x)). The measure provides the least amount of information when

it is equal to its negation, i.e. Π(x) = Π(x) = 0.5. We define a semi-lattice 5〈
[0, 1],
�,��

〉
over a set of events isomorphic to the unit interval (i.e. [0, 1] = 2Ω)

such that x
� y mean P (x) is more informative than P (y):
0.5

0.1

0

0.9

1

x �� y =

⎧⎪⎪⎨
⎪⎪⎩

max(x, y) x, y ≤ 0.5

min(x, y) x, y ≥ 0.5

0.5 otherwise

Conceptually the join operation returns the consensus of both inputs, i.e. the least

informative of the two or the middle ground (0.5) if they are conflicting (one input is

< 0.5 and one i> 0.5). The information order is used in our static analysis in Section

3.1 to merge results from different control paths and formalize a concretization

function.

2.3 Takagi-Sugeno Adaptive-Network-based fuzzy inference system (TS-ANFIS)

TS-ANFIS implements classification as inference in a system of fuzzy IF-THEN

rules. Each rule is composed of an antecedent and consequence part. The antecedent

is composed of a fuzzy set for each input variable of the classifier and the consequence

is a polynomial mapping the input variables to the output domain. A two rule

example classifier is shown in Figure 1 for two input variables x0 and x1 where the

4 Possibility measures are special cases of plausibility functions in Dempster-Shafer theory [2], a general-
ization of Bayesian probability theory
5 Using the duality theorem the inverse order of this join semi-lattice is a meet semi-lattice, where in our
case the elements would correspond to measures of N(x) since Π(x) = 1−N(x).

J. Lidman, J. Svenningsson / Electronic Notes in Theoretical Computer Science 334 (2018) 17–29 19

IF x0 is A0 and x1 is B0 THEN f = c(1,0)+c(1,1)x0+c(1,2)x1

IF x0 is A1 and x1 is B1 THEN f = c(2,0)+c(2,1)x0+c(2,2)x1

x0

x1

A0

A1

B0

B1

∏
∏

N

N

x0x1

x0x1

∑
f

w1

w2

w̄1

w̄2

w̄1f1

w̄2f2

Example, classification of x = 〈0.6, 0.2〉 where f1(x) =
0.2x0 − 0.43x1 and f2(x) = 0.1x1 + 0.5 and membership
functions given below.

μA0
μB0

μA1
μB1

x0

0.6

0.286

x1

0.5

0.1

The firing strength of each rule is
given by:

w1 = 0.6 ∧̃ 0.5 = 0.5

w2 = 0.286 ∧̃ 0.1 = 0.1

The output of the classifier is:

f =
0.5f1(x) + 0.1f2(x)

0.6

=
0.073

0.6
= 0.122

Fig. 1. First-order Takagi-Sugeno ANFIS with two rules and two variables

fuzzy sets in the antecedent part is called A0 (A1) and B0 (B1) for the first (second)

rule respectively and similarly the coefficients of the polynomial of the consequence

part is denoted c1,i (c2,i). The classifier is composed of five layers. The first three

layers look up the fuzzy membership degrees of the input vector and compute the

normalized fuzzy conjunction of this collection, producing the normalized firing

strength of the rule, i.e. the fuzzy membership or weight of the rule. In the example

the fuzzy membership of the input vector is μA0(x0) = 0.6 and μB0(x1) = 0.5. The

fuzzy conjuncture of the min-max fuzzy-logic evaluates to w1 = min(0.5, 0.6) = 0.5,

similarly w2 = 0.1, and hence the normalized weight is w̄1 = w1
w1+w2

= 0.5
0.6 . The

next layer weight the consequent output fi(x) with the normalized firing strength.

The final layer sums each weighted rule classification. Returning to the example we

get f1(x) = 0.034 and f2(x) = 0.56 hence the output of the classifier is 0.5
0.60.034 +

0.1
0.60.56 = 0.122. Since the consequent part is a polynomial and the classification can

be improved online using algorithms for statistical regression/adaptive filtering, e.g.

Least Mean Square (LMS). We use TS-ANFIS and LMS when we can guarantee

convergence for the dynamical analysis in Section 3.2.

3 Fuzzy set abstraction

Program analyses reason about the dynamics of the individuals of the analysis

(e.g. memory stores, redundant expressions) with respect to a set of properties.

The 3-valued logic analysis of Sagiv et al.[10] uses logical predicates to state when

individuals possess a property, and logical formulas to model how statements up-

date predicates. Their framework relies on first-order 3-valued Kleene logic with

transitive closure and bi-lattice theory [4], where inference values are ordered both

according to a information order and a truth order. The framework crucially en-

ables summarizing predicates over a potentially infinite number of individuals and

interpretations in a concrete semantics to a finite, tractable program analysis.

Our interest in increasing the precision of analyses and incorporating dynamic

information leads us to consider analyses where individuals can possess properties

to a certain degree. To this end we use a family of fuzzy logics.

One of the simplest forms of fuzzy logics is Kleene’s 3-valued logic as used

by Sagiv et al.[10] which we get by restricting the min-max fuzzy logic to three

J. Lidman, J. Svenningsson / Electronic Notes in Theoretical Computer Science 334 (2018) 17–2920

values. We will therefore use their program analysis framework as a basis for our

own fuzzy set abstraction which is described in Section 3.1. Although analyzes in

our framework are decidable and sound the resulting abstract description could, in

the worst-case, be very large. Therefore we also consider cases where the resulting

description is kept to a minimum. Analyses in this approximation yield a single

interpretation representing the maximum interpretation.

3.1 Static analysis

Similar to Sagiv et al.[10] we start with a given set of predicates, a vocabulary, P =

{p1, ..., pn}. A program statement, which defines the new state for each property of

each individual, is modeled as a predicate transformer, i.e. a logical formula over P
that transforms a predicate into a new predicate.

Definition 3.1 Let P be a vocabulary. A program statement is a set of predicate

transformers, one for each predicate p ∈ P. A predicate transformer is described by

a logical formula φ from the grammar below. A Flow graph is a edge-labeled

connected graph G =
〈
V ∪ {vstart}, E, C

〉
where vstart is the unique start node with

zero in-degree, nodes v ∈ V are program statements, edges e ∈ E ⊂ V × V denote

control transfer between two vertices and C maps an edge to its control transfer

condition.

〈φ〉 ::= ⊥ | � | p(v1, ..., vk) | ¬φ | φ ∧ φ | φ ∨ φ | ∀v : φ | ∃v : φ | TCv1, v2 : φ

The concrete semantics defines the set of possible 2-valued logical structures

that satisfy a predicate transformer. The semantics of a formula is defined in the

standard way for 2-valued logics with transitive closure.

Definition 3.2 [Sagiv et al.[10], def. 3.2] Let US be a universe of individuals and

P = P1 ∪ P2... ∪ Pk a set of unary, binary,..., k-ary predicates.

• 2-valued interpretation is a structure S =
〈
US , iS

〉
where iS(p∗) is a map

from
(
US
)∗

to a truth value (i.e., 0 or 1), p∗ ∈ P∗. The set of 2-valued

interpretations is denoted 2-STRUCT [P].
• An assignment ZS is a mapping from variables to individuals, i.e. Z : V �→
US . The assignment is complete if Z is total.

• The free variables of a formula φ is defined in the standard way. If free(φ) = ∅
we say φ is a closed formula.

• 2-valued meaning [[φ]]S2 (Z) of a closed formula φ and a complete assignment

Z yields a truth value and defined inductively in Figure 2 (left)
• S and Z satisfy φ if [[φ]]S2 (Z) = 1. We denote this by S,Z |= φ, or S |= φ if φ

is satisfied for all Z.

A statement updates each property (of each individual) according to a prede-

fined transfer function. The semantics of a statement should hence generate new

predicates, defined in terms of the predicates of its predecessors.

Definition 3.3 [Sagiv et al.[10], def. 3.3] Let P = P1 ∪P2 ∪ ...Pk be a vocabulary

J. Lidman, J. Svenningsson / Electronic Notes in Theoretical Computer Science 334 (2018) 17–29 21

[[⊥]]S2 (Z) = 0 [[⊥]]S[0,1]q (Z) = 0.0

[[
]]S2 (Z) = 1 [[
]]S[0,1]q (Z) = 1.0

[[¬φ]]S2 (Z) = 1− [[φ]]S2 (Z) [[¬φ]]S[0,1]q (Z) = ¬̃
(
[[φ]]S[0,1]q (Z)

)
[[p (v1, ..., vk)]]

S
2 (Z) = iS(p)

(
Z(v1), ..., Z(vk)

)
[[p (v1, ..., vk)]]

S
[0,1]q

(Z) = iS(p)
(
Z(v1), ..., Z(vk)

)
[[φ1 ∧ φ2]]

S
2 (Z) = min

(
[[φ1]]

S
2 (Z), [[φ2]]

S
2 (Z)

)
[[φ1 ∧ φ2]]

S
[0,1]q

(Z) = ∧̃
(
[[φ1]]

S
[0,1]q

(Z), [[φ2]]
S
[0,1]q

(Z)
)

[[φ1 ∨ φ2]]
S
2 (Z) = max

(
[[φ1]]

S
2 (Z), [[φ2]]

S
2 (Z)

)
[[φ1 ∨ φ2]]

S
[0,1]q

(Z) = ∨̃
(
[[φ1]]

S
[0,1]q

(Z), [[φ2]]
S
[0,1]q

(Z)
)

[[∀v : φ]]S2 (Z) = minu∈US [[φ]]S2
(
Z[v �→ u]

)
[[∀v : φ]]S[0,1]q (Z) = ∧̃

u∈US

[[φ]]S[0,1]q
(
Z[v �→ u]

)
[[∃v : φ]]S2 (Z) = maxu∈US [[φ]]S2

(
Z[v �→ u]

)
[[∃v : φ]]S[0,1]q (Z) = ∨̃

u∈US

[[φ]]S[0,1]q
(
Z[v �→ u]

)
[[TC v1, v2 : φ]]S2 (Z) = [[TC v1, v2 : φ]]S[0,1]q (Z) =

max
u[0,n] ∈ U

Z(v1) = u0

Z(v2) = un

n−1
min
i=0

[[φ]]S2

⎛
⎝Z

[
v1 �→ ui

v2 �→ ui+1

]⎞⎠ ∨̃
u[0,n] ∈ U

Z(v1) = u0

Z(v2) = un

n−1

∧̃
i=0

[[φ]]S[0,1]q

⎛
⎝Z

[
v1 �→ ui

v2 �→ ui+1

]⎞⎠

Fig. 2. Definition of the semantics of classical first-order logic with transitive closure (left) and first-order
fuzzy logic with transitive closure over the congruence domain [0, 1]q (right)

of unary, binary,... k-ary predicates, let φw
p be the formula with free variables

v1, ..., vx which updates predicate p at statement w. Given a structure S we define

the semantics of S after w as

[[st(w)]]2(S) =
〈
US ,

⋃k
x=1 λp ∈ Pxλu1, ..., λux.[[φ

w
p]]

S
2 ([v1 �→ u1, ..., vx �→ ux])

〉
.

The 2-valued semantics define the (possibly infinite) set of logical structures

that a node may see on entry. The collecting semantics is later defined as the least

fixed-point of the 2-valued semantics.

Definition 3.4 Let V S map v ∈ V to a set of 2-valued logical structures. The

2-valued semantics of a flow graph G = 〈V,E,C〉 is given by

[[G]]2(V S) = λv.

⎧⎪⎪⎨
⎪⎪⎩

V S(vstart) v = vstart⋃
w→v∈E

{
[[st(w)]]2(S)|S ∈ V S(w) and S |= C(w, v)

}
otherwise

The natural order on [0, 1] has infinite height, hence includes infinite chains. Fix-

point iteration in such a domain may not terminate. Widening operators solve this

problem by traversing the domain in a finite number of steps, e.g. by a sequence of

jumps in the domain followed by the top/bottom element. However, its very hard

to control the degree of over-approximation introduced by a widening operator.

Rather than introducing a widening operator we let our fuzzy abstraction use a finite

congruence domain of the unit interval. To trade expressiveness for tractability, or

vice versa, we define the abstract semantics over a family of congruence domains

over [0, 1]: the εq domains, where q ∈ N − {0}. The domains are linearly ordered

such that a truth value t in εq is split to two truth values (not including 0.5) in εq+1.

We illustrate the congruence relation in Figure 3 for the ε1 (i.e., 3-valued Kleene

logic used by Sagiv et al.[10]), ε2 and ε3. The values in the light gray box of ε2 (i.e.

1/4, 1/2 and 3/4) are therefor mapped to 1/2 in ε1 and similarly the dark gray boxes

of ε3 denote sets of values that are mapped to a single value in ε2. The congruence

J. Lidman, J. Svenningsson / Electronic Notes in Theoretical Computer Science 334 (2018) 17–2922

1

1
2

0

ε1-domain

(3-valued logic)

1

3
4

2
4

1
4

0

ε2-domain

1
7
86

85
84

83
82

81
8

0

ε3-domain

Fig. 3. Equivalence partitioning of the ε1, ε2 and ε3 graded truth orders

relation is consistent with the information order introduced in Section 2, i.e., when

interpreting a εq+1 value in a εq domain the value is never more informative.

Definition 3.5 The εq equivalence class of x ∈ [0, 1], denoted [x]q, is defined by

rounding x to the closest multiple of 1
2q towards 1

2 . The set of all εq equivalence

classes is [0, 1]q = { 1
2q x|x ∈ N2q} where N2q =

{
x | x ∈ N ∧ 0 ≤ x ≤ 2q

}
.

The abstract semantics over εq is defined in terms of the fuzzy logics from Section 2.

The definition uses concepts such as interpretation and assignment which is similar

to that of the concrete semantics but where truth value is now an element of [0, 1]q
rather than {0, 1}.

Definition 3.6 [Sagiv et al.[10], def. 4.2] The [0, 1]q-valued interpretation and

assignment is analogous to the concrete semantics.
• Given a Fuzzy logic

〈∧̃, ∨̃, ¬̃〉 the fuzzy εq meaning [[φ]]S[0,1]q(Z) of a closed

formula φ and a complete assignment Z yields a truth value in [0, 1]q and

defined inductively in Figure 2 (right)
• The definition of the semantics of a statement (i.e., [[st(w)]][0,1]q) is analogous

to the concrete case in Definition 3.3 but the formulas are interpreted in a

given fuzzy logic.
• S and Z potentially satisfy φ if [[φ]]S[0,1]q(Z) > 0. We denote this by S,Z |=[0,1]q

φ, or S |=[0,1]q φ if φ is satisfied for all Z.

Embeddings was introduced by Sagiv et al.[10] to relate 2-valued and 3-valued inter-

pretations. Informally they relate logical structures that conform to an information

order. The embeddings cluster individuals and decide the value of their properties

in terms of the corresponding values of the members of the cluster. Importantly,

the class of embeddings that minimize information loss is termed tight and are used

to define the abstract semantics of a flow-graph. Note that although we choose to

cluster individuals here it is also possible to cluster predicates[7] as in a predicate

abstraction.

Definition 3.7 Let S =
〈
US , iS

〉
and S′ =

〈
US′

, iS
′
〉
be two [0, 1]q-interpretations.

A surjective function f : US → US′
is a
-embedding (denoted by S
f S′) if it

J. Lidman, J. Svenningsson / Electronic Notes in Theoretical Computer Science 334 (2018) 17–29 23

satisfies below relation. The embedding is tight if the relation holds for equality.

∀x ∈ [1, k], ∀p ∈ Px : iS
′
(p)(u′1, ..., u

′
x) �

⊎
(u1, ..., ux) ∈ (US)x

f(ui) = u′i, 1 ≤ i ≤ x

iS(p)(u1, ..., ux)

The abstract semantics need to preserve information loss to be conservative (i.e.

should not spuriously introduce more precise results). For this reason our abstract

semantics is monotonically increasing with respect to an information order
.
Lemma 3.8 (Sagiv et al.[10], Lemma 4.4) Let S =

〈
US , iS

〉
and S′ =

〈
US′

, iS
′
〉

be two structures where S = S′ and let f : US → US′
be a
-embedding. Then for

every complete assignment Z, all k-arity p ∈ Pk: iS
 iS
′ ⇒ [[φ]]S[0,1]q
 [[φ]]S

′
[0,1]q

where iS
 iS
′
is the point-wise extension of
.

Intuitively, given a finite number of individuals (predicates) we should be able to

cluster (even an infinite number of) predicates (individuals) into a finite number of

clusters such that all predicates (individuals) in a cluster are equivalent with respect

to the individuals (predicates). We refer to this special embedding as normaliza-

tion 6 . More specifically the number of clusters from the normalizer is bounded by

|US′ | ≤ (1 + 2q)
∑k

i=1 |Pi|i in a [0, 1]q domain.

Definition 3.9 Let P = P1 ∪ ... ∪ Pk be the sets of unary (P1), ..., k-ary (Pk)

predicates. Two individuals ui, ui ∈ US , ui �= uj are equivalent if all predicates

evaluate to the same values for ui and uj , i.e. if ∀p ∈ P1 : p(ui) = p(uj) and

∀p ∈ P2, u′ ∈ US : [p(ui, u
′) = p(uj , u

′)] ∧ [p(u′, ui) = p(u′, uj)] and analogously for

all P i, 3 ≤ i ≤ k. The normalizer fNorm is a
-embedding that generates a new

logical structure
〈
ÛS , îS

〉
that maps equivalent individuals from US to the same

individual in ÛS .

Example 3.10 Let S =
〈
{u1, u2, u3, u4, u5, u6}, iS

〉
be as in left most table be-

low. Here u2, u4 and u6 are equivalent w.r.t all predicates (i.e., p, q and r). Shown

in the right most table below is the resulting structure when applying the nor-

malizer, where equivalent individuals are represented by a new individual u246.
Individual Unary predicate

p q r

u1 1 0 1

u2 1 1 0

u3 0 1 0

u4 1 1 0

u5 1 1 1

u6 1 1 0

Individual Unary predicate

p q r

u1 1 0 1

u246 1 1 0

u3 0 1 0

u5 1 1 1

Using normalization we can hence produce a logical structure with a finite num-

ber of individuals, and by extension, bound the number of logical structures. We

6 Sagiv et al.[10] refer to this as the canonical abstraction

J. Lidman, J. Svenningsson / Electronic Notes in Theoretical Computer Science 334 (2018) 17–2924

also consider the extreme case of normalization, when the set of logical structures is

a singleton. To accommodate both cases we parameterize the abstract semantics on

a function Fn, the collector function that takes n sets (representing the results from

n incoming edges) of logical structures and produce a single set of logical structures.

We consider the following F∗ and
∗ combinations:

(i) (n ≥ 1) The bounded union semantics with
∪ and Fn∪ (S) =
n⋃

i=1
Si.

(ii) (n = 1) The maximum semantics with
� and

Fn� (S) =
〈
U Ŝ ,

⋃k
x=1{λu1, ..., λux.

(⊎
�
)n
y=1

iSy(p)
(
[v1 �→ u1, ..., vx �→ ux]

) |p ∈ Px}
〉
.

We introduce an abstract semantics as the fixed-point, with respect to set-inclusion

(when n is bounded) or the information order (when n = 1) from Section 2.2, of the

equation system below and show that it over-approximates the collecting semantics.

Definition 3.11 Let Fn∗ be a collector function and f be a tight
∗-embedding

and V S map v ∈ V to a set of bounded [0, 1]q-valued logical structures. The [0, 1]q-

valued semantics of a flow graph G = 〈V,E,C〉 is given by

[[G]][0,1]q(V S) = λv.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

F 1∗
(
V S(vstart)

)
v = vstart

Fn∗

⎛
⎜⎜⎝
⎧⎪⎨
⎪⎩f

(
[[st(w)]][0,1]q(S)

) ∣∣∣∣∣∣∣
S ∈ V S(w) and

S |=[0,1]q C(w, v)

⎫⎪⎬
⎪⎭

w→v∈E

⎞
⎟⎟⎠ otherwise

Computing the fixed-point proceeds by iteratively applying a monotonic increas-

ing transfer function and terminates in bounded time because the set of possible

logical structures is bounded. The result of the analysis is sound as per Theorem

3.12. Note that the result of a fuzzy set abstraction using Fn� is the most accurate

maximum logical structure a εq domain can provide, i.e. within a factor 1
2q of the

true value.

Theorem 3.12 For a flow graph G = 〈V,E,C〉 and initial assumptions Sentry =

{S0, ..., Sn} ⊂ [0, 1]q-STRUCT [P], n ∈ N the collecting semantics of the flow graph

is denoted C and is defined using the 2-valued semantics:

C = lfp⊆[[G]]2({vstart → Sentry} ∪ {v → ∅|v ∈ V -{vstart})

The abstract semantics with the bounded union- and the maximum collector func-

tions is similarly defined using [0, 1]q-valued semantics:

AF∪ = lfpF∪
⊆ [[G]][0,1]q({vstart → Sentry} ∪ {v → ∅|v ∈ V -{vstart})

AF� = lfpF�
�� [[G]][0,1]q({vstart → Fn

� (Sentry)} ∪ {v → 1

2
|v ∈ V -{vstart})

where
1

2
=

〈
US ,

k⋃
x=1

⋃
p∈Px

{λu1, ..., ux.iS(p)
(
[v1 �→ u1, ..., vx �→ ux]

)
= 0.5}

〉

The corresponding concretization functions are given by γF∪ and γF� where [S]1 de-

notes the interpretation of structure S in 3-valued logic, i.e. the point-wise extension

J. Lidman, J. Svenningsson / Electronic Notes in Theoretical Computer Science 334 (2018) 17–29 25

of Definition 3.5.

γF∪(S) = {S# ∈ 2-STRUCT [P]|S#
� [S]1}
γF�(〈U, i〉) =

{〈
U, i#

〉
∈ [0, 1]q-STRUCT [P] | ∀x ∈ [1, k], p ∈ Px, u1, ..., ux ∈ U :

∣∣∣i(p) ([v1 �→ u1, ..., vx �→ ux]
)− i#(p)

(
[v1 �→ u1, ..., vx �→ ux]

)∣∣∣ ≤ 1

2q

}

With the above definitions in place we can state or main theorem: The concrete

semantics is approximated by the composition of the abstract semantics and the

concretization function:

∀v :

⎧⎪⎨
⎪⎩
C(v) ⊆

⋃
s∈AF∪ (v)

γF∪(s)

C(v) ⊆ γF�
(
AF�(v)

)
3.2 Dynamical analysis

We next explore an dynamical analysis which starts from the results of the static

analysis with an εq domain and improves the accuracy by specializing the analysis

result given a sequence of dynamical assignments of a property. The aim is to

improve completeness, possibly sacrificing soundness, and compute a new fuzzy set

with increased classification accuracy. The resulting fuzzy set is described implicitly

by an TS-ANFIS. We consider improving the accuracy with respect to the least

square error between the example(s) and the analysis results.

Our dynamical analysis instantiate an TS-ANFIS and use gradient descent (GD)

to improve classification online. GD is similar to Newton’s method and so we use

results from Newtonian program analysis[3] in formalizing our dynamic analysis.

Esparza et al. [3] showed that polynomials f(x) =
∑

i ciφi(x) =
∑

i ci
∏

j x
ai,j
i,j

over ω-continuous (commutative) semirings admit fixed-points due to Kleene’s fixed-

point theorem. Since membership of a fuzzy set is an element of the unit interval

[0, 1] we use the special case of polynomials over the real semiring
〈
R ∪ {∞},+, ·, 0, 1〉.

We let ∂f
∂xi

denote the (partial) derivative of f with respect to the variable xi,

∇f =
∑

i
∂f
∂xi

ei denote its gradient and Df
∣∣
ν
(x) = ∇f(ν) · x the differential of a

polynomial f . We stress that our polynomials are evaluated on a congruence do-

main of the real semiring, i.e. an εq domain. In this article we consider the case

when the resulting set of logical structures from the static analysis is a singleton,

i.e., the result was computed using the maximum abstract semantics above 7 .

The logical structure, i.e. S = 〈U, i〉, can be considered a set of classifiers, one for

each k-ary predicate p ∈ i, where the variables are assigned an individual (from U)

as input value. Given p we create a two rule TS-ANFIS where the variables x[1,k]
are real-valued encodings of the individuals, e.g. the encoding ui �→ i.

7 It is possible to extend our scheme to an arbitrary n ∈ N by building an TS-ANFIS with 2n rules. But
this obviously comes at a high cost and for lack of a better scheme we postpone formalization to future
work

J. Lidman, J. Svenningsson / Electronic Notes in Theoretical Computer Science 334 (2018) 17–2926

Newton’s method f+
Newton(ν

i)=lfp

(
Df
∣∣
νi (f(ν

i)−ν)

)
f−
Newton(ν

i)=gfp

(
Df
∣∣
νi (ν−f(νi))

)

GD on 〈x, y〉 f+
GD(νi)=μ·lfp

(
∇(νiφi(x)−y)

2
)

f−
GD(νi)=μ·gfp

(
∇(y−νiφi(x))

2
)

Table 1
Newton/GD fixed-point equation

• (Rule 1) p is the fuzzy set in the premise part and f(x1, ..., xk) = 1 is the

consequent polynomial.
• (Rule 2) ¬̃ p is the fuzzy set in the premise part and f(x1, ..., xk) = 0 is the

consequent polynomial.

The output of the initial TS-ANFIS is hence equal to the predicate p. Our dynam-

ical analysis is iteratively given an example assignment x and the corresponding

actual fuzzy membership y. It computes a new fixed-point when x is the input

producing the expected fuzzy membership and updates the consequent polynomials

f(x) based on the error. The algorithm used for rule 1 minimizes the polynomial

coefficient corresponding to the constant (which were initialized to 1) and maximizes

the remaining coefficients (which was initialized to 0). The polynomial for rule 2

remains constant. Table 1 shows the fixed-point equations. Note that elements of

a semiring do not in general have an additive inverse, hence subtraction may seem

erroneous. But as noted by Esparza et al. [3] for the particular case when the func-

tion is a polynomial in a semi-ring the difference is always positive, a consequence

of a generalized form of Taylors theorem. For a commutative semiring the accuracy

increases exponentially with each iteration[6]. The number of elements in a εq do-

main is 2q. Hence each iteration of our dynamical analysis produce the fixed-point

in the εq+1 domain.

Lemma 3.13 shows that the fixed-point systems admit a solution. As all ascend-

ing/descending chains are finite in an εq domain the sequence will, assuming x is

monotonically decreasing/increasing, converge to a new consequent polynomial.

Lemma 3.13 Let f(x) be a polynomial. Then the ascending/descending sequence(
νi
)
i∈N is increasing/decreasing monotonically and converges to unique least/great-

est fixed-point:
• 0 ≤ νi ≤ f+(νi) ≤ νi+1 ≤ sup≤j∈N νj

• inf≤j∈N νj ≤ νi+1 ≤ f−(νi) ≤ νi ≤ 1

The fixed-point equations admit a recursive closed-form that we state in Lemma

3.14. Our results show that we can guarantee validity in the real semiring by

imposing constraints on the inputs rather than resorting to a non-negative version

of the GD algorithm [1].

Lemma 3.14 Given a 〈x, y〉 and a polynomial f(x) let e(k) = f(x)−y for f+ and

e(k) = y − f(x) for f−. We can compute f∗ using ck+1
i,j = cki,j + 2μei(k)φ(x).

Finally, we show in Theorem 3.15 that our dynamical analysis indeed improve

the analysis results for a set of examples.

Theorem 3.15 For a flow graph G = 〈V,E,C〉 let A : V �→ [0, 1]q-STRUCT [P]

J. Lidman, J. Svenningsson / Electronic Notes in Theoretical Computer Science 334 (2018) 17–29 27

be the analysis result with the Fn� abstract semantics and 〈x, y〉1≤i≤N a sequence

of examples such that ∀j :
(
xj
)
i+1

≤ (
xj
)
i
and yi+1 ≤ yi. Then each iteration i

of the GD algorithm, applied to the example 〈x, y〉i, updates the polynomials such

that the coefficients are non-negative and in the limit converge to a polynomial that

minimize the least square error to the set of examples.

4 Conclusion

We have introduced the Fuzzy Set Abstraction which enables stating properties

about programs which are true or false to a certain degree. This opens up new

possibilities for speculative optimizations which can now use information about

which values, branches, etc. are more likely than others.

We have also shown how to perform hybrid analysis by refining the result of

a static analysis online. This has been done using TS-ANFIS, an adaptive fuzzy

inference system from control theory. This result paves the way for importing other

results from the rich literature of fuzzy control theory.

References

[1] Chen, J., C. Richard, J. C. M. Bermudez and P. Honeine, Nonnegative least-mean-square algorithm,
IEEE Transactions on Signal Processing 59 (2011), pp. 5225–5235.

[2] Dubois, D., H. Prade and H. Prade, “Fundamentals of Fuzzy Sets,” The Handbooks of Fuzzy Sets,
Springer US, 2000.

[3] Esparza, J., S. Kiefer and M. Luttenberger, Newtonian program analysis, J. ACM 57 (2010), pp. 33:1–
33:47.

[4] Ginsberg, M., Multivalued logics: A uniform approach to inference in artificial intelligence,
Computational Intelligence 4 (1988), pp. 265–316.

[5] Lidman, J. and J. Svenningsson, Bridging static and dynamic program analysis using fuzzy logic,
Quantitative Aspects of Programming Languages and Systems (QAPL) (2017).

[6] Luttenberger, M. and M. Schlund, “Convergence of Newton’s Method over Commutative Semirings,”
Springer Berlin Heidelberg, Berlin, Heidelberg, 2013 pp. 407–418.

[7] Manevich, R., E. Yahav, G. Ramalingam and M. Sagiv, “Predicate Abstraction and Canonical
Abstraction for Singly-Linked Lists,” Springer Berlin Heidelberg, Berlin, Heidelberg, 2005 pp. 181–
198.

[8] Mock, M., M. Das, C. Chambers and S. J. Eggers, Dynamic points-to sets: A comparison with static
analyses and potential applications in program understanding and optimization, in: Proceedings of the
2001 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engineering,
PASTE ’01 (2001), pp. 66–72.

[9] Ribeiro, C. and M. Cintra, Quantifying uncertainty in points-to relations, in: Languages and Compilers
for Parallel Computing, Lecture Notes in Computer Science 4382, Springer Berlin Heidelberg, 2007
pp. 190–204.

[10] Sagiv, M., T. Reps and R. Wilhelm, Parametric shape analysis via 3-valued logic, ACM Trans. Program.
Lang. Syst. 24 (2002), pp. 217–298.

A Omitted proofs

Proof. of Theorem 3.12. We first consider the case when using the F∪ function,

Note that γ(S) creates the set of all 2-valued logical structures that are
∪ S,

J. Lidman, J. Svenningsson / Electronic Notes in Theoretical Computer Science 334 (2018) 17–2928

quantized to the ε1 domain (i.e., the 3-valued domain in Sagiv et al.[10] by Definition

3.5). Since generating S (i.e., the fixed-point iteration) was done conservatively by

Theorem 3.8 we can re-use the argument from Sagiv et al.[10] Theorem 4.9 (i.e., that

an embedding is extensive w.r.t. to the information order: [[φ]]S2 (Z)
 [[φ]]S
′

3 (f ◦Z)),

Theorem 6.1 (i.e., that we are conservative w.r.t. a branch condition and program

statement) and Theorem 6.2 (i.e., ∀v : C(v) ⊆ ⋃s∈A(v) γ(s)).

We next consider the case when using the F� function. Note that, as per

Knaster-Tarskis fixed-point theorem the abstract semantics is well-defined. We ar-

gue that the result is a conservative approximation (i.e., ∀v : C(v) ⊆ γF�
(
AF�(v)

)
)

based on proof by contradiction on the existence of a fixed-point for the collectors

Fn� : Assume an fixed-point S∞ has been reached then S∞(v), v ∈ V is the unique

maximal element in εq. γF�(S∞(v)) is the set of [0, 1]q logical structures where the

predicates are within 1
2q from S∞(v). If S∞ is not a conservative approximation

then there exists an element S∗ �∈ γF�(S∞(v)) that is further away from γF�(S∞(v))

than 1
2q which contradict that S∞ is the unique fixed-point. �

Proof. of 3.13 This is a special case of Theorem 3.10 in Esparza et al. [3] with the

(non-negative) real semiring. �

Proof. of 3.14. As the fixed-point iteration is performed over a totally ordered set

(the least square error) the minimal/maximal and infimum/supremum element co-

incide. We consider finding the coefficients ci of a polynomial f(x) =
∑

i ciφi(x) =∑
i ci
∏

j x
ai,j
i,j that minimize the least square error, e(x)2 =

(
f(x)− y

)2
at a par-

ticular 〈x, y〉. Since e(x)2 is convex we know that globally minimal solution occur

where gradient is zero:

∂
(
f(x)− y

)2
∂c

= 2
(
f(x)− y

) · ∂∑i ciφi(x)− y

∂c
= 2

(
f(x)− y

)
φ(x)

= 2e(x)φ(x)

Hence maxci
(
f(x)− y

)2
= 2e(x)φ(x) and since the expression only depends on

variables in the current iteration the sequence of updates is given by ci+1 = ci +

2μe(x)φ(x). Similary minci

(
y − f(x)

)2
= −2e(x)φ(x) and hence ci+1 = ci −(−2e(x)φ(x)) = ci + 2e(x)φ(x). �

Proof. of 3.15. Lemma 3.14 shows that each iteration finds the coefficients that

minimize the least square error. Toghether with monotonicity of x & y and Lemma

3.13 the sequence is guaranteed to converge eventually. �

J. Lidman, J. Svenningsson / Electronic Notes in Theoretical Computer Science 334 (2018) 17–29 29

	Introduction
	Preliminaries
	Fuzzy set and logic
	Possibility theory
	Takagi-Sugeno Adaptive-Network-based fuzzy inference system (TS-ANFIS)

	Fuzzy set abstraction
	Static analysis
	Dynamical analysis

	Conclusion
	References
	Omitted proofs

