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Abstract
A metamodel considering material plasticity is presented for computationally efficient prediction of wheel–rail normal 
contact in railway switches and crossings (S&C). The metamodel is inspired by the contact theory of Hertz, and for a given 
material, it computes the size of the contact patch and the maximum contact pressure as a function of the normal force and 
the local curvatures of the bodies in contact. The model is calibrated based on finite element (FE) simulations with an elasto-
plastic material model and is demonstrated for rail steel grade R350HT. The error of simplifying the contact geometry is 
discussed and quantified. For a moderate difference in contact curvature between wheel and rail, the metamodel is able to 
accurately predict the size of the contact patch and the maximum contact pressure. The accuracy is worse when there is a 
small difference in contact curvature, where the influence of variation in curvature within the contact patch becomes more 
significant. However, it is shown that such conditions lead to contact stresses that contribute less to accumulated plastic 
deformation. The metamodel allows for a vast reduction of computational effort compared to the original FE model as it is 
given in analytical form.

Keywords  Metamodel · wheel–rail contact mechanics · Hertz · switches & crossings · FEM · Plastic deformation

1  Introduction

Railway turnouts (switches & crossings, S&C) are subjected 
to a severe load environment, in particular in the switch and 
crossing panels, see, e.g., [8, 18, 23]. High maintenance 
costs are generated because of the needs for repair and 
replacement of switch rails and crossings due to damage in 
the forms of wear, plastic deformation and breaking out of 
material caused by surface or subsurface initiated rolling 
contact fatigue cracking.

A wheel travelling over a crossing generally induces an 
impact load on the crossing rail (for traffic in the facing 
move: from switch panel to crossing panel) or on the wing 
rail (for traffic in the trailing move: from crossing panel 
to switch panel), see Fig. 1. The impact load is caused 

by the downwards–upwards motion experienced by the 
wheel as it rolls along the wing rail and over to the cross-
ing rail or vice versa. On the wing rail, the vertical motion 
is caused by the conicity of the wheel and the significant 
change in lateral wheel–rail contact position that occurs 
due to the lateral deviation of the wing rail in the running 
direction. On the crossing rail, the lateral contact position 
is relatively constant but the crossing rail has a vertical 
inclination.

Field tests have been reported, where impact loads at 
crossings have been measured by instrumented wheelsets 
[9, 20] or by rail-mounted accelerometers [13]. Depend-
ing on vehicle speed and wheel–rail contact geometry, 
the impact load may be considerably higher than the 
nominal static wheel load [1]. Increasing vehicle speeds 
and axle loads, and wheels with severely worn profiles, 
induce contact conditions that generate higher magni-
tudes of wheel–rail contact forces and slip. Accelerated 
rail profile degradation and damage occur if the rail pro-
files are not corrected in time, since the deteriorated rail 
profiles induce contact conditions that further magnify the 
dynamic loads.
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Optimisation of rail profiles [19, 31] and support stiffness 
[3] are two means to reduce the wheel–rail contact forces 
and damage in the crossing panel. Another approach is to 
use a higher strength material for the crossing. Common 
materials used in crossings include austenitic steels (such as 
the explosively hardened manganese steel Mn13), bainitic 
steels (B360) and high strength pearlitic rail steels (such as 
the fine-pearlitic rail grade R350HT). Based on field experi-
ence, each of the materials has different advantages in terms 
of resistance to the various types of damage. For example, 
the manganese steel has a higher rate of plastic deformation 
and hardening during the initial load cycles but at the same 
time a better adaptability of rail profile to meet the varia-
tion of worn wheel profiles in traffic. In addition, due to its 
work-hardening, the manganese steel has good toughness 
and wear resistance under severe impact loading conditions 
(see, e.g., [4]).

A cross-disciplinary simulation methodology, integrating 
several numerical tools, for predicting the damage in rail 
profiles of S&C by an iterative approach has been proposed 
by Johansson et al. [5]. In each iteration step, the methodol-
ogy consists of four parts: (I) simulation of dynamic vehi-
cle–track interaction to predict wheel–rail contact forces, 
creepages and contact positions; (II) analysis of wheel–rail 
contacts, using a three-dimensional finite element (FE) 
model with an elasto-plastic material model, to determine 
the size of the contact patches and stresses in the material 
due to the normal contact; (III) prediction of accumulated 
damage including plastic deformation, wear, and rolling con-
tact fatigue; and (IV) updating of rail profiles, which are then 
used as input in the next iteration step. The methodology 
has been validated by comparing predicted rail profiles with 
those measured in the field at Härad in Sweden [5] and Haste 
in Germany [16]. A similar method based on an explicit FE 
model has been presented in [34].

The long-term objective of the described methodology is 
to enable efficient and accurate predictions of the influence of 

material selection on long-term S&C rail profile degradation 
to design better S&C. However, to represent the variation in 
traffic that a given crossing is subjected to, a distribution of 
load parameters such as wheel profile, train speed, axle load 
and wheel–rail friction coefficient needs to be accounted for. 
This in turn leads to a wide range of contact load scenarios 
with different magnitudes of wheel–rail contact load occur-
ring at various positions along the crossing panel. Each of 
these scenarios needs to be accounted for by an FE simula-
tion in part II of the methodology, which, due to the required 
combination of high mesh resolution in three dimensions and 
non-linear material model, is computationally expensive. 
Thus, there is a need to improve the methodology in terms of 
computational efficiency. Substituting all of the required FE 
simulations in each iteration step (part II above) with low-cost 
calculations using a calibrated analytical metamodel, with the 
distribution of output data calculated in step I as input, would 
reduce the computational cost significantly. A procedure to 
generate such a metamodel with limited loss in accuracy com-
pared to the full elasto-plastic FE model is described in the 
present paper.

This paper is organized in the following way: Sect. 2 
describes tools available for the modelling of wheel–rail 
contact; the FE model used in this study is presented in 
Sect. 3; two alternative metamodels that are used to replace 
the FE simulations are described and compared in Sect. 4; 
Sect. 5 investigates the influence of constant curvature 
assumed for the contact geometry on the accuracy of the 
metamodels; Sect. 6 presents a demonstration of the sug-
gested approach, and finally, concluding remarks are stated 
in Sect. 7.

The following notation convention has been adopted in 
this paper: small Latin characters in bold (e.g., a ) denote 
vectors, while capital characters (e.g., A ) or small Greek 
characters (e.g., � ) in bold denote tensors of the second 
order, unless stated differently by the context.

Fig. 1   Components of a turnout 
(from [10])
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2 � Wheel–rail contact in the crossing panel

One key aspect in the simulation of rail profile degradation 
is to determine the correct contact pressure distribution in 
the wheel–rail contact. An overview of available contact 
models can be found in the literature (see, e.g., [26]). Sev-
eral tools exist for solving the normal contact problem, for 
example, solutions based on (1) the theory of Hertz [12]; 
(2) Kalker’s variational method [7]; and (3) FE simulation. 
The first two approaches are applicable for elastic material 
response only. In addition, they rely on the assumption that 
the bodies in contact are large compared with the dimen-
sions of the contact patch, such that they can be consid-
ered as infinite half-spaces. The same holds for most fast 
methods for vehicle dynamics simulations (see, e.g., [25]). 
Furthermore, the theory of Hertz assumes that the geometry 
of each contact surface can be approximated by an ellip-
tic paraboloid. Kalker’s method imposes no restriction on 
the wheel–rail contact geometry, while the FE simulation 
approach allows for both arbitrary geometry and inelastic 
material response.

Typically, the size of the contact patch is in the order of 
1 cm2 , which is small in comparison with the dimensions 
of the wheel and rail [11]. Furthermore, the curvatures of 
wheel and rail are constant over multiple regions of the 
profiles, see Fig. 2. However, there are cases when at least 
one of the assumptions in Hertzian theory is violated. In 
particular, such situations can occur (especially with worn 
profiles) when the contact is at the gauge corner of the rail 
or at the flange of the wheel. For such situations, it has 
been reported [11] that the results of the Hertzian solution 
are in vast disagreement with FE simulations. In the pres-
ence of plastic deformation, the FE method (FEM) is the 

only solution that is available, although at a large compu-
tational cost. The local coordinate systems used to describe 
the wheel and rail profiles, the contact positions on wheel 
and rail, and the relative lateral wheel–rail displacement 
�y are marked in Fig. 3. Contact points positions on the 
wheel and the rail cross section are plotted in Fig. 4 for 
different �y.

A comparison between calculated contact conditions for 
elastic material when applying an in-house implementation 
of Kalker’s variational method [21] or an FE model, using 
either the nominal geometry (accounting for the variation 
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in curvature within the contact patch) or the simplified 
geometry (constant radius of curvature), will be presented 
in Sect. 5. It will be shown that there is excellent agreement 
between the two methods when the nominal geometry is 
used. However, the aim of the procedure presented in this 
paper is to account for plasticity due to wheel–rail contact in 
a parameterised and numerically efficient way. If plasticity 
is overlooked and the contact pressure is computed based 
on the elastic material response, the stress in the rail will, at 
some contact locations, be so high that it will (in part III of 
the simulation methodology) lead to a drastic overestima-
tion of the accumulated plastic strain or to an absence of 
the equilibrium solution when the estimated stress exceeds 
the ultimate stress. Therefore, a plasticity model together 
with a simplified geometry of the wheel–rail contact will be 
proposed in this paper.

3 � FE model of wheel–rail contact

3.1 � FE mesh

The FE model of the wheel–rail contact represents two cut-
out pieces of wheel and rail that are pressed against each 
other in the normal direction. To allow for a straightforward 
parameterisation of the contact geometry, the contact sur-
faces of the two profiles are approximated based on the 
assumption of constant curvature within the contact patch 
(same as in the theory of Hertz). Figure  5 illustrates how a 
circle is fitted to each profile to determine the wheel Rw

x
 and 

rail Rr
x
 radii at the point of contact ( yz plane). The circle is 

fitted on the region that spans 1 mm along the y-axis on 
either side of the contact point, which was found sufficient 
to assure that the radii that define a nominal 60E1 profile are 
recovered. The lateral positions of the contact points are 
denoted ycontact

wheel

|
|
|Δy

 and ycontact
rail

|
|
|Δy

 , see Fig. 3. Three rail cross 

sections labelled A, B, and C (located at 754, 1008 and 
1166 mm from the theoretical crossing point in a 60E1-
R760-1:15 turnout, respectively), and a nominal S1002 
wheel profile is used to demonstrate the procedure in this 
study. For a given wheel–rail pair, the locations of the con-
tact points on the wheel and rail are determined by a simula-
tion in the KPF (contact point function) module of GEN-
SYS [2], which is a commercial software for rail vehicle 
dynamics (see also the methodology described in [5]). Only 
a quarter of each cut-out piece needs to be simulated due to 
the assumption of symmetry. The FE model is generated by 
means of Python scripts through Abaqus Scripting Inter-
face [29]. An example of how to create 3D contact jobs in 
Abaqus via its API (Application Programming Interface) is 
described in [30].

The modelled quarter of the cut-out piece of the rail 
is shown in Fig. 6. The upper side of the block, which is 
pressed against the wheel, has constant curvature 1∕Rr

x
 in 

the yz plane and zero curvature in xz plane (the rail has a 
constant inclination in the running direction). Its bottom 
side is fixed, while the two front sides in the xz and yz 
planes are the planes of symmetry, i.e. the out-of-plane 
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deformation is set to zero. The back sides in the xz and yz 
planes are set to be free boundaries, because the identifica-
tion of the stiffness of linear springs that would correspond 
to physical boundary conditions was considered superflu-
ous, since Fig. 7 shows negligible effect stemming from the 
free boundaries. The edge length L was chosen to assure 
that the area A of the contact patch and the maximum con-
tact pressure p0 for the elastic wheel and rail are in close 
agreement with those provided by the contact theory of 
Hertz. In the following, the FE model with constant cur-
vature illustrated in Fig. 6 will be referred to as “simplified 
FE model”.

The influence of the edge length L on the key responses 
is illustrated in Fig. 7 for the case of nominal ( �y = 0 ) 
wheel position with respect to rail section C and 22.5 
tonnes axle load. The responses, obtained with FEM using 
the penalty method (achieved by using the “surface-to-sur-
face” type of contact pair and the “hard” pressure–overclo-
sure relationship in Abaqus, see [28] ), are normalised by 
the responses from the Hertzian solution. In these simula-
tions, the wheel and the rail are both assumed to be linear 
elastic with Young’s modulus E = 183 GPa and Poisson’s 
ratio � = 0.3 . It is observed that the responses deviate by 
less than 5% from the corresponding Hertzian solutions for 
all studied edge lengths. The reason for this small deviation 
is the spatial discretisation of the FE model as the accu-
racy of measuring the length of the semi-axes is limited 
by the edge length of the elements in the contact patch. 
Since it had been found (not shown here) that the length 
of one of the semi-axes can be greater than 20 mm for 
certain contact scenarios, the edge length of 30 mm has 

been adopted in this study. An analogous consideration was 
undertaken when choosing the mesh size. Figure 8 shows 
how the responses vary relative to the Hertzian solution 
for different element sizes in the potential contact zone. 
Furthermore, two mesh densities were considered on the 
outer boundary of the model. The 15 and 5 mm element 
edge lengths l  used in the outer mesh are referred to as 
“coarse mesh” and “fine mesh”, respectively. The differ-
ence in computational effort with respect to the finest mesh 
resolution (0.2 mm in the contact region and 5 mm in the 
outer region) is illustrated in Fig. 9. To conclude, the mesh 
adopted in the following of this study has tetrahedral ele-
ments with 0.25 mm edge length in the potential contact 
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zone (fine inner mesh) and 15 mm on the outer boundary 
(coarse outer mesh).  

3.2 � Material modelling of R350HT

Since accumulated plastic deformation has been identi-
fied as an important damage mechanism in railway turn-
out components [5], an appropriate material model needs 
to be utilised. Switch and crossing components may be 
manufactured out of different materials such as manganese 
steel, bainitic steel and pearlitic steel. In this paper, the 
pearlitic steel R350HT is chosen as the prototype mate-
rial. Cyclic uniaxial tests of R350HT have been conducted 
by Schilke [24]. The data from these tests have been used 
to calibrate a cyclic plasticity model. The adopted cyclic 
plasticity model was proposed by Ohno and Wang, see [17], 
and it is summarized in Appendix A. The model parameters 
collected in the vector pr:

have been identified from a least-square’s fit against the 
cyclic uniaxial tests, and the numerical values are given in 
Table 1. The model response and the test results are com-
pared in Fig. 10. Good agreement between the simulated and 
measured material response is observed for two different 
load conditions. To achieve this agreement, it was necessary 
to use two kinematic hardening stresses in the Ohno–Wang 
model. For the wheel, linear isotropic elasticity is assumed 
with Ew = 183 GPa and �w = 0.3 . These parameters define 
the vector:

The effect of assuming elastic material behaviour for the 
wheel is examined in Appendix C.

4 � Metamodelling

A metamodel (surrogate model) can be described as a model 
of a model, i.e. an approximation of another model, and meta-
modelling is the process of generating such metamodels. 
Metamodels find vast applications in different fields, such 
as engineering design optimisation, software, and systems 
engineering, and are mostly being employed to reduce the 
computational cost. Reviews of different approaches used in 

(1)pr =
[

E � �y C1 �1 m1 C2 �2 m2

]

(2)pw =
[

Ew �w

]

.

metamodelling can be found in the literature, see e.g. [27, 32]. 
It is concluded that metamodelling involves three basic steps: 
(1) choosing an experimental design (sampling); (2) choosing 
the type of metamodel; and (3) fitting the metamodel to the 
data (calibration). Prior to that, the interface to the metamodel 
needs to be identified, i.e., the input and output variables. The 
interface to the metamodel developed in the present study is 
summarized as

where the output variables ĝ are the semi-axes â and b̂ of 
the contact patch and the maximum contact pressure p̂0 , 
i.e. ĝ =

[

â, b̂, p̂0
]T  . Furthermore, the input variables are 

the wheel radius Rw
x

 and rail radius Rr
x
 in the plane of the 

wheel–rail cross section, wheel radius Rw
y
 in the circumferen-

tial direction (see also Sect. 3) and the magnitude of the nor-
mal wheel–rail contact force Fn . The metamodel parameters 
are collected in the vector � which are determined from cali-
bration. Since these are calibrated for a certain combination 
of wheel and rail material, they are functions of pw and pr.

(3)ĝ = ĝ
(

Rw
x
,Rw

y
,Rr

x
,Fn;�

(

pw, pr
)
)

Table 1   Identified material parameter values (Poisson’s ratio � is not calibrated) for the Ohno–Wang model for rail grade R350HT

E � �y C1 �1 m1 C2 �2 m2

[GPa] [-] [MPa] [MPa] [-] [-] [MPa] [-] [-]

183 0.3 484 2.23 ⋅ 105 1320 2.2 4.25 ⋅ 104 2.62 2
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Fig. 10   Experiments and simulations with cyclic plasticity model for 
rail grade R350HT
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4.1 � Sampling

The simulation data that need to be sampled are the results 
of the FE simulations in terms of maximum contact pres-
sure ps

0i
 and semi-axes as

i
, bs

i
 (superscript s for sampling) of 

the wheel–rail contact described in Sect. 3. These data will 
be used to calibrate the metamodel. The number of samples 
per output is assumed to be M, i.e. i = 1,… ,M . For a given 
pair of wheel and rail profiles, and for a given relative lateral 
displacement �y between wheel and rail (recall Fig. 3), the 
contact positions on wheel and rail are solved in the KPF 
module of GENSYS. The range of relative lateral wheel–rail 
displacements �y in the crossing panel is constrained in one 
direction by the contact between the wheel flange and the 
gauge side of the crossing rail, and in the opposite direction 
by the contact between the back of the wheel flange (on the 
other wheel in the wheelset) and the check rail. The range 
of relative wheel–rail displacements considered in this study 
is set to �y ∈ [−5, 5] mm. Note that a positive value of �y 
means that the wheel flange has moved from the nominal 
wheel–rail contact position towards the rail. For each pre-
dicted contact position on wheel and rail, the curvature is 
calculated by fitting two circles (see Sect. 3) and thereby 
obtaining Rw

x
,Rr

x
 . The other wheel radius Rw

y
 is calculated 

by knowing the location of the contact point and the wheel 
radius at the running circle.

Based on the combination of a nominal S1002 wheel 
profile and rail cross section C, the influence of relative lat-
eral wheel–rail displacement �y on the radii of curvature on 
wheel and rail is illustrated in Fig. 11. It is observed that the 
magnitude of the wheel radius is decreasing with increasing 
values of �y as the contact position is approaching the flange 
root. For �y ∈ [−1, 3.5] mm, the rail radius is in the order 
of 200 mm as contact is taking place close to the centre of 

the crossing rail. Note that the values of the wheel radius Rw
x
 

about the x-axis are negative. This means the wheel tread has 
a concave surface that together with the opposite sign of the 
rail radius Rr

x
 leads to a certain degree of conformity within 

the selected range of �y.
Conventional sampling techniques, e.g., factorial and cen-

tral composite designs, see, e.g., [27], assume that all combi-
nations of the variables within the design space are possible. 
Consider the case denoted by the square in Fig. 12. This could 
correspond to one of the sampling points produced by such a 
sampling technique, since it is a combination of the minimum 
value of Rw

x
 and the maximum value of Rr

x
 . However, as can 

be concluded from Fig. 11, the corresponding scenario can-
not occur. Hence, such a sampling point should be avoided. 
Instead, a hand-picked technique based on the contact geom-
etry and pre-calculations of contact positions in GENSYS is 
applied. For the chosen range of �y with step length 0.5 mm, 
all integer values of �y are selected as sampling points, while 
all the fractional values are used as test points to compare the 
results from the calibrated metamodel and the FE simulations. 
At this point, it is worth mentioning that not all the values of �y 
lead to permissible contact scenarios due to the local constant 
curvature approximation. For instance, the value of �y = 4 mm 
corresponds to |Rw

x
| < Rr

x
 , which leads to an impossible contact 

scenario. Such cases are ignored in the sampling. In addition, 
note that the radius of curvature of the rail profile along the 
running direction is constant, i.e., Rr

y
= ∞.

4.2 � Metamodels

4.2.1 � Polynomial metamodel

One particular metamodelling approach that is very common 
and does not require many sampling data points is Response 
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Surface Methodology (RSM), see, e.g., [14]. In RSM, the 
model is a polynomial of a certain order. The selected order 
of the polynomial depends on the anticipated curvature of the 
response surface within the given design space. Typically, a 
first-order polynomial is used for flat response surfaces, while 
a second-order polynomial is employed when the curvature 
is strong. Here, the quadratic metamodel is written as (super-
script Q for quadratic)

wi t h  ĝQ  de f ined  a s  ĝQ =

[

âQ b̂Q p̂
Q

0

]T

 and 

�
Q

i
=

[

�
Q

ia
�
Q

ib
�
Q

ip0

]T

 for i = 0,… , 14 . The ̂(⋅) denotes an 

estimate of (⋅) . For instance, â is the semi-axis within the 
elliptic contact patch along the x-axis (in the direction of 
travel) given by the metamodel; its counterpart a is the refer-
ence value of the semi-axis obtained by the experiment (FE 
simulation).

4.2.2 � Hertzian‑based metamodel

In this paper, a Hertzian-based metamodel is proposed 
with the main assumption that the geometry of the contact 
patch is Hertzian, i.e. elliptic. Yet the size of the contact 
patch might differ from the Hertz’s solution since plastic-
ity of the rail is accounted for. According to the theory of 
Hertz, the ratio � = a∕b of the semi-axes of the contact 
patch ellipse can be calculated, see [12], by solving the 
equation:

where E1 and E2 are the complete elliptic integrals of the first 
and second kinds which are functions of � via the modulus 
k2 = 1 − 1∕�2 , and 

∑ 1

R
=
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+
1
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y

+
1
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x

 . It is worth noting 

that Eq. (5) only contains geometrical variables. Hence, the 
following metamodel is proposed (superscript H for Hertz):
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The expressions for the semi-axis â and the maximum nor-
mal contact pressure p̂0 are also inspired by the Hertzian 
solution. Note that for this metamodel the number of param-
eters is only 4, which can be compared with the quadratic 
metamodel in Eq. (4) with 45 parameters.

4.3 � Calibration of metamodels

The metamodel parameters � i are identified using a non-
linear regression analysis. The analysis is non-linear 
because for the Hertzian case the model ĝ is a non-linear 
function of the parameters � i . The parameters are identi-
fied by defining an objective function h and performing a 
minimisation of this function. The objective function is 
chosen in a staggered fashion with a relative error for each 
of the responses:

where M is the number of sampling results (FE simulations) 
and superscript s stands for sampling. The minimisation of 
h for the polynomial metamodel is performed using the 
“Powell” algorithm, see [22], and for the Hertzian-based 
metamodel using the “Nelder-Mead” algorithm, see [15].

The metamodels were implemented in Python with 
an extensive use of algorithms and routines for scientific 
computing provided by the SciPy library [6].

5 � Assumption of constant local curvature

For nominal wheel and rail profiles, elastic material 
response and �y = 0 , the effect of the simplification of 
wheel–rail contact geometry applied in Sect. 3 (often made 
elsewhere in the literature, see, e.g.  [33]) is illustrated 
in Fig. 13. The maximum contact pressure predicted by 
Kalker’s variational method is considerably higher when 
accounting for the variation of curvature within the contact 
zone. Further, it is observed that Kalker’s solution is not 
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symmetric with respect to y = 0 . It is also shown that the 
elastic FE solution based on a model of the nominal sur-
face geometry (extended FE model not accounting for the 
symmetric boundary conditions) is in excellent agreement 
with Kalker’s solution.

For the elasto-plastic material model, a comparison of 
the maximum contact pressure and maximum von Mises 
stress when using either the FE model considering the 
nominal contact geometry or the simplified FE model with 
constant local curvature is given in Table 2. For some �y , 
it is observed that with the simplified FE model, there 
might be an error of up to 33% in maximum pressure and 
up to 14% in maximum von Mises stress. Furthermore, 
the influence of �y on the wheel and rail curvatures of 
the simplified FE model is summarized in Table 3. By 
examining Tables 2 and 3, it is found that the accuracy of 
the simplified models drops significantly for the contacts 
with smaller (than about 7 m−1 ) difference in the contact 
curvature.

Figure 14 illustrates two cases with either a large or a 
small difference in contact curvature, which correspond 
to good or poor agreement with the nominal geometry, 
respectively. The constant curvatures tuned by the proce-
dure described in Sect. 3 are marked by dots in the figure. 
The difference between the nominal geometry when there 
is a variation of curvature within the contact patch (shaded 
regions in the plots), and the approximated geometry when 
the curvature is taken as constant and equivalent with the 
one at the point of contact is shown. It is concluded that 
when there is a small difference in contact curvature with 
significant variation in curvature within the contact patch, 
the accuracy in prediction of maximum contact pressure 
is reduced. However, in Table 2, it is also observed that 
the von Mises stress is decreasing with increasing con-
formity. Since the metamodel is a part of the simulation 
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Fig. 13   Influence of contact geometry on the distribution of normal 
contact pressure p for �y = 0 , Fn = 111.5  kN and elastic material 
model. Along the x-axis, only half of the plot is shown due to sym-
metry

Table 2   Influence of contact 
geometry on maximum contact 
pressure p0 and maximum von 
Mises stress �Mises in case of 
elasto-plastic model for rail 
grade R350HT

FEMs denotes FEM using simplified geometry; max �Mises
s

–max �Mises using FEMs

�y pFEM
0,plastic

pFEMs
0plastic

FEM−FEMs

FEM
max �Mises max �Mises

s
FEM−FEMs

FEM

(mm) (MPa) (MPa) (%) (MPa) (MPa) (%)

−5 1569 1548 1.3 771 804 −4.3

−4 1593 1532 3.8 761 800 −5.1

−3 1533 1447 5.6 755 767 −1.6

−2 1556 1252 19.5 744 705 −6.9

−1 1488 1054 29.2 728 636 12.6
0 1488 997 33.0 705 610 13.5
1 1404 950 32.3 678 583 14.0
2 1179 875 25.8 616 554 10.1
3 956 784 18.0 516 504 2.3
4 1133 forbidden – 585 – –
5 1590 1204 24.3 649 689 −6.2
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methodology to predict plastic deformation of S&C com-
ponents, the cases with larger difference in contact curva-
ture and higher von Mises stress are of main importance. 
From Table 2 it can also be observed that the maximum 
von Mises stress is predicted well for the severe load cases, 
which further strengthens the utility of the simplified FE 
model as part of the simulation methodology.

6 � Results

An evaluation of the adopted approach and results of appli-
cation of the calibrated metamodels are presented in this 
section. The metamodels were calibrated using the simpli-
fied (constant curvature) FE model with the elasto-plastic 
material model and with the sampling points (integer val-
ues of �y ) on cross sections A and C. Furthermore, the 
sampling was performed for four different normal contact 

Table 3   Computed rail and wheel curvatures at the points of contact 
for different wheel–rail lateral displacements

�y 1∕Rr
x

1∕Rw
x

|
|1∕R

r
x
− 1∕Rw

x
|
|

(mm) (m−1) (m−1) (m−1)

−5 −10.4 −1.5 8.9
−4 −10.2 −1.8 8.4
−3 −9.0 −2.1 6.9
−2 −6.8 −2.3 4.5
−1 −5.1 −2.6 2.5
0 −5.0 −3.0 2
1 −5.0 −3.2 1.8
2 −5.0 −3.6 1.4
3 −5.1 −4.2 0.9
5 −11.2 −7.3 3.9
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loads Fn ∈ {0.5N,N, 1.5N, 2N} , where N = 111.5 kN is the 
nominal static wheel load. The values of the calibrated 
model parameters are given in Appendix B. The meta-
model will be evaluated for section B.

The effect of plastic deformation is shown in Fig. 15, 
where the pressure distribution within the contact patch 
calculated with the simplified FE model is plotted together 
with the distribution when assuming Hertzian theory:

The distribution denoted as “Hertzian-based metamodel” 
also uses the Hertzian expression but replaces the param-
eters p0, a and b with the values obtained by the calibration. 
As expected, it is observed that the size of the contact patch 
is increased and the maximum contact pressure is reduced 
in the presence of plasticity compared with the Hertzian 
solution that only accounts for the elastic material response.

As described in Sect. 1, the goal of the ongoing research 
is to study the degradation of rails in S&C. A simplification 
that has been done is that the wheels are assumed to have 
been used in service such that they are work-hardened and 
can be assumed to be linear elastic.

6.1 � Quadratic metamodel

For different positions of contact point on cross section 
C, a comparison of the responses a, b and p0 predicted 
by the quadratic metamodel and the simplified FE model 
is shown in Fig. 16. An analogous comparison for cross 
section B, which the metamodel was not calibrated for, is 
shown in Fig. 17. The figures reveal a significant spread in 
contact patch size and maximum contact pressure depend-
ing on the lateral position of the point of contact. In addi-
tion, it can be seen how non-uniformly the contact points 
on the rail are located when shifting the wheel by a con-
stant value, since the data points are not uniformly spaced. 
Furthermore, it is evident that the polynomial metamodel 
may lose precision for certain contact point locations. This 
phenomenon can be explained by the fact that the response 
surface at these locations cannot be accurately approxi-
mated by a quadratic function. Another important obser-
vation is that the metamodel is able to predict responses 
for a cross section it was not calibrated for (cross section 
B), see Fig. 17.

In summary, based on Figs. 16 and 17, it is concluded that 
the performance of the quadratic metamodel is relatively 
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Fig. 16   Calculated a, b semi-axes and c maximum contact pressure 
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poor. Table 4 summarizes the error estimates for the quad-
ratic metamodel for the full load range Fn ∈ [0.5N, 2N].

6.2 � Hertzian‑based metamodel

Analogous results from the Hertzian-based metamodel are 
given in Figs. 18 and 19 and in Table 5. It can be seen that 
this metamodel is superior to the quadratic metamodel as it 
successfully predicts the responses for all considered contact 
scenarios. The maximum error in the estimated responses for 
the considered variation in load is up to 6%. On average, the 
error for a, b and p0 is 2%.

6.3 � Coefficient of determination

The coefficient of determination R2 is used to estimate the 
accuracy of the metamodels. It is defined as

where g ∈
{

a, b, p0
}

 and g =
1

M

∑M

i=1
gi . A value of R2 close 

to 1 indicates a good performance of the metamodel.
Figure  20 shows the plots of estimates of the key 

responses by the metamodel versus the reference values 
obtained from the simplified FE models. The closer the 
markers are to the line, the better is the agreement. It is 
observed that the Hertzian-based metamodel shows an 
excellent agreement with the FE simulations. A compari-
son of the two presented models is summarized in Table 6. 
The ability of the quadratic metamodel to predict b is 
poor. Based on Tables 4, 5 and 6, it is concluded that the 
Hertzian-based metamodel is more accurate than its poly-
nomial counterpart, even though it has much fewer model 
coefficients. 

The major benefit of using the metamodel can be seen 
when replacing the FE contact simulations in the simulation 
methodology briefly described in Sect. 1. Each FE simu-
lation requires approximately 5 min on a computer with a 
6-core “haswell” CPU and 128 GB of RAM. This leads to a 
significant computational effort when considering that thou-
sands of wheel–rail contact scenarios need to be simulated 
in each iteration step.
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Fig. 17   Calculated a, b semi-axes and c maximum contact pressure 
based on quadratic metamodel calibrated for integer values of �y on 
sections A and C. The evaluation was performed for fractional values 
of �y on section B, Fn = 223 kN

Table 4   Errors in quadratic metamodel

Calibrated for sections A and C, evaluated for B

Error a , (%) b , (%) p0 , (%)

Minimum 0.4 0.0 0.2
Average 4.6 7.0 1.7
Maximum 11.5 24.3 7.0
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Fig. 18   Calculated a, b semi-axes and c maximum contact pressure from 
the Hertzian-based metamodel calibrated for integer values of �y on sec-
tions A and C. Evaluation was performed for fractional values of �y on 
section C, Fn = 223 kN
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Fig. 19   Calculated a, b semi-axes and c maximum contact pressure from 
the Hertzian-based metamodel calibrated for integer values of �y on sec-
tions A and C. Evaluation was performed for fractional values of �y on 
section B, Fn = 223 kN
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7 � Conclusions

Metamodels for predicting the size of the contact patch and 
the maximum contact pressure in simulation of wheel–rail 
contact in railway crossings have been presented. The first 
type of model is inspired by response surface methodology 
and is, therefore, represented by a polynomial. The second 
type is based on the Hertzian contact theory for two bodies 
in contact. The performance of both types of metamodels 
has been quantified and it was found that the Hertzian-based 
metamodel is more accurate.

The metamodel can take into account plastic deforma-
tions and, therefore, is an enhancement of the Hertzian solu-
tion. The error stemming from the assumption made in the 
theory of Hertz regarding the geometry of objects in contact 
was quantified by comparing with the results from an FE 
model with the true contact geometry. For the cases con-
sidered, the discrepancy ranged from 1 to 33% in maximum 
contact pressure and from 2 to 13% in maximum von Mises 
stress. The accuracy was found to be poor for the cases with 
a smaller difference in contact curvature. However, more 
importantly from the material degradation point of view 
is that the cases with a larger difference in contact curva-
ture are captured with a higher precision, i.e. smaller errors 
were observed for cases with higher values of von Mises 
stress. This enables the use of the simplified geometry in the 
simulation methodology [5]. In future work, the presented 
metamodel will be incorporated in the methodology aiming 
at robust and efficient predictions of long-term material dete-
rioration in S&C components. The metamodel will facilitate 
attaining the goal of the methodology since a considerable 
amount of computational effort is saved by replacing the FE 
contact simulations by a closed-form solution. In this con-
text, a closed-form solution is a solution expressed in terms 
of input parameters and simple mathematical operations. 
Furthermore, the simplification of the geometry allows for 
the straightforward parameterisation needed for creating a 
metamodel. There is an obvious trade-off between the accu-
racy of the single contact simulation and the robustness and 
efficiency of the overall approach. A further investigation is 
needed to draw conclusions about the impact of the made 
assumption.

Table 5   Errors in Hertzian-based metamodel

Calibrated for sections A and C, evaluated for B

Error a (%) b (%) p0 (%)

Minimum 0.1 0.3 0.0
Average 2.0 2.0 2.1
Maximum 5.2 5.9 5.1
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Fig. 20   Comparison of a, b semi-axes and c maximum contact pressure com-
puted using Hertzian-based metamodel (calibrated for integer values of �y on 
sections A and C, denoted by (̂) ) and simplified FE model. Evaluation was per-
formed for fractional values of �y on section B, Fn = [55.75, 223] kN
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Ohno–Wang plasticity model

In the current section, the adopted plasticity model is briefly 
summarized. For further details, see [17]. The model is for-
mulated in the small strain framework and the strain � is 
assumed to be additively decomposed into an elastic �e and 
a plastic �p part:

Linear isotropic elasticity is assumed whereby the follow-
ing relations for the volumetric stress �vol = I ∶ � and the 
deviatoric stress �dev = � − �vol∕3 I hold in terms of the 
elastic strain:

where G is the shear modulus and Kb is the bulk modulus. 
The von Mises yield function � is adopted which is defined 
as

where X is the kinematic hardening (back-stress) and �y 
is the initial yield stress. The evolution of plastic strain is 
assumed to be of associative type:

where the plastic multiplier 𝜆̇ is determined from the load-
ing/unloading conditions:

(13)� = �e + �p.

(14)�vol = 3Kb �
e
vol
, �dev = 2G �e

dev

(15)
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√

3

2
(�dev − X) ∶ (�dev − X) − �y =
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(16)�̇p = 𝜆̇
𝜕f

𝜕�
= 𝜆̇

√

3
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The kinematic hardening X is assumed to be additively 
decomposed into several hardening stresses Xi , i.e., 
X =

∑nX
i=1

Xi . In the current paper, nX = 2 was found to be 
sufficient to capture the experimental data for rail grade 
R350HT. Following the proposal in [17], the evolution equa-
tion for the kinematic hardening is given by

To increase the identifiability, the values of the parameters: 
Ci , mi and pi = �

mi+1

i
∕C

mi

i
 are determined in the calibration 

against the experimental data.

(17)𝛷 ≤ 0, 𝜆̇ ≥ 0, 𝜆̇ 𝛷 = 0.
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Table 6   R2 values for different models (closer to one is better)

Calibrated for sections A and C, evaluated for B

Model R2
a
 , (−) R2

b
 , (−) R2

p0
 , (−)

Quadratic 0.94 0.82 0.99
Hertzian-based 0.99 0.99 0.99

Table 7   Model coefficients �

i �ia �ib �ip0

Linear
   0 7.21 −0.53 1475.6

   1 −2.92 × 10−3 3.86 × 10−3 −0.95

   2 −1.8 × 10−3 2.62 × 10−3 −0.58

   3 −1.65 × 10−2 3.58 × 10−2 −4.68

   4 2.34 × 10−5 1.33 × 10−5 2.59 × 10−3

Quadratic
   0 8.06 5.27 898.19

   1 −6.69 × 10−3 3.98 × 10−3 −4.16

   2 −4.22 × 10−3 2.54 × 10−4 −2.67

   3 −1.45 × 10−2 8.41 × 10−3 −1.16

   4 −1.8 × 10−5 −3.63 × 10−6 2.44 × 10−3

   5 −1.32 × 10−5 1.79 × 10−5 −4.89 × 10−3

   6 4.1 × 10−6 −1.68 × 10−5 7.98 × 10−3

   7 4.33 × 10−5 5.9 × 10−5 3.67 × 10−2

   8 −4.68 × 10−11 −6.67 × 10−12 −8.95 × 10−9

   9 −3.97 × 10−6 1.15 × 10−5 −5.34 × 10−4

   10 −3.03 × 10−5 7.79 × 10−5 −5.38 × 10−4

   11 −9.82 × 10−9 8.21 × 10−9 −9.67 × 10−7

   12 −4.2 × 10−5 5.9 × 10−5 −3.26 × 10−2

   13 −3.34 × 10−9 2.62 × 10−8 6.56 × 10−6

   14 −6.2 × 10−8 1.01 × 10−7 −5.21 × 10−6

Hertzian-based
   0 1.56 × 10−2 – 4.11
   1 0.35 – 0.85

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Metamodel coefficients

Values of the metamodel coefficients for the elasto-plastic 
material model, calibrated using rail cross sections A and 
C, are listed in Table 7.

Effect of elastic wheel assumption

The effect of assuming the wheel to be elastic, contrary to 
elasto-plastic behaviour, is illustrated in Fig. 21. The dif-
ference in the maximum pressure is less than 4.5%. The 
observed absence of difference in contact patch area is 
explained by a too small change in contact patch size in 
each direction, less than one element, to be resolved by the 
used mesh.
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