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Abstract
The wind speed variability in the North Atlantic has been successfully modelled using a spatio-temporal transformed
Gaussian field. However, this type of model does not correctly describe the extreme wind speeds attributed to tropical
storms and hurricanes. In this study, the transformed Gaussian model is further developed to include the occurrence of
severe storms. In this new model, random components are added to the transformed Gaussian field to model rare events with
extreme wind speeds. The resulting random field is locally stationary and homogeneous. The localized dependence structure
is described by time- and space-dependent parameters. The parameters have a natural physical interpretation. To exemplify
its application, the model is fitted to the ECMWF ERA-Interim reanalysis data set. The model is applied to compute long-
term wind speed distributions and return values, e.g., 100- or 1000-year extreme wind speeds, and to simulate random wind
speed time series at a fixed location or spatio-temporal wind fields around that location.

1 Introduction

Due to the increased regulation pressure on maritime transport
in terms of energy efficiency and emission control (DNV
2015), there is a growing interest in the study of the charac-
teristics of wind/wave variation at sea. To develop solutions
for utilizing renewable wind energy in ship propulsion (ABS
2013), it is greatly important to have access to reliable wind
statistics along arbitrary ship routes. These statistics are
used to estimate the average performance of a ship/offshore
renewable energy unit and to assess the risk of extreme
winds. Furthermore, extreme winds (and waves) in coastal
areas can destroy infrastructures, cause human loss leading
to great economical damages. Therefore, accurate mod-
elling of wind speed variations is important for addressing
related engineering problems.

Typically, the variation in wind speed at a certain location
or in a certain region is described by its Cumulative
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Distribution Function (CDF). The long-term CDF of the
wind speed, i.e., fraction of time when wind speed is
below a threshold during one year, is often fitted with
Weibull distributions; e.g., see DNV (2010) and Morgan
et al. (2011). However, in the Caribbean sea, the Weibull
model does not fit well with the observed data, particularly
for regions where extreme wind speeds can arise during
hurricanes or tropical storms (see, e.g., Mao and Rychlik
(2016)). The limitation may compromise engineering safety
when the Weibull model is used to determine the extreme
design condition, i.e., the so-called 100/1000-year extreme
wind speeds, for engineering structures in such regions.

However, the rarity of the high winds caused by, e.g.,
hurricanes and other storms, makes empirical estimation of
extreme wind speeds difficult; instead, estimates of such
extreme winds can be derived from stochastic models of
wind speeds variability. In this study, a new model (named
as the hybrid model) for wind speed variability is proposed.
The proposed model is used to estimate the frequencies of
extreme winds, i.e., winds exceeding a fixed high threshold,
by means of the so-called Rice’s method, which was
presented in details in, e.g., Azais and Wschebor (2009).
Particular applications of this method were presented in,
e.g., Baxevani and Rychlik (2006), Rychlik et al. (2011).

Methods based on the univariate extreme value theory
(Coles 2001) are used to validate the proposed approach. For
example, by fitting the generalized extreme value (GEV)
distribution to yearly maximum wind speeds at a fixed
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location, the extreme wind speed estimated from the fitted
GEV distribution is used as a reference value to validate the
Rice’s method that uses the proposed spatio-temporal wind
model. Alternatively, Peak over Threshold (POT) method
(Davison and Smith 1990) could be employed. However,
strong seasonal wind speed variation and correlation make
the POT method very complex to use, and less suitable
for our validation purpose. Methods of modelling extreme
wind speeds due to hurricanes or tropical storms have been
investigated by many researchers (see, e.g., Jagger and
Elsner (2006) and Reich and Fuentes (2007) and references
therein). An extensive publication list can be also found in
Larsén et al. (2016). Recently, a large focus is also put on the
modelling of multivariate extremes, spatial extremes (max-
stable processes), and spatio-temporal extremes (see, e.g.,
Coles (1993)). In this study, an example of applying the
proposed model to derive the distribution of maximum wind
speeds in August in a region south of Haiti is presented in
Section 7. However, more detailed studies of this problem
are outside of the scope of this paper.

Spatio-temporal models are often based on well under-
stood Gaussian models, but real data seldom follow Gaus-
sian distributions perfectly. Hence, transformed Gaussian
processes (fields) are often used for the modelling. Popular
transformations proposed by Brown et al. (1984), Winter-
stein et al. (1994) etc. are frequently used in engineering
literature. For example, the exponential transformation pro-
posed by Brown et al. (1984) was successfully used in Mao
and Rychlik (2016) to model wind speed distributions in
the Northern Atlantic. However, for the Caribbean sea, the
kurtosis of exponentially transformed wind speeds is often
significantly exceeding the Gaussian threshold (three), and
hence, this model underestimates the frequencies of high
wind speeds. Consequently, the Hermite transformation pro-
posed by Winterstein et al. (1994) was also tested. This
transformation is a monotonic cubic polynomial, which is
calibrated such that the first four moments (mean, variance,
skewness, and kurtosis) of the transformed model are equiv-
alent to the moments of the data. The following example
shows that the Hermite transformed Gaussian model is over-
estimating frequencies of high wind speeds in the Caribbean
sea. The reason is that the extreme storms are very rare.

Example Wind speeds in August (2000–2015) at the
location (72.75 W, 17.25 N) as shown in Fig. 1 are used
for the investigation. Firstly, frequencies of upcrossing
of level u and empirical probabilities that wind speeds
exceed a threshold u have been estimated from the
extracted data set. Those empirical characteristics are
shown in Fig. 2, together with the expected characteristics,
which are evaluated using the fitted transformed Gaussian
models based on Brown’s exponential transformation and
Winterstein’s Hermite polynomial transformation. The two

models either underestimates or overestimates the empirical
frequencies and wind speed distribution at the tail. Finally,
the expected characteristics evaluated by the proposed
hybrid model are also presented. They agree well with the
empirical values.

In this paper, the exponentially transformed Gaussian
model is used to model wind speeds at locations, where
extraordinary meteorological events like extreme storms or
lulls may rarely occur. Examples of such events can be seen
in the time series shown in Fig. 1. The newly proposed
model for Wa is a sum of a Gaussian field and several
non-Gaussian random fields (with Laplace distributed
amplitudes), which are independent and randomly spread
in time and space. This type of model (named as the
Hybrid model here) was used in Bogsjö et al. (2012) and
Kvarnström et al. (2013) for signals with rarely occurring
transients.

The paper is organized as follows. First, the transformed
wind speeds X = Wa and methods of estimating the param-
eter a and the mean, variance and correlation structure of
X are presented in Section 2. Then, Section 3 briefly intro-
duces three types of random fields: Gaussian, Laplace, and
the hybrid model. In particular, methods of estimating the
parameters in the hybrid model are also discussed here
and in Section 4. The technical details of the procedures
are moved to appendices. Subsequently, Section 5 presents
procedures for using the hybrid model in three practical
applications, i.e., to derive the long-term wind speed distri-
bution, to estimate the expected number of wind speeds that
cross arbitrary values, and to simulate local wind speeds. In
Section 6, the hybrid model is validated by three exam-
ples/locations, one in the Caribbean sea and two in the Gulf
of Mexico, with respect to long-term wind distribution and
100/1000-year extreme wind prediction. Examples illustrat-
ing the hybrid model are given in Section 7. The estimation
of spatio-temporal extreme wind speeds are also discussed,
the Matlab code to simulate the spatio-temporal maximums
using the hybrid model is given in the Appendix C.

2 Spatio-temporal modelling
of the transformedwind speed X = Wa

In this study, the term wind speed refers to the 10-min
average wind speed (in the unit of m/s at 10 meters above
ground level) taken from the ECMWF hindcast database.
Let W(p) = W(tp, xp, yp) denote the wind speed at a
spatial-temporal location p = (tp, xp, yp). Obviously, the
average characteristics of wind speed variation change with
seasons tp ∈ [0, 1] (unit: year), and geographical locations
(xp, yp). However, on shorter spatial and temporal scales,
these characteristics can be considered to be constant. More
precisely, within a small neighbourhood of p with a spatial
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Fig. 1 Upper plot: Sixteen years
of hindcast hindcast wind speeds
W(t) at the three locations.
Lower plot: Movement (shown
in the hindcast data) of hurricane
Dean close to the coast of Haiti

radius of several degrees and a time interval of a month, the
variability of the wind speed is assumed to be homogeneous
and stationary:

Wa(p + q) = Wa(tp + t, xp + x, yp + y) = Xp(t, x, y)

0.4 < a < 2, (1)

where Xp is a homogeneous field with a mean of mp, a
variance of σ 2

p and a correlation function of ρp(t, x, y), all
of which depend on the location p. In some cases, the index
p in Xp(t, x, y), mp, σ 2

p and ρp(t, x, y) will be neglected in
order to simplify the notation.

The parameters ap, mp and σ 2
p are estimated by the

method of moments. First, the transformation exponent a

is estimated to fulfill the criteria that the skewness of Wa

is zero, and m, σ 2 are equal to the mean and variance
(monthly) of the transformed wind speeds. All parameters
defining the model of Eq. 1 depend on the location p
and are estimated “pointwise.” It should be noted that
for the applications of predicting extreme wind speeds by
the model, the parameters are smoothed over a spatial
neighbourhood of about 3 degrees radius.

Furthermore, a non-homogeneous and non-stationary
correlation function ρ of a spatio-temporal transformed
wind speed Wap(p) was presented in Rychlik and Mao
(2014) and Rychlik (2015), and a global wind model for
large regions was also established. In this study, only local
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Fig. 2 Comparison of the distribution and expected upcrossing rates
of wind speeds in August at the location (72.75 W, 17.25 N) computed
by transformed Gaussian models based on Brown’s exponential and

Winterstein’s Hermite Polynomials transformations. The characteris-
tics are compared with the empirical values and that evaluated using
the proposed hybrid model

non-Gaussian models of similar correlation functions are
presented and validated. The case of a global model will be
considered in the future work.

2.1 Correlation function ρ(t , x, y)

Similarly to our previous studies (Rychlik and Mao 2014;
Mao and Rychlik 2016), the following Gaussian correlation
function is used in this paper. For a location p, the correla-
tion of wind speeds around the surrounding homogeneous
region q is written as

ρ(q) = ρ(t, x, y) = exp
(
−π2q�qT /2

)
, (2)

where � = [λij ] is a positive-definite matrix. Equation 2
defines the spatio-temporal correlation of transformed wind
speeds in the neighbourhood of the location p.

2.2 The kernel f constructed from ρ(t , x, y)

For a wind speed field of the correlation function ρ, a kernel
f can be constructed to describe the characteristics of wind
speed time series and the shape of extreme wind speeds.
It is defined such that f ∗ f (q) = ρ(q), where ∗ defines
a convolution operation. For a correlation function ρ as in
Eq. 2, the kernel f is defined by

f (q)=(2π)3/4 |det �|1/4 exp
(
−π2q�qT

)
, q=(t, x, y).

(3)

In this study, the kernel of Eq. 3 is used to approximate
various types of Xp as in Eq. 1 by discretizing a spatio-
temporal region S as presented in the following Section 3.
It can be shown that as the discretization steps tend to zero
and S grows without bounds, the approximation converges

to a homogeneous standardized Gaussian field XG of
correlation ρ defined in Eq. 2.

2.3 Estimation of� in the kernel

If the transformed wind speed X is a locally stationary
Gaussian field such as wind speeds in the North Atlantic,
the matrix � could be estimated by the maximum likelihood
method. However, for locations in the Caribbean Sea and the
Gulf of Mexico, where tropical storms are rarely occurring,
the Gaussian assumption to model X fails. Consequently,
a crude method, i.e., the method of moments, is used to
estimate the matrix �. The property that � is proportional
to the covariance matrix of the X-gradient is employed here.
More precisely, let X(t) = X(t, 0, 0), X(x) = X(0, x, 0)

and X(y) = X(0, 0, y). The following derivatives can be
defined as

Xt(t)=dX(t)/dt, Xx(x)=dX(x)/dx, Xy(y)=dX(y)/dy.

The difference quotient is used here to evaluate the above
derivatives. And the terms

(X, X1, X2, X3)(tp, xp, yp) = (X(0), Xt (0), Xx(0), Xy(0))

are the values and the gradients of the transformed wind
speed fields Wa at a geographical location (xp, yp) and a
time tp. Then, let the position (xp, yp) be fixed and only
the time tp vary, the above terms become four time series
denoted by (X, X1, X2, X3)(tp).

Let the covariance matrix of the gradient components
(X1, X2, X3)(tp) at the position p be denoted by � = [λij ],
i, j = 1, 2, 3. Using the Theorem 7.6 as in Lindgren (2013),
it can be shown that

� = �

π2σ 2
, (4)
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where as before σ 2 = V (X). It is assumed that at any
geographical location (xp, yp), the above four wind time
series can be considered to be stationary for a period of
approximately one month. Consequently, for p = (xp, yp),
tp = j/12 + 1/24 (t with unit year), mean and variance mp,
σ 2
p and �p of the transformed wind speeds Wa(p) can be

estimated by standard statistical methods.

3 Stochastic models for the transformed
wind speed field X

In the neighbourhood of p, the transformed wind speed field
is modeled by a homogeneous random field X(t, x, y) as
in Eq. 1 with mean mp, variance σ 2

p and the correlation
function ρp defined in Eq. 2. For locations in the Northern
part of the North Atlantic, the variable X(t, x, y) can
be modelled by a stationary Gaussian field, which is
uniquely defined by a mean m, a variance σ 2 and the
correlation function ρ given in Eq. 2. For locations in the
Caribbean Sea and the Gulf of Mexico with rarely occuring
tropical storms, non Gaussian models requiring additional
parameters should be used to model the transformed wind
speeds, but keep using the same correlation ρ.

In this paper, three standardized random fields XM (of
mean zero, variance one and the same correlation ρ) will be
investigated to describe the random wind fields X, which is
modelled by scaling one of these standardized fields by σp
and adding mp:

X(t, x, y) = mp + σpXM(t, x, y). (5)

where XM represents the Gaussian field XG, the Laplace
field XLMA and the hybrid field XH , respectively.
Furthermore, these fields XM are symmetrical with
skewness zero. Hence, the same estimates of the parameters
a, m, σ , and ρ can be used in Eq. 1 for any model of XM .

3.1 Gaussianmoving averagemodel XG

For a fixed position p = (tp, xp, yp), the transformed Gaus-
sian model is given by X(t, x, y) = mp + σpXG(t, x, y),
where the Gaussian field XG is approximated by a moving
average of Gaussian noise as follows:

XG(t, x, y) ≈
∑
i,j,k

f (t − tk, x − xi, y − yj )Zijk

√
dx dy dt,

(6)

where Zijk are independent zero mean, variance one,
Gaussian variables and f is a deterministic kernel function
defined by Eq. 3. For the approximation, a stationary and
homogeneous wind region S ⊂ R3 has to be chosen
first. Choice of region S is discussed in Section 4.2. The

region S is dicretized using a grid, i.e. S � (tk, xi, yj ).
The discretization steps of S are dt , dx, dy. (The detailed
definition of S will be given later.)

The discretizations steps dt , dx, dy are chosen such that

dx dy dt
∑
i,j,k

f (tk, xi, yj )
2 ≈

∫
f (t, x, y)2dx dy dt = 1.

It should be noted that the kernel used here is very simple
and cannot describe real wind field structures and dynamics
in great detail. More complex models could be constructed
to describe the wind speed variability on different time
scales; see e.g., Rychlik and Mao (2014), Rychlik (2015),
where the wind speeds in the North Atlantic were modelled
using four kernels of various scales but of a similar type to
that in Eq. 3: a diurnal pattern due to different temperatures
at day and night, a pattern considering the frequency of
depressions and anti-cyclones, an annual pattern and a
pattern of fast variability (noise).

3.2 Laplacemoving averagemodel (LMA) XLMA

The Laplace moving average field was introduced in Åberg
and Podgórski (2011). It can be also constructed using
Eq. 6 but to allow the Gaussian noise Zijk to have variable
variance. More precisely, Zijk is multiplied by the square
root of independent gamma distributed random factor Kijk

as follows:

XLMA(q)≈
∑
i,j,k

f (t−tk, x−xi,y−yj )
√

KijkZijk

√
dxdydt .

(7)

The parameters of the gamma-distributed random variable
Kijk are defined to fulfill two conditions: the mean value
of Kijk has to be one and the kurtosis of XLMA should
be equal to the kurtosis of the observed wind speeds.
Obviously, many other possible models are available to
construct stationary non-Gaussian fields using the moving
average method, e.g., to replace the Gaussian field in
Eq. 6 by other infinitely divisible noises. The infinite
divisibility assumption is convenient to allow for a variable
discretization step while still keeping the same noise type
(see, e.g., Feller (1966) for basic properties of infinite
divisible distributions).

Moving averages of Laplace noise
√

KijkZijk have many
attractive mathematical properties (see, e.g., Cambanis et al.
(1995) and Podgórski and Wallin (2016)). For example,
conditionally on values of factors

√
Kijk , the LMA field

becomes a zero mean nonstationary Gaussian field. In
particular, the very large factors Kijk will result in unusual
high variability of the wind speed field. Intuitively, it
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would be convenient to reorder the factors Kijk in such
a way that larger factors can be considered first. This is
achieved through an alternative definition of LMA using
series expansions of infinitely divisible distributions (see,
e.g., in Bondesson (1982)). In this study, this definition is
used to model XLMA.

The kernel f defined in Eq. 3 will be used again, along
with a large region S � (0, 0, 0) to define XLMA. The size
of S depends on f through the matrix � (the choice of S
will be discussed in Section 4). Here, a symmetrical Laplace
field will be used, and hence, only one additional parameter,
ϑ > 0, is needed to define its distribution. Now, the Laplace
moving average field at q = (t, x, y) is approximated by
the following sum of random functions modelling weather
events with extreme values equal to Zi

√
Ri and located at

Ui ∈ S:

XLMA(q) ≈
∞∑
i=1

Xi(q), Xi(q) = Zi

√
Rif (q − Ui ).

(8)

Here, random variables Zi, Ri and Ui are independent. The
Zi have a standard normal distribution, whereas the Ui
are uniformly spread in S. The distribution of Ri depends
on the parameter ϑ . They are independent but not equally
distributed. Given the parameter ϑ and the region S, Ri can
be simulated as follows:

Ri = ϑ |S| ζi e−ϑγi

where ζi are i.i.d. standard exponential random variables
independent of γi , which are locations of the i-th point
in a Poisson process, i.e., γi = ∑i

j=1 Gj , where Gj

are independent standard exponential distributed random
variables. Note that Yi = Zi

√
ζi forms a sequence of

independent standard Laplace distributed random variables
(Kotz et al. 2001), i.e., of probability density f (y) =
0.25 exp(−|y|/2). This motivates the name Laplace moving
average. The random functions Xi have the following
amplitudes,

Zi

√
Ri =

√
ϑ |S| exp(−ϑγi)·Yi =

√|S| √ϑ(V1·. . .·Vi)
ϑ/2 Yi,

(9)

where V1, . . . , VN are independent uniformly on [0, 1]
distributed variables and also independent of Y1, . . . , YN .

It can be shown that mean of XLMA is zero, variance
V(XLMA) ≈ 1, skewness zero and the correlation is
approximately equal to ρ as in Eq. 2. Note that the sum
in Eq. refLMA approaches the LMA field as the region S
grows to R3 having variance one and correlation as in Eq. 2.

3.3 The Hybrid model XH

The hybrid model is a combination of the Laplace and
Gaussian models. Let us start with Eq. 8, where the random
terms Xi(q) have mean zero and decreasing variances

V(Xi(q)) ≈ ϑ

(1 + ϑ)i
. (10)

Since the random functions Xi in Eq. 8 appears in order
of decreasing variance, only the first N terms will be used
to model “weather anomalies,” e.g., large storms or lengthy
wind lulls. Furthermore, since the variability of transformed
wind speeds under the “normal” conditions is very well
described using Gaussian fields, XG, as defined in Eq. 6, is
adopted to approximate

∑∞
i=N+1 Xi(q) in Eq. 8. This leads

to the following definition of the hybrid model:

XH (q) = p XG(q) +
N∑

i=1

Xi(q), q = (t, x, y). (11)

where XG is the Gaussian field in Eq. 6 and Xi are defined
in Eq. 8. The parameters N and ϑ are related to frequency
of storms and kurtosis of the transformed wind speeds.

Both the Gaussian field XG and the weather anomalies
Xi are defined using the same kernel f presented in Eq. 3.
The value of p, 0 ≤ p ≤ 1, is chosen such that variance of
XH within the homogeneity region (S) is one. This causes
the correlation function ρ of XH to coincide with that given
in Eq. 2. Obviously, if N = 0, then XH = XG, whereas
XH tends to XLMA as N tends to infinity. By introducing
the two extra parameters p and N , the hybrid model will
significantly better model the actual wind speeds. It is
demonstrated by the following example.

Example Main difference between wind speed statistics
in the North Atlantic and the Caribbean region are the
frequencies of extreme speeds. Wind speeds in August
during 2000–2015 at the location (72.75 W, 16.5 N)
are extracted from ERA Interim reanalysis data set.
The time series are shown in Fig. 3, along with the
yearly frequencies of upcrossing of level u. The expected
upcrossing frequencies were evaluated for transformed
Gaussian (N = 0, hybrid N = 6 and LMA (N =
1000)). It is shown that the transformed Gaussian model
underestimates, while LMA overestimates the frequencies
of high wind speeds events. The frequencies computed
using transformed hybrid model agree very well with the
observed ones. Actually, the value N = 6 is estimated by
minimizing a distance between the observed and computed
upcrossing frequencies (see Appendix B for details).

Finally, the Gaussian, LMA and the hybrid models
predict the 1000-year extreme wind speeds to be 16.5, 33,
and 46 m/s, respectively. Since during years 2000–2015, a
maximum wind of 27 m/s was recorded, it seems that the
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Fig. 3 Comparison of expected upcrossing rates of wind speeds in
August at the location (72.75 W, 16.5 N) computed by the transformed
Gaussian model, the hybrid model, the Laplace moving average model

as in Eq. 8 (right plot) and the upcrossing rates found in the time series
of wind speeds presented in the (left plot)

1000-year wind predicted by the Gaussian and LMA models
are very likely too low, and the hybrid model gives better fit
than the Gaussian and LMA models.

3.4 Estimation of parameters in the hybridmodel

As mentioned before the transformed Gaussian model
works well for North Atlantic where Wa have skewness zero
and kurtosis about three. Estimation of parameters a, mp, σ 2

p
in Eq. 1 and correlation ρ has been discussed in Section 2.
Figures 4 and 5 present the estimation of these parameters
for the Caribbean Sea.

However, in the Caribbean and the Gulf of Mexico,
the kurtosis of transformed wind speeds may significantly
exceed three in hurricane season. Hence, the hybrid model
is used here. In this model, the parameter N , i.e., the number
of storms and lulls in the stationary region S, is one of
the most important parameter. If N = 0, the hybrid model
becomes the transformed Gaussian model, while for very
large N it is equivalent to the transformed LMA model. In
addition to N , the other two more parameters are p and ϑ .
Given the values of N , they are estimated by solving the
condition that the kurtosis of XH is equal to the kurtosis of
the observed transformed wind speeds, while p is used to
ensure that variance of XH is one.

The difficult part of constructing the hybrid model is
to find an appropriate value of N . It is estimated by
setting that frequencies of crossings of high wind levels
given by the hybrid model have to well agree with the
observed crossing frequencies in the wind data. This is an
important requirement for engineering safety assessment
(Rychlik et al. 1997). Algorithms to estimate N , p and ϑ

are given in the Appendix B. Finally, it should be noted
that the hybrid models are fitted point-wise and monthly,

i.e., the parameters vary in terms of geographical locations
and months. However, in applications, the parameters are
smoothed over suitable neighbourhood of a location of
interest.

Remark The hybrid model and the proposed algorithm
to estimate parameters are working very well at various
locations, where wind speeds have positive skewness.
At such locations, the transformation parameter, i.e., the
exponent a < 1. However, there are locations with negative
skewness of W and hence a > 1, as shown in the
bottom plots of Fig. 4. At those locations, the hybrid
model gives lighter tails of wind speed distributions than
what the standard extreme value analysis would suggest.
Consequently, when skewness is negative, it is proposed to
change methods to estimate N and ϑ by requiring that only
crossings of high wind levels are well approximated; see the
Appendix B for more details.

4 Stationary and homogeneous wind
region S

The region S depends on the shape of the kernel f defined in
Eq. 3. It should contain (0, 0, 0) and should be at least large
enough that

∫
S f (q)2 dq ≈ 1. In this study, S is defined

using the average geometry (size) of a spatio-temporal
windy weather region. The geometry parameters are defined
as follows.

4.1 Size of windy weather region

In the Caribbean and the Gulf of Mexico, wind speeds
are modelled by the transformed hybrid model. The model
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Fig. 4 Parameter a defining transformed wind speed X = Wa for January and August (upper plots). Estimated skewness of W for January and
August (lower plots)

consists of a Gaussian part describing the “every day”
variability of wind and a number of random functions
Xi modelling storms and lulls occurring in the region
S. At a location p, let a windy weather be defined as
X(t, x, y) > m. Furthermore, let τ be the average duration
of uninterrupted windy weather at location p = (tp, xp, yp),
where tp is discretized by month for the estimation.

Similarly, let the average spatial extents of windy weather
in the longitudinal and latitudinal directions be denoted by
Lx and Ly , respectively. More precisely, τ , Lx and Ly are
the average length of excursions above the median wind
speed (i.e., W ≥ m1/a) in the processes X(t) = X(t, 0, 0),
X(x) = X(0, x, 0) and X(y) = X(0, 0, y), respectively. If
X(t), X(x) and X(y) were stationary Gaussian processes,
then by Rice’s formula Eq. 22 and the Theorem 7.6 given in
Lindgren (2013), the following relations can be obtained:

τ = π

√
V (X(t))

V (Ẋ(t))
= λ

−1/2
11 , Lx = π

√
V (X(x))

V (Ẋ(x))

= λ
−1/2
22 , Ly = π

√
V (X(y))

V (Ẋ(y))
= λ

−1/2
33 , (12)

where V (X) denotes the variance of the random variable X.
When wind speeds should be described by the hybrid model,
i.e., N > 0, the above parameters τ , Lx and Ly should
be seen as spectral parameters. The parameters can be fair
approximations of the observed average sizes of windy
weather regions since most of the time the hybrid model
is generated using a Gaussian field XG. The parameters
τ, Lx, Ly depend on a, which varies with season/month (tp)
and geographical position (xp, yp) of the location p; see
Fig. 6 for an illustration.

4.2 Choice of S

For the accurate estimation of long-term distributions or
crossing rates at a fixed location p, the region

S = [−1.75τ, 1.75τ ] × [−1.75Lx, 1.75Lx]
×[−1.75Ly, 1.75Ly] (13)

is used. The typical value of |S| is approximately 8 ·
104[hour·deg2]. If the spatio-temporally homogeneous
properties of W in a neighbourhood field of p are needed,
S must be enlarged to contain the neighbourhood. For
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Fig. 5 Median wind speed m
1/a
p (upper plots) and logarithm of standard deviation of transformed wind speeds ln(σp) (lower plots) in February

and August, respectively

example, to simulate time series of wind speeds during one
month, i.e., 720 h, the size of S has to be enlarged to

S̃ = [−360 − 1.75τ, 360 + 1.75τ ] × [−1.75Lx, 1.75Lx]
×[−1.75Ly, 1.75Ly]. (14)

Note that N must also be increased by a factor of |S̃|/|S| =
1 + 360

1.75τ
. The new value of N is the number of wind

anomalies placed at random in S̃ in order to describe
the wind fields in the larger region. The intensity of

Fig. 6 Comparison of spatial variability of τ , defined in Eq. 12, in February and August, respectively
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extraordinary wind events N/|S| is presented in Fig. 7.
However, the value of ϑ presented in Fig. 8 and |S| used in
Eq. 9 to define amplitudes Zi

√
Ri of Xi do not change.

The wind field in the neighbourhood of p for the period
of time within a month can be simulated by the hybrid
model in Eq. 11, where the Gaussian part can be simulated
on any grid using some standard methods, e.g., Cholesky
decomposition of the covariance matrix. Here, the size of
the field matrix is the limiting factor. Since the estimated
values of N in the Caribbean and the Gulf of Mexico are
small, for example for a region as in Eq. 14 and a time
period of 1 month it would not exceed 100, simulations
of

∑N
i=1 Xi(q) is numerically very simple task for any

grid.
Note that only local models are considered in this study.

If more than one region are considered, the simulations of
wind speed fields in these regions are independent, even if
these regions are overlapped.

5 Validation statistics and practical
applications of the hybrid model

In the following, three statistics of wind speeds are
presented: (1) the long-term wind speed distribution at a
fixed location, (2) the crossing rates for the prediction
of 100/1000-year extreme wind speeds using the Rice’s
method, and (3) the simulation of local fields and time series
of wind speeds at specific locations. These statistics are
used to validate the proposed hybrid model, as well as to
demonstrate the practical applications of the hybrid model.

5.1 Long-termwind speed distributions

Since the variability of W depends on the season, to avoid
ambiguity when discussing the distribution of W , the time
span and region from which the wind observations were
gathered need to be clearly specified. The long-term CDF

at p can be retrieved by averaging W(p) distributions. For
example, the yearly distribution of W at (xp, yp) is given by

P(W ≤ w) =
∫ 1

0
P(W(tp, xp, yp) ≤ w) dtp. (15)

Similarly the yearly long-term CDF over a region A is
given by

P(W ≤ w) = |A|−1
∫

A

∫ 1

0
P(W(t, x, y) ≤ w) dt dx dy,

where |A| is the area of the region A. If W is described by
the transformed Gaussian model then

P(W(p) ≤ w) = �

(
wa(p) − mp

σp

)
, p = (tp, xp, yp),

where �(x) is the cumulative distribution of a standard
Gaussian variable. However, if the transformed Wa is
described by the hybrid model, then the computations of
P(W(p) ≤ w) is slightly more complicated. The detailed
calculation procedure is given in the Appendix A.

5.2 Estimation of 100/1000-year extremewind
speeds

The long-term distribution of W is commonly used to
describe the variability of wind speeds. An important
applications of the distribution is to estimate expected
values of various functions of wind speed, e.g., the average
available wind energy for harvesting at a particular wind
farm. Another category of wind characteristics consists of
the extreme wind speed statistics, and such characteristics
are relevant to, e.g., maritime-safety-related activities. For
such purposes, the statistical wind characteristics are most
often described in terms of the distribution of the maximum
wind speeds over a given period of time T , e.g., one year.

Let MT denote the maximum wind speed during a period
T , where T is usually one year, 1 month or one hurricane
season. The probability distribution of MT describes the

Fig. 7 Intensity of extraordinary wind events in a region of 25 deg2 during one month 31 × 25 × N/|S| computed for transformed wind speeds in
July, August, and September, respectively
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Fig. 8 Parameter ϑ in July, August, and September, respectively

long-term variability of MT . Somewhat simpler statistics
are the so-called 100/1000-year extreme (return) wind
speeds denoted by w100 and w1000, respectively. These
extreme values are quantiles of the MT distribution; e.g., the
100-year extreme wind is defined by

P(MT ≥ w100) = 1

100
.

The name is motivated by the heuristics that for T = 1 year,
the wind speed level of w100 will be exceeded in average
once per 100 years.

In this study, the so-called Rice’s method is used to
estimate P(MT ≥ w) (see, e.g., Rice (1944, 1945),
Baxevani and Rychlik (2006), and Mao and Rychlik
(2013)). This method employs the concept of level crossing
defined as follows. For a time series denoted by W(t), let
NT (u) be the number of level crossings in a time interval
T , i.e., the number of times t at which W(t) = u for t ∈
T = [t1, t2]. The Rice’s method uses the following bound:

P(MT ≥ u) ≤ P(W(t1) ≥ u)+E[NT (u)]/2, T = [t1, t2].
(16)

The bound becomes very accurate when the level u reaches
very high values, e.g., extreme values. The means to
evaluate E[NT (u)] are given in the Appendix A.

The transformed Gaussian and the hybrid model can be
used to evaluate the frequencies/distributions of extreme
wind speeds by the generalized Rice’s formula (Azais
and Wschebor 2009) (see, e.g., Brodtkorb et al. (2000)).
The estimation of the maximum distribution as in Eq. 16
is the typical/simplest application of this methodology to
study the frequencies of extreme events. Furthermore, the
so-called Slepian models (Lindgren and Rychlik 1991;
Podgórski et al. 2015) allow for simulating time series of
wind or wind surfaces in the vicinity of an extreme event.
With the simulated wind information, physical interaction
between wind and an engineering structure can be modelled

to estimate the frequencies of potentially harmful events,
which can trigger undesired/dangerous responses.

5.3 Simulation of local fields and time series of wind
speeds

An important feature of the stochastic field models proposed
here is that they can be used to generate artificial wind
speeds on the time series and fields scales. The use of the
hybrid model defined in Eq. 11 to simulate those two types
of wind speed, i.e., local fields and time series of wind
speed, will be demonstrated here, viz.

W(tp + t, xp + x, yp + y)=
(

mp+σp

(
p XG(q)+

N∑
i=1

Xi(q)

))1/a

.

First, the generation of time series at three fixed locations
will be demonstrate to validate the hybrid model in the fol-
lowing Section 6. Then, the simulation of temporal wind
speed fields of 4-h interval in a neighbourhood of a fix loca-
tion will be demonstrated by the model in Section 7. Such
simulations could be used to study the responses of engineer-
ing structures to wind loads. For example, this model can be
used to estimate the long-term (e.g., 30 years) distribution of
wind speeds along arbitrary ship routes. Then, Rice’s method
can be employed to get the maximum wind speed during
those 30-year sailing routes. The obtained wind information is
essential for estimating the pay-back times of wind-assisted
propulsion devices (Nelissen et al. 2016) to be installed
onboard ships and for assessing the safety of the ships after
installation. Based on such simulated wind information, a
ship could also choose to sail in a more economic way so
as to encounter more beneficial wind conditions along its
routes. Furthermore, wind speed field simulations provide
important information regarding the choice/design of wind
farms in specific regions. The wind correlations provided
by this model could also be used for conditional predic-
tion of wind speeds when some spatial or temporal wind
information is known for given areas of interest.
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6 Validation of the hybrid model for wind
in the caribbean and the gulf of Mexico

Here, the hybrid models are estimated using 16 years ERA-
Interim wind data (Dee et al. 2011) from ECMWF for the
years 2000–2015. The parameters of the models are esti-
mated for each month, and they also vary in space. The
spatio-temporal variability of the transformation exponent a,
the mean m, the standard deviations σ and the duration of
windy weather τ are shown in Figs. 4, 5, and 6. An additional
important parameter N , which describes the frequency of
storms, is shown in Fig. 7. The wind speeds at the three
locations represented in Fig. 1 (upper plot) will be used to
illustrate and validate the accuracy of the hybrid model.

In the following, the accuracy of the fitted hybrid models
will be investigated by comparing the yearly exceedance
probabilities P(W > u), and the expected number of
upcrossings during one year E[N+(u)] = E[N(u)]/2.
For model validation, the theoretical long-term distribution
P(W > u) is computed using Eq. 30, and the upcrossing
rate E[N+(u)] is estimated using Eqs. 27–29 based on the
fitted hybrid models; see the Appendix A for more details.
These estimates are then compared with the empirical
values based on 16 years of hindcast wind data.

6.1 Validation at the location west of Haiti coast (72
W, 17.25 N)

At this location, the transformation exponents a during
the hurricane and winter seasons are very different, as
shown in Fig. 4. In winter, a is far above 1.2, whereas in
summer, it is far below 0.7. In addition, a highest wind
speed of 47 m/s (due to the hurricane Dean) has been
observed at this location; see the lower plot in Fig. 1. Data

of this type present a challenge for automatic estimation
procedures.

Figure 9 presents the comparison results for the location
west of the coast of Haiti. It is shown that the hybrid
model describe the yearly wind speed variability/probability
very well. Very good agreement between the theoretically
computed E[N+(u)] (obtained using the fitted hybrid
model) and the observed yearly crossing frequencies is also
observed. In the figure, the thin (blue) lines represent the
empirical yearly wind speed distributions obtained from
simulations of the transformed hybrid model. Furthermore,
the empirical yearly wind speed probabilities based on the
simulated wind speeds are also presented, and very extreme
(outliers) wind speeds can be found in the simulated wind
speeds.

6.2 Validation at the location south of NewOrleans
(90W,28.50 N)

At this location, the transformation exponents a are
also distinctly different between the hurricane and winter
seasons. However, in the winter, a is approximately equal
to 1, i.e., no transformation is needed. It is well-known that
the coasts of Louisiana and Mississippi often experience
extreme winds when hurricanes are passing this region. For
example, in 2005, the passage of Hurricane Katrina through
this region produced maximum wind speeds above 50 m/s.
However, no such extreme wind speeds are recorded in
the 2000–2015 ERA-Interim data; a highest wind speed of
only 25 m/s was recorded on 2008-09-12. (One possible
reason for this is that wind speeds are given every 6 h in
the dataset.) Thus, an interesting question is whether the
proposed hybrid model for estimating the 100/1000-year
extreme wind speeds will result in a higher wind speed.

Fig. 9 Comparison of the
expected number of upcrossings
during one year E[N+(u)] and
yearly probabilities P(W > u)

from different models, at the
location west of Haiti (72.75 W,
17.25 N)
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Figure 10 shows similar results to those in Fig. 9 but
for the location at (90W, 28.5N). It is shown that the
theoretically computed quantities agree very well with
observed values except for wind speeds of approximately
20 m/s.

6.3 Validation at the location west of the Florida
coast (84W, 28.5N)

Here, wind speeds vary in a similar way as in the North
Atlantic; i.e., there is no significant difference between the
values of a in the hurricane and winter seasons. However,
since the kurtosis of the transformed wind speeds X = Wa

for the months of June and July is greater than four, the
hybrid model should nevertheless be used for this location.
(In the North Atlantic, the kurtosis of X is approximately 3.)

Figure 11 presents results for the location west of the
coast of Florida. The theoretically computed quantities
obtained using the hybrid model agree very well with the
observed values. The wind speeds simulated based on the
hybrid wind model are also presented. It should be noted
that the hybrid model can generate very high wind speeds,
far above the values observed in the data (at this location,
approximately 23 m/s). Hurricanes do sometimes hit the
northwest coast of Florida, e.g., in the years 2005 and 2016.
Such rarely occurring “outliers” cannot be generated using
transformed Gaussian models.

7 Extreme prediction and simulation of wind
speeds by the hybrid model

In this section, three examples illustrating the utilization of
the hybrid model will be presented. The first example is

the extreme wind prediction in the regions of the Caribbean
sea and the Gulf of Mexico, and the second example is the
simulation of wind speeds as local fields and time series. In
the third example, simulating wind speed fields will be used
to estimate spatio-temporal wind extremes of the fields.
The examples have quite practical applications within the
maritime community.

7.1 Estimation of 100/1000-year extremewinds
speed

Various methods are available for statistical extreme value
prediction. For example, in Walshaw (2000), the parameters
in a GEV distribution were assumed to be random, and a
Bayesian approach was used to estimate the extreme wind
speeds. By contrast, in Payer and Kuchenhoff (2004), not
only the yearly maximum but also the r highest values
during each year were used to fit the GEV distribution.
This approach is particularly useful if there are only a
few years of data available. When only very limited data
are available, an alternative approach is to compute the
probability P(MT > u) from a parametric wind speed
variability model, e.g., a transformed Gaussian or the hybrid
model; see Rychlik et al. (2011). Obviously, extrapolation
beyond the range of the available data can lead to severely
biased estimates if the assumed model does not hold in the
region of extrapolation. This is why a careful validation of
the accuracy of proposed models is always needed.

For the application considered here, the transformed
hybrid model is used, and the parameters of the hybrid
model for the Caribbean sea are estimated as before, using
16-year ERA-Interim wind data. First, the extreme wind
speeds have been estimated for each geographical location.
Then these point-wise estimates are smoothed by means of

Fig. 10 Comparison of the
expected number of upcrossings
during one year E[N+(u)] and
yearly probabilities P(W > u)

from different models, at the
location south of New Orleans
(90W, 28.5N)
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Fig. 11 Comparison of the
expected number of upcrossings
during one year E[N+(u)] and
yearly probabilities P(W > u)

from different models, at the
location west of Florida (84W,
28.5N)

a Gaussian kernel. The 100/1000-year extreme wind speeds
computed by the Rice’s method based on the hybrid model
are presented in Fig. 12, together with that derived from
fitted GEV distributions. As can be seen that the risk for
severe winds is highest in the region south of Mississippi
coast. Hence, high extreme wind speeds should be expected
in location close to New Orleans.

However, it should be noted that the smoothing strategy
will significantly reduce the strong variability of estimated
extreme wind speeds at surrounding locations. The variabil-
ity is illustrated in Table 1, where the predicted wind speeds
at locations 0.75 degrees apart are significantly different.
(Note that those are point-wise estimate and hence not
smoothed using estimates at the neighbouring locations.)
The fact can be also seen from Fig. 13, which presents the
maximum wind speeds during the years of 2000–2015. Fur-
thermore, Table 1 also illustrates the difference of extreme
wind speed predictions between derived from fitted GEV
distributions and estimated by the Rice’s method based on
the hybrid and transformed Gaussian models. The predic-
tions based on transformed Gaussian models systematically
underestimate the 100/1000-year extreme wind speeds at
the three locations. Estimates computed using the Rice’s
method and transformed hybrid model agrees fairly with the
estimates derived using the GEV method.

7.2 Simulation of time series of wind speeds using
the hybridmodel

Here and in the following subsections, the wind speeds in
the neighbourhood of the location (72.75W, 16.5N) will be
simulated using hybrid model. The fitted parameters for the
August are a = 0.6, m = 6.8, σ = 1.5, and p = 0.92,
which means that 84% of variance is modelled by Gaussian
component. Furthermore N = 6, ϑ = 0.03. The parameters

defining the spatio-temporal dependence are τ = 1.08 day,
Lx = 10.1, Ly = 6.2 degree, defined in Eq. 12, and
drift speed vx = −0.11, vy = 0.02 [deg/hour], defined
in Section 7.3.1, while correlation between the spatial
derivatives of transformed wind speed 0.04 is negligible.

The parameters τ , Lx , Ly and velocities vx, vy describe
average geometry of extreme wind speed regions and
their dynamics. The estimated values are in terms of the
covariance matrix of the gradients. The values given above
are quite typical for these parameters at this region. The
parameter N describes the average number of weather
anomalies, which are about 1.6 per month in a region
of 25 deg2. For example, Fig. 7 presents the variability
of this parameter for various months. It should be noted
that the intensity of extraordinary wind events is higher
than intensity of cyclones. The parameters σ , ϑ and a

influence the tails of wind speed distribution, and hence the
frequencies of extreme wind speeds. The low value of the
parameter a makes tails heavier. For example, if a hybrid
model predicts an extreme value of xmax , it is corresponding
to the extreme wind speed of (m + σ xmax)

1/a . (Note that
using models with very low a is questionable for extreme
wind prediction.) Furthermore, ϑ is the scale parameter to
determine the highest value of Xi(q) components. It can be
deduced, by combining Eqs. 3, 9, and 36. The highest value
of Xi(q) is about c

√
ϑYi , where c is a constant and Yi is

Laplace distributed variables.
For the location (72.75W, 16.5N), 500 independent time

series of wind speeds in August are simulated by the hybrid
model. The time step is 6 h and the region S has been
increased using Eq. 14. The parameter N = 6 is also
increased by a factor of 1 + 360/(1.75 × 30) giving the
new value of N ≈ 50. Figure 14 presents 16 (out of 500)
simulated time series. The simulations are compared with
wind speeds extracted from the ECMWF hindcast data. It
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Fig. 12 Estimates of 100/1000-year extreme wind speeds [m/s] using Rice’s method based on the hybrid model (left plots) and GEV method
(right plots). The estimates are obtained by smoothing point-wise estimates using a Gaussian kernel

demonstrates that the hybrid model can generate extreme
windy episodes as observed in the data. In order to compare
the time series for low and moderately high speeds, these
plots have been zoomed and presented in the right plots
of Fig. 14. It is shown that the simulated time series of
wind speeds are smoother than the observed values. This is
caused by simplicity of the chosen kernel. In Rychlik (2015)
and Rychlik and Mao (2014), a more complex kernel was
presented and could be used even here.

Consequently, based on the 500 simulated wind time
series, the upcrossing frequencies are also estimated and
compared with that computed from the hybrid model and
empirical values from the hindcast data. These comparisons
are presented in Fig. 15. Agreement between the simulated,
observed and computed frequencies is fair.

Finally, the problem of uncertainties in predicting
extreme wind speeds can be illustrated by the simulation
study. The hybrid model is used to simulate wind speed

Table 1 Estimation of 100/1000-year extreme wind speeds (denoted by W100 and W1000) at three locations

Estimation method (72.75W, 17.25N) (72.75W, 16.5N) (90W, 28.5N) (84W, 28.5N)

W100 W1000 W100 W1000 W100 W1000 W100 W1000

Rice method based on the hybrid model 39 m/s 69 m/s 24 m/s 46 m/s 38 m/s 76 m/s 26 m/s 44 m/s

Fitted GEV distribution 55 m/s 200 m/s 31 m/s 84 m/s 33 m/s 51 m/s 29 m/s 58 m/s

Rice method for transformed Gaussian 18 m/s 20 m/s 15 m/s 16 m/s 23 m/s 27 m/s 24 m/s 28 m/s
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Fig. 13 The maximum wind speeds during the years of 2000-2015.
The white cross represents the location (72.75W, 16.5N), and the black
circle represents the location (72.75W, 17.25N), respectively

time series in August for 500 years. The wind speed that is
exceeded once in 500 years is taken as an empirical estimate
of the 500-year extreme wind speed. This procedure has
been repeated ten times. The estimated 500-year extreme
wind speeds vary between 38 and 102 m/s. Note that 500-
year extreme wind speed evaluated by the hybrid model at
the location is 51 m/s.

7.3 Spatio-temporal simulation of local wind speeds
using the hybridmodel

In this section, a local spatio-temporal hybrid model will be
used to simulate wind speed fields in a small region of about
6 × 6 degrees square and a time period of 8 h. Obviously,

observed wind speeds at a fixed position does not reflect
dynamics of wind moving systems. The joint spatial and
temporal data are needed to investigate movements of wind
systems. Here, the gradient is used to define local spatio-
temporal dependence. However, such a local information is
not sufficient to investigate the movement of cyclones. For
this type of dynamics, a global spatio-temporal model is
needed. Development of such a model is planned but not
discussed here.

The location south of the coast of Haiti in August is
chosen for the local wind field simulations. Two types of
procedures have been used to simulate the wind fields. First,
only the Gaussian fields XG(q) in Eq. 11 are simulated,
and then transformed into wind speed fields, which are
presented in the left plots (with 4-h interval) of Fig. 16. The
other approach is to employ the hybrid model as in Eq. 11,
i.e., multiplying the above simulated XG(q) by a factor p,
adding the

∑N
i=1 Xi(q) and transforming them into wind

speed fields as follows:

W(tp + t, xp + x, yp + y)=
(

mp+σp

(
p XG(q)+

N∑
i=1

Xi(q)

))1/a

.

In the second simulation, storms are modelled by random
functions Xi with the kernel f defined in Eq. 3. And then
the amplitudes and the tops of these storms are generated
and placed at random in this region. The amplitudes of the
storms change in time and the tops of the storms are moving
with constant velocity. The simulation results are presented
in the right plots of Fig. 16.

If the components of gradients Xx , Xy are uncorrelated
(as in the current example), the velocity of Xi movement

Fig. 14 Comparison of wind speed time series between simulated and extracted from hindcast at the position (72.75 W, 17.25 N) in August during
the years of years 2000–2015. Right plots: Zoomed left plots
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Fig. 15 Upcrossing frequencies
of wind speeds in August
evaluated by the hybrid model
are compared with those
estimated using 500 simulated
wind time series and hindcast
data during the years 2000-2015

is equal to median propagation velocity of the wind
speed field given in Eq. 18. It will be briefly reviewed
in Section 7.3.1. Obviously, the storms move in variable
velocities and usually faster than (vx, vy) (see, e.g., Dorst
(2014)). Development of more realistic models for the storm
dynamics is planned in future.

7.3.1 Velocities of a wind speed field

In the classical paper by Longuet-Higgins (1957), velocities
were introduced to study the movements of random surfaces.
Alternative definitions can be found in, e.g., Baxevani et al.

(2003). Here, the so-called velocity in a fixed direction will
be defined below and used throughout this paper.

Consider a wind field surrounding location p, i.e.,
W(t, x, y) = W(tp + t, xp + x, yp + y). The velocities Vx

and Vy in the x and y directions, respectively, are defined by

Vx = − Wt

Wx

, Vy = − Wt

Wy

, (17)

where Wt , Wx , and Wy are the partial derivatives of W .
Some simple calculus is needed to show that

Wt

Wx

= Xt

Xx

,
Wt

Wy

= Xt

Xy

Fig. 16 Simulated wind fields 4
hours apart in August from the
transformed Gaussian model
(left plots), and wind fields
(right plots) simulated from the
hybrid model that is estimated at
the location (72.75 W, 16.5 N)
in August
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which means that the velocities are independent of the
transformation exponent a. The median velocities Vx and
Vy will be denoted by vx and vy , respectively. Now, if X

is a homogeneous Gaussian field, then the medians of the
velocities Vx and Vy are given by

vx = −λ12

λ22
, vy = −λ13

λ33
, (18)

see Baxevani et al. (2003) for the proof. Here λij is the
i, j element of the matrix � of Eq. 4, which defines the
correlation structure of the wind field X.

The drift speeds vx and vy are approximately half of the
average speed of cyclone movements at this region; see,
Dorst (2014) for the movement speeds statistics of cyclones.
When cyclones are not present in the region, most likely vx

and vy could describe the movement of windy weather. In
the Appendix C, some MATLAB code is given and can be
used (after small adaptations) to simulate the wind speed
fields.

7.3.2 Estimation of spatio-temporal extremes by means
of simulated wind speeds fields

In this section, an example is presented to demonstrate
the application of wind speed simulations by the hybrid
model for the spatio-temporal extreme predictions. A spatial
region of longitude between 68.5W and 76.5W, latitude
between 14.5N and 20.5N, is chosen for wind simulations in
August. The wind speed variability in this region is assumed
to be homogeneous and stationary (The assumption might

be not accurate because of islands in this region.) The
hybrid model is fitted at the location (72.25W, 16.5N) in
August. Wind speeds have been simulated based on the
hybrid model over the region on a mesh resolution of 0.5
degree and 2 hours. Then, maximum wind speeds are picked
up from the simulated spatio-temporal wind speed fields.
In total, 500 spatio-temporal maximum wind speeds are
simulated and the GEV distribution is also fitted to the
data.

For the extreme wind prediction in the spatial region,
the probability of maximum wind speeds is estimated
by fitting GEV distribution, Rice’s method based on
the hybrid model and presented in the left plot of Fig.
17, as well as the empirical probability based on the
hindcast data and the 500 simulations. Similar results for
a single location (72.75W, 16.5N) marked as the cross
are presented in the right plot of Fig. 17, where the
result obtained from Rice’s method based on transformed
Gaussian model replaces the probability based on the 500
simulations.

The figure shows that the spatio-temporal maximums
are considerably higher than the one observed at a fixed
location. It should be noted that the hybrid model at the
location (72.75W, 16.5N) is used instead of the location
(72.75W, 17.25N), where the maximum wind speed in the
whole data set was observed. For practical applications,
smoothed over region model for simulations of spatio-
temporal wind maximums should be used.

Some MATLAB scripts to simulate spatio-temporal
extreme wind speeds is given in the Appendix C. In the
program, the zero mean variance one Gaussian field XG(q)

Fig. 17 Probabilities that maximum wind speeds exceed a threshold
u [m/s] estimated by various approaches. Left plot: Estimates of the
probability in a spatial region shown in Fig. 13 in August. The empir-
ical probabilities are estimated based on both 15 years hindcast data,

and 500 simulations of spatio-temporal wind speed fields by the hybrid
model. Right plot: Estimates of the probability of wind speeds at the
location (72.5W, 16.5N) in August by various methods
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is replaced by a standard Gaussian variable (XG(0, 0, 0)).
This approximation is used because simulations of Gaussian
field on a large number of positions are very time
consuming. Since XG and Xi are independent and the size
of extreme maximums is defined by the sum

∑N
i=1 Xi(q)

(easy and fast to simulate), this leads to fast and accurate
simulations of spatio-temporal maximums.

8 Conclusions

Due to the strong tropical storms and hurricanes that can
occur in the Caribbean sea and the Gulf of Mexico, the
spatio-temporal wind model used in the North Atlantic,
which is based on a transformed Gaussian field, cannot
properly describe the wind variability in this region.
Therefore, a hybrid spatio-temporal model, combining a
transformed Gaussian field with Laplace moving averages,
is proposed to describe the wind speed variability in this
region. The hybrid model encompasses the Gaussian and
Laplace models as limiting cases.

The capability of the hybrid model has been demon-
strated through the estimation of the yearly long-term dis-
tribution and the distributions of yearly maximum wind
speeds at three locations in the Caribbean sea and the Gulf
of Mexico. The wind speed distributions computed using
the hybrid models agree well with the empirical distribu-
tions estimated from the ECMWF hindcast wind database.
The application of Rice’s method to the fitted hybrid mod-
els yields 100/1000-year extreme wind speed predictions,
which agree well with those derived using generalized
extreme value (GEV) distributions fitted to 16 consecutive
yearly maximum wind speeds.

The proposed model can be used to evaluate the available
wind energy at a fixed location. It provides a means of
predicting frequencies of extreme wind speeds, which are
needed in safety analysis for maritime operations and for
planning of coastline protection, at locations where there
are no long time series of measured wind speeds available.
The model can be also used to estimate the long-term
distribution of wind speeds and upcrossing frequencies of
extreme wind speeds along arbitrary ship routes. Those are
essential for a ship’s safety and route planning considering
relevant responses due to wind loads. It can be used
to estimate the spatio-temporal extreme/maximum wind
speeds as well.

In addition, further research is needed for the future
development of the hybrid model, which could allow for
variable (more realistic) cyclones movements in the chosen
regions. Furthermore, a global non-homogeneous and non-
stationary hybrid model could be developed, in which the
parameter N will be random (Poisson distributed).
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Appendix A: Computation of E[N(w)]
and P(W(t, x, y) ≤ w) for the hybrid model

A.1 Rice’s formula for expected number of u
crossings

Consider a fixed location p = (tp, xp, yp). For simplicity
of notation, let t = tp, and consider W(t) = W(t, xp, yp).
The expected number of crossings of level u is given by the
well-known Rice’s formula (Rice 1944, 1945)

E[NT (u)] =
∫

T

∫ +∞

−∞
|z|fẆ(t),W(t)(z, u) dz dt, (19)

where Ẇ is the derivative of W(t) with respect to t . The
integral

μp(u) =
∫ +∞

−∞
|z|fẆ(t),W(t)(z, u) dz (20)

is called crossing intensity. According to Eq. 19, μp(u) dt

is equal to the expected number of crossings in the
neighbourhood of t of infinitesimal length dt .

A.2 Transformed Gaussian case

The assumption of local stationarity of the transformed
Gaussian model for wind speed means that locally,

W(tp+t, xp+x,yp+y)=(
mp+σpXG(q)

)1/a
, q=(t,x,y),

where p = (tp, xp, yp). Since W crosses u at time tp
only if XG(t) = XG(t, 0, 0), as defined in Eq. 6, crosses
(ua − m)/σ at zero,

μp(u) =
∫ +∞

−∞
|z|fẊG(0),XG(0)(z, (u

a − m)/σ) dz. (21)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Finally, since XG is a stationary Gaussian process,

μp(u) = 1

τp
e
− (ua−mp)2

2σ2
p . (22)

The parameters τp is defined in Eq. 12, and mp, σ 2
p are

considered to be constant on a time scale of approximately
one month.

A.3 Estimation of crossing intensity for the hybrid
model XH

The wind speed variability in the surroundings of p =
(tp, xp, yp) is modelled by Eq. 11 as follows:

W(tp+t, xp+x, yp+y)=(
mp+σpXH(q)

)1/a
, q=(t, x,y).

The time series of wind speeds collected at p is represented
by W(t) = W(tp + t, xp, yp), and hence

W(t) = (m + σ XH (t))1/a , where

XH (t) = p XG(t, 0, 0) +
N∑

i=1

Xi(t, 0, 0),

as before, m = mp and σ = σp. Note that XH (t) is a
stationary process of zero mean and variance one. Now, the
same reasoning that motivated Eq. 21 yields the following
formula for the expected number of crossings of level u

based on the hybrid model of W(t) for t ∈ T = [t1, t2], viz.

E[NT (u)]=
∫ t2

t1

∫ +∞

−∞
|z|fẊH (0),XH (0)(z, w) dz dt, w=(ua−m)/σ .

Thus, the crossing intensity can be computed as the following
integral:

μp(u) =
∫ +∞

−∞
|z|fẊH (0),XH (0)(z, w) dz. (23)

A.4 Estimation ofμp(u)

Considering K simulations of the amplitudes Ri and the
locations of the highest (or lowest) points in the wind
anomalies (U1i , U2i , U3i ), i = 1, . . . , N . Each simulation
k, where k = 1, . . . , K , results in 4 · N values, denoted by
rk , uk , containing ri and ui = (u1i , u2i , u3i ), i = 1, . . . , N .
Furthermore, let μk(u|r, u) be the integral of Eq. 23 as
evaluated for the conditional density of ẊH (0) and XH (0)

given storm sizes rk and storm locations uk . Then, the
intensity μp(u) can be estimated by averaging the values
μk(u|r, u) as follows:

μ̄p(u) = 1

K

K∑
k=1

μk(u|r, u). (24)

In examples K = 50000. The computation of the
conditional intensity of w level crossings μk(u|r,u) will
be presented next. The intensity μk(u|r,u) can be given
in almost analytical form, since conditionally on (r,u),
ẊH (0), XH (0) are correlated zero mean Gaussian variables
with the variances given below.

The hybrid model is defined by the Gaussian kernel in
Eq. 3, i.e.,

f (q) = (2π)3/4 | det �|1/4 exp
(
−π2q�qT

)
,

where q = (t, x, y). Let ḟ (q) be the following partial
derivative:

ḟ (q) = ∂f (t, x, y)

∂t
, q = (t, x, y).

Given storm amplitudes of ri and with corresponding centre
locations of ui , i = 1, . . . , N , the conditional variances and
the covariance matrix of the variables (XH (0), ẊH (0)) are
given by

V (XH (0)|r, u) = p2 + ∑N
i=1 rif (ui )

2,

V (ẊH (0)|r, u) = p2π2λ11 + ∑N
i=1 ri ḟ (ui )

2,

Cov(XH (0), ẊH (0)|r,u) = ∑N
i=1 rif (ui )ḟ (ui ).

(25)

A.5 Computation of the conditional crossing
intensityμk (u|r, u)
For simplicity of notation, let us use X and Ẋ to denote
random variables distributed as XH and ẊH under the
condition that storms amplitudes are ri and their centres are
located at ui , i = 1, . . . , N . Hence, X, Ẋ are zero mean
Gaussian with variances and covariance given by Eq. 25.
Consequently, by Eq. 23

μk(u|r,u) =
∫ +∞

−∞
|z|fẊ,X(z,w) dz

= fX(w)

∫ +∞

−∞
|z|f (z|w) dz, , w = (ua − m)/σ, (26)

where f (z|w) is the conditional probability density of Ẋ

given that X takes a value of w. The density f (z|w) is
normally distributed with a mean and variance given by

E[Ẋ|X = w] = Cov(Ẋ, X)

V(X)
w,

V (Ẋ|X) = V (Ẋ) − Cov(Ẋ, X)2/V (X).

Then, integration by parts yields

∫ +∞

−∞
|z|f (z|w) dz =

√
V (Ẋ|X) (ψ(c(w)) + ψ(−c(w))) ,

(27)
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where c(w) = E[Ẋ|X = w]/
√

V (Ẋ|X) and

ψ(y) = φ(y) + y �(y). (28)

Here, φ and � are the standard Gaussian density and
distribution function, receptively. Finally,

fX(w) = φ
(
w/

√
V(X)

)
/
√

V (X). (29)

A.6 Computation of the long-term distribution
P(W(t , x, y) ≤ w)

Equations 1 and 11 can be combined to obtain

P(Wp ≤ w) = P

(
p Xp +

N∑
i=1

Xi ≤ wa − mp

σp

)
,

where X0 = XG(0, 0, 0) is the standard Gaussian variable
and p = (tp, xp, yp). For i ≥ 1,

Xi = Xi(0, 0, 0) = Zi

√
Rif (−Ui ),

where the Ui are uniformly distributed locations of storms
in a region S ⊂ R3. (Note that p, a and the kernel f depend
on the location p.)

Since X0, Z1, Z2, . . . , ZN are i.i.d. standard Gaussian
random variables, independent of Ui and Ri , if the value
of Ri f (−Ui )

2 is known, then p X0 + ∑N
i=1 Xi is a

Gaussian random variable with a variance equal to p2 +∑N
i=1 Ri f (−Ui )

2. Therefore, if the variance p2 + ∑N
i=1

Ri f (−Ui )
2 is independently simulated K times (K =

50000 in this study), then for each simulation, the following
probability is computed:

pj (w) = �

⎛
⎜⎝ wa−m

σ

√
p2+∑N

i=1 rij f (−u1ij , −u2ij , −u3ij )2

⎞
⎟⎠ ,

sj =1, . . . K,

where �(x) is the probability distribution of a standard
normal random variable. Now, the average of the pj is an
estimate of the local distribution of Wp:

P(Wp ≤ w) ≈ 1

K

K∑
j=1

pj (w). (30)

Appendix B: Estimation of the parameters N,
p and ϑ

Given the parameter N and the region S, the parameters p

and ϑ can be estimated by requiring that the variance and
the kurtosis of XH are equal to the variance and kurtosis
of the observed wind speeds. Furthermore, the crossing
intensities μN(u) [unit: number per month] can be found

using methods presented in the Appendix A for a given
position p = (tp, xp, yp), where tp = j/12 − 1/24, j =
1, . . . , 12, represents the j th month. Similarly, the observed
crossing intensities μemp(u) can be estimated from the
hindcast wind data at the position p. Finally, the parameter
N ≥ 0 is the location of the first local minimum of the
distance dN as in Eq. 31 between μN and μemp.

Definition of dN Let us introduce the normalized crossing
rates

fN(u) = μN(u)/

∫

D

μN(u) du,

f emp(u) = μemp(u))/

∫

D

μemp(u) du, u ∈ D.

where D = {u : f emp(u) > 0} if the skewness of the
wind time series is positive, otherwise, D = {u > u0 :
f emp(u) > 0}. Here, the threshold u0 > 0 is used to focus
on the crossings of high levels. Then, the distance between
μN(u) and μemp(u) is defined by

dN =
∫

D

f emp(u)
∣∣log(f emp(u)) − log(fN(u))

∣∣ du. (31)

The distance is a modification of the Kullback-Leibler
divergence, which measures the amount of information lost
when fN(u) is used to approximate f emp(u).

Appendix C: MATLAB scripts to simulate
spatio-temporal extremes

In this appendix, some MATLAB scripts to simulate
spatio-temporal extremes are provided. First, a hybrid
model has to be defined. Here, the proposed model is
derived using physical parameters describing a possible
wind speed climate. Then, the parameters a, m and σ of
the wind speed field should be estimated, and they are
given here in the script. For simplicity, the wind field is
assumed to be symmetrical, i.e., skewness of W is zero,
and hence parameter a = 1. The mean speed m is 9
m/s, whereas the standard deviation of W , σ = 3 m/s.
Consequently, the Gaussian model for W postulates that
most of the wind speeds at the location vary between 0 and
18 m/s.

C.1 Choose thematrix�

Next, the kernel function f (q) as in Eq. 3 should be
defined. It is a function of the matrix � as in Eq. 4. Let
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assume that the excursion sets of extreme wind speeds
are ellipses with major axis coinciding with south-north
direction. Consequently, the correlation between the partial
derivatives Wx and Wy is zero, and hence λ23 = 0. The
reminding components of the � matrix are chosen using
the average sizes of windy regions Lx , Ly , the duration τ

defined in Eq. 12, and the velocities vx , vy as in Eq. 18.
Let Lx = 7 degrees represent the windy region in

longitude, Ly = 8 degrees represent the windy region in
latitude, and let τ = 24 hours represent the windy time
period, respectively. Then, by Eq. 12 λ22 = 1/49, λ33 =
1/64 and λ11 = 1/242. The remaining parameters λ12 and
λ13 will be chosen by Eq. 18. Using the correlation matrix

of the gradient Xt, Xx, Xy , and under the assumption that
Wx and Wy are uncorrelated, it can be shown that,

vx = ρtx

Lx

τ
, vy = ρty

Ly

τ
, (32)

where ρtx , ρty are the correlations between Wt and Wx, Wy ,
respectively. Consequently, the maximal average speed that
a windy weather can move is 10/24 degree/hour in longitude
direction and 1/3 degree/hour in the latitude direction. Let
choose ρtx = 0.3 and ρty = 0.5, it gives vx ≈ 10 km/h
and vx ≈ 18 km/h, which are reasonable values for the
Caribbean region (see, e.g., Dorst (2014)).

In the following MATLAB script, the parameters a,m, σ

and the matrix � will be defined:

Fig. 18 Three simulations of
200 independent
spatio-temporal maximums of
wind speeds over a region of 6
by 6 degrees and the time period
of one month using hybrid
model defined in Section C.2

C.2 Select the region S and parameters N,ϑ , p
The region S has to be defined first. According to Eq. 13:

S = [−1.75τ, 1.75τ ] × [−1.75Lx, 1.75Lx ] × [−1.75Ly, 1.75Ly ].

For the above chosen region, |S| is calculated as
3.53τLxLy = 57624 [hour·deg2]. The model will be
specified when the parameters N , ϑ and p are given.

The method of moments is used to estimate p and ϑ .
The parameter is chosen in such a way that the variance
of XH is equal to one, and the kurtosis κ(XH ) is equal
to the kurtosis of the transformed wind speeds X = Wa

from the ECMWF hindcast dataset. (Here κ(X) = 12 will
be chosen.) Consequently, as shown in Kvarnström et al.
(2013), ϑ satisfies the following equality

κ(X) = 3 +
(

N∑
i=1

ϑ

(1 + ϑ)i

)2 (
κ

(
N∑

i=1

Xi

)
− 3

)
. (33)

Finally, the parameter p2 is calculated by the following
equation

p2 = 1 −
N∑

i=1

ϑ

(1 + ϑ)i
. (34)
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C.2.1 The case N = 1

For simplicity, N = 1 is chosen for the demonstration. As
mentioned before, the kurtosis κ(

∑N
i=1 Xi), where Xi are

defined in Eq. 8, depends only on ϑ . This relation can be
used to estimate ϑ . However, the computation of κ(XNn is
very tedious; see the Appendix in Kvarnström et al. (2013).
Only for N = 1, there is a simple formula for κ(X1) as
follows:

κ(X1) = 6|S|
∫

S
f (p)4 dp · (1 + ϑ)2

1 + 2ϑ

= 6|S|π3/2
√

det(�) · (1 + ϑ)2

1 + 2ϑ
. (35)

If ρxy = 0, which can be always achieved by rotating the
coordinate system, and the region S is given in Eq. 13, the
following equation can be obtained:

|S|√det(�) = (3.5)3
√

1 − ρ2
tx − ρ2

ty . (36)

The value of ϑ is obtained by numerically solving the
Eq. 33. Then p is computed by Eq. 34. Estimates of ϑ and
p are evaluated using the following MATLAB script:

For N = 1 and κ(X) = 12, the program gives ϑ = 0.096
and p = 0.955.

C.2.2 Simulations of spatio-temporal maximums

Let us choose a spatial region of 6 by 6 degrees and
period one month (31 days). The variable POS contains
the discretized region while (Y) contains (Nsim=500) of
maximums. The discretization steps are half degree and two
hours.

Using the code, three time series of 200 independent
spatio-temporal maximums have been simulated and pre-
sented in Fig. 18.
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Bogsjö K, Podgórski K, Rychlik I (2012) Models for road surface
roughness. Vehicle Syst Dyn: Int J Vehicle Mech Mobil 50:725–747

Bondesson L (1982) On simulation from infinitely divisible distribu-
tions. Adv Appl Prob 14:855–869

Brodtkorb PA, Johannesson P, Lindgren G, Rychlik I, Rydén J, Sjö E
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