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Numerical Approximation of Solutions to Stochastic
Partial Differential Equations and Their Moments

Kristin Kirchner

Department of Mathematical Sciences
Chalmers University of Technology and University of Gothenburg

Abstract

The first part of this thesis focusses on the numerical approximation of
the first two moments of solutions to parabolic stochastic partial differential
equations (SPDEs) with additive or multiplicative noise. More precisely, in Pa-
per I an earlier result1, which shows that the second moment of the solution
to a parabolic SPDE driven by additive Wiener noise solves a well-posed de-
terministic space-time variational problem, is extended to the class of SPDEs
with multiplicative Lévy noise. In contrast to the additive case, this variational
formulation is not posed on Hilbert tensor product spaces as trial–test spaces,
but on projective–injective tensor product spaces, i.e., on non-reflexive Banach
spaces. Well-posedness of this variational problem is derived for the case when
the multiplicative noise term is sufficiently small. This result is improved in Pa-
per II by disposing of the smallness assumption. Furthermore, the deterministic
equations in variational form are used to derive numerical methods for approxi-
mating the first and the second moment of solutions to stochastic ordinary and
partial differential equations without Monte Carlo sampling. Petrov–Galerkin
discretizations are proposed and their stability and convergence are analyzed.

In the second part the numerical solution of fractional order elliptic SPDEs
with spatial white noise is considered. Such equations are particularly interest-
ing for applications in statistics, as they can be used to approximate Gaussian
Matérn fields. Specifically, in Paper III a numerical scheme is proposed, which is
based on a finite element discretization in space and a quadrature for an integral
representation of the fractional inverse involving only non-fractional inverses.
For the resulting approximation, an explicit rate of convergence to the true so-
lution in the strong mean-square sense is derived. Subsequently, in Paper IV
weak convergence of this approximation is established. Finally, in Paper V a
similar method, which exploits a rational approximation of the fractional power
operator instead of the quadrature, is introduced and its performance with re-
spect to accuracy and computing time is compared to the quadrature approach
from Paper III and to existing methods for inference in spatial statistics.

Keywords: Stochastic partial differential equations, Tensor product spaces,
Fractional operators, White noise, Space-time variational problems, Finite ele-
ment methods, (Petrov–)Galerkin discretizations, Strong and weak convergence.

1A. Lang, S. Larsson, and Ch. Schwab, Covariance structure of parabolic stochastic

partial differential equations, Stoch. PDE: Anal. Comp., 1(2013), pp. 351–364.
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Introduction

Many models in, e.g., finance, biology, physics, and social sciences are based
on ordinary or partial differential equations. In order to improve their applica-
bility to the reality, one has to take uncertainties, such as, measurement errors
or unknown fine scale structures, into account. These uncertainties influence
certain parameters, the geometry of the physical domain, boundary or initial
conditions, or the source terms of the mathematical model. In this work we
focus on the latter scenario and consider ordinary and partial differential equa-
tions driven by an additive or multiplicative noise term. Under appropriate
assumptions, existence and uniqueness of a solution to such an equation is en-
sured. This solution is then a square-integrable stochastic process with values
in a certain state space. In particular, its first and second moment are finite.

More precisely, the present thesis consists of two parts:

(1) The numerical approximation of the first two moments of the solution pro-
cess to a parabolic stochastic partial differential equation. These two mo-
ments determine the covariance and the correlation structure of the solution
process. Furthermore, if the solution is Gaussian, its distribution is even
completely characterized by the first two moments.

(2) The computationally efficient sampling from approximations of Gaussian
Matérn fields, which is of great relevance for spatial statistics.

Existing approaches to (1) typically involve Monte Carlo sampling. How-
ever, Monte Carlo methods are, in general, computationally expensive due to
the convergence order 1/2 of the Monte Carlo estimation and the high cost for
computing sample paths of solutions to stochastic partial differential equations.

An alternative approach has been suggested in [24], where the first and sec-
ond moment of the solution process to a parabolic stochastic partial differential
equation driven by additive Wiener noise have been described as solutions to
deterministic evolution equations which can be formulated as well-posed linear
space-time variational problems. Thus, instead of estimating moments from
computationally expensive sample paths, one can apply numerical methods to
the deterministic variational problems satisfied by the first and second moment.
The main promise of this approach is in potential savings in computing time and
memory through space-time compressive schemes, e.g., using adaptive wavelet
methods or low-rank tensor approximations.

The first aim of this thesis is to extend the result of [24] to parabolic stochas-
tic partial differential equation driven by multiplicative Lévy noise in Paper I.
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Introduction

Afterwards, in Paper II, we focus on Petrov–Galerkin discretizations for these
space-time variational problems.

Stochastic partial differential equations of the form discussed in Part (2)
of the thesis can, for instance, be used for defining approximations of Gaussian
Matérn fields. Due to their practicality, these random fields have become very
popular for modeling in spatial statistics. Namely, the variance, the practical
correlation range, and the smoothness of a Gaussian Matérn field can directly be
controlled via three parameters. However, the traditional covariance-based rep-
resentation of the fields entails high computational costs. For example, sampling
from a Gaussian Matérn field at N locations requires a matrix factorization of
an N×N covariance matrix and, thus, in general, O(N3) arithmetic operations.
A recent approach addressing this issue is based on the idea to approximate a
Gaussian Matérn field by the solution of a fractional stochastic partial differen-
tial equation with spatial white noise [25]. In Part (2) of the thesis we discuss
the numerical treatment of these equations. More precisely, in Paper III we pro-
pose an explicit approximation and prove its convergence to the true solution
in the strong mean-square sense. Subsequently, in Papers IV and V we discuss
weak convergence of the approximation and its usage for statistical inference.

Throughout the following sections, let H and U be separable Hilbert spaces
over R with respect to the inner products ( · , · )H and ( · , · )U , respectively. The
induced norm on H is ‖·‖H and similarly for U . If (E, ‖·‖E) is a normed vector
space, then S(E) := {x ∈ E : ‖x‖E = 1} denotes its unit sphere, I : E → E the
identity on E, B(E) the Borel σ-algebra generated by all subsets of E which
are open with respect to the norm topology, and E′ the dual of E, i.e, all linear
continuous mappings from E to R.

1. Operator theory and tensor product spaces

The outline of this section is as follows. We first introduce several operator
classes in §1.1, which are relevant throughout the thesis. In §1.2 we present
different notions of tensor product spaces and some of their properties. These
spaces appear in the deterministic variational formulations of Papers I and II.
Finally, in §1.3 we establish a relation between the Schatten class operators from
§1.1 on the one hand and the tensor product spaces from §1.2 on the other.

1.1. Special classes of bounded linear operators. In this subsection
we present different classes of linear operators which are of relevance for our
analysis. For a detailed overview of operator classes we refer to [13, 14].

1.1.1. Bounded operators. A linear operator T : U → H is called bounded
or continuous if it has a finite operator norm:

‖T‖L(U ;H) := sup
x∈S(U)

‖Tx‖H <∞.

With the above norm, the space of all continuous linear operators from U to H
is a Banach space denoted by L(U ;H). We write L(U) whenever U = H.

4
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1.1.2. Compact operators. A linear operator T : U → H is compact if the
image of any bounded set in U (or equivalently the closed unit ball in U) under
T is relatively compact in H, meaning that its closure is compact. We let
K(U ;H) denote the set of all compact operators mapping from U to H and use
the abbreviation K(U) when U = H.

Equivalently, cf. [43, §X.2], one can define the subspace K(U ;H) ⊂ L(U ;H)
as the closure of all finite-rank operators mapping from U to H. This means
that the operator T : U → H is compact if and only if there exists a sequence of
linear operators Tn ∈ L(U ;H) with finite-dimensional range Rg(Tn) converging
to T in the norm topology on L(U ;H):

dim Rg(Tn) <∞ ∀n ∈ N, lim
n→∞

‖T − Tn‖L(U ;H) = 0.

In our analysis we use the latter characterization of compact operators.
We introduce the adjoint T ∗ : H → U of a linear operator T : U → H by

(Tx, φ)H = (x, T ∗φ)U ∀x ∈ U, ∀φ ∈ H.
If U = H and T ∗ = T then T is called self-adjoint.

Self-adjoint compact operators have real-valued spectra and they generate
orthonormal bases consisting of eigenvectors, see [14, Cor. X.3.5]. Since we refer
to this property several times, we summarize it in the following theorem.

Theorem 1.1 (Spectral theorem for self-adjoint compact operators). Let
T ∈ K(U) be self-adjoint. Then there exists an orthonormal basis {ej}j∈N of U
and a real-valued sequence {γj}j∈N, which has 0 as its only accumulation point,
such that Tej = γjej for all j ∈ N.

1.1.3. Schatten class operators. A continuous linear operator T ∈ L(U ;H)
is called a Schatten class operator of p-th order or a p-Schatten class operator
for 1 ≤ p <∞ if T has a finite p-Schatten norm:

‖T‖Lp(U ;H) :=

(∑

j∈N
sj(T )p

)1/p

<∞,

where

s1(T ) ≥ s2(T ) ≥ . . . ≥ sj(T ) ≥ . . . ≥ 0

are the singular values of T , i.e., the eigenvalues of the operator |T | := (T ∗T )1/2

(see also §2.3 for the definition of the square root for operators). The space of
all Schatten class operators of p-th order mapping from U to H, denoted by
Lp(U ;H), is a Banach space with respect to ‖ · ‖Lp(U ;H). Again, we use an
abbreviation when U = H, and write Lp(U) in this case. The Schatten norm is
monotone in p, i.e.,

‖T‖L1(U ;H) ≥ ‖T‖Lp(U ;H) ≥ ‖T‖Lp′ (U ;H) ≥ ‖T‖L(U ;H)

for 1 ≤ p ≤ p′ < ∞ and, moreover, every Schatten class operator is compact.
Therefore, the introduced operator spaces satisfy the following relation:

L1(U ;H) ⊂ Lp(U ;H) ⊂ Lp′(U ;H) ⊂ K(U ;H) ⊂ L(U ;H).

5
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1.1.4. Trace class and Hilbert–Schmidt operators. Schatten class operators
of first order mapping from U into U are also called trace class operators. Their
name originates from the following fact: For T ∈ L1(U) the trace, defined by

tr(T ) :=
∑

j∈N
(Tej , ej)U ,

is finite and independent of the choice of the orthonormal basis {ej}j∈N of U .
Moreover, it holds | tr(T )| ≤ tr(|T |) = ‖T‖L1(U), cf. [10, Prop. C.1]. For self-
adjoint, positive semi-definite trace class operators the trace coincides with the
1-Schatten norm, i.e., tr(T ) = ‖T‖L1(U) for all T ∈ L+

1 (U), where

L+
1 (U) := {T ∈ L1(U) : T ∗ = T, (Tx, x)U ≥ 0 ∀x ∈ U} .

This is due to the equality |T | = (T ∗T )1/2 = T for T ∈ L+
1 (U).

The 2-Schatten norm of T : U → H satisfies

‖T‖2L2(U ;H) = tr(T ∗T ) =
∑

j∈N
‖Tej‖2H

for any orthonormal basis {ej}j∈N of U . In contrast to all other Schatten norms
when p 6= 2, this norm originates from an inner product, namely from

(S, T )L2(U ;H) :=
∑

j∈N
(Sej , T ej)H , S, T ∈ L2(U ;H),

which is referred to as the Hilbert–Schmidt inner product between S and T .
Thus, the space L2(U ;H) is a Hilbert space. The 2-Schatten norm is called
Hilbert–Schmidt norm and elements of L2(U ;H) are Hilbert–Schmidt operators.

1.2. Tensor product spaces. Besides H and U , let also (H̃, ( · , · )H̃)

and (Ũ , ( · , · )Ũ ) denote separable Hilbert spaces over R. We first introduce the

algebraic tensor product space U ⊗ Ũ as the vector space consisting of all finite
sums of the form

N∑

n=1

xn ⊗ x̃n, xn ∈ U, x̃n ∈ Ũ , n = 1, . . . , N,

equipped with the obvious algebraic operations. There are several ways to define
a norm on this vector space, and taking the closure with respect to the different
norms yields different Banach spaces. For our purposes, the three notions of
tensor product spaces below are of importance. We refer to [18, 34] for a general
introduction into the theory of tensor product spaces.

1.2.1. Hilbert tensor product space. The Hilbert tensor product space, de-

noted by U ⊗̂2 Ũ , is the completion of the algebraic tensor product space U ⊗ Ũ
with respect to the norm induced by the inner product

(x̂, ŷ)U⊗̂2Ũ
:=

N∑

n=1

M∑

m=1

(xn, ym)U (x̃n, ỹm)Ũ ,

6
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which is independent of the choice of the representations x̂ =
∑N
n=1 xn ⊗ x̃n

and ŷ =
∑M
m=1 ym ⊗ ỹm of x̂, ŷ ∈ U ⊗ Ũ . If U = Ũ we abbreviate the notation

for this space by U2 := U ⊗̂2 U , and let ( · , · )2, ‖ · ‖2 denote the inner product
and the corresponding norm, respectively.

1.2.2. Projective tensor product space. The projective tensor product space

U ⊗̂π Ũ is obtained by taking the closure of the algebraic tensor product space

U ⊗ Ũ with respect to the projective norm defined for x̂ ∈ U ⊗ Ũ by

‖x̂‖U⊗̂πŨ := inf

{
N∑

n=1

‖xn‖U‖x̃n‖Ũ : x̂ =
N∑

n=1

xn ⊗ x̃n
}
.

We write Uπ := U ⊗̂π U and ‖ · ‖π := ‖ · ‖U⊗̂πU , whenever U = Ũ .
1.2.3. Injective tensor product space. The injective norm of an element x̂ in

the algebraic tensor product space U ⊗ Ũ is defined as

‖x̂‖U⊗̂εŨ := sup

{∣∣∣
N∑

n=1

f(xn) g(x̃n)
∣∣∣ : f ∈ S(U ′), g ∈ S(Ũ ′)

}
,

where
∑N
n=1 xn⊗ x̃n is any representation of x̂ ∈ U ⊗ Ũ . Note that the value of

the supremum is independent of the choice of the representation of x̂, see [34,

p. 45]. The completion of U ⊗ Ũ with respect to this norm is called injective

tensor product space and denoted by U ⊗̂ε Ũ . If U = Ũ , the abbreviations
Uε := U ⊗̂ε U as well as ‖ · ‖ε := ‖ · ‖U⊗̂εU are used.

1.2.4. Some remarks. The projective and injective tensor product spaces in

§1.2.2 and §1.2.3 can also be defined for Banach spaces E, Ẽ. Note that, even

if E, Ẽ are reflexive, the tensor product spaces E ⊗̂π Ẽ and E ⊗̂ε Ẽ are Banach
spaces, which are, in general, not reflexive, cf. [34, Thm. 4.21].

An immediate consequence of the above definitions of the different tensor
norms is the following chain of continuous embeddings, see [34, Prop. 6.1(a)]:

U ⊗̂π Ũ ↪→ U ⊗̂2 Ũ ↪→ U ⊗̂ε Ũ .
Here, the embedding constants are all equal to 1.

Another important fact when dealing with linear operators on tensor prod-

uct spaces is the following: For T ∈ L(U ;H) and S ∈ L(Ũ ; H̃) setting

(T ⊗ S)(x⊗ x̃) = (Tx)⊗ (Sx̃), x ∈ U, x̃ ∈ Ũ ,

and extending this definition by linearity to elements in U ⊗ Ũ yields a well-
defined linear operator T ⊗ S mapping between the algebraic tensor product

spaces U ⊗ Ũ and H ⊗ H̃. This operator admits a unique extension to a con-

tinuous linear operator T ⊗̂ιS : U⊗̂ιŨ → H⊗̂ιH̃ and it holds

‖T ⊗̂ιS‖L(U⊗̂ιŨ ;H⊗̂ιH̃) = ‖T‖L(U ;H)‖S‖L(Ũ ;H̃)

for all types of tensor spaces ι ∈ {2, π, ε} considered above, see [34, Proposi-
tions 2.3 & 3.2] and Lemma 3.1(ii) in Paper I.

7
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1.3. Relating tensor product spaces and Schatten class operators.
In the following, we establish a connection between the tensor product spaces
Uπ and U2 on the one hand, and Schatten class operators of order 1 and 2 on the
other hand. In addition, we show that compact operators in K(U) are related
to the elements in the injective tensor product space Uε.

For this purpose, we first define a kernel k on U as an element in the
algebraic tensor product space U ⊗ U , which is, in addition, symmetric, i.e.,

(k, x⊗ y)2 = (k, y ⊗ x)2 ∀x, y ∈ U.
Owing to the Riesz representation theorem, we can define the action of the
linear operator Tk : U → U associated with the kernel k on x ∈ U as the unique
element Tkx ∈ U satisfying

(Tkx, y)U = (k, x⊗ y)2 ∀y ∈ U.
The next proposition illustrates the relation between the introduced tensor prod-
uct spaces and compact / 1-Schatten class / 2-Schatten class operators.

Proposition 1.2. Let k be a kernel on U . The linear operator Tk : U → U
associated with the kernel k is self-adjoint and it holds

‖k‖ε = ‖Tk‖L(U), ‖k‖π = ‖Tk‖L1(U), and ‖k‖2 = ‖Tk‖L2(U).

In other words, the mapping J : k 7→ Tk extends to an isometric isomorphism
between the spaces

U sym
ε

J∼= Ksym(U), U sym
π

J∼= Lsym
1 (U), and U sym

2

J∼= Lsym
2 (U),

where the superscript sym indicates, for a tensor product space, to take the
closure of only the symmetric elements in the algebraic tensor product space
U ⊗ U with respect to the tensor norm, and, for an operator space, the closed
subspace of self-adjoint operators.

Proof. Self-adjointness of Tk follows from the symmetry of the kernel k. In

order to prove the norm equalities, let k =
∑N
n=1 k

1
n⊗ k2

n be any representation
of k ∈ U ⊗ U .

Then we obtain for the operator norm of the induced operator Tk:

‖Tk‖L(U) = sup
x∈S(U)

‖Tkx‖U = sup
x,y∈S(U)

(Tkx, y)U

= sup
x,y∈S(U)

N∑

n=1

(k1
n, x)U (k2

n, y)U = sup
f,g∈S(U ′)

N∑

n=1

f(k1
n)g(k2

n) = ‖k‖ε.

In this calculation the Riesz representation theorem justifies taking the supre-
mum over f, g ∈ S(U ′) instead of over x, y ∈ S(U). Therefore, the self-adjoint
linear operator Tk : U → U is continuous if and only if its kernel k is an element
of the tensor product space U sym

ε . The identity

(Tkx, y)U =

N∑

n=1

(k1
n, x)U (k2

n, y)U =
( N∑

n=1

(k1
n, x)U k

2
n, y
)
U
∀y ∈ U

8



Operator theory and tensor product spaces

shows that Tkx =
∑N
n=1(k1

n, x)U k
2
n for all x ∈ U , i.e., Tk is a finite-rank operator

and thus compact if k ∈ U ⊗ U . In the more general case when k ∈ U sym
ε , we

can find a sequence of kernels in U ⊗ U converging to k with respect to the
injective norm ‖ · ‖ε. Due to the isometry property derived above, also Tk
can be approximated by self-adjoint finite-rank operators in L(U) and, hence,
Tk ∈ Ksym(U), see §1.1.2.

The application of Theorem 1.1 to Tk ∈ Ksym(U) yields the existence of an
orthonormal basis {ej}j∈N of U consisting of eigenvectors of Tk with correspond-
ing eigenvalues {γj}j∈N ⊂ R. The observation (k, ei⊗ej)2 = (Tkei, ej)U = γjδij ,
where δij denotes the Kronecker delta, shows that k can be expanded in U2 as
k =

∑
j∈N γj(ej ⊗ ej) and we obtain the estimate

‖k‖π ≤
∑

j∈N
|γj | = tr(|Tk|) = ‖Tk‖L1(U).

The reverse inequality follows from the Cauchy–Schwarz inequality for sums
and Parseval’s identity:

‖Tk‖L1(U) =
∑

j∈N
|γj | =

∑

j∈N
|(k, ej ⊗ ej)2| =

∑

j∈N

∣∣∣
N∑

n=1

(k1
n, ej)U (k2

n, ej)U

∣∣∣

≤
N∑

n=1

(∑

j∈N
(k1
n, ej)

2
U

)1/2(∑

j∈N
(k2
n, ej)

2
U

)1/2

=

N∑

n=1

‖k1
n‖U‖k2

n‖U .

Since the representation of k is arbitrary, we may take the infimum over all
representations of k in U⊗U and conclude ‖Tk‖L1(U) ≤ ‖k‖π. Thus, J extends
to an isometric isomorphism between the spaces U sym

π and Lsym
1 (U).

For the Hilbert–Schmidt norm of Tk we find

‖Tk‖2L2(U) =
∑

i∈N
‖Tkei‖2U =

∑

i∈N

∑

j∈N
(Tkei, ej)

2
U

=
∑

i∈N

∑

j∈N

N∑

m=1

N∑

n=1

(k1
m, ei)U (k1

n, ei)U (k2
m, ej)U (k2

n, ej)U

=

N∑

m=1

N∑

n=1

(k1
m, k

1
n)U (k2

m, k
2
n)U = ‖k‖22.

The space of self-adjoint Hilbert–Schmidt operators Lsym
2 (U) is therefore isomet-

rically isomorphic to the subspace U sym
2 of the Hilbert tensor product space. �

In the literature, kernels in Uπ and U2, which are not necessarily symmetric,
are often called Fredholm kernels [17] and Hilbert–Schmidt kernels [43, §VII.3,
Example 1], respectively. We note that Proposition 1.2 can be seen as a general-
ization of Mercer’s theorem [28], which considers continuous real-valued kernels
k ∈ Csym([a, b]× [a, b]) ⊂ U sym

ε for −∞ < a < b <∞, where U = L2(a, b) and

Csym([a, b]× [a, b]) := {f ∈ C([a, b]× [a, b]) : f(s, t) = f(t, s), a ≤ s, t ≤ b}.
9
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As a by-product of Proposition 1.2, we obtain an explicit way to calculate
the projective norm of kernels in U sym

π which are positive semi-definite, i.e., in

U+
π := {k ∈ U sym

π : (k, x⊗ x)2 ≥ 0 ∀x ∈ U}.
To this end, we first introduce the real-valued linear operator δ on the algebraic

tensor product space U⊗U as follows: If k =
∑N
n=1 k

1
n⊗k2

n is any representation

of k ∈ U ⊗ U , we set δ(k) :=
∑N
n=1(k1

n, k
2
n)U . The equalities

δ(k) =

N∑

n=1

∑

j∈N
(k1
n, ej)U (ej , k

2
n)U =

∑

j∈N
(k, ej ⊗ ej)U =

∑

j∈N
(k, ẽj ⊗ ẽj)U ,

where {ej}j∈N, {ẽj}j∈N are any two orthonormal bases of U , shows that δ is well-
defined, independently of the representation of k. Furthermore, the operator δ
is bounded with respect to the projective norm, since the estimate

|δ(k)| ≤
N∑

n=1

‖k1
n‖U‖k2

n‖U

holds for any representation of k ∈ U ⊗ U . For this reason and owing to the
density of U ⊗ U in Uπ, there exists a unique linear continuous extension of δ
to a functional δ ∈ (Uπ)′ on the projective tensor product space Uπ.

If the kernel k is positive semi-definite, k ∈ U+
π , then the associated linear

operator Tk : U → U is an element of L+
1 (U) and we may choose the orthonormal

basis {ej}j∈N ⊂ U as the eigenbasis of Tk with corresponding eigenvalues γj ≥ 0.
We then obtain the identity

‖Tk‖L1(U) =
∑

j∈N
γj =

∑

j∈N
(Tkej , ej)U =

∑

j∈N
(k, ej ⊗ ej)2 = δ(k),

and the projective norm of a positive semi-definite kernel k ∈ U+
π is given by

‖k‖π = ‖Tk‖L1(U) = δ(k).

For U := L2(a, b), the functional δ is equal to the L1-norm on the diagonal:

‖k‖π = δ(k) =

∫ b

a

k(t, t) dt ∀k ∈ L2(a, b)+
π .

2. Analytic tools for evolution equations

In this section we first recall the concepts of differentiating vector-valued
functions in §2.1, as well as the notions of semigroups on Hilbert spaces and
their generators in §2.2. We then define fractional powers of closed operators
in §2.3. This definition is particularly important for Papers III–V in the second
part of the thesis. The specific class of closed, possibly unbounded (differential)
operators considered throughout all Papers I–V is discussed in §2.4. Finally,
in §2.5, the spaces of Bochner-integrable vector-valued functions are introduced,
which appear in the variational problems of Papers I and II.

For general introductions to differentiation and integration of vector-valued
functions as well as semigroup theory, we refer to [15, 19, 26, 31, 43].

10



Analytic tools for evolution equations

2.1. Differentiation in Hilbert spaces. In this subsection we introduce
the two main concepts of differentiation for vector-valued functions: Gâteaux
derivatives and Fréchet derivatives. To this end, let U0 ⊂ U be an open subset
of the Hilbert space U .

2.1.1. Gâteaux derivative. The Gâteaux derivative or Gâteaux differential
of a function f : U0 → H at x0 ∈ U0 in the direction y ∈ U is defined as

Df(x0; y) := lim
τ→0

f(x0 + τy)− f(x0)

τ
.

If this limit exists along all directions y ∈ U , we say that f is Gâteaux differen-
tiable in x0 ∈ U0.

2.1.2. Fréchet derivative. A function f : U0 → H is called Fréchet differ-
entiable at x0 ∈ U0 if there exists a bounded linear operator T : U → H such
that

lim
‖y‖U→0

‖f(x0 + y)− f(x0)− Ty‖H
‖y‖U

= 0,

or equivalently, in Laudau notation,

f(x0 + y) = f(x0) + Ty + o(‖y‖U ) as ‖y‖U → 0.

We call Df(x0) := T the Fréchet derivative or the Fréchet differential of f at x0.
If f is Fréchet differentiable at every x0 ∈ U0, its derivative

Df : U0 → L(U ;H), x0 7→ Df(x0),

is an operator-valued function, taking values in the space of bounded linear
operators mapping from U to H. We note that, sometimes, Df is also called
the strong derivative of f (in particular, when U = R).

Clearly, the definitions of Gâteaux and Fréchet differentiability coincide if
U = R, but already for U = R2 and H = R one can construct functions which
are Gâteaux differentiable, e.g., in the origin, but not Fréchet differentiable. An
example is the function f : R2 → R, defined by f(x1, x2) := x3

1(x2
1 + x2

2)−1 if
(x1, x2) 6= (0, 0) and f(0, 0) := 0.

In fact, another way of defining Fréchet differentiability of f at x0 ∈ U0 is
to require that f is Gâteaux differentiable at x0 with Df(x0; · ) ∈ L(U ;H) and
that, in addition, the difference quotients converge uniformly for all directions
y ∈ U . In this case, Df(x0) = Df(x0; · ). From this definition, it is evident
that every function, which is Fréchet differentiable at x0, is also Gâteaux dif-
ferentiable there, and that the converse is not true.

For our purposes the notion of Fréchet differentiability of real-valued func-
tions f : U → R will be particularly important, i.e., U0 = U and H = R. In
this case, the Fréchet derivative Df : U → U ′ takes by definition values in the
dual space U ′. By the Riesz representation theorem, it can be identified with a
mapping Df : U → U and, thus, the second Fréchet derivative of f at x0 ∈ U
with a bounded linear operator on U , i.e.,

D2f(x0) := D(Df)(x0) ∈ L(U).

11
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Consequently, the spaces of once resp. twice continuously Fréchet differen-
tiable real-valued functions on U can be indentified as follows,

C1(U ;R) := {f ∈ C(U ;R) : Df ∈ C(U ;U)},
C2(U ;R) := {f ∈ C1(U ;R) : D2f ∈ C(U ;L(U))},

where C(U ;H) denotes the vector space of all continuous mappings f : U → H.

2.2. Semigroups and generators. A family (S(t), t ≥ 0) of bounded
linear operators from H to H is called a C0-semigroup (or strongly continuous
one-parameter semigroup) on H if

(i) S(0) = I and S(t+ t′) = S(t)S(t′) for all t, t′ ≥ 0,
(ii) limt→0+ S(t)φ = φ for all φ ∈ H, where limt→0+ denotes the one-sided

limit from above 0 in H.

The semigroup (S(t), t ≥ 0) is uniformly bounded if

(iii) there exists M ≥ 1 such that ‖S(t)‖L(H) ≤M for all t ≥ 0.

In the case M = 1, it is called a semigroup of contractions. Finally, if one can
replace t, t′ ≥ 0 in (i)–(ii) by z, z′ ∈ Σ for a sector

Σ := {z ∈ C : ϕ1 < arg(z) < ϕ2, ϕ1 < 0 < ϕ2}
containing the nonnegative real axis, and if, in addition,

(iv) the map z 7→ S(z) is analytic in Σ,

we say that the semigroup (S(t), t ≥ 0) is analytic.

The linear operator Â, defined on the domain

D(Â) :=

{
φ ∈ H : lim

t→0+

S(t)φ− φ
t

exists

}

by

Âφ := lim
t→0+

S(t)φ− φ
t

∀φ ∈ D(Â),

is the infinitesimal generator of the semigroup (S(t), t ≥ 0).
The following famous theorem named after the mathematicians Einar Hille

and Kôsaku Yosida characterizes generators of C0-semigroups of contractions,
see [31, Thm. 3.1]. It ensures that, for instance, an unbounded operator A of
the form presented in §2.4 and considered throughout all Papers I–V is related

to a generator Â of a C0-semigroup via Â = −A.

Theorem 2.1 (Hille–Yosida). A linear (unbounded) operator Â is the infin-
itesimal generator of a C0-semigroup of contractions (S(t), t ≥ 0) if and only if

(i) Â is closed and densely defined,

(ii) the resolvent set %(Â) := {λ ∈ C : λI − Â is invertible} contains all
positive real numbers and

‖(λI − Â)−1‖L(H) ≤ λ−1 ∀λ > 0.

12
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2.3. Fractional powers of closed operators. Let A be a linear operator

for which Â := −A is the infinitesimal generator of an analytic C0-semigroup
(S(t), t ≥ 0) on the Hilbert space H. For β > 0, we use the integral represen-
tation of A−β by A.V. Balakrishnan [2] to define the negative fractional power
operator in terms of the semigroup by

A−β :=
1

Γ(β)

∫ ∞

0

tβ−1S(t) dt,

where Γ is the gamma function, and we set A−0 := I. Owing to the identity

1

Γ(β)

π

sin(πβ)
=

∫ ∞

0

u−βe−u du, 0 < β < 1,

Fubini’s theorem, and the change of variables u = st, we can reformulate this
definition for 0 < β < 1 as

A−β =
sin(πβ)

π

∫ ∞

0

∫ ∞

0

u−βe−usβ−1S(s) duds

=
sin(πβ)

π

∫ ∞

0

S(s)

∫ ∞

0

t−βe−st dtds =
sin(πβ)

π

∫ ∞

0

t−β(tI +A)−1 dt.

Here, we have used the integral representation of the resolvent,

(tI +A)−1 =

∫ ∞

0

e−stS(s) ds,

in the last step. For our purposes, both representations of A−β will be relevant:
The first one is used in the derivation of the weak error bound in Paper IV. The
latter representation, which holds only for 0 < β < 1, is the starting point for
the quadrature used to compute the numerical approximation in Papers III–V.

The so-defined negative fractional power operators satisfy the following
properties, see [31, §2.6]:

(a) There exists C > 0 such that ‖A−β‖L(H) ≤ C for 0 ≤ β ≤ 1.

(b) A−(β+γ) = A−βA−γ for all β, γ ≥ 0.
(c) limβ→0+ A−βφ = φ for all φ ∈ H.

(d) A−β is injective for all β ≥ 0.

The characteristics (a)–(c) show that (A−β , β ≥ 0) is a C0-semigroup on H.
Property (d) allows us to define the fractional power operator Aβ for β ≥ 0 on
the domain D(Aβ) := Rg(A−β) by

Aβ := (A−β)−1 if β > 0, and A0 := I.

Below, we collect some properties of fractional power operators which are
used in the thesis without further mentioning, see [31, Thm. 6.8]:

(a) Aβ is a closed operator.
(b) D(Aβ) ⊂ D(Aγ) if β ≥ γ ≥ 0.

(c) For every β ≥ 0, Aβ is densely defined, i.e., D(Aβ) = H.
(d) Aβ+γφ = AβAγφ for all φ ∈ D(Aθ), where θ := max{β, γ, β + γ}, and

for every β, γ ∈ R.

13
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2.4. A class of operators generating analytic semigroups. In what
follows, we let A : D(A)→ H be a linear operator defined on a dense subspace
D(A) of H. In addition, we assume that A is self-adjoint and positive definite,

(Aφ,ψ)H = (φ,Aψ)H , (Aϑ, ϑ)H > 0 ∀φ, ψ, ϑ ∈ D(A), ϑ 6= 0,

and that A has a compact inverse A−1 ∈ K(H). The application of Theorem 1.1
to A−1 shows that there exists an orthonormal basis {ej}j∈N of H consisting of
eigenvectors of A and an nondecreasing sequence of corresponding eigenvalues

λj > 0, i.e., Aej = λjej for all j ∈ N. In particular, the operator Â := −A
is closed, densely defined on D(Â) = D(A), and its spectrum consists only of
negative real numbers. By the Hille–Yosida theorem, Theorem 2.1, and by [15,
Cor. 4.7], −A is thus the generator of an analytic C0-semigroup of contractions
(S(t), t ≥ 0) and fractional powers of the operator A are defined as in §2.3.

Furthermore, in this case, the fractional power operator Aβ : D(Aβ) → H,
defined in §2.3, has the spectral representation

Aβφ :=
∑

j∈N
λβj (φ, ej)H ej , β ≥ 0,

on the domain

D(Aβ) =



φ ∈ H :

∑

j∈N
λ2β
j (φ, ej)

2
H <∞



 .

The subspace Ḣr := D(Ar/2) ⊂ H, r ≥ 0, is itself a Hilbert space with respect
to the inner product

(φ, ψ)r := (Ar/2φ,Ar/2ψ)H .

For r > 0, we let the negative-indexed space Ḣ−r be defined as the dual
space of Ḣr. By identifying Ḣ−0 := H ′ with Ḣ0 = H (via the Riesz map), we
obtain the following scale of continuously and densely embedded Hilbert spaces,

Ḣs ↪→ Ḣr ↪→ Ḣ0 = H ∼= Ḣ−0 ↪→ Ḣ−r ↪→ Ḣ−s

for s ≥ r ≥ 0. The duality pairing between Ḣ−r and Ḣr (or vice versa) is
denoted by 〈 · , · 〉r. If r = 1, we omit the subscript and write 〈 · , · 〉. The norm

on Ḣ−r can then be expressed by [40]

‖g‖−r = sup
φ∈Ḣr\{0}

〈g, φ〉r
‖φ‖r

=

(∑

j∈N
λ−rj 〈g, ej〉2r

)1/2

.

It is an immediate consequence of this representation of the dual norm and
the definition of the Ḣr spaces above that there exists a unique continuous
extension of Aβ : Ḣ2β → H to an isometric isomorphism Aβ : Ḣr → Ḣr−2β for
all β ≥ 0 and any r ∈ R, cf. Lemma 2.1 of Paper III.

If we let H∗ := Ḣ−0, V := Ḣ1, and V ∗ := Ḣ−1, the operator A : V → V ∗

is bounded and we obtain the following Gelfand triple,

V ↪→ H ∼= H∗ ↪→ V ∗.

14
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Finally, we stress the difference between the spaces V ′ and V ∗: V ′ denotes
the dual of V in its original sense, i.e., all continuous linear mappings from V
to R, while V ∗ is the identification of the dual with respect to the pivot space H.
Therefore, we have the relation: g ∈ V ∗ if and only if 〈g, · 〉 ∈ V ′.

2.5. Bochner spaces. In order to define the trial and test spaces for the
variational formulations of the evolution equations in the first part of the thesis,
Papers I and II, we introduce a special class of function spaces: Bochner (or
Lebesgue–Bochner) spaces. For the definitions of measurability and the Bochner
integral, we refer to [43, §V.5].

For finite T > 0 and 1 ≤ p < ∞, we consider the time interval J := (0, T )
and the Bochner space Lp(J ;H) of Bochner-measurable, p-integrable functions
mapping from J to the Hilbert space H, which is itself a Banach space with
respect to the norm

‖u‖Lp(J;H) :=

(∫

J

‖u(t)‖pH dt

)1/p

.

If p = 2, it is a Hilbert space with respect to the obvious inner product.
Let u ∈ L1(J ;H) be an H-valued Bochner-integrable function. Following

[12, Ch. XVIII, §1, Def. 3] we define the distributional (weak) derivative ∂tu
of u as the H-valued distribution satisfying

((∂tu)(v), φ)H = −
∫

J

dv

dt
(t) (u(t), φ)H dt ∀(v, φ) ∈ C∞0 (J ;R)×H.

Note that this notion of differentiability is, in general, weaker than the concepts
presented in §2.1 (strong derivative vs. weak derivative).

Recall the Gelfand triple V ↪→ H ∼= H∗ ↪→ V ∗ from §2.4. The definition of
the distributional derivative of an H-valued function above implies that for a
function u ∈ L2(J ;V ∗) its distributional derivative ∂tu satisfies

〈(∂tu)(v), φ〉 = −
∫

J

dv

dt
(t) 〈u(t), φ〉 dt ∀(v, φ) ∈ C∞0 (J ;R)× V.

After having defined the Bochner space L2(J ;V ∗) and the distributional deriv-
ative we can now introduce the vector-valued Sobolev space

H1(J ;V ∗) := {u ∈ L2(J ;V ∗) : ∂tu ∈ L2(J ;V ∗)}
and equip it with the norm

‖u‖H1(J;V ∗) :=
(
‖u‖2L2(J;V ∗) + ‖∂tu‖2L2(J;V ∗)

)1/2

.

With respect to the corresponding inner product, H1(J ;V ∗) is a Hilbert space.
The formulations of the variational problems in Papers I and II involve trial

and test spaces originating from the spaces

X := L2(J ;V ), Ŷ := L2(J ;V ) ∩H1(J ;V ∗).

15
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These spaces are Hilbert spaces: X with respect to the Bochner inner product

( · , · )X = ( · , · )L2(J;V ) and Ŷ being equipped with the graph norm

‖v‖Y :=
(
‖v‖2L2(J;V ) + ‖∂tv‖2L2(J;V ∗)

)1/2

,

and the obvious corresponding inner product.

It is a well-known result [12, Ch. XVIII, §1, Thm. 1] that Ŷ ↪→ C(J̄ ;H),
where C(J̄ ;H) denotes the space of continuous H-valued functions on the clo-

sure J̄ := [0, T ] of J . Therefore, for v ∈ Ŷ, the values v(0) and v(T ) are

well-defined in H, and the following are closed subspaces of Ŷ:

Y0 :=
{
v ∈ Ŷ : v(0) = 0 in H

}
, Y :=

{
v ∈ Ŷ : v(T ) = 0 in H

}
,

which are equipped with the same norm ‖ · ‖Y as Ŷ. We note that

|||v|||Y :=
(
‖v‖2L2(J;V ) + ‖∂tv‖2L2(J;V ∗) + ‖v(0)‖2H

)1/2

defines an equivalent norm on Y, which has the following advantages:

• The embedding constant in Y ↪→ C(J̄ ;H) is smaller: Fix t ∈ J . The
integration of d

dt‖v(t)‖2H = 2 〈∂tv(t), v(t)〉 for v ∈ Y over the interval [t, T ]
yields (recall that v(T ) = 0 for v ∈ Y):

‖v(t)‖2H ≤ 2 ‖∂tv‖L2((t,T );V ∗)‖v‖L2((t,T );V )

≤ ‖v‖2L2((t,T );V ) + ‖∂tv‖2L2((t,T );V ∗).

This already shows that the embedding constant with respect to ‖ · ‖Y is
bounded by 1. By integrating from 0 to t instead we obtain:

‖v(t)‖2H ≤ ‖v(0)‖2H + ‖v‖2L2((0,t);V ) + ‖∂tv‖2L2((0,t);V ∗).

Adding the two inequalities shows that ‖v(t)‖H ≤ 1√
2
|||v|||Y . For sharpness

of these bounds we refer to the example in §2.2 of Paper II.
• If we define the evolution operator b : X → Y ′ by

(bu)(v) :=

∫

J

〈u(t), (−∂t +A)v(t)〉 dt,

then b ∈ L(X ;Y ′) is an isometry, i.e., |||bu|||Y′ = ‖u‖X , where we set

|||f |||Y′ := supv∈Y\{0}
|f(v)|
|||v|||Y , see §3.3.

Since, in particular, the latter property is useful for the error analysis of numer-
ical methods, the results of Paper II are formulated with respect to the norm
||| · |||Y , while in, e.g., [24, 36, 37] and also in Paper I the norm ‖ · ‖Y is used.

3. Deterministic initial value problems

Subject of this section is the abstract inhomogeneous initial value problem

u′(t) +Au(t) = f(t), t ∈ J = (0, T ), u(0) = u0,(IVP)

for a right-hand side f ∈ L1(J ;H) and an initial data u0 ∈ H. Here, u′ : J → H
denotes the strong derivative of the H-valued function u, see §2.1. We assume
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that −A : D(A)→ H is the infinitesimal generator of an analytic C0-semigroup
(S(t), t ≥ 0), cf. §2.2. For instance, A can be of the form discussed in §2.4.

In the homogeneous case when f = 0, Problem (IVP) is often referred to
as the Cauchy problem (relative to the operator −A) in the literature.

In the following, we first state the classical definition of a solution to (IVP)
in §3.1. We then present three different concepts widening the notion of solu-
tions to (IVP): strong and mild solutions in §3.2, and weak solutions obtained
via variational formulations of (IVP) in §3.3.

3.1. Classical solutions. A classical solution u to (IVP) on [0, T ) is an
H-valued function which is continuous on [0, T ), continuously differentiable on
J , takes values in D(A) on J , i.e.,

u ∈ C([0, T );H) ∩ C((0, T );D(A)), u′ ∈ C((0, T );H),

and satisfies (IVP).
Since −A is assumed to be the infinitesimal generator of an analytic C0-

semigroup, one knows that the homogeneous initial value problem has a unique
classical solution for every initial data u0 ∈ H [31, §4, Cor. 3.3]. It is given
by u(t) = S(t)u0 for all t ∈ [0, T ). From this result, it is evident that the
inhomogeneous problem in (IVP) has at most one classical solution.

However, for a general right-hand side f ∈ L1(J ;H), the definition of a
classical solution is often too restrictive in order to ensure existence. Consider,
e.g., the simple example when A = 0. Then the initial value problem (IVP) does
not have a classical solution unless f is continuous. But also continuity of f on
J̄ = [0, T ] is not sufficient to guarantee existence of a classical solution to (IVP)
when −A generates a C0-semigroup, see [31, §4.2] for a counterexample. For this
reason, the generalized solution concepts presented in the following subsections
have been introduced.

3.2. Strong and mild solutions. Note that for f ∈ L1(J ;H) and A = 0,
the initial value problem (IVP) always has a solution, which is differentiable
almost everywhere and satisfies u′(t) = f(t) for almost every t ∈ J . Namely,

the function given by u(t) = u0+
∫ t

0
f(s) ds has these properties. This motivates

the following definition of a strong solution to (IVP), see [31, §4.2].
A function u : J̄ → H, which is differentiable almost everywhere on J̄ with

u′ ∈ L1(J ;H), is called a strong solution of (IVP) if u(0) = u0 and

u′(t) +Au(t) = f(t) for a.e. t ∈ J̄ .
We note that this definition implies integrability of the strong solution u

itself and of Au on J , i.e.,
∫

J

(
‖u(t)‖H + ‖Au(t)‖H

)
dt <∞.

In addition, the following hold for almost every t ∈ J̄ :

u(t) ∈ D(A), u(t) = u0 −
∫ t

0

Au(s) ds+

∫ t

0

f(s) ds.
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Since −A is the generator of an analytic C0-semigroup one knows that the
initial value problem (IVP) has a unique strong solution for u0 ∈ H if f is locally
α-Hölder continuous on (0, T ] with exponent α > 0, see [31, §4, Cor. 3.3].

However, a solution concept for (IVP) which admits a unique solution for
every f ∈ L1(J ;H) would be preferable. The fact that the unique classical
solution to the homogeneous problem for u0 ∈ H is given by u(t) = S(t)u0

motivates to define generalized solutions in terms of the analytic C0-semigroup
(S(t), t ≥ 0) generated by −A. More precisely, for f ∈ L1(J ;H), we let the
function u : J̄ → H be defined by

u(t) := S(t)u0 +

∫ t

0

S(t− s)f(s) ds, t ∈ J̄ .

Then u is continuous, i.e., u ∈ C(J̄ ;H), but in general not differentiable and
it does not necessarily take values in D(A) on J , see [26, 31]. Furthermore, if
(IVP) has a classical solution, then it is given by this function. In this way, it
may be considered as a generalized solution called the mild solution of (IVP).

As already mentioned, every classical solution is a mild solution. Since we
assume that the semigroup (S(t), t ≥ 0) is analytic, it is furthermore ensured
that for every u0 ∈ H, the mild solution is also a classical solution if f is locally
α-Hölder continuous on (0, T ] with exponent α > 0, see [31, §4, Cor. 3.3].

3.3. The variational approach: weak solutions. In [36, 37] it has been
proposed to treat the initial value problem (IVP) with variational formulations
posed on Bochner and vector-valued Sobolev spaces as trial and test spaces,
cf. the spaces introduced in §2.5. These spaces have to be balanced in such
a way that the resulting solution operator is a bijection between the dual of
the test space and the trial space, since then existence and uniqueness of a
variational solution in the trial space is ensured.

In order to introduce the trial and test spaces of the variational problems
below, we assume that A is a densely defined, self-adjoint, positive definite linear
operator with a compact inverse as in §2.4. In addition, we recall the Gelfand
triple V ↪→ H ∼= H∗ ↪→ V ∗, as well as the Hilbert spaces from §2.5:

X = L2(J ;V ), Ŷ = L2(J ;V ) ∩H1(J ;V ∗),

and the closed linear subspaces Y0,Y ⊂ Ŷ of functions vanishing at time t = 0
and t = T , respectively.

There are different ways to derive a well-posed variational formulation of the
initial value problem (IVP), but all of them have in common that the resulting
solution concept is less restrictive compared to the notions of the classical and
strong solutions presented in §§3.1–3.2.

For the first approach, let f ∈ L2(J ;V ∗). Furthermore, we assume that

(i) the solution u to (IVP) has a square-integrable V ∗-valued distribu-
tional derivative ∂tu,

(ii) u takes values in V = D(A1/2) almost everywhere in J̄ , and
(iii) u is square-integrable on J with respect to V .
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In other words, u is a well-defined element of the space Ŷ. If the initial value u0

equals 0, a variational formulation of (IVP) is given by [37]:

Find u ∈ Y0 s.t. b0(u, v) = `0(v) ∀v ∈ X ,(VP1)

where the bilinear form b0 : Y0 ×X → R is defined by

b0(w, v) :=

∫

J

〈∂tw(t) +Aw(t), v(t)〉 dt, w ∈ Y0, v ∈ X ,

and `0(v) :=
∫
J
〈f(t), v(t)〉 dt for v ∈ X .

In order to cope with non-vanishing initial data u(0) = u0 6= 0, one can,

e.g., choose a function up ∈ Ŷ with up(0) = u0 and consider the problem

Find ũ ∈ Y0 s.t. b0(ũ, v) = ˜̀
0(v) ∀v ∈ X ,

where ˜̀0(v) := `0(v)− b0(up, v) for v ∈ X . Then, the function u := up + ũ ∈ Ŷ
solves the initial value problem (IVP) in the variational sense.

A problem arising with this approach is that the function up ∈ Ŷ has to
be constructed and, in particular, this function has to have V -regularity almost
everywhere. Thus, e.g., the choice up(t) := e−tu0 is only admissible for u0 ∈ V .

If u0 ∈ H \V one can, e.g., enforce the initial value with a multiplier in the
variational problem, see [36]. To this end, we consider the Banach space

X̂ := {(v, φ) : v ∈ X , φ ∈ H}, ‖(v, φ)‖X̂ :=
(
‖v‖2X + ‖φ‖2H

)1/2
,

equipped with the following algebraic operations:

(v, φ) + (w,ψ) := (v + w, φ+ ψ), λ(v, φ) := (λv, λφ) ∀λ ∈ R.

We define the bilinear form b̂ : Ŷ × X̂ → R for w ∈ Ŷ and (v, φ) ∈ X̂ by

b̂(w, (v, φ)) :=

∫

J

〈∂tw(t) +Aw(t), v(t)〉 dt+ (w(0), φ)H ,

where again ∂tw denotes the distributional derivative of w. A variational solu-
tion to (IVP) is then given by the function u satisfying

Find u ∈ Ŷ s.t. b̂(u, (v, φ)) = ̂̀(v, φ) ∀(v, φ) ∈ X̂ ,(VP2)

where ̂̀(v, φ) :=
∫
J
〈f(t), v(t)〉 dt+ (u0, φ)H for (v, φ) ∈ X̂ .

An alternative approach, presented in [37], is to choose the trial and test
spaces in such a way that the variational problem incorporates the initial con-
dition as a “natural boundary condition”. For this purpose, we first note that

the following integration by parts formula holds for functions w, v ∈ Ŷ with
V ∗-valued distributional derivatives ∂tw and ∂tv:
∫

J

〈∂tw(t), v(t)〉 dt =−
∫

J

〈w(t), ∂tv(t)〉 dt+ (w(T ), v(T ))H − (w(0), v(0))H .

After multiplying the initial value problem (IVP) with a test function v ∈ Y
(i.e., v(T ) = 0) and integrating over J , the application of the above identity
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yields the following variational problem:

Find u ∈ X s.t. b(u, v) = `(v) ∀v ∈ Y,(VP3)

with the bilinear form b : X × Y → R defined by

b(w, v) :=

∫

J

〈w(t),−∂tv(t) +Av(t)〉 dt, w ∈ X , v ∈ Y,

and the right-hand side `(v) :=
∫
J
〈f(t), v(t)〉 dt + (u0, v(0))H . In this way, we

have incorporated the term arising from the initial value in the functional `.
Furthermore, compared to (VP1)–(VP2), we have moved the distributional de-
rivative ∂t from the trial function to the test function. Therefore, we call (VP3)
a weak variational formulation and its solution a weak (variational) solution.

In the following theorem we address well-posedness of the three presented
variational problems.

Theorem 3.1. The bilinear forms b0 : Y0 × X → R, b̂ : Ŷ × X̂ → R, and
b : X × Y → R in (VP1), (VP2), and (VP3) are continuous and there exist
constants γ0, γ̂, γ > 0 such that the following inf-sup and surjectivity conditions
are satisfied:

inf
w∈S(Y0)

sup
v∈S(X )

b0(w, v) ≥ γ0, ∀v ∈ X \ {0} : sup
w∈S(Y0)

b0(w, v) > 0,

inf
w∈S(Ŷ)

sup
v∈S(X̂ )

b̂(w, v) ≥ γ̂, ∀v ∈ X̂ \ {0} : sup
w∈S(Ŷ)

b̂(w, v) > 0,

inf
w∈S(X )

sup
v∈S(Y)

b(w, v) ≥ γ, ∀v ∈ Y \ {0} : sup
w∈S(X )

b(w, v) > 0.

Furthermore, for any f ∈ L2(J ;V ∗), the functionals `0 in (VP1) and ̂̀ in

(VP2) are linear and continuous on X and X̂ , respectively. More precisely, the
following estimates hold:

‖`0‖X ′ ≤ ‖f‖L2(J;V ∗), ‖̂̀‖X̂ ′ ≤ ‖f‖L2(J;V ∗) + ‖u0‖H .
The functional ` in (VP3) is continuous on Y for every f ∈ Y∗ and u0 ∈ H
with ‖`‖Y′ ≤ ‖f‖Y∗ + ‖u0‖H , where Y∗ denotes the identification of the dual of
Y via the inner product on L2(J ;H).

Proof. For the proof of the inf-sup and surjectivity conditions, see [36,
Thm. 5.1] and [37, Thm. 2.2].

The bounds for ‖`0‖X ′ and ‖̂̀‖X̂ ′ are readily seen. In order to derive the

bound for ‖`‖Y′ , we recall that the embedding constant in Y ↪→ C(J̄ ;H) equals
one, see §2.5. Thus, we obtain for v ∈ Y:

|`(v)| ≤ ‖f‖Y∗‖v‖Y + ‖u0‖H‖v(0)‖H ≤ (‖f‖Y∗ + ‖u0‖H)‖v‖Y . �

We close this section by drawing some conclusions from Theorem 3.1.

• The bilinear forms b0, b̂, and b induce boundedly invertible continuous linear

operators b0 ∈ L(Y0;X ′), b̂ ∈ L(Ŷ; X̂ ′), and b ∈ L(X ;Y ′), where we use
the same notation for the operators as for the bilinear forms, since it will
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be evident from the context to which we refer. Therefore, the variational
problems (VP1), (VP2), and (VP3) are uniquely solvable.

For (VP3), the data-to-solution mapping (f, u0) 7→ u, where u ∈ X
denotes the solution to (VP3), satisfies the stability bound

‖u‖X ≤ γ−1‖`‖Y′ ≤ γ−1(‖f‖Y∗ + ‖u0‖H),

and analogous results hold for (VP1) and (VP2).
• Recall the equivalent norm ||| · |||Y on Y from §2.5:

|||v|||Y =
(
‖v‖2L2(J;V ) + ‖∂tv‖2L2(J;V ∗) + ‖v(0)‖2H

)1/2

.

With respect to this norm on Y, the induced operator b : X → Y ′ is an
isometric isomorphism.

To verify the isometry property, we first emphasize the identity

|||v|||Y = ‖ − ∂tv +Av‖L2(J;V ∗) ∀v ∈ Y.

Thus, |||bw|||Y′ := supv∈Y\{0}
|b(w,v)|
|||v|||Y ≤ ‖w‖X for w ∈ X follows from the

definition of b. It remains to verify |||bw|||Y′ ≥ ‖w‖X or, equivalently, that
‖b−1`‖X ≤ |||`|||Y′ holds for every ` ∈ Y ′.

Since the inf-sup constant γ of b is positive and ||| · |||Y defines an equiva-
lent norm on Y, one knows that the inf-sup constant γ9 of b with respect to
||| · |||Y on Y inherits the positivity: γ9 > 0. Moreover, the stability bound

‖b−1`‖X ≤ γ−1
9 |||`|||Y′ , for ` ∈ Y ′, and the following equalities hold:

γ9 = inf
w∈X

sup
v∈Y

b(w, v)

‖w‖X |||v|||Y
= inf
v∈Y

sup
w∈X

b(w, v)

‖w‖X |||v|||Y
.

For v ∈ Y, we set w := v − (A∗)−1∂tv to obtain ‖w‖X = |||v|||Y and

b(w, v) = ‖v‖2L2(J;V ) + ‖∂tv‖2L2(J;V ∗) − 2

∫

J

〈∂tv(t), v(t)〉 dt

= ‖v‖2Y + ‖v(0)‖2H = |||v|||2Y = ‖w‖X |||v|||Y .
This shows that γ9 ≥ 1 and the isometry property of b : X → Y ′ with
respect to the norms ‖ · ‖X and ||| · |||Y′ follows.

Note also that this result in conjunction with the relation ‖v‖Y ≤ |||v|||Y ,
v ∈ Y, implies the following lower bound for the inf-sup constant of the
bilinear form b with respect to the norms ‖ · ‖X and ‖ · ‖Y :

inf
w∈S(X )

sup
v∈S(Y)

b(w, v) = inf
w∈X

sup
v∈Y

b(w, v)

‖w‖X ‖v‖Y
≥ 1.

We conclude that γ ≥ γ9 = 1.
• The assumptions on the source term f and the initial value u0 made in the

latter variational approach (VP3) for a well-defined weak solution of (IVP)
are not more restrictive than needed for a mild solution in §3.2, since ` ∈ Y ′
for every f ∈ L1(J ;H) and u0 ∈ H.
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4. Stochastic calculus in Hilbert spaces

In order to introduce the stochastic differential equations of interest, in
this section we first recall certain notions and concepts from probability theory.
Specifically, in §4.1 we start by defining random variables with values in Hilbert
spaces, as well as Gaussian measures, and Gaussian white noise on Hilbert
spaces. We then proceed with classes of vector-valued stochastic processes in
§4.2. In addition, we summarize basic definitions and results from Itô integra-
tion and Itô calculus in §§4.3–4.4. This establishes the framework for defining
solutions to parabolic stochastic differential equations in §4.5.

From here on, let (Ω,A,P) denote a complete probability space equipped
with the filtration F := (Ft, t ∈ I) which satisfies the “ususal conditions”, i.e.,

(i) F is right continuous, i.e., Ft = Ft+ :=
⋂
s>t Fs for all t ∈ I;

(ii) F0 contains all P-null sets of A.

For our purposes, the index set I is either the nonnegative part of the real axis
I := {t ∈ R : t ≥ 0} or the closed finite time interval I := J̄ = [0, T ].

Throughout this section, we write s ∧ t := min{s, t} for s, t ∈ R, and we
mark equalities which hold P-almost surely with P-a.s.

4.1. Random variables in Hilbert spaces. The purpose of this sub-
section is to define random variables which take values in the separable Hilbert
space U . In order to introduce the notion of Gaussian white noise on U , which is
necessary for Papers III–V in the second part of the thesis, we furthermore gen-
eralize this definition to the concept of weak random variables. For an overview
of vector-valued random variables, Gaussian measures on Hilbert spaces, and
white noise theory, we refer to [3, 10, 32].

4.1.1. Random variables. Any measurable function Z : (Ω,A)→ (U,B(U))
is called a U -valued random variable. The distribution of Z, defined as the
image measure P ◦ Z−1 of P under Z, is a probability measure on (U,B(U)).

For any integrable U -valued random variable, i.e.,
∫

Ω
‖Z(ω)‖U dP(ω) <∞,

we call the Bochner integral

E[Z] :=

∫

Ω

Z(ω) dP(ω) ∈ U

the expectation or the mean of Z.
In addition, if Z ∈ L2(Ω;U), i.e., E[‖Z‖2U ] <∞, the covariance of Z,

Cov(Z) := E[(Z − E[Z])⊗ (Z − E[Z])],

is an element of the projective tensor space U sym
π , see §§1.2–1.3, since

‖Cov(Z)‖π ≤ E[‖(Z − E[Z])⊗ (Z − E[Z])‖π] = E[‖Z − E[Z]‖2U ] <∞.
By Proposition 1.2, it can thus be identified with an operator Q ∈ Lsym

1 (U),
which is referred to as the covariance operator of Z. The covariance operator Q
inherits the positive semi-definiteness from the covariance,

(Cov(Z), x⊗ x)2 = E[(Z − E[Z], x)2
U ] ≥ 0 ∀x ∈ U ⇒ Q ∈ L+

1 (U).
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Recall the subspace U+
π of the projective tensor product space Uπ from §1.3.

Proposition 1.2 also implies that the spaces U+
π and L+

1 (U) are isometrically iso-
morphic. Therefore, there is a one-to-one correspondence between covariances
(covariance kernels) in U+

π and covariance operators in L+
1 (U).

We remark that, historically, the name “kernel” originates from the special
but frequently used case U = L2(D) for some domain D ⊂ Rd, d ∈ N. By the
definitions above, the covariance kZ := Cov(Z) of Z ∈ L2(Ω;L2(D)) satisfies

(kZ , f ⊗ g)2 =

∫

D×D
kZ(x,y)f(x)g(y) dx dy

= E
[∫

D

(Z(x)− E[Z(x)])f(x) dx

∫

D

(Z(y)− E[Z(y)])g(y) dy

]

for all f, g ∈ L2(D). In particular, if the random variable Z is (P-a.s.) continuous
on the closure D̄ of the domain D, then its covariance is continuous on D̄× D̄,
and

kZ(x,y) = E[(Z(x)− E[Z(x)])(Z(y)− E[Z(y)])] = Cov(Z(x), Z(y))

for every x,y ∈ D̄. Therefore, the covariance kZ has the form of the kernels
considered, e.g., in Mercer’s theorem [28].

4.1.2. Gaussian measures. A probability measure µ on (U,B(U)) is called
a Gaussian measure if, for every x ∈ U , the measurable function (x, · )U is
normally distributed, i.e., there exist numbers mx ∈ R and σ2

x ≥ 0 such that,
for all a ∈ R,

µ({y ∈ U : (x, y)U ≤ a}) =
1√

2πσ2
x

∫ a

−∞
e
− (r−mx)2

2σ2x dr.

For σ2
x = 0, the normal distribution is degenerate and

µ({y ∈ U : (x, y)U ≤ a}) =

{
1 if mx ≤ a,
0 otherwise.

If µ is a Gaussian measure on U , then there exist a unique element m ∈ U and a
unique self-adjoint, positive semi-definite trace class operator Q ∈ L+

1 (U) such
that, for all x, y ∈ U ,

∫

U

(x, z)U µ(dz) = (x,m)U ,

∫

U

(x, z)U (y, z)U µ(dz)− (x,m)U (y,m)U = (Qx, y)U .

We call m the mean and Q the covariance operator of the measure µ.
Another characterization of Gaussian measures can be made in terms of

their characteristic functions. For a probability measure µ on (U,B(U)), its
characteristic function ϕµ is defined by

ϕµ(x) :=

∫

U

ei(x,y)U µ(dy), x ∈ U.

23



Introduction

A probability measure µ on (U,B(U)) with meanm ∈ U and covariance operator
Q ∈ L+

1 (U) is then a Gaussian measure if and only if

ϕµ(x) = ei(x,m)U− 1
2 (Qx,x)U , x ∈ U.

Thus, a Gaussian measure µ is uniquely determined by its mean m ∈ U and its
covariance operator Q ∈ L+

1 (U), and we let N (m,Q) denote its distribution.
Finally, a mapping Z : Ω → U is called a U -valued Gaussian random vari-

able if there exist m ∈ U and Q ∈ L+
1 (U) such that its distribution is a Gaussian

measure, i.e., P ◦ Z−1 ∼ N (m,Q). In this case, for all x ∈ U , the real-valued
random variable (x, Z)U is normally distributed with

E[(x, Z)U ] = (x,m)U ,

E[(x, Z −m)U (y, Z −m)U ] = (Qx, y)U ,

E[‖Z −m‖2U ] = tr(Q).

The characteristic function of Z, i.e., ϕZ(x) := E[ei(x,Z)U ], is then given by

ϕZ(x) = ei(x,m)U− 1
2 (Qx,x)U , x ∈ U,

and the distribution of Z is uniquely determined by its mean m and its covari-
ance operator Q, and we write Z ∼ N (m,Q).

Let Z ∼ N (0, Q) be a zero-mean U -valued Gaussian random variable, and
letQ−1/2 denote the operator pseudo-inverse of the well-defined fractional power
covariance operatorQ1/2, cf. §2.3. Note that the operatorsQ1/2 andQ−1/2 allow
for the spectral expansion

Q±1/2x :=
∑

j∈J
γ
±1/2
j (x, ej)U ej , x ∈ U,

with respect to an orthonormal basis {ej}j∈N ⊂ U consisting of eigenvectors
of Q ∈ L+

1 (U) with corresponding nonnegative eigenvalues {γj}j∈N, see Theo-
rem 1.1. The index set is given by J := {j ∈ N : γj 6= 0}. The reproducing
kernel Hilbert space H (RKHS for short) of Z ∼ N (0, Q) is then defined by

H := Q1/2U = Rg(Q1/2), (x, y)H := (Q−1/2x,Q−1/2y)U , x, y ∈ H,
cf. [10, §2.2.2]. This definition is motivated by the fact that

(x, Z)U ∼ N (0, ‖x‖2H∗) ∀x ∈ U, where ‖x‖H∗ := sup
y∈S(H)

(x, y)U ,

i.e., the RKHS describes the values of U that Z attains.
4.1.3. Weak random variables and Gaussian white noise. In §§4.1.1–4.1.2

we have discussed random variables and Gaussian measures on (U,B(U)) with
self-adjoint, positive semi-definite trace class covariance operators. As observed
in §4.1.1, the covariance operator of a U -valued random variable is necessarily
of this form. Similarly, one can show that, if µ is a Gaussian measure on U ,
its covariance operator Q has to be of trace class, since otherwise µ fails to be
countably additive with respect to the Borel σ-algebra B(U).
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It is, however, possible to consider the generalization to bounded covariance
operators,

Q ∈ L+(U) := {T ∈ L(U) : T = T ∗, (Tx, x)U ≥ 0 ∀x ∈ U}
for probability measures on (U, C(U)), where C(U) is the σ-algebra generated
by the cylinder sets of U . Here C ⊂ U is a (Borel) cylinder set if there exist
finitely many elements x1, . . . , xn ∈ U and a Borel set B in Rn such that

C =
{
y ∈ U : ((y, x1)U , . . . , (y, xn)U )T ∈ B

}
.

Measures on (U, C(U)) are called cylinder measures on the Hilbert space U .
Note that they are by definition countably additive with respect to C(U), but
not necessarily on the Borel sets B(U). Thus, every measure with respect to
the Borel σ-algebra B(U) induces a cylinder measure, but the converse is, in
general, not true.

A measurable mapping Z : (Ω,A)→ (U, C(U)), whose distribution P ◦ Z−1

is a cylinder measure, may be seen as a generalized U -valued random variable,
often referred to as a weak random variable in the literature [3]. This name orig-
inates from the fact that a weak random variable Z is weakly measurable, i.e.,
g ◦Z : (Ω,A)→ (R,B(R)) is a real-valued random variable for every functional
g ∈ U ′, as cylinder sets form neighborhoods in the weak topology of U .

Since the characteristic function of a probability measure involves only one-
dimensional projections of elements in U , it is possible to define the character-
istic function ϕµ for a cylinder measure µ in the same way as for probability
measures on (U,B(U)). In particular, a probability measure µ on (U, C(U))
is a Gaussian cylinder measure with mean m ∈ U and covariance operator
Q ∈ L+(U) if and only if its characteristic function is given by

ϕµ(x) = ei(x,m)U− 1
2 (Qx,x)U , x ∈ U.

It is a consequence of Sazanov’s theorem [3, Thm. 6.3.1] that a Gaussian
cylinder measure µ can be extended to a Gaussian measure on (U,B(U)) if and
only if its covariance operator is of trace class, i.e., Q ∈ L+

1 (U). We call a
weak random variable Z : (Ω,A)→ (U, C(U)), whose distribution is a Gaussian
cylinder measure with covariance operator Q ∈ L+(U) \ L+

1 (U), a U -valued
Gaussian weak random variable. Finally, we define Gaussian white noise W
on U as a zero-mean Gaussian weak random variable, whose characteristic func-
tion is given by

ϕW(x) = E[ei(x,W)U ] = e−
1
2‖x‖2U , x ∈ U,

i.e., m = 0 and the covariance operator of W is the identity, Q = I ∈ L+(U).
Note that the RKHS H of W coincides with U , and that, for every x ∈ U ,

the real-valued random variable (x,W)U is normally distributed with

E[(x,W)U ] = 0, E[(x,W)U (y,W)U ] = (x, y)U ∀y ∈ U.
For this reason, white noise on U is sometimes also defined as the isometry
JW : U → L2(Ω;R) such that, for every x ∈ U , JW(x) is a centered Gaussian
random variable satisfying E[JW(x)JW(y)] = (x, y)U , see [29, Def. 1.1.1].
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A third interpretation of Gaussian white noise W is to regard it as a limit
W = limN→∞WN of well-defined U -valued Gaussian random variables WN ,
where this convergence holds in a weak sense that has to be specified. To this
end, let {ej}j∈N be any orthonormal basis of the separable Hilbert space U
and let {ξj}j∈N be a sequence of independent N (0, 1)-distributed real-valued
random variables. For N ∈ N, we set

WN :=

N∑

j=1

ξjej , JN (x) := (x,WN )U , x ∈ U.

Then, for every finite N , the U -valued random variable WN is Gaussian with
zero-mean and a covariance operator QN satisfying tr(QN ) = N <∞. Further-
more, for every x ∈ U , the sequence {JN (x)}N∈N of real-valued random vari-
ables converges P-a.s. and in any Lp-sense to an N (0, ‖x‖2U )-distributed random
variable. Letting JW(x) := limN→∞ JN (x) is an explicit way of constructing
the isometry JW : U → L2(Ω;R) mentioned above. The series expansion

W =
∑

j∈N
ξj ej ,

which converges in this weak sense, is called a (formal) Karhunen–Loève expan-
sion of the white noise W. Note that this series does not converge in L2(Ω;U)
if U is an infinite-dimensional Hilbert space.

We close this section with the classical idea of Gaussian white noise on
a domain D ⊂ Rd. This is to construct noise W on D such that the real-
valued random variables W(O1) :=

∫
O1
W(x) dx and W(O2) are independent

and Gaussian distributed for every distinct open non-trivial subsets O1, O2 ⊂ D.
By letting W be Gaussian white noise on U = L2(D), we obtain this property:

E[W(O1)W(O2)] = E[(W,1O1
)L2(D)(W,1O2

)L2(D)] = (1O1
,1O2

)L2(D) = 0,

where 1O denotes the indicator function of a set O ⊂ D.

4.2. Stochastic processes. In this subsection we present the classes of
stochastic processes as well as their characteristics which are of interest for our
investigations. Since not needed in greater generality throughout the thesis,
we restrict this presentation to Wiener processes and square-integrable Lévy
processes with trace class covariance operators. We refer the reader to, e.g.,
[32, §§3, 4] for a detailed introduction to stochastic processes taking values in
Hilbert spaces and, in particular, to Lévy processes.

A U -valued stochastic process is defined as a family (X(t), t ∈ I) of U -
valued random variables. For our purposes, the following characterizations of a
stochastic process X := (X(t), t ∈ I) taking values in U will be important:

• Integrability : X is said to be integrable if

‖X(t)‖L1(Ω;U) := E[‖X(t)‖U ] <∞ ∀t ∈ I,
and square-integrable if

‖X(t)‖L2(Ω;U) := E[‖X(t)‖2U ]1/2 <∞ ∀t ∈ I.
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• Mean: If X is integrable, the U -valued mapping

m : I → H, t 7→ E[X(t)]

is well-defined and it is called the mean or the first moment of X.
• Second moment and covariance: Assuming that X is square-integrable, the

tensor-space-valued functions M,C : I × I → Uπ defined by

M(s, t) := E[X(s)⊗X(t)],

C(s, t) := E[(X(s)− E[X(s)])⊗ (X(t)− E[X(t)])], s, t ∈ I,
are called the second moment and the covariance of X, respectively.

We note that the covariance can be expressed in terms of the second moment
and the mean:

C(s, t) = M(s, t)−m(s)⊗m(t).

Furthermore, the second moment and the covariance are well-defined mappings
to the projective tensor product space Uπ (cf. §4.1.1), since

‖E[X(s)⊗X(t)]‖π ≤ E[‖X(s)⊗X(t)‖π] = E[‖X(s)‖U‖X(t)‖U ]

≤ ‖X(s)‖L2(Ω;U)‖X(t)‖L2(Ω;U),

for all s, t ∈ I, where the first estimate holds by the properties of the Bochner
integral and the last one by Hölder’s inequality.

In the following we present certain classes of stochastic processes which we
are going to refer to in the course of the thesis.

4.2.1. Martingales. An integrable stochastic process (X(t), t ∈ I) taking
values in U is called a U -valued martingale with respect to F if it is F-adapted,
i.e., X(t) is Ft-measurable for all t ∈ I, and it satisfies the martingale property:
the conditional expectation of X(t) with respect to the σ-field Fs for s ≤ t is
given by E[X(t)|Fs] = X(s).

4.2.2. Lévy processes. A U -valued stochastic process L := (L(t), t ∈ I) is
said to be a Lévy process if the following conditions are satisfied:

(i) L has independent increments, i.e., the U -valued random variables
L(t1)− L(t0), L(t2)− L(t1), . . ., L(tn)− L(tn−1) are independent for
all t0, . . . , tn ∈ I, 0 ≤ t0 < t1 < . . . < tn;

(ii) L has stationary increments, i.e., the distribution of L(t)−L(s), s ≤ t,
s, t ∈ I, depends only on the difference t− s;

(iii) L(0) = 0 (P-a.s.);
(iv) L is stochastically continuous in t for all t ∈ I, i.e.,

lim
s→t
s∈I

P(‖L(t)− L(s)‖U > ε) = 0 ∀ε > 0.

We often make some or all of the following assumptions on a Lévy process L:

(a) L is adapted to the filtration F ;
(b) for t > s the increment L(t)− L(s) is independent of Fs;
(c) L is integrable;
(d) L has zero-mean, i.e., E[L(t)] = 0 for all t ∈ I;
(e) L is square-integrable.
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Note that the Lévy process L satisfies Assumptions (a)–(b), e.g., for the
filtration F := (F̄Lt , t ∈ I), where F̄Lt denotes the smallest σ-field containing
the σ-field FLt := σ(L(s) : s ≤ t) generated by L and all P-null sets of A, [32,
Rem. 4.43]. Under Assumptions (a)–(d) L is a martingale, see [32, Prop. 3.25].

If, in addition, L satisfies Assumption (e), then there exists a self-adjoint,
positive semi-definite trace class operator Q ∈ L+

1 (U) such that, for all s, t ∈ I,

E [(L(s)⊗ L(t), x⊗ y)2] = (s ∧ t) (Qx, y)U ∀x, y ∈ U,
see [32, Thm. 4.44]. This operator is called the covariance operator of the
Lévy process L, cf. covariance operators of U -valued random variables in §4.1.1.
The RKHS of L is then by definition the RKHS of the random variable L(1)
[32, Def. 7.2], which is identically defined as for a U -valued Gaussian random
variable with covariance operator Q, see §4.1.2.

In the following, we illustrate how the covariance of a Lévy process relates
to the concept of tensor product spaces from §1.2. Suppose that I = J̄ = [0, T ]
and that L is a U -valued Lévy process satisfying Assumptions (a)–(e) above.
Since L has zero-mean, the second moment and the covariance C of L coincide
and we obtain∫

J×J
(C(s, t), w(s)⊗ v(t))2 dsdt =

∫

J×J
(s ∧ t) (Qw(s), v(t))U dsdt

=

∫

J×J

(∑

j∈N
(s ∧ t) γj (ej ⊗ ej), w(s)⊗ v(t)

)
2

dsdt

for all w, v ∈ Z := L2(J ;U), where {ej}j∈N is an orthonormal basis of U con-
sisting of eigenvectors of Q with corresponding nonnegative eigenvalues {γj}j∈N,
cf. Theorem 1.1. Therefore, the covariance of L can be represented for almost
every s, t ∈ J̄ by

C(s, t) =
∑

j∈N
(s ∧ t) γj (ej ⊗ ej),

with convergence of this series in U2, since tr(Q) =
∑
j∈N γj <∞. Furthermore,

the covariance C is even an element of Zπ with ‖C‖π ≤ 1
2T

2 trQ.
In order to derive the latter bound, set w∧(s, t) := s∧t, and let q ∈ Uπ be the

kernel associated with the operator Q. Then w∧ is an element of the projective
tensor space L2(J ;R)π and q =

∑
j∈N γj(ej ⊗ ej). By the characterization of

the projective norm derived in §1.3 we find

‖w∧‖π = δ(w∧) = 1
2T

2, ‖q‖π = ‖Q‖L1(U) = tr(Q),

since w∧ ∈ L2(J ;R)π and q ∈ Uπ are positive semi-definite kernels. Thus, the
covariance of L satisfies

C = w∧ ⊗ q ∈ L2(J ;R)π ⊗ Uπ, ‖C‖L2(J;R)π⊗̂πUπ = 1
2T

2 tr(Q),

and the same bound holds for the projective norm on Zπ due to

L2(J ;R)π ⊗̂π Uπ ∼= (L2(J ;R) ⊗̂π U)π ↪→ (L2(J ;R) ⊗̂2 U)π ∼= Zπ,
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where the first identification is due to the associativity of the projective tensor
product [21, Ch. 33]. The embedding holds, since the projective tensor product
inherits the continuous embedding from L2(J ;R) ⊗̂π U ↪→ L2(J ;R) ⊗̂2 U and
the last identification is a consequence of the definitions of the Hilbert tensor
product space L2(J ;R) ⊗̂2 U and the Bochner space Z = L2(J ;U).

4.2.3. Wiener processes. An important subclass of Lévy processes is formed
by Wiener processes. Here, a zero-mean Lévy process W := (W (t), t ∈ I) is said
to be an U -valued Wiener process if it has (P-a.s.) continuous trajectories in U .
Then, for every t ∈ I, the U -valued random variable t−1/2W (t) is Gaussian
distributed with zero-mean and covariance operator Q ∈ L+

1 (U), see §4.1.2.
In the finite-dimensional case U = Rn the covariance is given by

E
[
W (s)W (t)T

]
= (s ∧ t)Q ∀s, t ∈ I

for a symmetric positive semi-definite matrix Q ∈ Rn×n. If Q equals the identity
matrix in Rn×n then W is called Wiener white noise, cf. §4.1.3. In one dimension
(U = R) W is called a real-valued Brownian motion if Q = 1.

4.3. Stochastic integration. The purpose of this section is to make sense
of the H-valued stochastic integral

∫ t

0

Ψ(s) dL(s), t ∈ J̄ = [0, T ],

where the noise L = (L(t), t ∈ J̄) is a Lévy process taking values in a separable
Hilbert space U and Ψ is a stochastic process taking values in an appropriate
space of operators mapping from U to the separable Hilbert space H. Thus, for
fixed t ∈ J̄ , the stochastic integral itself becomes an H-valued random variable.

To this end, following the lines of [32, §8.2], we first define the stochastic
Itô integral for L(U ;H)-valued processes Ψ on J̄ , which are simple, i.e., there
exist finite sequences

• of nonnegative numbers 0 = t0 < t1 < . . . < tN ≤ T ,
• of operators Ψ1, . . . ,ΨN ∈ L(U ;H), and
• of events An ∈ Ftn−1

, 1 ≤ n ≤ N ,

such that

Ψ(s) =

N∑

n=1

1An 1(tn−1,tn](s) Ψn, s ∈ J̄ ,

where 1 · denotes the indicator function of a set (here, an event or an interval).
Let the U -valued Lévy process L satisfy Assumptions (a)–(e) from §4.2.2.

Then the stochastic integral with respect to the simple process Ψ and the Lévy
noise L is defined by

∫ t

0

Ψ(s) dL(s) :=

N∑

n=1

1AnΨn(L(tn ∧ t)− L(tn−1 ∧ t)) ∀t ∈ J̄ .

The so-constructed stochastic integral is called an Itô integral. Recall the RKHS
H = Q1/2U of the Lévy process L, equipped with ( · , · )H = (Q−1/2 · , Q−1/2 · )U .
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The Itô integral has an important property—the Itô isometry, see [32, Prop. 8.6]:

E
[∥∥∥
∫ t

0

Ψ(s) dL(s)
∥∥∥

2

H

]
= E

[∫ t

0

‖Ψ(s)‖2L2(H;H) ds

]
∀t ∈ J̄ .

In order to extend the space of admissible integrands, we take the closure
of the vector space of all L(U ;H)-valued simple processes with respect to the
following norm,

‖Ψ‖2L2
H,T (H) := E

[∫ T

0

‖Ψ(s)‖2L2(H;H) ds

]
.

The resulting Banach space denoted by L2
H,T (H) is in fact a Hilbert space,

namely the space of predictable processes Ψ taking values in the space of
Hilbert–Schmidt operators L2(H;H) such that the L2

H,T (H)-norm defined above
is finite, i.e.,

L2
H,T (H) := {Ψ: Ω× J̄ → L2(H;H) : Ψ predictable, ‖Ψ‖L2

H,T (H) <∞}
: = L2(Ω× J̄ ,PJ̄ ,P× dt;L2(H;H)).

Here, PJ̄ denotes the σ-field of all predictable sets in Ω× J̄ , that is the smallest
σ-field of subsets of Ω × J̄ containing all sets of the form A × (s, t], where
0 ≤ s < t ≤ T and A ∈ Fs, see [32, Thm. 8.7, Cor. 8.17]. Recall that the
process Ψ is called predictable if Ψ is measurable with respect to PJ̄ .

The construction described above yields a well-defined stochastic integral∫ t
0

Ψ(s) dL(s) ∈ L2(Ω;H) for integrands Ψ ∈ L2
H,T (H) for all t ∈ J̄ . Moreover,

this is by definition the largest class of integrands satisfying the Itô isometry.
For Paper I we furthermore need the notion of the weak stochastic integral.

In order to introduce it, let Ψ be a stochastic process in the space of admissible
integrands L2

H,T (H), and let (X(t), t ∈ J̄) be a predictable H-valued stochastic

process which is (P-a.s.) continuous on J̄ . We then define the L2(H;R)-valued
stochastic process ΨX , for t ∈ J̄ , by

ΨX(t) : z 7→ (X(t),Ψ(t)z)H ∀z ∈ H.
The predictability of X and of Ψ imply that ΨX is predictable. In addition,
it can be seen from ‖Ψ‖L2

H,T (H) < ∞ and from the (P-a.s.) continuity of the

trajectories ofX that ΨX is an admissible integrand, ΨX ∈ L2
H,T (R). Therefore,

we can define the real-valued weak stochastic integral
∫ t

0
(X(s),Ψ(s) dL(s))H as

the stochastic integral with respect to the integrand ΨX , i.e.,
∫ t

0

(X(s),Ψ(s) dL(s))H :=

∫ t

0

ΨX(s) dL(s) ∀t ∈ J̄ P-a.s.

We note that the Itô isometry for the original stochastic integral implies an
isometry for the weak stochastic integral,

E
[∣∣∣
∫ t

0

(X(s),Ψ(s) dL(s))H

∣∣∣
2
]

= E
[∫ t

0

‖ΨX(s)‖2L2(H;R) ds

]
∀t ∈ J̄ ,

which is particularly important for the analysis in Paper I.

30



Stochastic calculus in Hilbert spaces

4.4. The Itô formula. A vector-valued stochastic process, which can be
written as a sum of a Bochner and a stochastic Itô integral, is often referred to
as an Itô process in the literature [9]. More precisely, the H-valued stochastic
process X := (X(t), t ∈ J̄) defined by

X(t) := X0 +

∫ t

0

Y (s) ds+

∫ t

0

Ψ(s) dW (s), t ∈ J̄ ,

is called an Itô process generated by the quadruple (X0, Y,Ψ,W ), where

(i) X0 is an F0-measurable H-valued random variable,
(ii) Y = (Y (t), t ∈ J̄) is a predictable H-valued stochastic process which

is (P-a.s.) Bochner-integrable on J̄ ,
(iii) Ψ ∈ L2

H,T (H) is an admissible stochastic integrand, see §4.3, and

(iv) (W (t), t ∈ J̄) is a U -valued Wiener process with covariance operator
Q ∈ L+

1 (U).

From this definition it is evident that every Itô process X is predictable. If, in
addition, X0 ∈ L2(Ω;H) then X is square-integrable.

Suppose now that f : J̄×H → R is a real-valued function and that the pro-
cess X = (X(t), t ∈ J̄) is an Itô process. Then, under appropriate assumptions
on f and X, the real-valued stochastic process (f(t,X(t)), t ∈ J̄) also allows
for an explicit integral representation, i.e., it is again an Itô process. A version
of this important result, the Itô formula, is formulated in the next theorem,
cf. [6, 7]. It will play a central role in the weak error analysis of Paper IV.

Theorem 4.1 (Itô formula). Let f : J̄×H → R be such that the real-valued
functions f , ∂tf , and the first two Fréchet derivatives ∂φf , ∂φφf with respect to
φ ∈ H with values in H and L(H), respectively, are all continuous on J̄ ×H.
Assume that X = (X(t), t ∈ J̄) is an Itô process generated by (X0, Y,Ψ,W ).
Then it holds (P-a.s.), for all t ∈ J̄ ,

f(t,X(t)) = f(0, X0) +

∫ t

0

∂tf(s,X(s)) ds+

∫ t

0

(∂φf(s,X(s)), Y (s))H ds

+
1

2

∫ t

0

tr(∂2
φφf(s,X(s))Ψ(s)QΨ(s)∗) ds

+

∫ t

0

(∂φf(s,X(s)),Ψ(s)dW (s))H ,

where the latter term is a weak stochastic integral, see §4.3. In other words, the
real-valued stochastic process (f(t,X(t)), t ∈ J̄) is an Itô process generated by

the quadruple (X̃0, Ỹ , Ψ̃,W ), where X̃0 := f(0, X0) and, for t ∈ J̄ ,

Ỹ (t) := ∂tf(t,X(t)) + (∂φf(t,X(t)), Y (t))H +
1

2
tr(∂2

φφf(t,X(t))Ψ(t)QΨ(t)∗),

Ψ̃(t) : z 7→ (∂φf(t,X(t)),Ψ(t)z)H ∀z ∈ H.
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4.5. Strong and mild solutions of stochastic partial differential
equations. We consider equations of the form

dX(t) +AX(t)dt = G[X(t)] dL(t), t ∈ J̄ , X(0) = X0,(SDE)

in the Hilbert space H, where

• A : D(A) ⊂ H → H is a densely defined, self-adjoint, positive definite,
possibly unbounded linear operator with a compact inverse as in §2.4;

• L is a U -valued Lévy process satisfying Assumptions (a)–(e) made in §4.2.2
and H = Q1/2U denotes its RKHS, see §4.2.2;

• G : H → L2(H;H) is an affine operator, i.e., there exist operators

G1 ∈ L(H;L2(H;H)) and G2 ∈ L2(H;H)

such that G[φ] = G1[φ] +G2 for all φ ∈ H;
• X0 is an F0-measurable, square-integrable H-valued random variable.

Equation (SDE) is said to be a stochastic differential equation, SDE for
short. More precisely, it is called a stochastic ordinary differential equation
(SODE) if H = Rn and U = Rm for finite dimensions m,n ∈ N and a stochastic
partial differential equation (SPDE) if H is an infinite dimensional function
space and A a differential operator. For vanishing G1, (SDE) is said to have
additive noise, otherwise it is called an SDE with multiplicative noise.

The purpose of this section is to make sense of the notion of solutions to this
kind of equations. In fact, as for the deterministic initial value problem (IVP)
in §3, there exist also different solution concepts for (SDE). In the following, we
present their definitions and how they relate. For an introduction to stochastic
ordinary differential equations and stochastic partial differential equations the
reader is referred to [20, 22, 30] and to [10, 23, 32, 33], respectively.

An H-valued predictable process X = (X(t), t ∈ J̄) taking values in D(A)
PJ̄ -a.s. is called a strong solution to (SDE) if

∫

J

(
‖X(s)‖H + ‖AX(s)‖H + ‖G(X(s))‖2L2(H;H)

)
ds <∞ P-a.s.,

and the following integral equation is satisfied for all t ∈ J̄ :

X(t) = X0 −
∫ t

0

AX(s) ds+

∫ t

0

G(X(s)) dL(s) P-a.s.

We emphasize the close relation between the notions of a strong solution to
the deterministic initial value problem (IVP) on the one hand, and of a strong
solution to the stochastic differential equation (SDE) on the other hand.

Since we assume that the operators A and G are linear and affine, respec-
tively, in the case of an SODE with H = Rn and U = Rm we have

A ∈ Rn×n, G1 ∈ L(Rn;Rn×m), and G2 ∈ Rn×m.

It is well-known [30, Thm. 5.2.1] that the resulting SODE admits a strong
solution when driven by Rm-valued Wiener white noise, cf. §4.2.3. Moreover,
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this solution is unique up to modification, i.e., if X1 and X2 are two strong
solutions, then

P(X1(t) = X2(t)) = 1 ∀t ∈ J̄ .
Under the additional assumption that the mapping t 7→ X(t) is (P-a.s.) contin-
uous (t-continuity), the solution is pathwise unique in the sense of [22], i.e.,

P(X1(t) = X2(t) ∀t ∈ J̄) = 1

for any two t-continuous strong solutions X1 and X2.
As a further illustration of the concept of strong solutions we take as explicit

examples the real-valued (m = n = 1) model SODEs considered in Paper II:
with additive noise

dX(t) + λX(t) dt = µdW (t), t ∈ J̄ , X(0) = X0,(SODE+)

and with multiplicative noise

dX(t) + λX(t) dt = ρX(t) dW (t), t ∈ J̄ , X(0) = X0,(SODE∗)

for an initial value X0 ∈ L2(Ω;R) and constant parameters λ, µ, ρ > 0.
As stated above, there exist strong solutions to these SODEs. Indeed, for

additive noise the Ornstein–Uhlenbeck process defined by

X(t) := e−λtX0 + µ

∫ t

0

e−λ(t−s) dW (s), t ∈ J̄ ,

and in the multiplicative case the geometric Brownian motion given by

X(t) := X0e
−(λ+ρ2/2)t+ρW (t), t ∈ J̄ ,

satisfy the conditions of being strong solutions to the model SODEs above. We
note that in both cases the integral equation can be verified by an application
of the Itô formula from §4.4—to the process (eλtX(t), t ∈ J̄) in the additive
case and to the geometric Brownian motion X itself in the multiplicative case.
Moreover, these solutions are the unique t-continuous strong solutions.

Due to the availability of existence and uniqueness results for strong solu-
tions to SODEs of the kind above and, more generally, with global Lipschitz co-
efficients (see [22, 30] for Wiener noise and [1] for Lévy noise), this solution con-
cept is usually sufficient in the finite-dimensional case when dim(H) = n < ∞
and dim(U) = m <∞.

However, as for deterministic initial value problems, it is often unsatisfac-
tory when considering equations in infinite dimensions, since—depending on
the operator A—the condition “X takes values in D(A) P-a.s.” may be too re-
strictive. Recall that for the deterministic problem (IVP) existence of a strong
solution is only ensured, if the source term f is Hölder continuous. In the ter-
minology of the deterministic framework, the noise term generated by the Lévy
process L in (SDE) takes the role of the source term. Since a Lévy process is
in general not pathwise differentiable (e.g., in the case when L is a Wiener pro-
cess), it is usually irregular with respect to t. For this reason, strong solutions
rarely exist and a less restrictive solution concept is needed.
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As in the deterministic case, the semigroup (S(t), t ≥ 0) generated by −A
can be used to define mild solutions of (SDE), see [32, Def. 9.5].

Let X = (X(t), t ∈ J̄) be an H-valued predictable process with

sup
t∈J̄
‖X(t)‖L2(Ω;H) <∞.

Then X is said to be a mild solution to (SDE) if

X(t) = S(t)X0 +

∫ t

0

S(t− s)G(X(s)) dL(s), ∀t ∈ J̄ , P-a.s.

In contrast to strong solutions, one knows [32, Thms. 9.15 & 9.29] that
under the assumptions on A and G made above, there exists a mild solution
to (SDE), which is unique up to modification. Moreover, the mild solution has
a càdlàg modification, which is pathwise unique. Whenever a strong solution
to (SDE) exists, it coincides with the mild solution.

5. Numerical methods for variational problems

The aim of this section is to introduce two basic numerical approaches
to solve partial differential equations approximately: Galerkin methods and
Petrov–Galerkin approximations. More precisely, we first introduce conform-
ing Galerkin discretizations for strongly elliptic problems on Hilbert spaces and
some of their approximation properties in §5.1. These are needed for the nu-
merical schemes discussed in the second part of the thesis, Papers III–V. Note
that, in general, Galerkin methods are based on variational formulations with
coinciding trial–test spaces. This is not the case for the variational problems
derived in the first part of the thesis, Papers I and II. In fact, the trial and test
spaces there are the projective and injective tensor product spaces Xπ and Yε,
respectively, where X and Y are the vector-valued function spaces introduced
in §2.5. Recall from §1.2 that these tensor product spaces are non-reflexive
Banach spaces. For this reason, we discuss Petrov–Galerkin discretizations of
linear variational problems posed on general normed vector spaces in §5.2. For
introductions to (Petrov–)Galerkin methods we refer to [5, 16, 39].

5.1. Galerkin approximations. Let us assume that A : D(A) ⊂ H → H
is a densely defined, self-adjoint, positive definite linear operator with a compact
inverse as in §2.4. Recall from §2.4 the Gelfand triple

V ↪→ H ∼= H∗ ↪→ V ∗, where V := D(A1/2),

as well as the eigenvalues {λj}j∈N of A, which are arranged in nondecreasing
order with corresponding eigenvectors {ej}j∈N, which are orthonormal in H. As
pointed out in §2.4, the operator A extends continuously to a bounded linear
operator A ∈ L(V ;V ∗). Furthermore, 〈Aψ,ψ〉 ≥ λ1‖ψ‖2H for all ψ ∈ V . Thus,
A induces a continuous and strongly elliptic (or coercive) bilinear form

a : V × V → R, a(φ, ψ) := 〈Aφ,ψ〉,
which we have used in §2.4 to define the inner product on V .
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The Riesz representation theorem ensures that, given f ∈ V ∗, there exists
a unique element in V solving the variational problem

Find φ ∈ V s.t. a(φ, ψ) = 〈f, ψ〉 ∀ψ ∈ V.

We are interested in approximations of this solution φ ∈ V .
For this purpose, we assume that (Vh)h∈(0,1) ⊂ V is a family of subspaces

of V with finite dimensions Nh := dim(Vh) < ∞. The Galerkin discretization
of the operator A is then defined by

Ah : Vh → Vh, (Ahφh, ψh)H = 〈Aφh, ψh〉 = a(φh, ψh) ∀φh, ψh ∈ Vh,

and the Galerkin approximation of the above variational solution φ ∈ V is the
unique element φh ∈ Vh satisfying

Find φh ∈ Vh s.t. a(φh, ψh) = 〈f, ψh〉 ∀ψh ∈ Vh.

This approximation is often referred to as the Ritz projection of φ = A−1f
onto Vh. If f ∈ H, it can be expressed in terms of the discretized operator Ah
and the H-orthogonal projection Πh onto Vh by φh = A−1

h Πhf . If f ∈ V ∗ \H,
one has to take the unique continuous linear extension Πh : V ∗ → Vh instead.

For the error analysis in Papers III–V, it is particularly important that the
eigenvalues {λj,h}Nhj=1 (again assumed to be in nondecreasing order) as well as

the corresponding H-orthonormal eigenvectors {ej,h}Nhj=1 of the discretized oper-
ator Ah approximate the first Nh eigenvalues and eigenvectors of A sufficiently
well. For this reason, we state the following result on the approximation prop-
erties of Galerkin (finite element) approximations for elliptic problems induced
by linear differential operators in Rd, which in this generality can be found, e.g.,
in [39, Thms. 6.1 & 6.2].

Theorem 5.1. Let D ⊂ Rd be a bounded, convex, polygonal domain and
A : D(A) ⊂ L2(D) → L2(D) be a (strongly) elliptic linear differential operator
of order 2m ∈ N, i.e., there exists a constant c > 0 such that

〈Av, v〉 ≥ c ‖v‖2Hm(D) ∀v ∈ V = D(A1/2).

Assume that (Vh)h∈(0,1) is a quasi-uniform family of admissible finite element
spaces Vh ⊂ V of polynomial degree p ∈ N. Then there exist constants h0 ∈ (0, 1)
and C1, C2 > 0, independent of h, such that

λj ≤ λj,h ≤ λj + C1h
2(p+1−m)λ

p+1
m
j ,

‖ej − ej,h‖L2(D) ≤ C2h
min{p+1,2(p+1−m)}λ

p+1
2m
j ,

for all h ∈ (0, h0) and j ∈ {1, . . . , Nh}.
In particular, if m = 1 and the family (Vh)h∈(0,1) of finite element spaces is

quasi-uniform with continuous, piecewise linear basis functions, it holds

λj ≤ λj,h ≤ λj + C1h
2λ2
j and ‖ej − ej,h‖L2(D) ≤ C2h

2λj , 1 ≤ j ≤ Nh.
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5.2. Petrov–Galerkin approximations. We now proceed with collect-
ing results for Petrov–Galerkin discretizations of the generic linear variational
problem

Find u ∈ U s.t. B(u, v) = `(v) ∀v ∈ V,
posed on normed vector spaces (U , ‖·‖U ) and (V, ‖·‖V), with a continuous linear
right-hand side ` ∈ V ′, and a bilinear form B : U × V → R. We assume that
B is continuous on U × V, so that the operator induced by B (again denoted
by B) is linear and bounded, i.e., B ∈ L(U ;V ′). The generality of considering
normed vector spaces as trial–test spaces instead of Hilbert spaces will allow
us to address the variational problem satisfied by the second moment of the
solution to (SDE) with multiplicative noise.

We assume that Uh × Vh ⊂ U × V is a fixed pair of non-trivial subspaces
with equal finite dimension dimUh = dimVh < ∞. We aim at approximating
the solution u ∈ U of the variational problem above by a function uh ∈ Uh and
quantifying the error ‖u − uh‖U . For this purpose, suppose that the operator
B̄ : U → V ′ is an approximation of B, which again is continuous. We introduce
the notation

‖`‖V′h := sup
v∈S(Vh)

|`(v)|

for functionals ` which are defined on Vh, and assume that the approximation
B̄ admits a constant γ̄h > 0 such that

‖B̄wh‖V′h ≥ γ̄h‖wh‖U ∀wh ∈ Uh.

In other words, the corresponding bilinear form B̄ satisfies the discrete inf-sup
condition

inf
wh∈S(Uh)

sup
vh∈S(Vh)

B̄(wh, vh) ≥ γ̄h > 0.

We then define the approximate solution uh as the solution of the discrete
variational problem:

Find uh ∈ Uh s.t. B̄(uh, vh) = `(vh) ∀vh ∈ Vh.
Recall that we only assume that the discrete trial–test spaces Uh and Vh are of
the same dimension, and that they may differ. In this case when Uh 6= Vh, the
discrete variational problem is said to be a Petrov–Galerkin discretization and
its solution uh ∈ Uh is called a Petrov–Galerkin approximation.

The following proposition ensures existence and uniqueness of the Petrov–
Galerkin approximation. In addition, it quantifies the error ‖u − uh‖U , which
is of importance for the convergence analysis of the Petrov–Galerkin discretiza-
tions discussed in Paper II.

Proposition 5.2. Fix u ∈ U . Under the above assumptions there exists a
unique uh ∈ Uh such that

B̄(uh, vh) = B(u, vh) ∀vh ∈ Vh.

36



Summary of the appended papers

The mapping u 7→ uh is linear with ‖uh‖U ≤ γ̄−1
h ‖Bu‖V′h and satisfies the

quasi-optimality estimate

‖u− uh‖U ≤
(
1 + γ̄−1

h ‖B̄‖L(U ;V′)
)

inf
wh∈Uh

‖u− wh‖U + γ̄−1
h ‖(B − B̄)u‖V′h .

Proof. Injectivity of the operator B̄ on Uh follows from the discrete inf-
sup condition imposed above. Since dimUh = dimVh, the operator B̄ : Uh → V ′h
is an isomorphism and existence and uniqueness of uh follow.

In order to derive the quasi-optimality estimate, fix wh ∈ Uh. By the
triangle inequality, ‖u− uh‖U ≤ ‖u− wh‖U + ‖wh − uh‖U . Due to the discrete
inf-sup condition we can bound the second term as follows:

γ̄h‖wh − uh‖U ≤ sup
vh∈Vh

B̄(wh − uh, vh) = sup
vh∈Vh

[B̄(wh, vh)−B(u, vh)]

≤ sup
vh∈Vh

B̄(wh − u, vh) + sup
vh∈Vh

[B̄(u, vh)−B(u, vh)]

≤ ‖B̄‖L(U ;V′)‖u− wh‖U + ‖(B − B̄)u‖V′h .
Therefore, for arbitrary wh ∈ Uh we may bound the error ‖u− uh‖U by

‖u− uh‖U ≤
(
1 + γ̄−1

h ‖B̄‖L(U ;V′)
)
‖u− wh‖U + γ̄−1

h ‖(B − B̄)u‖V′h ,
and taking the infimum with respect to wh ∈ Uh proves the assertion. �

6. Summary of the appended papers

6.1. Papers I & II: Variational methods for moments of solutions
to SPDEs. In Paper I we pursue the study of [24], where the second moment
and the covariance of the mild solution to a parabolic SPDE driven by additive
Wiener noise have been described as solutions to well-posed space-time vari-
ational problems posed on Hilbert tensor products of Bochner spaces. More
precisely, in [24] parabolic SPDEs of the form (SDE) have been considered,
where the noise term is driven by an H-valued Wiener process, see §4.2.3, and,
for all φ ∈ H, the operator G[φ] is the identity on H, i.e., G1[ · ] = 0, G2 = I.
In this case, the state space of the Wiener noise and of the mild solution X
to (SDE) coincide (both are H).

With the notation and definitions of the vector-valued function spaces X
and Y, as well as the bilinear form b : X ×Y → R from §2.5 and §3.3, the mean
m = E[X] of the mild solution X satisfies the deterministic variational problem:

Find m ∈ X s.t. b(m, v) = (E[X0], v(0))H ∀v ∈ Y.(VPm)

Well-posedness of this problem was subject of the analysis of (VP3) in §3.3.
In [24] the tensorized bilinear form B : X2 × Y2 → R has been introduced

on the Hilbert tensor product spaces X2 and Y2 (see §1.2) as B := b ⊗ b, or
explicitly as

B(w, v) :=

∫

J

∫

J

〈w(s, t), (−∂s +A)⊗ (−∂t +A)v(s, t)〉 dsdt.
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Here, 〈 · , · 〉 denotes the duality pairing between V2 and V ∗2 . It has been proven
that the second moment M = E[X⊗X], see §4.2, of the mild solution X satisfies
the following deterministic variational problem:

Find M ∈ X2 s.t. B(M, v) = `+(v) ∀v ∈ Y2,(VPM+)

where `+(v) := (E[X0 ⊗ X0], v(0, 0))2 + δq(v). The functional δq : Y2 → R is
defined by (recall from §1.2 that ( · , · )2 abbreviates the inner product on H2,
and from §1.3 and §4.1.1 that there exists a unique kernel q ∈ H+

π corresponding
to the covariance operator Q ∈ L1

+(H) of the Wiener process)

δq(v) :=

∫

J

(q, v(t, t))2 dt ∀v ∈ Y2.

It has been shown that under the assumption tr(AQ) < ∞, the functional δq
and, thus, the right-hand side `+ of the variational problem (VPM+) are el-
ements of the dual (Y2)′. As remarked in §3.3, the operator b ∈ L(X ;Y ′) is
an isomorphism, so that B = b ⊗ b ∈ L(X2;Y ′2) inherits this property and the
variational problem (VPM+) for the second moment is well-posed.

In Paper I we prove that also in the case of multiplicative Lévy noise the sec-
ond moment and the covariance of the square-integrable mild solution to (SDE)
satisfy deterministic space-time variational problems posed on tensor products
of vector-valued function spaces. In contrast to the case of additive Wiener noise
considered in [24], the pair of trial–test spaces is not given by Hilbert tensor
product spaces, but by projective–injective tensor product spaces. In addition,
the resulting bilinear form in the variational problem involves a non-separable
form on these tensor spaces. Therefore, well-posedness does not readily follow
from the isomorphism property of b, and a careful analysis is needed to prove
existence and uniqueness of a solution to the derived variational problem.

To specify this non-separable form, we first introduce, besides the vector-
valued function spaces X and Y, the Bochner space Z := L2(J ;H). We then
define the bilinear form ∆, referred to as the trace product, for w⊗ w̃ ∈ Z ⊗Z
and v ⊗ ṽ ∈ Y ⊗ Y by

∆(w ⊗ w̃, v ⊗ ṽ) :=

∫

J

(w(t), v(t))H(w̃(t), ṽ(t))H dt,

extending this definition by bilinearity to the algebraic tensor product spaces
Z⊗Z and Y⊗Y. We prove that the trace product ∆ admits a unique continuous
extension to a bilinear form ∆: Zπ × Yε → R, and that the induced operator
∆ ∈ L(Zπ;Y ′ε) satisfies ‖∆‖L(Zπ ;Y′ε) ≤ 1, where Y ′ε denotes the dual of the
injective tensor product space Yε (Y being equipped with ‖ · ‖Y , see §2.5).

The covariance operator Q ∈ L+
1 (U) of the Lévy noise L in (SDE) and

the linear part G1 ∈ L(H;L2(H;H)) of the multiplicative term interacting
with L enter the deterministic equation for the second moment through an
operator denoted by G1. We let q ∈ U+

π be the kernel corresponding to Q,
i.e., q =

∑
j∈N γj(ej ⊗ ej), where {γj}j∈N are the nonnegative eigenvalues of Q

with U -orthonormal eigenvectors {ej}j∈N. For w, w̃ ∈ X , we then define the
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operator G1 via

G1[w ⊗ w̃] := (G1[w]⊗G1[w̃])q =
∑

j∈N
γj(G1[w]ej ⊗G1[w̃]ej),

and prove existence and uniqueness of a continuous extension G1 ∈ L(Xπ;Zπ)
with ‖G1‖L(Xπ ;Zπ) ≤ ‖G1‖2L(V ;L2(H;H)).

Having defined the trace product ∆ and the operator G1, we introduce the
continuous bilinear form

B : Xπ × Yε → R, B(w, v) := B(w, v)−∆(G1[w], v).

We show that the second moment of the solution X to (SDE) with multiplicative
Lévy noise satisfies the deterministic variational problem:

Find M ∈ Xπ s.t. B(M,v) = `∗(v) ∀v ∈ Yε(VPM∗)

with the right-hand side (recall m ∈ X denotes the mean of X)

`∗(v) := (E[X0 ⊗X0], v(0, 0))2 + ∆((G1[m]⊗G2)q, v)

+ ∆((G2 ⊗G1[m])q, v) + ∆((G2 ⊗G2)q, v).

Well-posedness of this problem is proven under an appropriate assumption
on the operator G1. More precisely, the lower bound γ ≥ 1 for the inf-sup
constant of the bilinear form b : (X , ‖ · ‖X ) × (Y, ‖ · ‖Y) → R discussed in §3.3
along with the observation that Y ′ε = (Y ′)π, see [35, Thms. 2.5 & 5.13], implies
that the bilinear form B : Xπ ×Yε → R satisfies the following inf-sup condition

inf
w∈S(Xπ)

sup
v∈S(Yε)

B(w, v) ≥ 1.

Owing to the bounds ‖∆‖L(Zπ ;Y′ε) ≤ 1 and ‖G1‖L(Xπ ;Zπ) ≤ ‖G1‖2L(V ;L2(H;H))

mentioned above, we thereby find

inf
w∈S(Xπ)

sup
v∈S(Yε)

B(w, v) ≥ 1− ‖G1‖2L(V ;L2(H;H)).

Thus, the operator B : Xπ → Y ′ε induced by the bilinear form B in (VPM∗) is
injective if

‖G1‖L(V ;L2(H;H)) < 1.(G1)

Finally, a well-posed variational problem for the covariance function of the
mild solution X to (SDE), again posed on Xπ and Yε as trial–test spaces, follows
from the results for the mean and the second moment.

The purpose of Paper II is to introduce numerical methods for the vari-
ational problems derived in Paper I, and to discuss their stability and con-
vergence. To this end, we first consider the canonical examples of stochastic
ODEs (i.e., V = H = R) with additive or multiplicative Wiener noise, namely
the Ornstein–Uhlenbeck process (SODE+) and the geometric Brownian mo-
tion (SODE∗) from §4.5. As pointed out in [24] and Paper I, the equations for
the second moment and the covariance are posed on tensor products of func-
tion spaces. In the additive case (VPM+) they can be taken as the Hilbert
tensor product spaces X2 and Y2 [24], and well-posedness is readily seen, since
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B : (X2, ‖ · ‖X2
) → (Y2, ||| · |||Y2

) is an isometric isomorphism. In the multi-
plicative case (VPM∗), however, the pair Xπ ×Yε of projective–injective tensor
product spaces as trial–test spaces is required and well-posedness, proven in
Paper I under Assumption (G1), is not an immediate consequence anymore due
to the presence of the trace product ∆ in the bilinear form B. For the con-
sidered example (SODE∗) with multiplicative noise, we prove well-posedness of
the deterministic variational problem for the second moment for all λ, ρ > 0,
i.e., beyond the smallness assumption (G1) on G1[ · ] = ρ · made in Paper I.

Afterwards, we focus on deriving numerical approximations for the mean
and the second moment in the scalar (ODE) case. We start by discussing differ-
ent Petrov–Galerkin discretizations for the variational problem (VPm) satisfied
by the first moment. From these, Petrov–Galerkin discretizations based on ten-
sor product piecewise polynomials are constructed, which are then applied to
the variational problems (VPM+) and (VPM∗) for the second moments. We
discuss briefly the discretization of (VPM+) and focus on the more sophisti-
cated multiplicative case (VPM∗). We prove stability of the discrete solution
with respect to the projective norm on Xπ and conclude that a discrete inf-sup
condition is satisfied. Therefore, Proposition 5.2 is applicable, which yields a
quasi-optimality estimate. From this, convergence of the discrete solution to
the exact solution in Xπ is derived.

Finally, we consider the vector-valued (PDE) situation when dim(H) =∞,
focussing on the more sophisticated situation of multiplicative noise. The tran-
sition from convolutions of real-valued functions to semigroup theory on tensor
product spaces allows us to prove well-posedness of the deterministic second
moment equation also in the vector-valued case even beyond the smallness as-
sumption (G1) on the multiplicative term made in Paper I. In fact, the anal-
ysis of Paper II reveals that the natural condition on G1 for well-posedness of
(VPM∗) is that ‖G1‖L(Vπ) <∞.

We then propose (tensorized) space-time discretizations of (VPM∗) based
on finite element subspaces Vh ⊂ V in space, and the temporal discretizations
which we have introduced and discussed for the scalar case. We prove that,
if the functional ` ∈ Y ′ε on the right-hand side of (VPM∗) is symmetric and
positive semi-definite, these approximations are stable in the sense that their
projective norm on Xπ can be bounded in terms of the dual norm ‖`‖Y′ε . Note
that the right-hand side `∗ ∈ Y ′ε in (VPM∗) is symmetric and positive semi-
definite. From this result, we again deduce discrete inf-sup and quasi-optimality
estimates.

In both (scalar and vector-valued) parts of Paper II, numerical experiments
verify the theoretical outcomes, showing linear convergence with respect to the
discretization parameter in time.

6.2. Papers III–V: Fractional elliptic SPDEs with spatial white
noise. With the notions from §4.1, a real-valued Gaussian random field u de-
fined on a spatial domain D ⊂ Rd can be seen as an L2(D)-valued Gaussian
random variable, which is (P-a.s.) continuous on the closure D̄. For this reason,
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Figure 1. The function C0 defining the Matérn covariances
for ν = 0.5 (solid line), ν = 1.5 (dashed line), and ν = 10

(dotted line), with σ = 1 and κ = 2
√

8ν.

the pointwise covariances,

C(x1,x2) := Cov(u(x1), u(x2)), x1,x2 ∈ D,

are well-defined, and we call the resulting function C : D×D → R the covariance
function of u. If this covariance function is, for x1,x2 ∈ D, given by

C(x1,x2) = C0(‖x1 − x2‖), C0(x) :=
21−νσ2

Γ(ν)
(κx)νKν(κx), x ∈ R≥0,

for some constants ν, σ, κ > 0, then u is called a Gaussian Matérn field, named
after the Swedish forestry statistician Bertil Matérn [27]. Here, ‖ · ‖ is the Eu-
clidean norm on Rd and Γ, Kν denote the gamma function and the modified
Bessel function of the second kind, respectively. A key feature of zero-mean
Gaussian random fields with Matérn covariance functions is that they are char-
acterized by the three parameters ν, σ, κ > 0, which determine the smoothness,
the variance, and the practical correlation range of the field. Because of this
practicality, these fields are often used for modeling in spatial statistics, see [38].
In Figure 1 the function C0 : R≥0 → R≥0, which defines the Matérn covariances,
is displayed for ν ∈ {0.5, 1.5, 10}. In all three cases, the variance is normalized

to σ = 1 and κ = 2
√

8ν is chosen such that the practical correlation range (i.e.,
the distance when the correlation is approximately 0.1) equals 0.5. Note that,
for ν = 0.5, the function C0 is given by C0(x) = σ2e−κx, i.e., this is the case of
an exponential covariance function.

If D = Rd is the whole d-dimensional space, it is a well-known result [41, 42]
that, for τ > 0 and β > d/4, the Gaussian solution u to the fractional order
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elliptic SPDE

(SDEβ) (κ2 −∆)β (τu(x)) =W(x), x ∈ D,
has a Matérn covariance function with

ν = 2β − d/2 and σ2 =
κd−4βΓ(2β − d/2)

τ2(4π)d/2Γ(2β)
.

Here, W is Gaussian white noise on Rd (i.e., on L2(Rd), see §4.1.3), and we
use ∆ to denote the Laplacian, since the trace product does not occur in the
second part of the thesis. In particular, the fractional order β > d/4 in (SDEβ)
defines the differentiability of u.

This relation between Gaussian Matérn fields and SPDEs has been used
in [25] to construct Markov random field approximations of Matérn fields on
bounded domains D ( Rd if 2β ∈ N by augmenting the differential opera-
tor κ2−∆ with Neumann boundary conditions on ∂D and using a finite element
method for the numerical solution of the resulting problem. Due to the com-
putational benefits, e.g., for inference, this approach has become widely used
in spatial statistics. However, since the smoothness of the process, controlled
by β, is particularly important for spatial predictions, the restriction 2β ∈ N is
a considerable drawback of the proposed method.

In the second part of the thesis, Papers III–V, we consider therefore the
fractional order equation (recall the definition of a fractional power operator
from §2.3)

Aβu = g +W,

for an elliptic operator A : D(A) ⊂ H → H as in §2.4, g ∈ H, and Gaussian
white noise W on the separable Hilbert space H, see §4.1.3. Note that (SDEβ)
is a member of this class of equations.

In Paper III we propose a numerical scheme that, for any β ∈ (0, 1), gener-

ates samples of an approximation uQh,k to the Gaussian solution process u, with

values in a finite-dimensional subspace Vh ⊂ V := D(A1/2). Recall from §5.1
that Ah denotes the Galerkin discretization of A with respect to Vh and that Πh

denotes the H-orthogonal projection onto Vh. The presented approximation,

uQh,k := Qβh,k(Πhg +WΦ
h ),

is based on the following two components:

• The operator Qβh,k is the quadrature approximation for A−βh of [4]:

Qβh,k :=
2k sin(πβ)

π

K+∑

`=−K−
e2βy`(I + e2y`Ah)−1.

The quadrature nodes {y` = `k : ` ∈ Z,−K− ≤ ` ≤ K+} are equidistant

with distance k > 0 and K− :=
⌈
π2

4βk2

⌉
, K+ :=

⌈
π2

4(1−β)k2

⌉
.

• The white noiseW on H is approximated by the Vh-valued random variable

WΦ
h ∈ L2(Ω;Vh) given byWΦ

h :=
∑Nh
j=1 ξj φj,h, where Φ := {φj,h}Nhj=1 is any

basis of the finite element space Vh. The vector ξ is multivariate Gaussian
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distributed with mean zero and covariance matrix M−1, where M denotes
the mass matrix with respect to the basis Φ, i.e., Mij = (φi,h, φj,h)H .

Note that this method exploits the second integral representation of negative
fractional power operators from §2.3:

A−β =
sin(πβ)

π

∫ ∞

0

t−β(tI +A)−1 dt =
2 sin(πβ)

π

∫ ∞

−∞
e2βy(I + e2yA)−1 dy,

where the latter equality holds due to the change of variables t = e−2y.
For deriving an explicit rate of convergence for the strong mean-square error

‖u−uQh,k‖L2(Ω;H) of the proposed approximation, we make some assumptions on
the operator A and the approximation properties of the finite-dimensional sub-
spaces (Vh)h∈(0,1) of V . We recall the eigenvalue–eigenvector pairs {(λj , ej)}j∈N
and {(λj,h, ej,h)}Nhj=1 of A and Ah from §2.4 and §5.1, respectively, and summa-
rize the assumptions below.

(i) There exists an exponent α > 0 with λj ∝ jα, i.e., there are constants
cλ, Cλ > 0 such that cλj

α ≤ λj ≤ Cλj
α for all j ∈ N, and we assume

that α and the fractional power β ∈ (0, 1) are such that 2αβ > 1;
(ii) Nh := dim(Vh) ∝ h−d, i.e., the family (Vh)h∈(0,1) is quasi-uniform;

(iii) λj,h converges to λj with rate r > 0 for all 1 ≤ j ≤ Nh.
(iv) ej,h converges in H to ej with rate s > 0 for all 1 ≤ j ≤ Nh.

We emphasize that these are technical assumptions, which we need to prove

convergence of the approximation uQh,k to the exact solution u, but no explicit
knowledge of the spectrum or the eigenvectors of A and Ah is necessary to

compute uQh,k in practice. This is a major advantage compared to methods,
which exploit the formal Karhunen–Loève expansion of the white noise from
§4.1.3,

A−βW =
∑

j∈N
λ−βj ξj ej , ξj ∼ N (0, 1) i.i.d.,

and truncate this series after finitely many terms. Note that, in contrast to
the white noise W itself, the above series representation of A−βW converges in
L2(Ω;H) if 2αβ > 1.

The main outcome of Paper III is strong convergence of the approxima-

tion uQh,k to u in L2(Ω;H) at the explicit rate

min{d(αβ − 1/2), r, s},
given that the quadrature step size k > 0 is calibrated appropriately with the
spatial discretization parameter h. In particular, for the motivating exam-
ple (SDEβ) of Matérn approximations on D := (0, 1)d we have A = κ2 − ∆
and α = 2/d, see [8, Ch. VI.4]. Thus, if (Vh)h∈(0,1) is a quasi-uniform family of
finite element spaces with piecewise linear basis functions, we have r = s = 2
by Theorem 5.1 and obtain the convergence rate min{(2β− d/2), 2} for the ap-

proximation uQh,k. This result is verified by numerical experiments in d = 1, 2, 3
spatial dimensions.
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Subsequently, in Paper IV we focus on weak approximations based on uQh,k,
i.e., we investigate the weak error

∣∣E[ϕ(u)]− E[ϕ(uQh,k)]
∣∣,

where ϕ ∈ C2(H;R) is a twice continuously Fréchet differentiable real-valued
function, see §2.1. Furthermore, we assume that the second Fréchet derivative
D2ϕ has at most polynomial growth of degree p ∈ N, i.e., there exist a constant
K > 0 such that

‖D2ϕ(x)‖L(H) ≤ K (1 + ‖x‖pH) ∀x ∈ H.
For the error analysis, we introduce two time-dependent stochastic pro-

cesses, Y := (Y (t), t ∈ [0, 1]) and Ỹ := (Ỹ (t), t ∈ [0, 1]), which at time t = 1
have the same probability distribution as the exact solution and the approxi-
mation, respectively,

Y (1)
d
= u and Ỹ (1)

d
= uQh,k.

These processes are Itô processes (see §4.4) driven by the same H-valued Wiener
process W β := (W β(t), t ≥ 0) defined by

W β(t) :=
∑

j∈N
λ−βj Bj(t)ej , t ≥ 0.

Here, {Bj}j∈N is a sequence of independent real-valued Brownian motions. By
construction, the covariance operator of W β is the negative fractional power
operator A−β , which is of trace class if 2αβ > 1. Furthermore, the process Y

defined by Y (t) := A−βg+W β(t) has the desired property, Y (1)
d
= u. We then

introduce the Kolmogorov backward equation

wt(t, x) +
1

2
tr
(
wxx(t, x)A−2β

)
= 0, t ∈ [0, 1], x ∈ H, w(1, x) = ϕ(x),

with terminal value ϕ at time t = 1. Besides to the functional ϕ, this equation
is also related to the process Y , as its solution w : [0, 1] × H → R is given by
the following expectation, see [11, Rem. 3.2.1 & Thm. 3.2.3],

w(t, x) = E[ϕ(x+ Y (1)− Y (t))].

Finally, the weak error is expressed as the difference between

E[w(1, Y (1))] = E[ϕ(Y (1))] = E[ϕ(u)]

and E[w(1, Ỹ (1))] = E[ϕ(Ỹ (1))] = E[ϕ(uQh,k)],

which is bounded by applying the Itô formula from §4.4 to the processes

(w(t, Y (t)), t ∈ [0, 1]) and (w(t, Ỹ (t)), t ∈ [0, 1]).

Under similar assumptions as in Paper III, we thereby prove convergence
of the weak error to zero with the rate

min{d(2αβ − 1), r, s}.
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Note that, compared to the strong convergence rate derived in Paper III, the
component stemming from the stochasticity of the problem is doubled. We
verify this outcome by numerical experiments for various functionals ϕ and the
Matérn example (SDEβ) from Paper III on the unit square D := (0, 1)2.

The focus of Paper V is to use the quadrature approximation uQh,k intro-
duced in Paper III for common tasks in statistics, such as inference and krig-
ing, i.e., spatial prediction. Besides this method, we introduce the approxi-
mation uRh,m, referred to as the rational (SPDE) approximation of degree m,

which, for any β > 0, exploits a rational approximation p`(x)
pr(x) of the function xβ

instead of the quadrature. Here, the functions p` and pr are polynomials of
degree m` := m+ max{1, bβc} and mr := m ∈ N, respectively. Specifically, the
rational approximation of degree m is defined as the solution of the equation

P`,hu
R
h,m = Pr,hWΦ

h ,

where the operators P`,h, Pr,h are defined by Pj,h := pj(Ah), j ∈ {`, r}, in terms
of the polynomials p`, pr, and the discretized operator Ah.

We investigate how accurately Gaussian random fields with Matérn covari-
ance functions can be approximated by rational approximations of the solution u
to (SDEβ), i.e., A = κ2 −∆. For β ∈ (0, 1), we furthermore compare this per-
formance as well as the computational cost with the quadrature method from
Paper III. We find that the asymptotic behavior is the same, namely exponential

convergence of the form e−c
√
N , where, for the rational approximation, N := m

is the polynomial degree, and for the quadrature method N := K is the total
number of quadrature nodes K := K− + K+ + 1 ∝ k−2. However, when cali-
brating m and K with the spatial finite element discretization parameter h, we
obtain m = K/(4β). Due to β > d/4, this shows that, for the same accuracy, we
can choose the degree m of the rational approximation smaller than the num-
ber of quadrature nodes. This observation is attested empirically by numerical
experiments. Since the computational cost for inference increase rapidly with
m and K, this is an important advantage of the rational approximation uRh,m
compared to the quadrature approximation uQh,k.

Because of this computational benefit, we exploit the rational approxima-
tion for estimating the parameters β, κ, τ > 0 in the model (SDEβ) from a
generated data set of samples of a Gaussian Matérn field. We observe that
the rational approximation facilitates likelihood-based (or Bayesian) inference
of all model parameters, including the smoothness parameter β, which had to
be fixed during inference until now.

Finally, we apply these approximations for spatial prediction and compare
the accuracy of the method to that of covariance tapering, which is a common
approach for reducing the computational cost in spatial statistics. The appli-
cation shows that the approach based on the rational approximation is both
faster and more accurate than the covariance tapering method.

To conclude, in the second part of thesis, we introduce a new numerical
scheme for solving fractional order elliptic SPDEs with spatial white noise ap-
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proximately. For the resulting approximations, we discuss

• strong convergence in Paper III,
• weak convergence for twice continuously Fréchet differentiable functionals,

whose second derivatives are of polynomial growth, in Paper IV, and
• its usage for statistical inference in Paper V.

These outcomes should prove useful for further applications in spatial statistics,
such as, to models based on non-Gaussian random fields (for the sake of brevity,
we have only addressed Gaussian Matérn models in Paper V).
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[37] Ch. Schwab and E. Süli, Adaptive Galerkin approximation algorithms
for Kolmogorov equations in infinite dimensions, Stoch. PDE: Anal. Comp.,
1 (2013), pp. 204–239.

[38] M. L. Stein, Interpolation of Spatial Data: Some Theory for Kriging,
Springer Series in Statistics, Springer New York, 1999.

[39] G. Strang and G. Fix, An Analysis of the Finite Element Method,
Wellesley-Cambridge Press, 2008.

[40] V. Thomee, Galerkin Finite Element Methods for Parabolic Problems,
Springer Series in Computational Mathematics, Springer Berlin Heidelberg,
2006.

[41] P. Whittle, On stationary processes in the plane, Biometrika, 41 (1954),
pp. 434–449.

[42] , Stochastic processes in several dimensions, Bull. Internat. Statist.
Inst., 40 (1963), pp. 974–994.

[43] K. Yosida, Functional Analysis, Classics in Mathematics, Springer,
6th ed., 1995.

49


	Abstract
	List of included papers
	Acknowledgments
	Contents
	Part A.  Introduction
	Introduction
	1. Operator theory and tensor product spaces
	1.1. Special classes of bounded linear operators
	1.2. Tensor product spaces
	1.3. Relating tensor product spaces and Schatten class operators

	2. Analytic tools for evolution equations
	2.1. Differentiation in Hilbert spaces
	2.2. Semigroups and generators
	2.3. Fractional powers of closed operators
	2.4. A class of operators generating analytic semigroups
	2.5. Bochner spaces

	3. Deterministic initial value problems
	3.1. Classical solutions
	3.2. Strong and mild solutions
	3.3. The variational approach: weak solutions

	4. Stochastic calculus in Hilbert spaces
	4.1. Random variables in Hilbert spaces
	4.2. Stochastic processes
	4.3. Stochastic integration
	4.4. The Itô formula
	4.5. Strong and mild solutions of stochastic partial differential equations

	5. Numerical methods for variational problems
	5.1. Galerkin approximations
	5.2. Petrov–Galerkin approximations

	6. Summary of the appended papers
	6.1. Papers I & II: Variational methods for moments of solutions to SPDEs
	6.2. Papers III–V: Fractional elliptic SPDEs with spatial white noise

	References



