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In quantum-optics experiments with both natural and artificial atoms, the atoms are usually small enough
that they can be approximated as pointlike compared to the wavelength of the electromagnetic radiation
with which they interact. However, superconducting qubits coupled to a meandering transmission line, or to
surface acoustic waves, can realize “giant artificial atoms” that couple to a bosonic field at several points
which are wavelengths apart. Here, we study setups with multiple giant atoms coupled at multiple points to
a one-dimensional (1D) waveguide. We show that the giant atoms can be protected from decohering
through the waveguide, but still have exchange interactions mediated by the waveguide. Unlike in
decoherence-free subspaces, here the entire multiatom Hilbert space (2N states for N atoms) is protected
from decoherence. This is not possible with “small” atoms. We further show how this decoherence-free
interaction can be designed in setups with multiple atoms to implement, e.g., a 1D chain of atoms with
nearest-neighbor couplings or a collection of atoms with all-to-all connectivity. This may have important
applications in quantum simulation and quantum computing.

DOI: 10.1103/PhysRevLett.120.140404

Introduction.—In quantum systems, there is generally a
fundamental problem of trade-off between interaction and
protection from decoherence [1]. For spatially separated
atoms, one way to realize a protected interaction is to use a
quantum bus [2,3]. As has been demonstrated in experi-
ments [4–6], two atoms that are detuned from a resonator
(the quantum bus) to which they both couple can interact
via virtual photons in the resonator. Since the photons
mediating the interaction are virtual, this interaction is
protected from losses in the resonator. Although this
scheme can be extended to more atoms, and interactions
between more than two atoms [7], there are limits to the
connectivity between atoms and the protection from
decoherence.
Another approach to protecting quantum information is

decoherence-free subspaces [8,9], i.e., particular subspaces
(of the total Hilbert space of a quantum system) which are
less sensitive to decoherence due to the form of their
coupling to the dissipative environment. A well-known
example is dark (subradiant) states [10], collective atomic
states which do not decay, due to interference, to the
environment that the atoms are all coupled to.
One platform where it has been suggested [11] that such

decoherence-free subspaces could be used for protected
quantum computation is waveguide quantum electrody-
namics (QED). In waveguide QED, atoms are coupled to,
and interact via, a continuum of bosonic modes in a one-
dimensional (1D) waveguide. As reviewed in Refs. [12,13],
there are many experimental realizations of waveguide

QED, including quantum dots and other emitters coupled to
plasmons in nanowires [14,15], quantum dots coupled to
photonic crystal waveguides [16], and natural atoms
coupled to optical fibers [17], but the platform with best
performance is arguably superconducting artificial atoms
[13,18,19] coupled to transmission lines, where several
experiments have been performed in the past few years
[20–32]. There is also a wealth of theoretical work studying
two [33–48] or more [11,40,49–61] atoms interacting with
a 1D waveguide. For a more complete overview, see
Refs. [12,13].
Since the dark states in waveguide QED are a result of

interference effects, it is relevant to explore schemes for
increasing such interference. One such scheme is to
terminate the waveguide with a mirror. A single atom in
front of a mirror, a setup which has seen both experimental
[29,62–64] and theoretical [46,48,58,65–71] investigation,
can be protected from decay by interference between the
relaxation from the atom and its mirror image.
An implicit assumption thus far has been that the atoms

are small compared to the wavelengths of the bosonic
modes of the waveguide they interact with (the wavelengths
in question are those which correspond to the relevant
atomic transition frequencies). However, interference
effects can be further increased if the atoms can be giant,
a term we take to mean that the atoms can couple to the
waveguide at several points, which can be spaced wave-
lengths apart. The physics of a single such giant atom has
been explored recently [72,73] with results including a
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frequency-dependent relaxation rate and Lamb shift. These
works were inspired by recent experiments [74–79] real-
izing giant atoms by coupling superconducting artificial
atoms to surface acoustic waves (SAWs), which have much
shorter wavelengths than the microwaves normally used in
experiments with such artificial atoms. However, as out-
lined in Ref. [72] (and utilized in Ref. [80]), superconduct-
ing transmission lines could be used to achieve the same
effect if they are suitably meandered.
In this Letter, we present the first study of multiple giant

atoms coupled to a 1D waveguide. We begin by considering
the case of two giant atoms, coupled at two points each to an
open waveguide, and compare this setup to two small atoms
in open and semi-infinite waveguides. We show that, for a
certain arrangement of the connection points of the giant
atoms, decoherence into the waveguide can be completely
suppressed while the giant atoms still interact with each
other via the waveguide. Unlike the dark states for small
atoms, this decoherence-free interaction is independent of
the states of the giant atoms; i.e., the entiremultiatomHilbert
space is protected from decoherence, not just a subspace.
We then generalize these results to an arbitrary number

of giant atoms with an arbitrary number of connection
points each. In this way, we show that protected pairwise
exchange interactions between multiple giant atoms can be
designed for high connectivity (beyond nearest neighbor)
and with arbitrary sign of the coupling strengths. We
outline how these setups can be implemented with super-
conducting circuits.
We believe that these results can find many applications,

e.g., in quantum simulation [81,82], where there is much
interest in spins connected in one- or two-dimensional
arrangements [47,83–89]. It may also be possible to use
setups with giant atoms to generate entangled states such as
cluster [90] or graph [91] states, which can be used for one-
way quantum computing [92–94].
Master equation for two atoms in a waveguide.—We

begin by comparing setups with two small (i.e., only
coupled at a single point) atoms in an open [Fig. 1(a)]
or semi-infinite [Fig. 1(b)] waveguide to setups with two
giant atoms coupled to an open waveguide at two con-
nection points each. As shown in Figs. 1(c)–1(e), there are
three distinct topologies for the positions of the connection
points in this case. We call the topology in Fig. 1(c)
separate giant atoms, the one in Fig. 1(d) braided giant
atoms, and the one in Fig. 1(e) nested giant atoms. For
simplicity, we limit the discussion in this Letter to atoms
with two levels (qubits).
Tracing out the continuum of bosonic modes in the

waveguide, a master equation for the density matrix ρ of the
atoms can be derived, assuming weak coupling at each
connection point and negligible travel time between con-
nection points. We use the SLH formalism [95–98] for
cascaded quantum systems [99–101] to show [102] that the
master equation for all setups in Fig. 1 can be written as

_ρ ¼ −i
�
ω0
a
σaz
2
þ ω0

b
σbz
2
þ gðσa−σbþ þ σaþσb−Þ; ρ

�

þ ΓaD½σa−�ρþ ΓbD½σb−�ρ

þ Γcoll

��
σa−ρσ

bþ −
1

2
fσaþσb−; ρg

�
þ H:c:

�
; ð1Þ

where ω0
j ¼ ωj þ δωj, ωj is the transition frequency of

atom j only including Lamb shifts from individual con-
nection points, δωj is the contribution to the Lamb shift of
atom j from interference between connection points,
D½A�ρ ¼ AρA† − 1

2
fA†A; ρg, g is the strength of the

exchange interaction between the atoms, σjþ (σj−) is the
raising (lowering) operator of atom j, σjz is a Pauli matrix
for atom j, Γj is the individual relaxation rate of atom j,
Γcoll is the collective relaxation rate for the atoms, and H.c.
denotes the Hermitian conjugate.
For the case of small atoms in an open waveguide, the

coefficients in Eq. (1) are already well known [33,40,57]. In
Table I, we compare these coefficients with those that result
for the other setups in Fig. 1. For simplicity, we assume
here that the distance between subsequent connection
points is identical, and that ωa ≈ ωb, such that the phase
acquired traveling from one connection point to the next is
φ ¼ kjxjþ1 − xjj, where the wave number k ¼ ωa=v, with
v the velocity of the modes in the waveguide (for the setup
with a mirror, φ ¼ 2kx1). We also assume that the bare
relaxation rate (the relaxation rate before any interference
effects are taken into account) at each connection point is γ.
Expressions for arbitrary bare relaxation rates and arbitrary
phase shifts between connection points are given in
Ref. [102].

(a)

(b)

(c)

(d)

(e)

FIG. 1. Sketches of (a) two small atoms coupled to an open
transmission line, (b) two small atoms coupled to a semi-infinite
transmission line, (c) two separate giant atoms, (d) two braided
giant atoms, and (e) two nested giant atoms. Red circles denote
connection points. The atom with the leftmost connection point is
denoted a and the other b.
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We plot the relaxation rates and coupling strengths from
Table I as functions of φ in Fig. 2. For small atoms in an
open waveguide, we note that the individual relaxation
rates Γj ≠ 0∀φ. For this setup, there is only a certain
superposition state, the dark state, that is protected from
decoherence [40]. For all other setups, there are values of φ
where Γj ¼ 0. Furthermore, at the points where Γj ¼ 0,
Γcoll ¼ 0 also holds. Thus, these setups can protect all
system states from decoherence. In contrast, for small
atoms only a single superposition state can be protected
from decoherence by making the Γj and Γcoll terms cancel
for the lowering operator of that state [40].
The implications of Γj ¼ 0 for g differ for the setups

where it can occur. Only in the case of braided giant atoms
is it possible to have g ≠ 0 when Γj ¼ 0∀ j, i.e., a

decoherence-free interaction. This can be understood as
follows: Γj ¼ 0 implies that the phase acquired traveling
between the connection points of atom j is ð2nþ 1Þπ for
some integer n. The collective decay is set by interference
between emission from connection points belonging to
different atoms, but the sum of these contributions will be
zero when the emission from two connection points of one
atom interfere destructively. The exchange interaction is set
by emission from connection points of one atom being
absorbed at connection points of the other atom. For
separate and nested giant atoms, the emission from the
two connection points belonging to atom b will cancel if
Γb ¼ 0, but in the case of braided giant atoms, the two
inner connection points are placed in between the two
connection points of the other atom, so the contributions
from the two connection points of the other atom need not
interfere destructively. In Ref. [102], we show that all these
conclusions about implications of Γj ¼ 0 for the various
setups remain unchanged even if we allow for arbitrary
bare relaxation rates at each connection point and arbitrary
distances (but still negligible travel time) between con-
nection points.
Generalization to multiple giant atoms with multiple

connection points.—We now consider the most general
setup possible, with N atoms such that atom j has Mj

connection points and the bare relaxation rate at connection
point jn of atom j is γjn . The phase acquired traveling from
connection point jn of atom j to connection point km of
atom k is φjn;km . With the same assumptions as before, we
extend our derivation in the SLH formalism to obtain the
master equation [102]

_ρ¼−i
�XN
j¼1

ω0
j
σðjÞz

2
þ
XN−1

j¼1

XN
k¼jþ1

gj;kðσðjÞ− σðkÞþ þσðjÞþ σðkÞ− Þ;ρ
�

þ
XN
j¼1

ΓjD½σðjÞ− �ρ

þ
XN−1

j¼1

XN
k¼jþ1

Γcoll;j;k

��
σðjÞ− ρσðkÞþ −

1

2
fσðjÞþ σðkÞ− ;ρg

�
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�
;

ð2Þ

TABLE I. Frequency shifts, exchange interaction strengths, and decoherence rates for the setups from Fig. 1. In fields with two entries,
the first corresponds to atom a and the second to atom b.

Setup Frequency shift δωj Exchange interaction g Individual decay Γj Collective decay Γcoll

Small atoms 0 ðγ=2Þ sinφ γ γ cosφ

Small atoms
þmirror

ðγ=2Þ sinφ; ðγ=2Þ sin 3φ ðγ=2Þðsinφþ sin 2φÞ γð1þcosφÞ; γð1þcos3φÞ γðcosφþ cos 2φÞ

Separate giant atoms γ sinφ ðγ=2Þðsinφþ2sin2φþsin3φÞ 2γð1þ cosφÞ γðcosφþ2cos2φþcos3φÞ
Braided giant atoms γ sin 2φ ðγ=2Þð3 sinφþ sin 3φÞ 2γð1þ cos 2φÞ γð3 cosφþ cos 3φÞ
Nested giant atoms γ sin 3φ; γ sinφ γðsinφþ sin 2φÞ 2γð1þcos3φÞ; 2γð1þcosφÞ 2γðcosφþ cos 2φÞ

FIG. 2. Exchange interaction (solid lines) and decoherence rates
(individual: dashed lines; collective: dotted lines) as a function ofφ
for the setups in Fig. 1. The corresponding expressions are given in
Table I. The labels ab (small atoms, black), aabb (separate giant
atoms, blue), abab (braided giant atoms, green), and abba (nested
giant atoms, red) correspond to the ordering of connection points
for the two atoms. The case of small atoms in a semi-infinite
waveguide [Fig. 1(b)] is not plotted separately, since it is
qualitatively equivalent to the case of nested giant atoms. Note
that there are two red dashed lines, one for Γa and one for Γb.
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where now δωj ¼
PMj−1

n¼1

PMj

m¼nþ1

ffiffiffiffiffiffiffiffiffiffiffiffi
γjnγjm

p sinφjn;jm, the
exchange interaction between atoms j and k is

gj;k ¼
PMj

n¼1

PMk
m¼1ð ffiffiffiffiffiffiffiffiffiffiffiffi

γjnγkm
p =2Þ sinφjn;km , Γj ¼

PMj

n¼1 ×PMj

m¼1

ffiffiffiffiffiffiffiffiffiffiffiffi
γjnγjm

p cosφjn;jm , and the collective decay rate

for atoms j and k is Γcoll;j;k ¼
PMj

n¼1

PMk
m¼1

ffiffiffiffiffiffiffiffiffiffiffiffi
γjnγkm

p ×
cosφjn;km .
Since all interactions in Eq. (2) are pairwise, the intuition

gained from studying the case of two giant atoms with two
connection points goes a long way in explaining the
properties of these more general setups. If all connection
points of atom j are to the left (or right) of all connection
points of atom k, we call this pair of atoms separate. If all
connection points of atom j are situated in between
two subsequent connection points of atom k, we call this
pair of atoms nested. All other setups are braided. Using the
same reasoning as above, we can show that Γj ¼ Γk ¼ 0

implies both Γcoll;j;k ¼ 0 and gj;k ¼ 0 for separate and
nested atoms, but gj;k ≠ 0 is possible if the atoms are
braided [102].
1D spin chain with protected, designed nearest-neighbor

couplings.—We now discuss two setups with protected
pairwise atom-atom interactions that can be realized with
multiple giant atoms. The first setup is a 1D chain of atoms
with nearest-neighbor couplings, shown in Fig. 3. With the
arrangement of connection points given in Fig. 3(a), each
pair of neighboring atoms is in a braided configuration,
which allows decoherence-free interaction within each such
pair, effectively leading to the 1D chain of atoms shown in
Fig. 3(b). All other pairs of atoms are not braided, and will
thus not interact when Γj ¼ 0∀ j. In Fig. 3(c), we show
how this setup could be implemented with superconducting
qubits coupled to a meandering transmission line. Note that
there is space for individual readout and control lines to be
connected to each qubit in this setup. The decay that such
additional channels would introduce can easily be kept

small. Furthermore, such control lines could both perform
single-qubit rotations and tune the transition frequencies of
the qubits. Tuning the qubits in and out of resonance with
each other is one way to turn the qubit-qubit coupling on
and off to implement two-qubit gates [13]. With more
connection points, we can arrange for the detuned transition
frequencies to also be protected from decay [72].
If the 1D chain in Fig. 3 contains N giant atoms with two

connection points each, there will be 2N − 1 phases
between subsequent connection points. Implementing the
constraint Γj ¼ 0∀ j will fix N of these phases. There are
then N − 1 pairwise couplings, set by one phase each:
gj;jþ1 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiγðjþ1Þ1γj2

p sinφðjþ1Þ1;j2 [102]. We thus havemaxi-
mal freedom in designing the decoherence-free interactions
(both amplitude and sign) in this setup.
High connectivity for multiple giant atoms.—Our second

example is a setup with three atoms with a protected all-to-
all connectivity, shown in Fig. 4. With the arrangement of
connection points given in Fig. 4(a), each pair of neighbor-
ing atoms is in a braided configuration, which allows
decoherence-free interaction within each such pair, effec-
tively leading to the triangular arrangement of coupled
atoms shown in Fig. 3(b). In Fig. 3(c), we show how this
setup could be implemented with superconducting circuits.
Unlike the previous example, this setup requires the
transmission line to cross itself at least once, but this
can be solved with air bridges [103]. Note that it is
straightforward to extend this setup to all-to-all connectiv-
ity with more atoms by simply adding more superconduct-
ing qubits to the row in Fig. 3(c). However, when makingN
large in the setups in Figs. 3 and 4, care must still be taken
that the travel time between connection points remains
negligible. This is more important for the setup in Fig. 4
because of the greater connectivity.
For the setup in Fig. 4, and its generalization to N atoms,

the condition Γj ¼ 0∀ j sets N constraints, which leaves
N − 1 free parameters (phases) to determine the amplitudes
of NðN − 1Þ=2 pairwise couplings. The individual cou-
pling strengths can thus be chosen quite freely, but not(a)

(b)

(c)

FIG. 3. Sketch of a setup with giant atoms realizing a 1D chain
of qubits with protected nearest-neighbor couplings. (a) The
layout of the connection points. (b) The effective system. (c) A
possible implementation with superconducting circuits.
The black line is a transmission line, the blue blocks are
qubits, and the red lines mark where the qubits couple to the
transmission line.

(a) (b)

(c)

FIG. 4. Sketch of a setup with three giant atoms realizing
protected all-to-all coupling. (a) The layout of the connection
points. (b) The effective system. (c) A possible implementation
with superconducting circuits. The symbols used are the same as
in Fig. 3.
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completely freely. In the caseN ¼ 3, we show in Ref. [102]
how all couplings can be set to have the same amplitude
while their signs can be chosen freely.
Summary and outlook.—We have derived a master

equation for multiple giant atoms coupled to a 1D wave-
guide at multiple points, which can be spaced wavelengths
apart. We have shown that such giant atoms, with con-
nection points in a braided configuration, can realize a
phenomenon that is impossible with small atoms: a nonzero
exchange interaction mediated by the waveguide between
pairs of atoms that are protected from decoherence into the
waveguide, regardless of the atomic state. We have
furthermore shown that setups with giant atoms are ready
to be implemented in superconducting circuits, and that this
could be used for quantum simulation of coupled spins.
This work opens up many interesting directions for

future research. Phenomena that have been studied for
waveguide QED with small atoms, e.g., sub- and super-
radiance (dark and bright states), chiral propagation
[104,105], interaction between atoms with more than
two levels, and 2D baths [106–108], should be revisited
to determine whether giant atoms lead to new effects.
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