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Popular Scientific Summary

Data transmission through optical fibers is the fastest form of digital 
communication available today and comprises the backbone of the Internet 
network. Every time a web page is accessed, an image is Instagrammed, or 
a YouTube video is watched, the data will travel most likely through an optical 
fiber at some point on the way to the user. 

Even though optical fibers can provide very high-speed communications, the 
transmitted signal is disturbed along the way by various sources of noise. 
If the noise is beyond some acceptable levels, the information intended by 
the transmitter cannot be “understood” by the receiver, therefore leading 
to a failed communication attempt. In order to avoid these situations, the 
transmitter and receiver are designed such that they are able to distinguish 
between noise and useful information.

Before designing the transmitter and receiver such that they can tolerate 
more noise, the nature of the noise has to be understood and modeled 
mathematically. These mathematical models, often called channel models, 
have to reflect the behavior of the noise accurately. On the contrary, designing 
the transmitter and receiver based on inaccurate channel models leads to 
suboptimal performance.

In this thesis, we are concerned with modeling and mitigation of noise related 
to polarization effects. We first develop channel models for polarization 
effects that occur during propagation. These models can be used in 
computer-based simulations to reproduce polarization effects that occur in a 
fiber-optic communication system. Simulations offer a greater flexibility than 
experiments and can be used to predict the behavior of a system before 
setting up time-consuming experiments. Furthermore, we propose various 
methods that improve the tolerance to polarization effects of fiber optical 
communication systems, leading to an increased transmission speed and 
improved energy efficiency. The interested reader is referred to page i of the 
thesis for a technical abstract summarizing the contributions.
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Abstract

Optical communication systems that exploit the orthogonality between two polarizations
of light convey information over optical fibers by modulating data over the two polariza-
tions. In an idealized scenario, the two polarizations propagate through the fiber without
interfering. However, this is not the case for practical fibers, which suffer from various
imperfections that lead to polarization-related interference between the two polarizations.
This thesis is concerned with polarization effects that arise in communication systems
over optical fibers. In particular, we consider modeling and compensation of such effects,
and their impact on and improvement of nonlinearity mitigation algorithms.

The impact of an impairment on the performance of a transmission system can be
understood via a channel model, which should describe the behavior of the channel as
accurately as possible. A theoretical framework is introduced to model the stochastic
nature of the state of polarization during transmission. The model generalizes the one-
dimensional carrier phase noise random walk to higher dimensions, modeling the phase
noise and state of polarization drift jointly as rotations of the electric field and it has
been successfully verified using experimental data. Thereafter, the model is extended
to account for polarization-mode dispersion and its temporal random fluctuations. Such
models will be increasingly important in simulating and optimizing future systems, where
sophisticated digital signal processing will be natural parts.

The typical digital signal processing solution to mitigate phase noise and drift of the
state of polarization consists of two separate blocks that track each phenomenon inde-
pendently and have been developed without taking into account mathematical models
describing the impairments. Based on the proposed model for the state of polarization,
we study a blind tracking algorithm to compensate for these impairments. The algorithm
dynamically recovers the carrier phase and state of polarization jointly for an arbitrary
modulation format. Simulation results show the effectiveness of the proposed algorithm,
having a fast convergence rate and an excellent tolerance to phase and polarization noise.

The optical fiber is a nonlinear medium with respect to the intensity of the incident
light. This effect leads to nonlinear interference as the intensity of light increases, which
made nonlinear interference mitigation techniques to be an intensively studied topic.
Typically, these techniques do not take into account polarization-mode dispersion, which
becomes detrimental as the nonlinear effects interact with polarization-mode dispersion.
We study digital-domain nonlinear interference mitigation algorithms that take into ac-
count polarization-mode dispersion by i) reversing the polarization effects concurrently
with reversing the nonlinear effects and by ii) mitigating only the polarization-insensitive
nonlinear contributions. These algorithms will be increasingly important in future op-
tical systems capable of performing large bandwidth nonlinear interference mitigation,
where even small amounts of polarization-mode dispersion become a limiting factor.

Keywords: Channel model, model-based, polarization demultiplexing, polarization drift,
polarization-mode dispersion, PMD, DBP, nonlinear compensation, backpropagation.
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CHAPTER 1

Background

Digital communication systems have an important role in today’s modern society and
have changed the way we connect to the world. Historically, information has been con-
veyed through many different media ranging from cave paintings, rock-carved petro-
glyphs, and smoke signals to the modern, digital communication network that we have
today, known as the Internet. In today’s digital era, it is easier than ever to access infor-
mation, which leads to a rapid growth in popularity of social media, online gaming, and
broadcast multimedia systems. Moreover, various emerging technologies, such as traffic
safety, Internet-of-Things, and virtual reality, are about to materialize, putting more
pressure on the Internet service providers to support high-speed Internet connections
and motivates the need for the design of faster communication systems. The long-term
trend is summarized in Table 1.1, showing that the total Internet traffic has experi-
enced a remarkable growth in the last two decades according to CISCO’s statistics and
predictions [1].

This remarkable growth is supported by fiber-optic communications, which is the
fastest form of communication technology available today and comprise the backbone
of the Internet. The optical technology transports information using light in the near-
infrared spectrum over distances varying from a few meters in data-centers to thousands
of kilometers over transoceanic links.

The optical revolution started in 1966 with Kao and Hockham’s [2] vision of using
silica glass as a medium for guided transmission at optical frequencies. Later on in
1970 followed the first demonstration of < 20 dB/km optical fiber loss [3], starting the
fiber-optic-communications era. The commercial deployment of optical cables started
in the 1980s when they revolutionized the communication networks and became the
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Chapter 1 Background

Table 1.1. Global Internet traffic: past and forecast [1].

Year Global Internet Traffic

1992 100 GB per day

1997 100 GB per hour

2002 100 GB per second

2007 2000 GB per second

2016 26600 GB per second

2021 105800 GB per second

predominant transmission medium in telecommunication links. The first transoceanic
link was installed in 1988 connecting USA and Europe [4]. The invention of optical
amplifiers [5,6] enabled wavelength-division multiplexing initiating a massive investment
in system development. This technical revolution increased the data rates of commercial
optical systems from approximately 1 Gb/s in the mid-1980s to 1 Tb/s by 2000 [7].

Although communication over fibers offers high data rates, historically, the employed
transmission schemes utilized the available spectrum rather inefficiently. As an example,
the digital data was represented as the presence or absence of light, known as on–off
keying. As the request for higher data rates increased tremendously in recent times,
this spectrally inefficient transmission method was replaced by more sophisticated meth-
ods that modulate the data over multiple dimensions of the optical field. However,
the improved spectral efficiency comes at the cost of expensive hardware, which is still
prohibitive for shorter-reach applications where on–off keying is widely used. In conjunc-
tion with the coherent receiver, digital signal processing (DSP) tools made it possible to
achieve transmission schemes with high-spectral efficiency that convey data through mul-
tiple levels of the amplitude and phase of the transmitted light [8]. Coherent detection
was first envisioned as early as 1980s for attenuation-limited single-span transmissions,
where the receiver sensitivity is severely limited [9]. Research on coherent systems de-
cayed with the advent of efficient optical amplifiers in the beginning of 1990s, and then
revived in the 2000s followed by the first demonstration in 2008 [10].

Another dimension that improves the throughput of optical systems even further is the
polarization of light. Information is conveyed in two orthogonal polarizations of light.
These systems are known as being polarization-multiplexed (PM) and they can dou-
ble the throughput compared to a single-polarization transmission. In order to benefit
from the native four-fold dimensionality of the optical field, consisting of the in-phase and
quadrature components1 in two polarizations, PM transmission with four degrees of free-
dom (DOFs) has been constructed for optical channels [11]. PM-quadrature phase-shift

1The polar representation of the optical field in each polarization, i.e., its amplitude and phase, can be
described in Cartesian coordinates as the sum of two orthogonal in-phase and quadrature components.
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keying (PM-QPSK) commercially introduced in 2008 for 40 Gb/s per channel transmis-
sion, and then adopted for 100 Gb/s per channel and 10 Tb/s per fiber transmission
in 2010, has now been widely deployed and reached maturity. Recently, 200 Gb/s per
channel transceivers have been made commercially available based on PM-16-quadrature-
amplitude modulation (PM-16-QAM) and it is expected that in the near future, higher-
order PM-M -QAM modulation formats will become a necessity for higher data rates.
However, the improved spectral efficiency comes at the cost of a reduced tolerance to
impairments, such as additive noise, nonlinearities, or laser phase noise. Therefore, fu-
ture higher-order modulation formats require more powerful DSP that can mitigate these
impairments accurately.

Although higher-order modulation formats do improve the spectral efficiency, besides
the fact that they require sophisticated engineering and DSP technologies to overcome
practical and fundamental obstacles, the returns in terms of throughput diminish as
the size of the constellation increases. Therefore, the pursuit for higher data rates has
mobilized in recent years the research front to explore another dimension and that is
space. The idea of multiple spatial channels, referred to as space-division multiplexing,
was first approached in 1979 [12] by using arrays of thin single-core fibers, so called fiber
bundles or multi-element fibers, that share the same coating. However, this approach does
not offer big integration advantages. An option that is more integrated is to incorporate
several cores into the cross-section of a single glass strand, refereed to as multicore fiber
[13]. Another alternative enabling spatial multiplexing is using individual modes of a
multimode fiber, where each mode is considered to be a separate spatial channel. The
current target of spatial division multiplexing aims to combine multiple approaches in
order to achieve higher levels of spatial channels multiplicity and diversity. A more
detailed tutorial review on spatial division multiplexing techniques can be found in [14]
and references therein.

The propagation in optical fibers, within some parameter range (see Section 3.1), is
governed by the nonlinear Schrödinger equation (NLSE), regardless of the transmission
scheme or fiber type. The NLSE is a partial differential equation with respect to time
and propagation distance. Although many attempts, an exact input–output relationship
has not been explicitly found yet. As hinted by its name, the NLSE is nonlinear in
respect to the power of the field. Therefore, communication techniques developed for
(linear) wireless communications do not achieve optimality or simply do not work in the
power regimes where the nonlinear effects become significant. This has encouraged the
research community to focus its efforts also on nonlinearity mitigation techniques. These
can be categorized mainly into two groups: analog in the optical domain and digital
in the electrical domain. The first category includes large effective area fibers [15] that
allow higher signal launch powers before reaching the nonlinear regime, optical phase
conjugation using twin waves [16], or mid-span optical phase conjugation [17]. Various
digital techniques are available in the literature to mitigate fiber nonlinearities, including
perturbation-based precompensation [18], Kalman equalization [19], least-squares equal-
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Chapter 1 Background

ization [20], and digital backpropagation (DBP) [21–24]. More on nonlinear interference
mitigation techniques can be found in [25–27] and references therein.

Regardless of the transmission scheme or fiber type, before commercial deployment,
newly-designed DSP algorithms must be verified and tuned. This can be done prac-
tically in controlled lab environments or field-trial experiments, or numerically using
simulations. Simulations offer a greater flexibility than experiments and can be used to
predict the behavior of a system and quantify performance. Nonetheless, simulations rely
on mathematical channel models, which, in order to achieve conclusive results, should
describe propagation through fibers accurately.

In this thesis, we are investigating channel modeling and DSP algorithms for fiber-
optic communication systems. We first propose a channel model for the temporal drift of
the state of polarization (SOP). In order to assess the accuracy of the model, we validate
it by comparing it to measured data over a 127-km long buried fiber link. Thereafter,
we extend the channel model to account for polarization-mode dispersion (PMD) and its
temporal drift. Based on the channel model for the SOP, we derive a DSP algorithm that
can track ultra-fast joint phase noise and drifts of the SOP. The last part of the thesis is
concerned with nonlinearity mitigation DSP algorithms in the presence of PMD. PMD
reduces the effectiveness of nonlinearity mitigation algorithms and we are proposing four
different variants of algorithms that account for PMD.

1.1 Thesis Organization

This thesis is a support of candidature for the doctor of philosophy degree. The thesis
documents the progress made by the candidate over a period of approximately four years.
This thesis is formatted as a collection of papers, where Part I serves as an introduction
to Part II consisting of the appended papers.

The remainder of the thesis is structured as follows. Chapter 2 presents a general
overview of communications over optical fibers by discussing the fiber-optic channel and
impairments and that arise in fiber-optic communication systems and their mitigation. In
Chapter 3, the background information for the considered mathematical representation
of optical signals is introduced, and continuous-time and discrete-time channel models for
the fiber-optic channel present in the literature are reviewed. This chapter provides the
preliminaries for Papers A–G regarding the adopted channel models therein. Chapter 4
serves as background for Papers C–G by providing a summary of various DSP algo-
rithms for nonlinearity mitigation, phase-noise compensation, and polarization-tracking
schemes. Chapter 5 provides a short description of the appended contributions in Part II.

1.2 Notation

The following notation conventions are used throughout the thesis: column vectors are
denoted by bold lower case (e.g., u) and matrices by bold upper case (e.g., U), except a
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1.2 Notation

few specific cases, for literature consistency reasons, denoted by lowercase Greek letters
such as the Pauli matrices σσσi, the basis matrices ρρρi, λλλi, and the electric field Jones
vector E. Transposition is written as uT, conjugation as u∗, and conjugate (Hermitian)
transpose as uH. The n×n identity matrix is written as In and the expectation operator
as E[·]. The dot operation ααα ·σ⃗σσ should be interpreted as a linear combination of the three
matrices forming the tensor σ⃗σσ = (σσσ1,σσσ2,σσσ3). Multiplication of a matrix with the tensor
σ⃗σσ results in a tensor with element-wise multiplications, e.g., Uσ⃗σσ = (Uσσσ1, Uσσσ2, Uσσσ3).
The absolute value is denoted by |·| and the Euclidean norm by ∥·∥. The imaginary unit
is denoted i =

√
−1.

Notational Inconsistencies

We warn the reader about the following inconsistencies in the notation across the ap-
pended papers in Part II and the thesis overview given in Part I:

• The phase noise is modeled as eiφ in Paper A, whereas e−iφ is used in the thesis
overview and Paper C.

• The variable L is used to denote the length of the fiber link throughout the en-
tire thesis, except in Paper F where it is a design parameter in the multipoint
differentiation (F.14).

• The number of fiber spans is denoted with Nsp in the thesis overview, opposed to
Ns used in Paper F.

• The variable T(z, f) is used to denote the accumulated PMD at distance z and
frequency f in the thesis overview, whereas in Paper F it is used as T

eq
k [n] to

denote the nth tap of the impulse response of the equalizer at discrete-time k, and
in Paper B is used as T(k, f) to denote the accumulated PMD over the entire link
at discrete-time k and frequency f .

• In the thesis overview, the parameter NPMD denotes the number of birefringent
sections used to model PMD, whereas in Papers D, E, and F it denotes the number
of birefringent sections used by the proposed algorithms to compensate for PMD
in the digital backwards propagation.

• In Papers D and F, NDBP denotes the total number of DBP steps per link, whereas
in Paper E it is used to denote the number of DBP steps between two PMD steps.

• The variable Jk is used to denote drifts of the SOP in the overview of the thesis and
Papers A and C, whereas Jk(f) is used to denote the inverse of the accumulated
PMD over the link in Paper F. On the other hand, in Paper G, J(ω, z) denotes
the accumulated PMD at distance z and angular frequency ω.

• The mean DGD of the PMD retardation plates is denoted with τp in the thesis
overview and Paper B, wheres the notation ∆τp was adopted in Papers D and F.
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CHAPTER 2

Fiber-Optic Communication Systems

The inherent difference between optical communication systems and microwave systems
is in the carrier frequency range they operate at. The optical carrier frequencies are
around 193 THz, whereas microwaves system use carrier frequencies ranging from 1 GHz
up to recently 100 GHz, called millimeter waves. This high optical carrier frequency
permits the use of much larger modulated bandwidths compared to microwave systems,
and pushed the world development of lightwave systems.

Lightwave systems can be categorized into two groups: guided and unguided systems.
In the unguided systems, as the name suggests, the transmitted beam of light is not
confined in a medium but it is spread in free space, like in microwave links. Unguided
systems, commonly called wireless optical communication systems, are an emerging tech-
nology and can be broadly categorized into two types of applications: broadcast [28–30]
or point-to-point [31–33]. The aim of the former is to provide indoor wireless commu-
nication, whereas the latter aims to bridge the gap between the end-user and the high-
capacity fiber infrastructure (the so-called “last mile” problem) or to provide high-speed
intersatellite communication links. In the case of guided systems, the light remains con-
fined in a wave guide, which is usually an optical fiber. This thesis focuses on fiber-optic
communication systems only.

Since their development in the 1970s, fiber-optical communication links have been
deployed for various applications. These can be largely classified into two categories,
long-haul and short-haul, depending on the distance they cover. Short-haul links cover
distances up to 100 km and serve intracity links, access networks, consumer electronics,
and data-center applications. Such links are typically cost constrained and, in order to
keep the costs down, noncoherent detection is employed, i.e., only the intensity of light is
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Chapter 2 Fiber-Optic Communication Systems

used to convey information, disregarding the phase. On the other hand, long-haul fiber
links cover transoceanic distances and, although very expensive to install and operate,
the cost of such links is shared among many users, thus lowering the cost constraints.
Historically, the fiber optical communication technology was driven by these long-haul
links accelerated by the pursuit of the operators for higher throughput. Such links exploit
coherent transceivers that modulate both the phase and amplitude of the optical field,
doubling1 the throughput, and employ periodical amplification compensating for the
fiber loss.

Fiber-optic communications rely on the total internal reflection phenomenon to guide
a beam of light trough a cylindrical core made of silica glass; a phenomenon known
since 1854 [34]. This core is surrounded by a cladding that confines the light into the
core and whose refractive index is smaller than the one of the core. The light can
propagate through the fiber in different optical modes, which are solutions to Maxwell’s
equations [35, Ch. 2] satisfying the boundary conditions. Each solution of the wave
equation is called a propagation mode. An optical fiber can be engineered to support
a different number of propagation modes depending on its physical properties, such as
refractive index or core area. Single-mode fibers support only one mode, known as the
fundamental mode, and it is used primarily used in long-haul coherent links. Fibers with
a larger core diameter than single-mode fibers allow more modes to propagate. These
fibers allow the use of low-cost optoelectronics at the expense of increased interference
levels, where the different modes have different transit times, thus leading to modal
dispersion, and suffer from inter-modal crosstalk. This is called a multi-mode fiber and
it is used mainly in short-range links such as access networks, consumer electronics,
and within data centers. As previously mentioned in Chapter 1, multi-mode fibers are
currently considered to improve the throughput per fiber cable by exploiting the different
modes as separate spatial channels.

Although optical fibers benefit from a much lower attenuation compared to the pre-
viously used copper wires, the signal still has to be amplified periodically in order to
reach long transmission distances. This amplification process is not ideal and corrupts
the signal with additive noise. Besides the additive noise, the transmission may suffer
from various impairments, both stochastic and deterministic, which affect the transmit-
ted data stronger as the link length increases. In this thesis, we are mainly interested
in long-haul transmission, where the data transfer is strongly affected by the channel.
This chapter presents a brief description, without going into the mathematical details, of
various impairments present in communications through fibers (Section 2.1), thereafter
the structure of a conventional transceiver is discussed (Section 2.2).

1Or quadrupling since traditional noncoherent detection typically exploits single-polarization signalling.

10



2.1 The Fiber-Optic Channel

Transmitter Receiverbk b̂k

Channel
×Nsp

Figure 2.1. A fiber-optic link with Nsp spans, each consisting of a fiber span and an
optical amplifier.

2.1 The Fiber-Optic Channel

Figure 2.1 shows a generic fiber-optic link. The transmitter maps the bits bk to an optical
waveform, which propagates through the channel to the receiver. The receiver outputs
an estimate of the transmitted bits b̂k based on the received optical waveform.

2.1.1 Signal Attenuation and Additive Noise

The optical signal attenuates as it propagates through the fiber and as the receiver re-
quires a minimum signal power, fiber losses became a limiting factor of reaching long
transmission distances. Optical fibers with practical attenuation coefficients became
available in the 1970s, when silica fibers were introduced [36]. Silica fibers have a
wavelength-dependent loss spectrum, exhibiting a minimum of around 0.2 dB/km in
the 1550 nm region and a secondary minimum below 0.5 dB/km around 1300 nm. Al-
though these values are close to the fundamental limit of about 0.16 dB/km for silica
fibers [35, Sec. 2.5.1], they are still high enough to prohibit long-haul transmission. For
example, considering a fiber link from Göteborg, Sweden, to Cluj-Napoca, Romania,
of approximately 2000 km with 0.2 dB/km attenuation, the accumulated loss becomes
400 dB, corresponding to a power loss of 1040, which leads to a practically undetectable
signal at the receiver [37]. Therefore, improvements that allow transmission over thou-
sands of kilometers were sought after by other means. Practical optical amplifiers became
available in the 1990s, which allowed transmission over very long distances by periodical
amplification (illustrated in Fig. 2.1) in the optical domain [5, 6]. For long-haul com-
munications, the span length is typically in the 50–120 km range, after which the signal
is amplified. This setup is called lumped amplification and is widely used in current
installed systems. On the other hand, distributed amplification has gained recent re-
search interest due to its lower noise figure and wider amplification bandwidth, where
the amplification is carried out throughout the entire link [38].

Optical amplifiers add noise to the transmitted signal through the generation of ampli-
fied spontaneous emission (ASE), thus degrading the signal-to-noise ratio (SNR). Fig. 2.2
shows the power profile of the signal and the accumulated noise during propagation. As
can be seen, the signal suffers from attenuation in each span, after which the signal is
amplified, thus increasing the noise level [39].

11



Chapter 2 Fiber-Optic Communication Systems

0 1 2 3 Nsp − 1 Nsp

Span number

S
ig
n
a
l
a
n
d
n
o
is
e
p
o
w
er

p
ro
fi
le

Signal
Noise

Figure 2.2. The power profile of the signal and noise as a function of the span number
is shown.

2.1.2 Carrier-Frequency Offset and Phase Noise

Coherent systems benefit from an improved spectral efficiency by modulating the phase
and the amplitude of the optical field, in both polarizations. In order to have access to
both phase and amplitude, coherent receivers mix the incoming modulated wave with a
continuous-wave optical field, serving as a reference and converting the incoming pass-
band field to baseband. The continuous wave at the receiver can be obtained from a
separate laser at the receiver, or from the incoming field transmitted as a pilot tone on
the orthogonal polarization to the data, or on a separate frequency or spacial channel.
Typically, the first option where the continuous wave at the receiver is obtained from a
laser at the receiver, often called local oscillator, is preferred because it does not decrease
the spectral efficiency.

The frequencies of the transmitter laser and local oscillator can be chosen to be the
same or different resulting in two different detection techniques. They are known as ho-
modyne and heterodyne receivers, respectively [40]. In the case of heterodyne detection,
the incoming optical signal is first down-converted from the carrier frequency (191–195
THz) to an intermediate frequency that is larger than the bandwidth of the signal and
then processed digitally. On the other hand, in the case of homodyne detection, the in-
termediate frequency is (ideally) zero. The scenario when the reference field is obtained
from a pilot is classified as a homodyne technique and is referred to as self-homodyne
detection [41].

The local oscillator and the transmitter laser are not synchronized and have frequency
and phase fluctuations, resulting in a frequency offset between the two and phase noise,
thus creating the need for carrier-frequency offset and carrier-phase noise synchronization.
The homodyne architecture requires a demanding optical loop synchronization circuit to
phase lock the local oscillator. On the other hand, heterodyne detection does not require
the demanding optical phase-locked loop, but has the disadvantage of a 3 dB lower
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Figure 2.3. PM-16-QAM constellation affected by phase noise. The different colors
represent the 16 points of the constellation in one polarization, whereas the
filled dots are the transmitted constellation points. Both X (a) and Y (b)
polarizations are affected by the same rotation. The grid lines represent
the Voronoi regions of a detector designed for additive white Gaussian noise
(AWGN), which, in this case, will lead to catastrophic errors.

sensitivity compared to homodyne detection and requires a doubled processing bandwidth
[40]. Similarly to heterodyne detection, intradyne detection [42] is an architecture that
down-converts the incoming optical signal to an intermediate frequency, but opposed to
heterodyne detection, the intermediate frequency is smaller than the symbol rate with
typical values in the range 0–5 GHz, keeping the processing bandwidth low. Compared
to homodyne, intradyne detection has the advantage of not requiring an optical phase-
locked loop and compensates for the frequency offset and phase noise digitally. On
the other hand, self-homodyne detection significantly reduces the phase- and frequency-
tracking requirements, since the local oscillator and the transmitter laser are the same
and, therefore synchronized. However, the relative phase of the two changes during
propagation, but a much lower rate compared to intradyne detection.

Ideally, the spectral shape of a laser is a delta function at the carrier frequency. How-
ever, practical lasers have a broader spectrum, which is the source of the phase noise [43].
The phase noise of an optical link can be quantified by the linewidth sum ∆ν of the trans-
mitter and receiver lasers in relation to the symbol period T . The laser linewidth relates
to the inverse of the coherence time of a laser, which is a measure to characterize the time
duration over which the laser frequency is maintained. The coherence time is desired to
be much larger than the symbol period, and often the phase-noise sensitivity of a system
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Figure 2.4. The Ex (green) and Ey (red) electric-field components of a plane elec-
tromagnetic wave as a function of time t, which combine and form the
aggregate field E (blue). In the figure on top, linear polarization is shown
where the field E oscillates in the −45◦ plane, whereas the bottom figure
shows circular polarization (obtained by shifting Ex by π/2) where the field
E describes a circle as time progresses.

is quantified by the dimensionless measure ∆νT .
Phase noise leads to a random rotation of the received constellation. Since both polar-

izations are modulated/demodulated based on the same transmitter/receiver lasers, PM
constellations are rotated with a common angle in both polarizations. This random rota-
tion induces catastrophic errors in phase-modulated transmission if it is not compensated
for. Fig. 2.3 shows the effect of phase noise on a PM-16-QAM constellation. Phase noise
is further discussed in Chapters 3 and 4, where modeling and different compensation
techniques are reviewed.
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Figure 2.5. PM-16-QAM constellation affected by SOP drift. PM-16-QAM consists
of 256 points obtained by all possible combinations between the X and Y
polarization. The different colors represent the 16 possible combinations
of a point with the complement polarization, whereas the filled dots are
the transmitted constellation points. The top row illustrates the effect of a
static SOP rotation, where each point is split into 16 points. In the bottom
row, the effects of a dynamic SOP drift are shown, where different points of
the same color represent different time instances. The grid lines represent
the Voronoi regions of a detector designed for AWGN, which, in this case,
will lead to catastrophic errors.
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2.1.3 Polarization State Drift

Light is an oscillating electromagnetic field, whose propagation can be described, similarly
to radio waves, via a sinusoidal wave in the electric field. The orientation of the oscillation
of this field is called state of polarization (SOP). The SOP can take on different types.
Fig. 2.4(a) shows an example of a linearly polarized lightwave, whose electromagnetic
wave E is confined to oscillate only in the −45◦ plane. The E field can be decomposed
into two orthogonal components, commonly referred as Ex and Ey . In the example shown
in Fig. 2.4(a), the Ex and Ey components are sinusoidals of the same amplitude and
phase. Combinations of Ex and Ey that do not have the same phase or/and amplitude
will result in a different behavior of the total field E. In general, the field E will not
oscillate in a single plane, but will rotate at the optical frequency. Fig. 2.4(b) illustrates
the case called circular polarization where Ex and Ey have the same amplitude but a
π/2 phase difference; thus, the wave E will describe a circle as time progresses. The SOP
of light can be fully described by three DOFs corresponding to the amplitudes of the Ex

and Ey components and the relative phase difference between them.
Coherent fiber-optic communications make use of the orthogonality between the Ex

and Ey components, so called the X and Y polarizations, which can be independently
modulated in phase and amplitude. Ideally, light propagating through a straight fiber
will preserve the SOP in which it was launched. However, this is not the case for real
fibers, which have asymmetrical cores due to the manufacturing process and due to the
applied mechanical/thermal stress during and after installation. These imperfections
break the orthogonality between Ex and Ey, resulting in a power exchange between the
four components of the electric field, a phenomenon called SOP drift. The geometry of
fibers varies both along the fiber and in time due to the diversity of the environment
passed by the cables and temperature/mechanical changes; thus, the drift of the SOP is
considered to be random.

The SOP drift can be seen as a four-dimensional (4D) rotation of the 4D PM con-
stellation, and it is illustrated in Fig. 2.5. In order to successfully convey data through
such a channel, a synchronization block is required to undo these effects. The fact that
the drift is stochastic restricts the compensation to be done at the receiver since the
behavior of the phenomenon depends on the fiber and cannot be predicted. Different
approaches on how to mathematically model SOP drifts are discussed in Chapter 3,
whereas compensation techniques are examined in Chapter 4.

2.1.4 Chromatic Dispersion

The optical fiber is a dispersive medium where the group velocity is different for different
frequency components; a phenomenon that leads to group velocity dispersion or chro-
matic dispersion (CD). Communication systems are affected by CD since the waveform
generated by the transmitter and launched into the fiber spreads over different frequen-
cies/wavelengths. These different frequency components travel through the optical fiber
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Figure 2.6. The evolution in the time domain of a Gaussian pulse affected by CD. The
pulse broadens as it propagates, thus causing interference to the neighbor-
ing pulses. The time axis represents the absolute time; therefore, as the
pulse propagates, the center of the propagating pulse (indicated by the
dotted, vertical lines) shifts according to the oblique thick line.

at different speeds causing pulse broadening in the time domain [44, Sec. 1.2.3]. In other
words, different spectral components launched into the fiber at the same time have dif-
ferent transit times and arrive at the receiver at different times. This can be seen as
an all-pass filter that causes a frequency-dependent phase shift in the frequency domain
without changing the amplitude of the spectrum.

The time of arrival difference between the fast and slow spectral components, i.e., the
pulse broadening, depends on the length of the link and on the dispersion parameter,
which is specific for each fiber. In principle, CD is a deterministic effect and can be
fully compensated for if the length of the transmission and the dispersion parameter are
known. Traditionally, CD has been compensated for in the optical domain by inserting a
dispersion-compensating fiber [44, Sec. 1.2.3] or a fiber Bragg grating [45] in each span,
compensating for the accumulated dispersion in that span. Recently, digital compen-
sation attracted attention in the form of a DSP block at the receiver/transmitter that
compensates/precompensates for the entire link at once [46].

Fig. 2.6 illustrates the evolution in the time domain of a pulse affected by CD. It
should be noted that both polarizations are affected identically by CD regardless of the
SOP. Although the figure is plotted versus absolute time, in general, pulses and signals
propagating through optical fibers are analyzed relative to the retarded time, which is
the time with refernece at the center of the propagating signal indicated by the dotted,
vertical lines in Fig. 2.6.
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Figure 2.7. Example of (first-order) PMD effects in the time domain, where two pulses
with equal power in the X and Y polarizations propagate through a short
fiber of length L. The pulses are shown at three different propagated dis-
tances and the time separation between them increases with the distance.

2.1.5 Polarization-Mode Dispersion

Practical fibers exhibit imperfections in their shape of the core along the fiber due to
the manufacturing process and due to the applied mechanical/thermal stress during
and after installation. These imperfections break the cylindrical symmetry of the fiber,
leading to a phenomenon called birefringence. Birefringence causes dispersion, where the
two orthogonal polarizations, which normally travel at the same speed, travel at different
speed. This phenomenon is called PMD [47]. Fig. 2.7 shows the effect of (first-order)
PMD over a short fiber in the time domain on two pulses launched with equal power
in the two orthogonal polarizations. During propagation, the two pulses have different
velocities acquiring a time separation between them, which is called differential group
delay (DGD). For simplicity, in this example the delay occurred between the X and Y
axes, which is not always the case. The delay can occur between any pair of orthogonal
axes, called birefringence axes.

Similarly to CD, this effect is deterministic for short fibers and the DGD grows linearly
with the fiber length. However, this is not the case for long fibers where PMD is no
longer additive. The birefringence axes have a random orientation along the fiber and
their orientation changes randomly with time. The acquired PMD during transmission
highly depends on the installation details of the fiber, such as bends, thermal variations,
etc.; therefore PMD behaves differently on a fiber spool than on a deployed fiber.

2.1.6 Nonlinear Optical Effects

Nonlinear effects occur when the response of a medium is a nonlinear function of the
applied electric and magnetic field, and the optical fibers are no exception. Optical fiber
nonliniarities can be classified into two types: stimulated scattering (Raman and Bril-
louin) and intensity-dependent nonlinear effects. Stimulated scattering effects lead to
intensity-dependent gain or loss, and both can be regarded as scattering of a photon to
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Figure 2.8. The effects of Kerr nonlinearities after propagation in the frequency do-
main on a Gaussian pulse at different input powers. As the input power is
increased (a), the output spectrum broadens (b).

a lower energy photon, i.e., energy transfer occurs from shorter to longer wavelengths,
leading to a loss of power at the incident frequency. Although the two scattering phe-
nomena are quite similar, a few things differentiates them. Brillouin scattering [44, Ch. 9]
gives rise to a narrow-band (<100 MHz) wave shifted by ∼10 GHz and traveling in the
opposite direction. On the other hand, Raman scattering [44, Ch. 8] can occur in both
directions and the frequency shift is much larger (∼12 THz). Both these phenomena are
detrimental for communication applications, stimulated Raman scattering in particular,
but they can also be constructively used in, for example, amplification schemes [38, 48]
or fiber lasers [49].

The other nonlinear effect, also known as the Kerr effect, arises due to the nonlinear
behavior of the refractive index with respect to the light intensity and produces an
intensity-dependent phase shift of the optical field and spectrum broadening. Albeit
silica glass is not a highly nonlinear medium, since the section of a fiber core is relatively
small, the intensity of the light becomes significant and changes the refractive index.
In general, this phenomenon is more detrimental to communication applications than
scattering effects and it becomes significant for long fiber lengths. In particular, it is the
origin of self-phase modulation [44, Ch. 4], cross-phase modulation [44, Ch. 7], and four-
wave mixing effects [44, Ch. 10]. These effects can however be partially compensated
for using various digital or optical techniques. The effects of Kerr nonlinearity in the
frequency domain can be seen in Fig. 2.8. Modeling and compensation techniques of
Kerr nonlinearities are further discussed in Chapters 3 and 4.
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Figure 2.9. Schematic of an optical coherent transmitter [53]. The shown constella-
tions exemplify the generation of PM-QPSK, where the left (right) side
corresponds to the X (Y) polarization.

2.2 Coherent Transceivers

Coherent transmission systems are the default solution for optical core networks due
to their superior performance offered compared to intensity-modulated direct-detection
based alternatives. Nevertheless, direct detection is often used in shorter-reach applica-
tions, due to power consumption and cost constraints associated with digital coherent
receivers [50–52].

2.2.1 Transmitter

The common solution to modulate the coherent optical signal is based on Mach–Zehnder
modulators, which independently modulate each dimension of the optical field. Fig. 2.9
shows an overview schematic of a coherent transmitter [53]. A coherent light source,
such as a laser, is split into two arms by a polarization beam splitter. Each arm corre-
sponds to the X and Y polarization. Thereafter, each arm is again split into two arms,
corresponding to the in-phase and quadrature components. Each arm is modulated by a
Mach–Zehnder modulator, and then recombined after a π/2 phase shift has been applied
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Figure 2.10. Simplified schematic of a coherent receiver.

to one of the arms, thus forming the phase- and amplitude-modulated signal. One of
the two such phase- and amplitude-modulated signals is polarization rotated such that it
becomes Y-polarized from X-polarized. Finally, the two X- and Y-polarized signals are
recombined by a polarization beam combiner and then launched into the fiber.

2.2.2 Receiver

A simplified schematic2 of a coherent receiver and the flow from the optical signal to data
are illustrated in Fig. 2.10 [54]. The shown blocks mitigate the impairments discussed in
the earlier sections.

• Optical front end. This block linearly maps the received optical field to electric
signals, which are then sampled using analog-to-digital converters to obtain the
corresponding digital signals. The sampling rate is typically twice the symbol rate,
satisfying the Nyquist-Shannon sampling theorem, but higher sampling rates can
however be used. The incoming optical signal is mixed with the local oscillator
using two 90◦ hybrids [55, Sec. 3.1.3], one for each polarization, and four electric
signals are output corresponding to the two quadratures in the two polarizations.
Phase noise, discussed in Section 2.1.2, as well as a frequency offset, are generated at
this stage as a result of the phase and frequency difference between the transmitter
laser and the local oscillator.

• CD compensation. This is a static equalization stage usually realized with finite-
impulse response filters [54], although infinite-impulse response filters are also an
option [56]. Two identical filters are used independently for the two polarizations,
typically implemented in the frequency domain due to a more efficient implemen-
tation. However, it has been shown that time-domain implementations are more
power-efficient for short-haul links [57, 58]. At this stage, matched filtering can be
applied by convolving the filters with the desired pulse shape [54] and, for long
distances, compensation of nonlinear transmission effects can be employed [24,59].

• PMD compensation and SOP tracking. This block compensates for time-varying
impairments using a bank of finite-impulse response filters in the time domain.

2Several blocks, such as the analog-to-digital conversion, de-skew and orthonormalization, are skipped
since they are not relevant to this thesis.
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These filters have a shorter impulse response than the ones used for CD compen-
sation, and are dynamically updated such that they adapt to the varying channel.
The update of the filters is often done in the Jones space using the constant mod-
ulus algorithm (CMA) or the multiple modulus algorithm (MMA) (both discussed
in Chapter 4) or in the Stokes space [60,61]. Typically, the sampling rate is down-
converted to the symbol rate at the output of this block.

• Frequency offset compensation. The compensation for residual carrier frequency
can be done in the time domain using fourth-order methods that take advantage
of the four-fold rotational symmetry of PM-QAM constellations [39]. Nevertheless,
methods in the frequency domain have been proposed [62], which center the peak
of the spectrum around the zero frequency.

• Carrier phase recovery. Similar to frequency estimation, the carrier phase can
be estimated using fourth-order methods [63] or methods that scan over a set of
possible test phases in order to minimize an error function [64]. Blind algorithms,
which do not know the transmitted data, suffer from the four-fold ambiguity of
PM-QAM constellations. In order to resolve this issue, and also minimize the
impact of cycle slips, differential coding [55, Sec. 2.6.1] is employed, which however
induces an increased bit error rate. On the other hand, data-aided algorithms do
not require differential coding, but reduce the spectral efficiency by inserting pilots.
Phase-noise compensation techniques are examined in Chapter 4.

• Symbol detection and decoding. At this stage, the signal is ready to be decoded into
bits. Forward error correction is applied using either soft-decision or hard-decision
decoding [65]. The latter is more common due to its weaker complexity at the cost
of lower performance, but soft decision has gained more interest recently [66].

The description above considers impairment-compensation only at the receiver. How-
ever, DSP can be applied also at the transmitter in order to optimize the overall per-
formance. Moreover, future receivers may combine different DSP blocks in order to im-
prove performance [67]. For example, the algorithm performing joint-polarization phase-
noise estimation and symbol detection presented in [68] significantly improves upon the
laser linewidth tolerance compared to performing independent phase-noise estimation
and symbol detection.

22



CHAPTER 3

Channel Models

A channel model is an analytical description of the signal propagation through a medium
relating the output to the input. This model can include, besides the impairments that
arise in the propagation medium, elements of the transmitter and receiver. Channel
models can be used in simulations to test and verify transmission schemes and their
accompanying DSP. Moreover, improved signal processing tools can be derived from
an accurate channel model that account optimally for the corresponding impairment.
Channel models can also be used to derive fundamental limits imposed by the transmis-
sion medium, such as capacity bounds. In general, simulations offer a greater flexibility
than experiments and can be used to predict the behavior of a system before setting up
time-consuming experiments.

This chapter describes mathematically the propagation of the electric field in optical
fibers and the modeling of various impairments that arise due to propagation effects
or nonideal hardware. Section 3.1 describes waveform propagation equations through
optical fibers. In Section 3.2, we review how information is mapped from data sym-
bols to waveforms to be transmitted and then describe the reverse operation performed
at the receiver, which demaps waveforms to data symbols. We continue by introduc-
ing discrete-time channel modeling for the ASE-noise channel. Thereafter, we describe
channel modeling of phase noise, SOP drift, and PMD in Sections 3.3 and 3.4. Lastly,
approximate channel models for fiber propagation are discussed in Sections 3.5 and 3.6.

The different channel models discussed below are described in two variants: with and
without including modulation and demodulation. When modulation and demodulation
is included, the underlying channel model characterizes discrete-time symbol propaga-
tion (Sections 3.2, 3.3, and 3.6.2), whereas continuous-waveform propagation is modeled
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Chapter 3 Channel Models

without including modulation and demodulation (Sections 3.1, 3.4, 3.5, and 3.6.1).

3.1 Fiber-Propagation Models

All electromagnetic phenomena, including fiber-optic signal propagation, are modeled by
Maxwell’s equations. These equations are however troublesome to evaluate, but can be
simplified under the following approximations [44, Ch. 2]

• the medium is non-magnetic and has no free charges, which is always true for
optical fibers.

• the nonlinearity is small, i.e., can be treated as a perturbation, which is justified
since the nonlinear changes in the refractive index are < 10−6 in practice.

• the fiber is weakly guiding, i.e., the index difference of the fiber waveguide is small,
which it is (approximately 0.1% in single-mode fibers).

• the slowly-varying envelope approximation, i.e., the modulation bandwidth is small
compared to the carrier frequency of light, which for communication applications
usually holds. One direct implication of this approximation is that only unidirec-
tional propagation is assumed.

• the optical field maintains its polarization along the fiber length. This is not the
case, except for polarization-maintaining fibers, but the approximation often works
well in practice and it will be relaxed in Sections 3.1.3 and 3.1.4.

• higher-order dispersion is negligible, which holds for most practical cases, but has
to be taken into account for high bandwidths (> 1 THz) or when the lowest-order
dispersion is small (β2 ≈ 0, see below). However, third-order dispersion can be
relatively easily incorporated when required [44, Sec. 3.3].

Based on these approximations, simplified propagation equations of the optical signal can
be derived. First, we will discuss the NLSE in Section 3.1.1, which describes signal prop-
agation in single polarization, and then generalize it to dual polarization in Section 3.1.2.
Thereafter, the propagation equations are extended to account for polarization effects in
Sections 3.1.3 and 3.1.4. A tutorial by Menyuk and Marks can be found in [69], where
these propagation equations are derived starting from Maxwell’s equations, and their
range of validity is discussed.

3.1.1 The Nonlinear Schrödinger Equation

The NLSE is a partial differential equation defining the input–output relationship for
optical baseband1 signals. Accounting for signal attenuation, CD, and Kerr nonlinear

1Due to the slowly-varying approximation above.
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3.1 Fiber-Propagation Models

effects, it can be written as

∂Ex(z, t)
∂z

= − α

2
Ex(z, t)

︸ ︷︷ ︸
attenuation

− i
β2

2
∂2Ex(z, t)

∂t2
︸ ︷︷ ︸

dispersion

+ iγEx(z, t)|Ex(z, t)|2
︸ ︷︷ ︸

nonlinearity

, (3.1)

where Ex(z, t) is a complex-baseband signal denoting the (arbitrarily chosen and without
loss of generality) X field component and i =

√
−1 is the imaginary part. The signal

Ex(z, t) is a function of distance 0 ≤ z ≤ L, where L is the total length of the fiber, and
continuous time t ∈ R. The in-phase and quadrature components are combined as the
real and imaginary parts of Ex(z, t). Note that t does not denote the absolute time, but
the retarded time, that is, the time relative to the center of the propagating signal (see
Fig. 2.6). The fiber is parameterized by three coefficients: γ is the nonlinear coefficient,
β2 is the group velocity dispersion coefficient, and α is the attenuation coefficient.

Despite many attempts, so far no exact analytical solution for the general NLSE has
been found. Nonetheless, solutions to (3.1) can be found in special cases, e.g., without
losses, it can be solved exactly by applying the inverse scattering theory [70], which re-
cently emerged in the literature as the nonlinear Fourier transform [71]. In the following,
we examine the effects of attenuation, dispersion, and nonlinearity.

Signal Attenuation

If we neglect the dispersion and nonlinearity, i.e., by setting β2 = 0 and γ = 0 in (3.1),
equation (3.1) can be solved and its solution becomes

Ex(z, t) = Ex(0, t) exp(−αz/2), (3.2)

which indicates that the signal experiences an exponential decay due to the fiber loss.

Chromatic Dispersion

The effects of CD can be studied by ignoring the nonlinearity, i.e., setting γ = 0. In this
case, the closed-form solution of (3.1) in the frequency domain is

Ẽx(z, f) = Ẽx(0, f) exp(i2β2π
2f2z) exp(−αz/2), (3.3)

where Ẽx(z, f) is the Fourier Transform of Ex(z, t). As can be seen, CD behaves as an
all-pass filter without changing the amplitude of the spectrum, but only the phase. The
phase has a quadratic frequency dependency and leads to pulse broadening in the time
domain (see Fig. 2.6), in turn leading to inter-symbol interference.
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Kerr Nonlinearity

In the absence of CD, i.e., β2 = 0, the solution of (3.1) can be written as

Ex(z, t) = Ex(0, t) exp(iγ|Ex(0, t)|2Leff(z)) exp(−αz/2), (3.4)

where
Leff(z) =

∫ z

0
e−αz′

dz′ =
1 − exp(−αz)

α
(3.5)

is called the effective (nonlinear) length, which indicates the nonlinear interaction region
and Leff(z) → z as α → 0. For a lossless fiber with α = 0, (3.4) simplifies to

Ex(z, t) = Ex(0, t) exp(iγ|Ex(0, t)|2z). (3.6)

As it appears from (3.4) and (3.6), the nonlinear effects do not change the signal ampli-
tude in the time domain, but introduce an intensity dependent phase shift. As a result,
the spectrum of the signal broadens and the broadening depends on the signal intensity
(see Fig. 2.8). Note however that (3.4) is the exact solution of (3.1), including all three
effects, if the input field Ex(0, t) is constant.

Amplification Noise

As earlier discussed in Section 2.1, long-haul transmissions engage various optical amplifi-
cation schemes to compensate for the fiber loss, which in turn introduce noise. The noise
is introduced through the process of spontaneous emission, hence the name of ASE noise,
and compared to other noise sources, such as thermal noise from electrical components,
the ASE noise dominates and the others can be neglected [37, Sec. IX-A].

The NLSE can be extended to account for amplification and noise by inserting a
real gain profile function g(z) and a complex-valued stochastic process nx(z, t) in (3.1)
resulting in

∂Ex(z, t)
∂z

= −α− g(z)
2

Ex(z, t) − i
β2

2
∂2Ex(z, t)

∂t2
+ iγEx(z, t)|Ex(z, t)|2 + nx(z, t), (3.7)

which is referred to as the stochastic NLSE [72]. The term nx(z, t) satisfying [73]

E[nx(z, t)] = 0, (3.8)

accounts for the ASE noise in the X polarization. In [74] it was shown that ASE can be
accurately modeled as an additive Gaussian random variable. This allows us to model
nx(z, t) as a circularly symmetric complex white Gaussian noise. Such a process is
fully characterized by its mean (3.8) and its autocorrelation function E[nx(z, t)n∗

x(z′, t′)],
which depends on the amplification scheme. Next we discuss two common amplification
schemes and their implications on g(z) and nx(z, t).
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3.1 Fiber-Propagation Models

Lumped Amplification Most systems employ lumped amplification, where the total ac-
cumulated loss over one span is compensated using an erbium-doped fiber amplifier at
the end of each fiber span. In this case, the gain profile becomes g(z) = αLsp

∑Nsp

n=1 δ(z −
nLsp), where Lsp is the span length and δ(·) is the Dirac delta function. The autocorre-
lation function of nx(z, t) is in this case [73]

E[nx(z, t)n∗
x(z′, t′)] = nsp(G − 1)hνδ(t − t′)δ(z − z′)

Nsp∑

n=1

δ(z − nLsp), (3.9)

where G = exp(αLsp) is the gain of the amplifier and here we assume that it compensates
for the exact span loss, h ≈ 6.626·10−34 Js is Planck’s constant, ν ≈ 193 THz is the optical
carrier frequency, and nsp = GFn−1

2(G−1) is the spontaneous emission factor [35, Eq. (7.2.15)],
whereas Fn is the noise figure of the amplifier. Typical values for Fn range from 3
dB (fundamental lower bound) to 6 dB. In (3.9), the first two delta functions ensure
that the noise realizations are independent with respect to time and distance, whereas
the summation accounts for all Nsp amplifiers of the link and the delta function within
ensures that the noise is lumped, that is, occurs at the end of each span.

Distributed Amplification In contrast to lumped amplification, distributed amplifica-
tion continuously compensates for the fiber loss using the fiber itself by exploiting the
nonlinear phenomenon of stimulated Raman scattering, hence the name of Raman am-
plification. Here we consider an ideal Raman amplification, where the signal power level
is considered to remain equal to the launch power throughout the entire fiber2. In this
case, the gain profile becomes g(z) = α and the noise autocorrelation is [37]

E[nx(z, t)n∗
x(z′, t′)] = αKThνδ(t − t′)δ(z − z′), (3.10)

where KT is the photon occupancy factor and it is approximately 1.13 for Raman am-
plification of fiber-optic communication systems at room temperature.

It should be noted that, according to (3.9) or (3.10), the noise term nx(z, t) is white
yielding an Ex(z, t) with infinite power. However, this is not the case in practice where
nx(z, t) is bandlimited since the amplifiers have a finite bandwidth and are sometimes
followed by bandpass filters to limit the noise bandwidth. This discrepancy is typically
solved in numerical and analytical analyses by considering an ideal square filter after each
amplifier in the case of lumped amplification, or just before the receiver for distributed
amplification. The bandwidth of the filter can vary from to the bandwidth of the signal
up to higher values accounting for spectral broadening.

2However, this is not the case in practice, where the power level decays with distance and may increase
towards the end of the span in the case of a bidirectional pumping scheme.
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3.1.2 The Coupled-Mode Nonlinear Schrödinger Equations

The NLSE and stochastic NLSE above can be used to model single-polarization propa-
gation through optical fibers. In the case of PM transmission, the propagation of each
field component is governed by the coupled-mode NLSEs [75]

∂Ex(z, t)
∂z

= −α− g(z)
2

Ex(z, t) − i
β2

2
∂2Ex(z, t)

∂t2

+ iγEx(z, t)
(

|Ex(z, t)|2 +
2
3

|Ey(z, t)|2
)

+ iγ
1
3

Ey(z, t)2E∗
x(z, t) + nx(z, t),

(3.11)

∂Ey(z, t)
∂z

= −α− g(z)
2

Ey(z, t) − i
β2

2
∂2Ey(z, t)

∂t2

+ iγEy(z, t)
(

|Ey(z, t)|2 +
2
3

|Ex(z, t)|2
)

+ iγ
1
3

Ex(z, t)2E∗
y(z, t) + ny(z, t),

(3.12)

where Ey(z, t) is the complex-baseband signal denoting the Y field component and ny(z, t)
accounts for the ASE noise in the Y polarization and is independent of and identically
distributed as nx(z, t). We notice that the two polarizations experience different nonlinear
phase shifts. Equations (3.11)–(3.12) can be compactly rewritten in a vector form as [76]

∂E(z, t)
∂z

= −α− g(z)
2

E(z, t) − i
β2

2
∂2E(z, t)
∂t2

+ iγ
(

E(z, t)∥E(z, t)∥2 − 1
3
(
E(z, t)Hσσσ3E(z, t)

)
σσσ3E(z, t)

)
+ n(z, t), (3.13)

where E(z, t) = [Ex(z, t), Ey(z, t)]T is the so-called Jones vector, σσσ3 is one Pauli spin
matrix defined later in (3.30), and n(z, t) = [nx(z, t), ny(z, t)]T.

3.1.3 The Manakov Equation

The propagation equations above are valid for circularly symmetric ideal optical fibers
that do not experience any birefringence. Practical fibers are not ideal and have nonneg-
ligible birefringence that changes along the link, leading to PMD. This effect, however,
changes the nonlinear response of the fiber and has to be incorporated in (3.11)–(3.13).
By averaging over the rapidly and randomly changing polarization state due to PMD,
the Manakov equation is obtained [77, 78]

∂E(z, t)
∂z

= −α− g(z)
2

E(z, t) − i
β2

2
∂2E(z, t)
∂t2

+ iγ
8
9

E(z, t)∥E(z, t)∥2 + n(z, t). (3.14)

It can be noted that averaging over the polarization state has two consequences: i) the
nonlinear coefficient is multiplied with the 8/9 factor, and ii) opposed to the coupled-
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3.1 Fiber-Propagation Models

mode NLSEs, both polarizations experience the same nonlinear phase shift equal to the
energy of E(z, t).

3.1.4 The Manakov–PMD Equation

The propagation equations presented earlier do not account for PMD. However, some
scenarios require the inclusion of PMD explicitly. For example, as we will see in Papers D–
G, nonlinear compensation techniques are very sensitive to PMD and require PMD to
be incorporated in the propagation equation in order to acquire meaningful results. The
Manakov equation (3.14) is obtained by averaging over the polarization rotations, which
are assumed to be fast, but PMD is not taken into account. PMD is taken into account
in the Manakov–PMD equation [76, 79] given by [69, Eq. (68)]

∂E(z, t)
∂z

= − α− g(z)
2

E(z, t) + ∆β1Σ(z)
∂E(z, t)
∂t

− i
β2

2
∂2E(z, t)
∂t2

+ iγ
8
9

E(z, t)∥E(z, t)∥2 + n(z, t), (3.15)

where, in addition to (3.14), we have the second term on the right-hand side accounting
for PMD. Note that this is the simplified version of the Manakov–PMD equation [69,
Eq. (63)] without including the nonlinear PMD term since it is negligible for fiber-optic
communication applications [69,76]. The coefficient ∆β1 = (β1x −β1y)/2 is the group de-
lay3 between the two polarizations with propagation constants β1x and β1y, respectively,
and it can be related to the PMD coefficient of the fiber DPMD as ∆β1 = DPMD

2
√

2Lc
[76,

Eq. (28)], where Lc is the fiber correlation length. The fiber correlation length Lc is
defined as the length over which two polarization components remain correlated; typi-
cal values range from 10 to 100 m. The PMD coefficient DPMD has typical values of
0.04−0.1 ps/

√
km for modern fibers and can go up to several ps/

√
km for old fibers. The

matrix Σ(z) describes the linear evolution of PMD along the fiber length. Similarly to
CD, the effects of PMD can be studied in the frequency domain by ignoring the other
impairments. The solution to (3.15) if α = 0, β2 = 0, and γ = 0 becomes

Ẽ(z, f) = T(z, f)Ẽ(0, f), (3.16)

where Ẽ(z, f) is the Fourier Transform of E(z, f) and T(z, f) ∈ C2×2 is a unitary matrix
modeling PMD and satisfies [76, Eq. (22)]

∂T(z, f)
∂z

= i∆β1fΣ(z)T(z, f), (3.17)

T(0, f) = I2, (3.18)

3We assume that ∆β1 does not change along the fiber, which may not be the case in practical fibers,
but it is a good approximation.
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where In is the n × n identity matrix.
The matrix T(z, f) is typically modeled using the coarse-step method where the con-

tinuous variation of the birefringence along the fiber is replaced by a concatenation of
equal-length sections with a given mean birefringence and random polarization coupling.
The axis of the polarization coupling varies from section to section. This method is fur-
ther discussed in Section 3.4. The discussion above and in Section 3.4 considers a static
PMD, which however, is not the case in practical fibers. PMD does evolve with time due
to temperature variations and mechanical vibrations, changing the local birefringence of
the fiber and leading to stochastic temporal PMD fluctuations. In Paper B we propose
a model for the temporal stochastic evolution of PMD and absolute polarization state.

3.2 Linear Modulation, Matched Filtering, and Sampling

The transmitted signal E(0, t) into the transmission medium is obtained by linearly
modulating the information symbols uk ∈ C2 as

E(0, t) =
∑

k

ukp(t − kT ) (3.19)

using a real-valued pulse shape p(t), where T is the symbol (baud) interval and k ∈ Z

is the discrete-time index. The pulse shape is chosen such that its time shifts form an
orthonormal basis

∫ ∞

−∞
p(t − kT )p(t − k′T )dt =

{
1, k = k′

0, otherwise
, (3.20)

for any k, k′ ∈ Z. As can be seen, we consider the transmitted waveform E(0, t) to
consist of a single (wavelength) channel only. However, the expression above can be
straightforwardly modified to account for multiple channels.

The discrete transmitted symbols uk are drawn from a finite constellation C = {c1, c2,
..., cM }. The average energy per symbol is the average of ∥uk∥2 and, in the case of
equiprobable and independent symbols, it is equal to

Es =
1

M

M∑

k=1

∥ck∥2. (3.21)

The received discrete symbols at distance L are obtained from the received electric
field E(L, t) as

rk =
∫ ∞

−∞
E(L, t)p(t − kT )dt, (3.22)

by matched filtering and sampling.
Having established the modulation and demodulation operations, we can now proceed
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3.3 Phase Noise and Polarization State Drift

by establishing discrete-time channel models that relate output data (constellation) sym-
bols to input data symbols. We start with a discrete-time channel model for ASE noise
only, which we further extend to phase noise and SOP drift in Section 3.3.

In the absence of all impairments but ASE noise, the transmission can be accurately
modeled as an AWGN channel. The received symbols after demodulation can be related
to the transmitted symbols by

rk = uk + nk. (3.23)

The term nk = [nx,k, ny,k]T ∈ C2 with

nx,k =
∫ ∞

−∞

(∫ L

0
nx(z, t)dz

)
p(t − kT )dt, (3.24)

and similarly for ny,k, models the additive ASE noise accumulated over the link. It can be
represented by two independent complex circular zero-mean Gaussian random variables
with variance N0/2 per real dimension, i.e., E[nknH

k ] = N0I2 [11], where

N0 =

{
nsp(G − 1)hνNsp, for lumped amplification

αKThνL, for (ideal) distributed amplification
. (3.25)

Note that the variance N0 is not scaled with the bandwidth due to the normalization in
(3.20). However, in general, by passing the accumulated ASE noise through a unit-gain
filter h(t) with bandwidth W , i.e., nW

x =
∫∞

−∞(
∫ L

0 nx(z, t)dz)h(t)dt, its variance becomes
E[nW

x (nW
x )H] = N0W .

3.3 Phase Noise and Polarization State Drift

In this section, we discuss channel modeling of phase noise and rotations of the SOP.
We chose to associate these two impairments since they can be conveniently modeled as
4D rotations of the field/symbols. Moreover, this material serves as an introduction to
the second part of the thesis containing the appended papers, where the Papers A and
C are based on this joint formulation. Nonetheless, this is not a requirement and, as we
will see later, the two impairments can be easily decoupled. For completeness, ASE noise
from (3.23) is considered too.

Note however that, as already mentioned in Chapter 2, these two impairments emerge
due to different phenomena and arise at different parts of the communication system.
Phase noise is added before and after fiber propagation at the transmitter and receiver,
respectively, due to nonideal fiber lasers. On the other hand, the SOP experiences a
random drift during fiber propagation. Nonetheless, under the assumption of linear
propagation supposed in this section, the two impairments can be modeled jointly.

So far we considered the Jones formalism, which relies on 2×1 complex Jones vectors to
represent the electric field and describe fiber propagation. In the following we introduce
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Modulator Demodulatorbk b̂k

Jk e−iφk nk

uk rk

channel

Hk

Figure 3.1. Block diagram of a system considering a transmitter, channel, and a re-
ceiver. The channel consists of phase noise, SOP drift, and AWGN.

two complementary formalisms, namely, the 4D real and Stokes descriptions. As we will
see, these offer a richer or restricted signal space, respectively, which can be useful in
some situations. It should be noted that a big part of this section can be found in [80],
where the 4D real formalism was properly defined. In what comes next, we will introduce
the mathematical description of the these two phenomena first, and then continue with
channel modeling.

3.3.1 Mathematical Representation

Jones Description

The propagation of the symbols (including modulation and demodulation) in the presence
of phase noise, SOP drift, and ASE noise can be described as

rk = Hkuk + nk, (3.26)

where Hk ∈ C2×2 is a unitary matrix, the so-called Jones matrix, which preserves the in-
put power during propagation and models the phase-noise and SOP-drift effects. Fig. 3.1
shows a block diagram of the model described above. This model is a 2×2 multiple-input
multiple-output system, where the inputs and outputs are the two different polarizations
of light. Such multiple-input multiple-output schemes are widely deployed in communi-
cation over radio frequencies, where multiple inputs and outputs are achieved by using
several different antennas [81].

The matrix Hk belongs to the unitary group of degree two, denoted by U(2), such that

HH
k Hk = HkHH

k = I2, (3.27)

|det Hk| = 1. (3.28)

In general, complex 2 × 2 matrices have eight DOFs, i.e., the real and imaginary parts
of the four elements, whereas the matrices in U(2), after applying (3.27), have only four
DOFs4. Such matrices can be expressed by the matrix function Hk = H(φk,αααk) using

4Note that the constraint (3.28) is already covered by (3.27); therefore it does not reduce the DOFs.
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the matrix exponential parameterized by four variables: φk modeling the phase noise and
αααk = (α1,k,α2,k,α3,k) modeling the SOP drift, according to [82, 83]

H(φ,ααα) = exp(−i(ααα · σ⃗σσ + φI2)), (3.29)

for any φ ∈ R and ααα ∈ R3, where σ⃗σσ = (σσσ1,σσσ2,σσσ3) is a tensor of the Pauli spin matrices
[83]

σσσ1 =

⎛

⎝1 0

0 −1

⎞

⎠ , σσσ2 =

⎛

⎝0 1

1 0

⎞

⎠ , σσσ3 =

⎛

⎝0 −i

i 0

⎞

⎠ . (3.30)

This notation of the Pauli spin matrices σσσi complies with the definition of the Stokes
vector (3.58), but it is different from the notation introduced by Frigo [82] and used
in [76].

The Pauli matrices are commonly used in the polarization literature and in addition
to the three matrices stated above, the identity matrix is often denoted by σσσ0. These
matrices are Hermitian and have zero trace, except σσσ0. They also satisfy the identities

σσσ0 = σσσ2
i (3.31)

for i = 1, 2, 3, and

σσσ1σσσ2 = −σσσ2σσσ1 = iσσσ3. (3.32)

The Pauli matrices are linearly independent; therefore any complex 2 × 2 matrix can be
written as

C =
3∑

i=0

ciσσσi, (3.33)

where ci ∈ C and can be calculated as

ci =
Tr(Cσσσi)

2
. (3.34)

The matrix exponential in (3.29) is defined as [84, p. 165]

exp A =
∞∑

n=0

1
n!

An, (3.35)

which converges for any A ∈ Cm×m.
The two phenomena modeled by Hk can be separated by factoring5 out the phase

5This factorization is possible only for φI2 since exp(X + Y) = exp X exp Y = exp Y exp X holds only
if XY = YX for any X, Y ∈ Cn×n.
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noise φk such that

Hk = e−iφkJk, (3.36)

where Jk models strictly the drift of the SOP. In this case, (3.26) can be rewritten as

rk = e−iφkJkuk + nk. (3.37)

The modeling of φk and Jk (or Hk) and their temporal evolution is discussed in Sec-
tion 3.3.2.

The matrix Jk is a unitary matrix that belongs to the special unitary group of degree
two, denoted by SU(2), and can be described by the matrix function

J(ααα) = exp(−iααα · σ⃗σσ) (3.38)

as Jk = J(αααk). This group of matrices is a subgroup of U(2) and satisfies

det Jk = 1, (3.39)

opposed to (3.28). The constraint (3.39) reduces the DOFs of such matrices to only three,
i.e., the elements of ααα.

The functions H(φ,ααα) and J(ααα) can be rewritten after expanding (3.29) and (3.38)
into the Taylor series (3.35) and using (ααα · σ⃗σσ)2 = θ2I2 as

H(φ,ααα) = e−iφ(I2 cos θ − ia · σ⃗σσ sin θ), (3.40)

J(ααα) = I2 cos θ − ia · σ⃗σσ sin θ, (3.41)

where
ααα = θa. (3.42)

In (3.42), ααα is represented as the product of its length θ = ∥ααα∥ in the interval [0,π) and
the unit vector a = (a1, a2, a3), which represents its direction on the unit sphere.

Since H(φ,ααα) and J(ααα) are unitary, their inverses can be found by the conjugate
transpose operation or by negating φ and ααα, since

H(φ,ααα)−1 = H(φ,ααα)H = H(−φ, −ααα), (3.43)

J(ααα)−1 = J(ααα)H = J(−ααα). (3.44)
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3.3 Phase Noise and Polarization State Drift

4D Real Description

In the 4D formalism, the electric field is represented using 4D real vectors obtained by
expressing any Jones vector z = [z1, z2]T ∈ C2 as

vz =

⎛

⎜⎜⎜⎜⎜⎜⎝

Re(z1)

Im(z1)

Re(z2)

Im(z2)

⎞

⎟⎟⎟⎟⎟⎟⎠
. (3.45)

The analog to the propagation model (3.26) of the field is described by [80, 85, 86]

vrk
= Rkvuk

+ vnk
, (3.46)

where vuk
(vrk

) is the transmitted (received) symbol, vnk
is the ASE noise, and Rk is a

4 × 4 real orthogonal matrix (corresponding to Hk) modeling both the phase noise and
the SOP drift such that

vHkuk
= Rkvuk

, (3.47)

where vHkuk
is obtained by applying (3.45) to Hkuk.

The matrix Rk belongs to the special orthogonal group of 4 × 4 matrices, denoted
SO(4), and satisfies

RT
k Rk = RkRT

k = I4, (3.48)

det Rk = 1. (3.49)

This group is also called the rotation group since it consists of all possible 4D rotation
matrices and is a subset of the orthogonal group, where the determinant (3.49) can be
either 1 or −1.

After constraining any real 4 × 4 matrix with 16 DOFs to satisfy (3.48) and (3.49), it
can be shown that a matrix Rk that belongs to SO(4) has six DOFs. Therefore, 4×4 real
orthogonal matrices Rk are able to span over a richer space than the Jones matrices Hk

can (four DOFs). Jones matrices can model all physically realizable phenomena of wave
propagation and the extra two DOFs of Rk are not possible for photon propagation [80].

The matrix Rk can be expressed as Rk = R(φk,αααk) using the matrix function [80]

R(φ,ααα) = exp((φ, 0, 0) · λ⃗λλ−ααα · ρ⃗ρρ), (3.50)

= (I4 cosφ−λλλ1 sinφ)(I4 cos θ − a · ρ⃗ρρ sin θ), (3.51)

and its inverse is
R−1

k = RT
k = R(−φk, −αααk). (3.52)
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The tensors ρ⃗ρρ = (ρρρ1,ρρρ2,ρρρ3), λ⃗λλ = (λλλ1,λλλ2,λλλ3) with [80, Eqs. (20)–(25)]

ρρρ1 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0

⎞

⎟⎟⎟⎟⎟⎟⎠
, ρρρ2 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
, ρρρ3 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
, (3.53)

λλλ1 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

⎞

⎟⎟⎟⎟⎟⎟⎠
, λλλ2 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
, λλλ3 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
, (3.54)

form the basis for any 4D skew-symmetric real matrix and satisfy [80]

ρρρ2
i = λλλ2

i = −I4 for i = 1, 2, 3, (3.55)

ρρρ1ρρρ2ρρρ3 = −ρρρ2ρρρ1ρρρ3 = I4, (3.56)

ρρρ1ρρρ2ρρρ3 = −λλλ2λλλ1λλλ3 = I4. (3.57)

Note that in (3.50), two DOFs modeled by the scalars corresponding to λλλ2,λλλ3 are
shown for pedagogical reasons, but have been deliberately set to zero such that a one-
to-one mapping between Jones matrices Hk and real 4 × 4 matrices Rk is possible.
However, any 4D real rotation matrix belonging to SO(4) can be expressed using (3.50)
and parameterizing all six DOFs.

Stokes Description

Another option for vector representation of optical signals is using Stokes vectors [87].
In general, Stokes vectors are 4D, but for fully polarized light and no polarization-
dependent losses (which is the case for this thesis), the Stokes vectors can be reduced
to be three-dimensional. In this case, the equivalent Stokes vector of a Jones vector z

is [88, Eq. (2.5.26)]

sz = zHσ⃗σσz =

⎛

⎜⎜⎜⎝

|z1|2 − |z2|2

2Re(z1z∗
2)

−2Im(z1z∗
2)

⎞

⎟⎟⎟⎠
, (3.58)

for any z = [z1, z2]T ∈ C2, where the ith component of sz is given by zHσσσiz. The absent
fourth component is the optical power zHz. In can be noted from (3.58) that applying a
common phase rotation to both z1 and z2 will not change sz. E.g., both z1 = [1+i, 1+i]T
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Figure 3.2. PM-QPSK constellation shown in the Jones/4D space (a) and Stokes space
(b).

and z2 = [−1 − i, −1 − i]T will result in sz = [0, 4, 0]T, where a rotation by π was applied
to z1 to obtain z2. In order to convert a 4D real vector to a Stokes vector, first, the
Jones vector should be obtained by reversing the operation in (3.45), and then the Stokes
vector can be obtained by (3.58).

The Stokes vectors have the advantage that they are optically observable quantities
proportional to the field intensity, and are often represented as points on a sphere, called
the Poincaré sphere. The Poincaré sphere offers a good visual representation of the
SOPs, where each SOP represents a point on this sphere and the drift of the SOP can be
visualized as a rotation of the sphere. Fig. 3.2 illustrates PM-QPSK in the Jones/4D real
space and in the Stokes space (plotted on the Poincaré sphere). In the former case, the
constellation has four points in each polarization, thus resulting in a total of 16 points
(all possible combinations between the two polarizations). On the other hand, in the
Stokes space, the constellation has only four points since this representation is invariant
to common phase shifts.

The analogous Stokes propagation model of (3.37) or (3.46) models only the SOP drift
without phase noise and can be written as

srk
= Mksuk

+ snk
, (3.59)

where suk
(srk

) is the transmitted (received) Stokes vector and can be obtained by apply-
ing (3.58) to uk (rk) and snk

is the noise term. The matrix Mk is a real 3 × 3 orthogonal
matrix, referred as Mueller matrix, which models only the SOP drift equivalently to Jk

in (3.37) such that
sJkuk

= sHkuk
= Mksuk

, (3.60)
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where sJkuk
(sHkuk

) is obtained by applying (3.58) to Jkuk (Hkuk). The noise compo-
nent snk

consists of three terms and cannot be obtained by (3.58). It can be identified
by equating terms in two expressions for srk

, where one is obtained by applying (3.58)
to both sides of (3.26) and then applying (3.60), and the other is (3.59). Thus,

snk
= (Hkuk)Hσ⃗σσnk + nH

k σ⃗σσHkuk + nH
k σ⃗σσnk, (3.61)

= (e−iφkJkuk)Hσ⃗σσnk + nH
k σ⃗σσe−iφkJkuk + nH

k σ⃗σσnk, (3.62)

where the first two terms represent the signal–noise interaction and the last one the
noise–noise interaction. As can be noted, snk

is signal-dependent and (3.59) is not an
additive-noise model, opposed to (3.26), (3.37), and (3.46).

The matrix Mk belongs to the special orthogonal group of 3 × 3 matrices SO(3)
satisfying

MT
k Mk = MkMT

k = I3, (3.63)

det Mk = 1, (3.64)

and the polarization transformation modeled by it can be seen as a rotation of the
Poincaré sphere. A generic 3 × 3 real matrix has nine DOFs, whereas after constraining
Mk to fulfill (3.63)–(3.64), it can be shown that it has only three DOFs. Such matrices
can be expressed as Mk = M(αααk) using the matrix function [83]

M(ααα) = exp(2K(ααα)) = exp(2θK(a)), (3.65)

= I3 + sin(2θ)K(a) + (1 − cos(2θ))K(a)2, (3.66)

where

K(a) =

⎛

⎜⎜⎜⎝

0 −a3 a2

a3 0 −a1

−a2 a1 0

⎞

⎟⎟⎟⎠
. (3.67)

The transformation in (3.65) can be viewed in the axis-angle rotation description as a
rotation around the unit vector a by an angle 2θ. The inverse of M(ααα) can be obtained
from

M(ααα)−1 = M(ααα)T = M(−ααα). (3.68)

3.3.2 Channel Modeling

After establishing the mathematical representation of phase noise and rotations of the
SOP above, we will now discuss options to model φk, Jk, Rk, and Mk such that the
behavior of real optical fibers is achieved. First, we will discuss phase noise and then SOP
drift. We will however, without loss of generality, restrict the discussion below to Mueller
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Figure 3.3. An example of phase noise random walk for σ2
ν = 2.25 · 10−4, where mod

is the modulo operation.

matrices Mk as regards to SOP drifts. Nonetheless, these can be straightforwardly
mapped to Jones or 4D matrices.

Phase Noise

The phase noise in (3.26), (3.37), or (3.46) is modeled as a Wiener process [64, 89]

φk =
•

φk + φk−1, (3.69)

where
•

φk is the innovation of the phase noise. The innovation
•

φk is a real Gaussian
random variable drawn independently at each time instance k as

•

φk ∼ N (0,σ2
ν), (3.70)

where the variance σ2
ν = 2π∆νT , and ∆ν is the sum of the linewidths of the transmitter

and receiver lasers.
The acquired phase noise at time k is the summation of the innovations

•

φ1, . . . ,
•

φk and
the initial phase φ0. Since the

•

φ1, . . . ,
•

φk terms are Gaussian, φk becomes a Gaussian-
distributed random variable with mean φ0 and variance kσ2

ν . Due to the periodicity with
period 2π of the function e−iφk , the phase angle φk can be bounded to the interval [0, 2π)
by applying the modulo 2π operation. In this case, the probability density function (pdf)
of φk becomes a wrapped Gaussian distribution. Fig. 3.3 shows an example of a phase
noise random walk and the corresponding wrapped phase noise. The evolution of the
wrapped phase noise pdf is shown in [Paper A, Fig. 1]. The initial phase difference φ0

between the two free-running lasers has equal probability for every value; therefore it is
common to model φ0 as a random variable uniformly distributed in the interval [0, 2π).
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s1
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s3

Figure 3.4. The trajectory of a measured SOP drift is plotted. Each dot represents a
measurement taken ∼ 2.2 h apart.

Polarization State Drift

The change in the SOP between the input and output is a dynamic process that changes
over time irrespectively of the input SOP. Plots of the Stokes vectors on the Poincaré
sphere are often used as good visual representations of the phenomenon. Fig. 3.4 il-
lustrates the trajectory of the received Stokes vectors for a fixed input over time. The
plotted data was obtained by measuring a 127-km long buried fiber for 36 days at every
∼ 2.2 h (shown by the dots in the figure). The technicalities of the measurement setup
and postprocessing have been published elsewhere [90]. As can be seen, the SOP has a
random behavior, taking steps of various sizes in no preferred direction.

Several variations of polarization drift models have been proposed and used in the
literature, most commonly in the context of equalization design. These models can be
distinguished by the dynamism and randomness of their behavior in time. In the next
sections, different variations will be reviewed.

Static The simplest and most straightforward solution is to generate a Jones/Mueller/4D
matrix randomly, which thereafter is kept constant [91–94]. This assumption is reason-
able if the considered time scale is small compared to time scale of the SOP drift. As
can be seen in Fig. 3.4, in the case of this particular fiber the SOP does not change
significantly between two consecutive measurements taken ∼ 2.2 h apart. Therefore, if,
e.g., 104 symbols at 28 Gbaud are considered, these correspond to 0.35 µs, which is a
too short time to have significant changes of the SOP. Of course this depends on the
installation specifics of the fiber. Aerial fibers will change at a much faster pace than the
more stable buried fibers [95].

The Jones/Mueller/4D matrix can be generated using several approaches by either
choosing ααα according to a certain pdf or randomly selecting the elements of the matrix.
The latter approach does not ensure unitarity/orthogonality of the matrices, and there-
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s1
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s3

Figure 3.5. SOP trajectories obtained by modeling α3,k = ωT k (blue curve in the s1-s2

plane), and α2,k = ω1T k and α3,k = ω2T k (red curve with round markers).

fore it must be followed by a normalization process. Different approaches will sample the
space of possible unitary/orthogonal matrices according to different distributions.

In [96], a method to generate ααα is described such that the space of all possible Mueller
matrices is uniformly sampled. In order to generate such a matrix, the axis a, cf. (3.42),
must be uniformly distributed over the unit sphere and the pdf of the angle θ ∈ [0,π/2)
must be (1 − cos θ)/π [97]. However, we present an alternative to generate the axis
and the angle simultaneously [96]. The vector ααα = θa is formed from the unit vector
(cos θ, a1 sin θ, a2 sin θ, a3 sin θ)T = g/∥g∥, where g ∼ N (0, I4), which will satisfy the
conditions for both axis a and angle θ. In this case, all the possible SOP are equally
likely after multiplying such a matrix with a constant Stokes vector. The same method
to generate ααα can be used to form Jones (3.38) or 4D matrices (3.50).

Dynamic Deterministic One option to emulate dynamic SOP drift is to model the
elements of ααα as frequency components. For example, in [61, 98, 99], SOP drift was
simulated by modeling α3,k = ωT k and setting α1,k = α2,k = 0. Another practice is
to only set α1,k = 0 and vary α2,k and α3,k at different frequencies, i.e., α2,k = ω1T k
and α3,k = ω2T k [54, 100, 101]. Fig. 3.5 illustrates the trajectories obtained by these
two methods. As can be seen, these methods have a cyclic/quasi-cyclic deterministic
behavior and cover only a subset of all possible SOPs on the Poincaré sphere.

Dynamic Stochastic As can be seen in Fig. 3.4, the SOP has a random trajectory and
cannot be accurately modeled with a deterministic behavior such as those discussed in
the previous section and shown in Fig. 3.5. A attempt to emulate stochastic polarization
drifts for the first time in the polarization literature was made in our prestudy [102] for
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Figure 3.6. The histograms of M( •

αααk + αααk−1)suk
for different αααk−1 and a fixed suk

are shown. The highest density is represented by dark red and the lowest
by dark blue, the outer part of the histogram. The figure on the left (a)
was obtained for αααk−1 = [0, 0, 0]T, whereas the figure on the right (b) was
obtained for αααk−1 = [0, 0, 3π/4]T. In both cases σ2

p = 0.007.

Paper A. In [102], we modeled6 Mk in (3.59) as

Mk = M(αααk), (3.71)

where αααk follows, analogously to the phase noise, a Wiener process

αααk = •

αααk +αααk−1, (3.72)

and •

αααk is the innovation of the SOP drift, cf. (3.69). The innovation parameters are
random and drawn independently from a zero-mean real Gaussian distribution at each
time instance k

•

αααk ∼ N (0,σ2
p I3), (3.73)

where σ2
p = 2π∆p T . We refer to ∆p as the polarization linewidth, which quantifies the

speed of the SOP drift, analogous to the linewidth describing the phase noise, cf. (3.70).
However, this model is not a stationary random process. If we consider the innovation

at k given the previous state, i.e., MkM−1
k−1, its pdf depends not only on •

αααk in (3.72),
but on αααk−1 as well. Therefore, the statistics of M(αααk) vary with αααk−1 and time k. On
the contrary, the statistics of a stationary random process should depend only on the
statistics of the innovation •

αααk. A (visual) comparison between two histograms of Mksuk

obtained for different αααk−1 but the same σ2
p and suk

is shown in Fig. 3.6. As can be
seen, the shape of the histograms is different and confirm the nonstationary property of
the random process Mksuk

. Moreover, for αααk−1 = [0, 0, 3π/4]T Fig. 3.6(b), in contrast

6The model proposed in [102] is described here in the Stokes space. However, the same model applies
to the other two descriptions as well.
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K1 D1(f) K2 D2(f) KNPMD DNPMD
(f)

Figure 3.7. PMD model of a long fiber as a concatenation of NPMD frequency-
dependent birefringent sections Dn(f) coupled with polarization scramblers
Kn.

with the other case αααk−1 = [0, 0, 0]T Fig. 3.6(a), the histogram is not isotropic, and by
isotropic we mean that all the possible orientations of the changes of the Stokes vector
are equally likely.

In conclusion, this model is neither stationary nor isotropic. Our goal in Paper A is
to find a model that satisfies both these conditions. The main difference between the
model in [102] and the one in Paper A consists in the updating method of the matrix
Mk, which is done as a multiplication of matrices [Paper A, Eq. (A.15)]

Mk = M( •

αααk)Mk−1, (3.74)

where •

αααk is modeled as (3.73). This model has been experimentally validated and its
details together with the analogous Jones and 4D descriptions can be found in Paper A.

3.4 Polarization-Mode Dispersion

When trying to understand the effects of PMD, it is often good to understand first its
effects over a short fiber segment. To this end, we assume that the segment is short enough
such that any PMD effects are constant over its length. Any fiber can be modeled as a
concatenation of such fiber segments. In the short-fiber-segment regime, perturbations
such as mechanical and thermal stress, bends, and twists break the cylindrical symmetry
of the core and lead to nonequal effective indices of refraction β1x, β1y for the slow
and fast propagation modes. This phenomenon is exemplified in Fig. 2.7, where two
pulses launched in the two orthogonal polarizations acquire a time separation. This time
separation is called DGD, denoted with τ , and arises along the so-called slow and fast
(birefringence) axes of the fiber, and it is usually expressed in picoseconds.

While for short fiber segments, PMD exhibits a predictable behavior due to the addi-
tive nature of DGD, this is not the case for long fiber links of hundreds or thousands of
km. Long links can be viewed as a concatenation of many short sections where the bire-
fringence axes of each section change randomly from section to section. This phenomenon
is often called polarization coupling, and it originates from splices, optical components,
variations in the fiber drawing process, and from the intentional fiber spinning during
drawing [103].

A common model to emulate PMD in long fibers is the waveplate model, which models
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the entire fiber as a concatenation of many birefringent fiber sections with random cou-
pling. This model is shown in Fig. 3.7, where the short sections Kn, for n = 1, . . . , NPMD,
scramble randomly the birefringence axes at the beginning of each birefringent section
Dn(f), which in turn introduce DGD. The birefringence sections Dn(f) are frequency
dependent, whereas polarization scramblers Kn are not.

Simulations are often performed in the Jones space, perhaps due to the mapping be-
tween Jones matrices and practical components that practitioners often make. The trans-
fer function of the process shown in Fig. 3.7 is given by the product of the different sections
as

T(L, f) = DNPMD
(f)KNPMD

· · · D2(f)K2D1(f)K1, (3.75)

where the matrices Kn and Dn(f) are 2 × 2 complex Jones matrices and the output of
the fiber is related to the input as

Ẽ(L, f) = T(L, f)Ẽ(0, f). (3.76)

Each birefringent section is a first-order PMD element and is modeled as

Dn(f) =

⎛

⎝eiπfτn 0

0 e−iπfτn

⎞

⎠ , (3.77)

introducing a τn delay between the two polarizations. The delays τn can be chosen
to be equal τn = τp for all sections, or randomly and independently for each section
from a Gaussian distribution τn ∼ N (τp, (τp/5)2) [104], where the 1/5 coefficient was
heuristically found to mimic well experimental data. The value of τp is chosen according
to the links length, PMD coefficient, and number of sections NPMD, which we discuss
below. Choosing τn differently for each section avoids spectral periodicity with period
2/τn of Dn(f), and consequently of T(L, f).

The polarization scramblers Kn can be modeled using (3.38) and by choosing the
parameters ααα randomly. Several options have been considered in the literature, some
already mentioned in Section 3.3.2, in the context of SOP drift. One option is to chose
uniformly α3 ∈ [0, 2π) and letting α1 = α2 = 0. Another practice is to only set α1 =
0 and chose α2 and α3 uniformly in the [0, 2π) interval. None of these methods will
however generate a uniformly distributed polarization scrambling matrix Kn. This can
be achieved using the method described in the case of static SOP drift discussed earlier.

The accumulated DGD over the link can be obtained from the frequency derivative of
the transfer matrix [83]

τ(f) =
1
π

√

det
(
∂T(L, f)

∂f

)
, (3.78)

which, in the limit of an infinite number of sections, is Maxwellian distributed, i.e., the
pdf of τ(f) approaches p(τ) =

√
2/πτ2 exp(−τ2/(2a2))/a3 as NPMD → ∞ for any f ,
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where a = τp

√
NPMD/3. Valid for the Maxwellian distribution, the first and second

moments of τ(f) follow the relation E[τ(f)] =
√

8E[τ2(f)]/(3π). Note that the constant
1/π in (3.78) replaces the more common constant 2, such as in [83, Eq. (5.7)], since the
differentiation is with respect to frequency f as opposed to angular frequency ω in the
latter. For a given NPMD, the average DGD is given by [105]

E[τ(f)] =

√
8NPMD

3π
τp. (3.79)

Based on this equation and on the links details, i.e., length and PMD coefficient DPMD,
the parameter τp can be chosen. For example, a 1000-km link with DPMD = 0.1 ps/

√
km

can be emulated by letting NPMD = 50 and τp = 0.4854 ps.
One direct implication of letting NPMD → ∞ is that the random variable τ(f) becomes

unbounded since the support of the Maxwellian distribution extends to infinity. However,
in practical simulations, the number of sections is finite and τ(f) becomes upperbounded
to the sum of DGDs introduced by each birefringent section in (3.75). For example, for
sections with DGD equal to τp, the upper bound becomes NPMDτp. This is more in
line with real fiber transmissions where an infinite delay is unpractical. However, the
question of how many sections is suitable for simulations is not easy to answer. A
few studies [104, 106, 107] have tried to analyze this problem and it seems there is a
general agreement that a too low number of sections is not suitable. This results in a
distribution of the DGD that mismatches the Maxwellian distribution to a high degree
and is inadequate. On the other hand, emulators with 15 sections appear to be adequate
in [106], whereas 50 sections were used in [107]. Nevertheless, as NPMD grows large, the
statistics of τ(f) approach a truncated version of the Maxwellian distribution and the
truncation occurs at NPMDτp.

The PMD model presented above is static and does not have any temporal variations.
However, this not the case for real fibers, which have been measured to have time-varying
PMD [90,95,108–110]. Time variations can be introduced in the model above by letting
the polarization scramblers Kn change with time.

In the classic PMD literature, all polarization scramblers are assumed to be time
varying. This assumption however has been questioned by the so-called hinge PMD
model [111, 112], where most of the polarization scramblers are considered to be frozen
in time and only a few, called hinges, are time varying. The latter could be amplifier
sites, fiber segments exposed to temperature or mechanical variations in servicing huts,
railroad bridges, etc. The major statistical implication of the hinge model suggests that,
given the fronzen (in time) sections between the hinges, the DGD at different spectral
components do not have the same statistics, which is the case for the classical PMD
model. In the classical PMD model, the DGD is the same at all frequencies for each
frozen section Dn(f), i.e., τ(f) = τn for all f given n. In the case of the hinge model, the
DGD of the frozen sections is not constant but random with respect to frequency and
follows a (truncated) Maxwellian distribution. The concatenation of such frozen sections
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leads to DGD that has different statistics with respect to frequency, which depend on the
particular DGD realization of the frozen sections. For example, let’s examine the DGD
at two frequencies f1 and f2 of a simple link made up by two frozen section D1(f) and
D2(f). The first section has a DGD of 1 ps and 5 ps at f1 and f2, respectively, whereas
the second section has a DGD of 3 ps and 2 ps at f1 and f2, respectively. Therefore after
concatenating the two sections, the entire link can experience, in the worst case scenario,
a total DGD of 4 ps and 7 ps at f1 and f2, respectively, making the statistics of the
DGD frequency dependent. However, this analysis holds when conditioned on the frozen
sections, i.e., they are fixed. When the entire ensemble of fibers is considered, with all
the possible realizations of the frozen sections, the DGD has the same statistics at all
frequencies. In Paper B, we study a channel model for the temporal variations of PMD
and absolute SOP within the hinge-model framework and compare it to field-trial data.

3.5 The Split-Step Fourier Method

The propagation equations discussed in Section 3.1 do not have general solutions except
for some specific cases. Therefore, various numerical methods are used in simulations
or to get insights into the nonlinear propagation phenomenon. The split-step Fourier
method (SSFM) is an efficient numerical tool7 to solve nonlinear partial differential equa-
tions, which was originally proposed in [114], and it is commonly used to solve the NLSE
or Manakov equation. Finite difference methods [115] is another class of numerical tools
that can be used to solve the propagation equations, where the derivatives are approxi-
mated with difference equations. In general, the SSFM is more commonly used due to its
faster evaluation at the same accuracy. The speed advantage can be associated mainly
with the use of the fast Fourier transform algorithm. A more detailed discussion about
the two approaches can be found in [44, Sec. 2.4] and references therein.

The assumption behind the SSFM is that the linear and nonlinear parts can be decou-
pled and act independently over a small enough spatial step size. In order to facilitate
this assumption, the Manakov-PMD equation8 (3.15), ignoring the ASE noise, can be
reformulated as

∂E(z, t)
∂z

= (D̂ + N̂)E(z, t), (3.80)

where D̂ is the linear operator accounting for losses, amplification, CD, and PMD,
whereas N̂ is the nonlinear operator accounting for the Kerr nonlinearity. These are

7In general, the SSFM is considered to be a numerical tool, rather than a channel model. However,
these two are not mutually exclusive and moreover, the SSFM has been used in [113] as a channel
model to establish an upper bound on the capacity of the fiber-optical channel.

8Here we focus on the Manakov-PMD equation due its generality, but the SSFM can be applied to all
propagation equations presented in Section 3.1.
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given by

D̂ = −α− g(z)
2

+ ∆β1Σ(z)
∂

∂t
− i

β2

2
∂2

∂t2
, (3.81)

N̂ = iγ
8
9

∥E(z, t)∥2. (3.82)

The propagation is performed recursively over spatial steps ∆zi under the assumption
that the linear and nonlinear effects act independently if the steps are small enough.
Although not required by the method itself, it is common to discretize the total link in
and equal number of Nspan−SSF ∈ N steps per span such that

∑Nsp×Nspan−SSF

i=1 ∆zi = L,
where Nsp × Nspan−SSF is the total number of discrete spatial steps9. The propagation
over one spatial step can be approximated in a two-phase procedure by solving for the
linear part first (by setting N̂ = 0) and then for the nonlinear part (by setting D̂ = 0),
or vice versa. This becomes mathematically

E(z + ∆zi, t) ≈ exp(D̂∆zi) exp(N̂∆zi)E(z, t). (3.83)

This equation can be implemented as follows:

• the nonlinear step is applied first in the time domain as (cf. (3.6))

E(z + ∆zi, t) ≈ exp
(

i
8
9
γ∥E(z, t)∥2∆zi

)
E(z, t) (3.84)

• in the second step, the linear part is applied in the frequency domain

Ẽ(z + ∆zi, f) ≈ exp
(
i2β2π

2f2∆zi

)
exp

(
− (α− g(z))∆zi/2

)
T(∆zi, f)Ẽ(z, f),

(3.85)
where the first three terms on the right-hand side account for CD, attenuation and
gain, and PMD, respectively.

The steps above are repeated Nsp × Nspan−SSF times such that the propagation through
the entire link is performed.

In the description above, we included the attenuation and gain in the linear step.
Nevertheless, this can be performed during the nonlinear step and it has been shown
that it leads to a better accuracy [116]. In this case, (3.84) and (3.85) become

E(z + ∆zi, t) ≈ exp
(

− (α− g(z))∆zi/2
)

exp
(

i
8
9
γ∥E(z, t)∥2Leff(∆zi)

)
E(z, t), (3.86)

Ẽ(z + ∆zi, f) ≈ exp
(
i2β2π

2f2∆zi

)
T(∆zi, f)Ẽ(z, f), (3.87)

respectively.
9This spatial distribution facilities the noise insertion at the end of each span in the case of lumped

amplification.
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However, the procedure above is concerned only with propagation effects and does not
add amplification noise. Noise is typically added in the time domain at spatial points
where amplification occurs. This occurs at the end of each span in the case of lumped
amplification and at every step in the case of distributed amplification (see Section 3.1.1).

The formulation above of the SSFM is known as the asymmetric method. The naming
origin will become evident after we will present the symmetric method. The accuracy of
the asymmetric method can be improved by reformulating (3.83) as

E(z + ∆zi, t) ≈ exp(D̂∆zi/2) exp(N̂∆zi) exp(D̂∆zi/2)E(z, t); (3.88)

known as the symmetric method, where the nonlinear step is included in the middle of
the linear step rather than at the boundary. This method has an error that is of third
order in the step size ∆zi, compared to second order achieved by the asymmetric method.
Nonetheless, the two methods converge as ∆zi becomes small.

Although the algorithms above are straightforward to implement, the selection of the
step size ∆zi is crucial and governs the desired complexity–accuracy trade-off [117]. The
most trivial approach is to set all steps equal; a method that is also highly computation-
ally inefficient. Another method is to chose a logarithmic distribution of steps such that
spurious four-wave mixing is avoided [118]. Other methods [116, 117, 119] optimize the
step size at every step such that, e.g., the maximum nonlinear phase shift is kept at a
given maximum or the local relative error is kept within some limits.

Another important accuracy aspect related to simulations based on the SSFM is the
time discretization. The propagation equations above are presented in continuous time,
but any numerical simulation is performed in the discrete-time domain. Linear numerical
simulations bridge losslessly the continuous-time and discrete-time domains by satisfying
the Nyquist–Shannon sampling theorem. This however is not the case for the nonlinear
equations presented here, which require higher sampling rates as the power levels, and
implicitly the nonlinear effects, increase [120]. This effect can be partially explained by
the bandwidth expansion, but so far there are no available specific guidelines on how
these two relate.

3.6 Perturbative Channel Models

The propagation models presented in Section 3.1 are difficult to analyze using information-
theoretic tools since they are formulated in continuous time and the input–output rela-
tion is not explicitly given, but is rather implicit in the differential equation. In order
to overcome this complication, the research community has resorted to various methods
to obtain an explicit input–output relationship for the fiber optical channel. Several
common approaches are reviewed in the tutorial [121], from which we will consider a few
examples that are based on perturbation theory in the following.

Perturbation theory is a class of methods aimed for finding approximate solutions for
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(typically) unsolvable problems. The solution obtained with such methods is expressed
in terms of power series truncated at the desired accuracy. The fact that the NLSE (and
its variations) does not have a general solution yet and that the nonlinear interference is
weak make the NLSE a good candidate for perturbation theory. Typically, these methods
are applied to the propagation equation modeling strictly propagation effects ignoring
ASE noise, which is added separately at the receiver; hence signal–noise interactions
are ignored. This is a reasonable assumption as long as the nonlinear signal–signal
interactions are dominant.

Perturbation theory analysis can be broadly classified into two categories: frequency-
domain [122, 123] and time-domain [124, 125]. In turn, these can be further categorized
into two groups depending on how nonlinearity is modeled: deterministic and random
nonlinearity [121]. In the following, we will focus first on the deterministic frequency-
domain nonlinearity modeling based on Volterra series and then on random time-domain
nonlinearity modeling.

3.6.1 The Volterra Series Model

The Volterra series model is a generic tool used to model nonlinear behavior [126]. Ped-
danarappagari and Brandt–Pearce have applied this tool to solve the NLSE in [122]
accounting for up to the fifth-order Volterra kernels. In [123] has been shown that the
2n+1 order Volterra series solution in [122] coincides with the solution obtained based on
the order n regular perturbation method. Later on in [127] the equivalency between the
Volterra series model and the time-domain model proposed in [124] has been established.

The output field Ẽ(z, f) can be related to the input Ẽ(0, f) using the third-order
truncated Volterra series as

Ẽ(z, f) ≈H1(z, f)T(z, f)Ẽ(0, f)+

iγ
8
9

(2π)2

z∫

0

H1(z − z′, f)T(z − z′, f)
∫∫ (

H1(z′, f2)T(z′, f2)Ẽ(0, f2)
)H

H1(z′, f1)T(z′, f1)Ẽ(0, f1)H1(z′, f3)T(z′, f3)Ẽ(0, f3) df1 df2 dz′, (3.89)

where

H1(z, f) = v(z) exp(i2β2π
2f2z) (3.90)

is the linear first-order Volterra series kernel, modeling the fiber attenuation and CD,
and f3 = f − f1 + f2. In (3.90), the function

v(z) = exp
(

−
αz −

∫ z
0 g(z′)dz′

2

)
(3.91)
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accounts for the power profile of the link. E.g., it is equal to 1 in the case of perfectly
distributed amplification and v(z) = exp(−α(z mod Lsp)/2) in the case of lumped am-
plification.

In the absence of PMD, i.e., T(z, f) = I2 for any z and f , the integral with respect to
the distance z′ can be analytically solved and (3.89) becomes

Ẽ(NspLsp, f) ≈H1(NspLsp, f)T(z, f)Ẽ(0, f)+

iγ
8
9

(2π)2

∫∫
H3(Nsp, Lsp, f, f1, f2)Ẽ(0, f2)HẼ(0, f1)Ẽ(0, f3) df1 df2,

(3.92)

where we constrained the propagated distance to be an integer number of spans NspLsp

and the amplification scheme to be either lumped or ideal distributed. The quantity
H3(Nsp, Lsp, f, f1, f2) is the third-order Volterra series kernel and it reads

H3(Nsp, Lsp, f, f1, f2) = exp(−αeffLsp/2) exp(i2β2π
2f2NspLsp)

1 − exp
(
iβ2(2π)2(f1 − f2)(f1 − f)LspNsp

)

1 − exp
(
iβ2(2π)2(f1 − f2)(f1 − f)Lsp

)

1 − exp
(

− Lsp(αeff − iβ2(2π)2(f1 − f2)(f1 − f))
)

αeff − iβ2(2π)2(f1 − f2)(f1 − f)
, (3.93)

where αeff is the effective attenuation of the fiber, i.e., the combined effects of fiber loss
and amplification scheme. In the case of lumped amplification, it is equal to the fiber
attenuation, αeff = α, whereas αeff = 0 in the case of ideal distributed amplification.

The double frequency integral in (3.89) is known to have divergence problems when
the input is large. The authors in [128] proposed a modified version of (3.89) to alleviate
this issue as

E(z, t) ≈

⎧
⎨

⎩
EL(z, t) + ENL(z, t) |ENL(z, t)| > |EL(z, t)|,
EL(z, t) exp

(
ENL(z,t)
EL(z,t)

)
otherwise,

(3.94)

where EL(z, t), ENL(z, t) are the inverse Fourier transformations of the first and second
terms of the right-hand side of (3.89), respectively. Note that the division and exp(·)
operations above are performed element-wise over the two elements of E.

3.6.2 The Gaussian Noise Model

The model above succeeds to produce a simplified input–output relationship over the
propagation equations in Section 3.1. However, the evaluation of the double frequency
integration in (3.89) can be involved, in particular for multichannel scenarios. By assum-
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ing that the nonlinear interference does not arise from data-modulated signals, but rather
from a stochastic Gaussian process (hence the name), a further simplified expression for
fiber propagation can be obtained. This is the so-called Gaussian Noise model and it
was initially derived in 1993 [129] and then rediscovered later [130,131]. As hinted by its
name, the nonlinear interference is modeled as an additive Gaussian random variable

rk = uk + wk

√
PNLI, (3.95)

where wk is zero-mean, complex, and circular-symmetric with E[wkwH
k ] = I2. The

scalar PNLI is the power of the nonlinear interference, which has different expressions
depending on the amplification type. In the case of lumped amplification, it becomes [132,
Eqs. (16),(36)]

PNLI = N1+ϵ
sp

8
27
γ2P 3T 2Leff(Lsp)2

αasinh
(

π2|β2|(Nch/T )2

2α

)

π|β2| , (3.96)

whereas for ideal distributed amplification is [132, Eq. (44)]

PNLI =
16
27
γ2P 3T 2L

asinh
(

π2|β2|L(Nch/T )2

3

)

π|β2| , (3.97)

where [132, Eq. (40)]

ϵ =
3
10

loge

(

1 +
6

Lsp

1

αasinh
(

π2|β2|(Nch/T )2

2α

)
)

, (3.98)

asinh(·) is the hyperbolic arcsin function, P is the average power per channel, and Nch

is the number of wavelength-division multiplexed channels. The formulation above is
a simplification of the Gaussian Noise model that assumes that the spectrum of each
channel has a perfect rectangular shape of width 1/T and that the channel spacing is the
same as the baud rate 1/T .

As can be seen, the model above is independent of the modulation format. How-
ever, it has been shown that the nonlinear interference does depend on the modulation
format and that this model overestimates the nonlinear interference [125]. Later on,
the Enhanced Gaussian Noise model has been proposed [133], aiming to correct these
inaccuracies.
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CHAPTER 4

Digital Signal Processing

In the present chapter are discussed estimation and compensation algorithms of nonlinear
effects, phase noise, SOP drift, and PMD presented in Chapter 3. First, nonlinearity mit-
igation based on DBP is discussed in Section 4.1. In Section 4.2, an algorithm for phase
tracking is described. Thereafter, in Section 4.3, SOP and PMD recovery algorithms are
presented. In Section 4.4, a tracking algorithm that accounts jointly for both phase noise
and SOP drift is presented. This chapter reviews the required background knowledge
required for: i) Paper C, wherein we propose a tracking algorithm (summarized in Sec-
tion 4.4.2) that jointly recovers the phase and the SOP, and for ii) Papers D–G where we
propose modified DBP techniques that account for PMD in the backwards propagation.

4.1 Digital Backpropagation

DBP is a digital domain technique used to compensate for fiber nonlinearity. In the
absence of stochastic effects, such as ASE noise and PMD, the propagation equation can
be exactly1 reversed with inverted channel parameters (−β2, −γ, −α) such that E(0, t)
is obtained from E(L, t). While its main scope is to compensate for nonlinearities, DBP
compensates also for CD. DBP can be used as a predistorter [22, 134], where the back-
wards propagation is preapplied at the transmitter before propagation. It can also be per-
formed at the receiver [21,135] for postcompensation, or a combination of both [136,137].
In [137, 138], it is showed that splitting the compensation between the transmitter and

1Within the accuracy boundaries imposed by the simplified propagation equation and the numerical
solver.
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receiver reduces the nonlinear signal–noise interactions and leads to improved perfor-
mance.

Although DBP promises many theoretical benefits, many factors contribute to its per-
formance. We summarize a few aspects that degrade the potential gains in the following:

• Uncompensated stochastic effects. Typically the propagation equations are in-
verted based on a zero-forcing approach ignoring stochastic effects and only deter-
ministic signal–signal nonlinear interaction are compensated for by DBP. By not
accounting for stochastic effects, such as nonlinear signal–noise interactions [139]
and PMD [140,141], which lead to mismatched signal–signal nonlinear interactions,
the performance is degraded. However, these fundamental limitations have been
considered and accounted for in modified DBP algorithms [59, 142, 143], including
Papers D–G in this thesis. These modified versions do improve the performance
compared to the conventional approach, but they are not optimal and finding the
optimal algorithm is still an open problem.

• Limited nonlinearity compensation bandwidth. The principle of DBP for a mul-
tichannel transmission is not different from single channel, except for the larger
bandwidth of the backpropagated signal. However, in a network scenario chan-
nels are added and dropped along the optical path and these are not available at
the transmitter or receiver performing DBP. Applying DBP over a smaller band-
width compared to the overall transmitted optical bandwidth severely reduces the
potential gains [144].

• Limited DSP accuracy due to complexity restrictions. Simulations employing DBP
have the advantage of floating-point accuracy and can perform the backpropaga-
tion over sufficiently many spatial steps such that the performance is maximized.
However, these are currently highly prohibitive for a real-time implementation and
impose strong upper bounds on the achievable gains [145,146]. This restriction re-
lates also to the previous aspect on limited nonlinearity compensation bandwidth,
where, even in a point-to-point transmission scenario with access to all transmitted
channels, currently available hardware cannot perform large bandwidth DBP.

The numerical channel inversion implied by DBP can be performed based on various
techniques. The SSFM discussed in Section 3.5 is arguably the most popular method.
However, DBP can be also be performed using perturbation theory in the frequency
domain [147,148] or in the time domain [149,150], which provide complexity gains at the
expense of being less accurate compared to the SSFM.

This thesis is concerned with DBP algorithms that account for PMD. The nonlinear
interference generated in the forward propagation depends on the PMD evolution along
the link (cf. the second term of the right-hand side of (3.89)). However, the receiver
or transmitter does not have access to this information when performing nonlinearity
mitigation. Therefore, conventional algorithms ignore PMD and simply assume T(f, z) =
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I2 for all f and z when performing predistortion or backwards propagation, and PMD
is compensated for in a lumped fashion by compensation for the entire link at once at
the receiver. Since PMD is a linear effect, compensating for the entire link at once is
adequate in the linear (power) regime. On the other hand, in the nonlinear regime, where
nonlinearity mitigation is desired, compensating for the entire PMD at once impacts the
performance and can, in extreme scenarios, completely cancel the gains of nonlinearity
mitigation.

In Papers D–G, we study modified nonlinearity mitigation algorithms that take into
account PMD. In Papers D, E, and F, the backpropagation is performed using the SSFM
and PMD sections are inserted periodically in the backwards propagation to compensate
for PMD in a distributed fashion as it naturally occurs in the forward propagation. As
we do not have access to the PMD evolution along the link, the backwards-PMD sections
are chosen such that once concatenated, they equal the inverse of the total PMD in the
forward direction2. To fulfill this constraint, the sections are selected based on

• Paper D: the Nelder–Mead simplex optimization algorithm [151]. In this case,
the sections will be different from each other and the solution of the optimization
algorithm highly depends on the initialization of the algorithm.

• Paper E: as in Paper D, the backwards-PMD sections are initially chosen using
the Nelder–Mead simplex optimization algorithm. However, this optimization has
infinitely many solutions and does not guarantee the convergence to the true fiber
solution, which would guarantee optimal performance. Therefore, we extend the
algorithm by further optimizing the backwards-PMD sections using the estimated
SNR as an objective function.

• Paper F: taking the generalized nth root operation of the matrix T(f, L) that
models the PMD of the entire link, where n is the number of PMD sections inserted
in the backwards direction. In this case all the n PMD sections are the same.

In Paper G, we take a different approach by studying a frequency-domain perturba-
tion backpropagation algorithm that is based on Section 3.6.1. In this case, instead of
compensating for PMD in a distributed fashion by inserting PMD sections in the back-
wards propagation, we identify and perform the integration in the second term of the
right-hand side of (3.89) on only (partially) PMD-insensitive frequency domains of f1,
f2, f3, where PMD cancels out. In this case, we do not need to know to total PMD of
the link given by T(f, L).

While the algorithms presented in Papers D–G have the same scope, i.e., to improve
the performance of nonlinearity mitigation in the presence of PMD, they are different
and can be used in different scenarios. In principle, the algorithms in Papers D and E
are the only ones that can fully overcome the penalties imposed by PMD on DBP perfor-
mance for any PMD realization in the forward propagation. In Paper D, for a fixed given

2We can access the total accumulated PMD from the channel equalizer.
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forward PMD evolution, the solution of the algorithm for the PMD sections in the back-
ward propagation is random due to the random initialization stage of the optimization
algorithm. The performance can be maximized by running the optimization algorithm
sufficiently many times with different initializations and choosing the one that maximizes
the performance metric, such as SNR. Presumably, the solution maximizing the perfor-
mance is the closest to the PMD evolution in the forward propagation. However, running
many parallel instances of the optimization algorithm can be prohibitively complex. Pa-
per E aims to bypass this obstacle by improving the selection of the backwards PMD
sections obtained from the optimization algorithm by further optimizing them such that
the SNR is maximized. On the other hand, the algorithm in Paper E outputs a fixed
sequence of PMD sections given to the total PMD. Comparing this method to Paper D,
it performs better on average, but it will not achieve the performance of DBP without
PMD in the link, unless PMD evolves linearly in the forward propagation, for which
it is optimal. Lastly, the algorithm in Paper F does not reverse the PMD effects in
the reverse propagation. Although we do not have a direct comparison, it appears that
its performance is inferior compared to the other three. However, it has the advantage
that it does not require any knowledge about PMD, except for the PMD coefficient and
fiber length, and it reduces the required computational complexity. Nevertheless, the
approaches in Papers D, E, or F can be combined with the approach in Paper G for an
improved performance.

4.2 Phase Noise Tracking

We consider the blind phase search (BPS) algorithm [64] for phase noise tracking, which
is arguably one of the most popular algorithms for phase noise compensation due its
universality and good performance. The BPS algorithm estimates the phase noise φk

and compensates for it in a feedforward fashion in each polarization separately3.
Assuming that the received signal is sampled at the symbol rate and it is only affected

by phase noise and additive noise, the received symbols can be modeled as a special case
of (3.37)

rk = e−iφkuk + nk, (4.1)

and can seen in Fig. 2.3.
The BPS algorithm for QAM constellations can be summarized by the following steps:

1. The received signal is rotated by PBPS test phases

zk,b = rkeiφb , (4.2)

3It is possible to phase track jointly the two polarizations. However, in this case, the relative phase
offset between the two polarization must be compensated in advance.
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where rk is one element of rk and

φb =
b

PBPS
· π

2
, for b = 0, . . . , PBPS − 1. (4.3)

Note that the range of φb is [0,π/2) due to the π/2 rotational symmetry of QAM
constellations. For other constellations, this range must be adjusted accordingly.

2. The rotated symbols zk,b are fed into a decision circuit to calculate the squared
Euclidean distance to the closest constellation point

dk,b
2 = |zk,b − ẑk,b|2, (4.4)

where ẑk,b is the point of the constellation whose position is the closest to zk,b.

3. The impact of the additive noise nk is reduced by a moving sum over 2NBPS + 1
distances

sk,b =
NBPS∑

n=−NBPS

dk−n,b
2. (4.5)

4. The optimal phase angle is determined by the minimum sum of distances, and the
detected symbol can be selected from ẑk,b based on the index b of the minimum
sum sk,b as

b̂ = arg min
b

sk,b, (4.6)

ẑk,b = ẑk,b̂. (4.7)

The π/2 symmetry of QAM constellations leads to a four-fold phase ambiguity. For
example, if the phase noise passes to the second quadrant, say, φk = 3π/4, the algorithm
will misinterpret the phase angle as being in the first quadrant φ̂k = 3π/4 − π/2 = π/4.
This will lead to catastrophic errors and can be avoided using differential coding [55,
Sec. 2.6.1]. Moreover, the calculated phase angles by the algorithm are in the interval
[0,π/2), but the phase evolves and extends over this interval leading to a performance
penalty. Therefore, to account for this event, a phase unwrapper is needed [152], thus
introducing feedback in the algorithm. The purpose of the phase unwrapper, in this
case, is to add multiples of π/2 to the estimated phase such that the maximum phase
difference between two adjacent phase estimates is less than π/4.

4.3 SOP Drift and PMD Compensation

The drift of SOP and PMD are typically compensated jointly using a bank of four finite-
impulse response filters. The filters can be updated based on various criteria such that
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the time-varying nature of SOP and PMD is tracked. In the sections below, we present
the most common option to update the filters based on the gradient descent method.
First, the CMA for SOP tracking is presented, followed by its generalization the MMA,
and then we discuss how to extend these algorithms to compensate for PMD.

4.3.1 Constant Modulus Algorithm

The CMA was initially developed for two-dimensional QPSK signals [153] and then
applied to 4D PM-QPSK optical constellations to recover the SOP [54]. In the presence
of SOP drift and additive noise, the considered signal model is

rk = Jkuk + nk, (4.8)

obtained by neglecting the phase noise in (3.37).
The CMA reverses the channel effects using a previous estimate of J−1

k

r′
k = Ĵk−1rk, (4.9)

which can be expanded into
⎛

⎝r′
x,k

r′
y,k

⎞

⎠ =

⎛

⎝Ĵxx,k−1 Ĵxy,k−1

Ĵyx,k−1 Ĵyy,k−1

⎞

⎠

⎛

⎝rx,k

ry,k

⎞

⎠ . (4.10)

The purpose of the CMA is to minimize the magnitude of the error functions

ϵx =
∣∣r′

x,k

∣∣2 − Es, (4.11)

ϵy =
∣∣r′

y,k

∣∣2 − Es, (4.12)

which minimize the distance of the algorithm’s output r′
x/y,k to the circle of radius equal

to the QPSK symbol energy. The update of Ĵk−1 is often done using the gradient descent
method [154, p. 466] resulting in the update rules

Ĵxx,k = Ĵxx,k−1 − µCMAϵxr′
x,k(rx,k)∗, (4.13)

Ĵxy,k = Ĵxy,k−1 − µCMAϵxr′
x,k(ry,k)∗, (4.14)

Ĵyx,k = Ĵyx,k−1 − µCMAϵyr′
y,k(rx,k)∗, (4.15)

Ĵyy,k = Ĵyy,k−1 − µCMAϵyr′
y,k(ry,k)∗, (4.16)

where µCMA is a positive tracking step size parameter.
As suggested by its name, the algorithm was designed for constellations with constant

modulus, such as phase-shift keying. Applying the algorithm to constellations with
multiple modulus, such as 16-QAM, degrades the performance significantly. However,
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Figure 4.1. The principle of MMA illustrated for 16-QAM. The algorithm updates Ĵk−1

such that the error between the received symbol (red square) and its nearest
constellation ring is minimized.

the CMA has been extended to multiple-modulus constellations and it is presented in
the next section.

4.3.2 Multiple Modulus Algorithm

The MMA is based on the same principle as the CMA discussed earlier, except that the
error function is calculated between the algorithm’s output and the nearest constellation
radius [155]. Due to the radius-directed error, the algorithm is known in the literature
also as the radius-directed algorithm/equalizer [156].

The MMA makes first a decision on the constellation ring to which the received symbol
most likely belongs, and then adapts Ĵk−1 such that this distance is minimized using the
same updating rules as the CMA (4.13)–(4.16). The modified error functions (4.11)–
(4.12) are

ϵx =
∣∣r′

x,k

∣∣2 − a2
x,k, (4.17)

ϵy =
∣∣r′

y,k

∣∣2 − a2
y,k, (4.18)

where ax,k (ay,k) is the nearest radius to r′
x,k (r′

y,k). It should be noted that the CMA is
a special case of the MMA applied to a one-ring constellation. Fig. 4.1 shows an example
of the algorithm’s principle. In this example, only the X polarization is shown, however,
the same operation is carried out in the Y polarization.

As can be seen in (4.11)–(4.12) and (4.17)–(4.18), the error functions of both the CMA
and MMA are immune to the phase of the received signal. Therefore, the algorithms are

59



Chapter 4 Digital Signal Processing

not affected by phase variations and can be applied before frequency-offset and phase-
noise compensation (Section 4.2). However, an extra phase shift may be inserted when
updating Ĵk in (4.13)–(4.16). Compared to the laser phase noise, the drift of this phase
shift is slow, but it can introduce a relative phase offset between the two polarizations,
which must be tracked for 4D constellations.

The CMA and MMA stated above are presented as single-tap equalizers and can track
only drifts of the SOP but not PMD. However, once a certain link length is exceeded,
PMD becomes detrimental and must be compensated for. This can be achieved by
extending Ĵk to a bank of four finite-impulse response filters. In this case, the ele-
ments of Ĵk and rk, i.e., Ĵxx,k, Ĵxy,k, Ĵyx,k, Ĵyy,k, rx,k, and ry,k, become vectors and r′

k

is calculated in (4.9) as a weighted sum of a block of received symbols rk. By extend-
ing the algorithms to the multi-tap version, it is possible to perform, besides SOP and
PMD tracking, adaptive-channel equalization such as residual-dispersion compensation,
intersymbol-interference mitigation, and approximate a matched filter.

4.4 Joint Phase Noise and SOP Compensation

In general, the phase and SOP noise are compensated independently as described earlier.
However, since these two phenomena can be jointly modeled as rotations of the electric
field (see Section 3.3.1), it is possible to jointly compensate for them. In this section,
we discuss such joint compensation, first using the Kabsch algorithm [100], and then we
briefly describe the proposed algorithm in Paper C. It should be however noted that these
algorithms do not compensate for PMD, which becomes detrimental for long-haul links.
Similarly to [157], these algorithms can be complemented with a separate equalization
stage that compensates for PMD only, after which the SOP is corrected by the algorithms
below.

4.4.1 Kabsch Algorithm

The Kabsch algorithm [100] addresses jointly the phase and SOP tracking by estimating
Rk in the 4D space (see 4D Real Description in Section 3.3.1). The tracking is carried
out over blocks of NKab PM symbols

Vul
= [vuk

, vuk+1
, . . . , vuk+NKab−1

], (4.19)

under the assumption that Rk does not change (significantly) over the block l.
The algorithm can be summarized by the following steps:

1. The received block of symbols Vrl
is derotated using the inverse of a previous

estimate of R−1
l

V′
rl

= R̂l−1Vrl
. (4.20)
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2. The estimated transmitted block of symbols Vûl
is obtained by the minimum sum

of Euclidean distances between V′
rl

and a block of constellation points.

3. The matrix R̂l is updated as

R̂l = Ul

⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 s

⎞

⎟⎟⎟⎟⎟⎟⎠
WT

l , (4.21)

where s = sign(det(UlW
T
l )), and Ul and Wl are the left- and right-singular vectors

of Cl = Vûl
VT

rl
, i.e., UlΣlW

T
l = Cl is the singular-value decomposition [158, p. 35]

of Cl.

The Kabsch algorithm can be applied to arbitrary constellations by only changing
the decision stage in step 2. This algorithm, as the BPS, suffers from ambiguities, and
therefore differential coding must be applied to ensure reliability.

4.4.2 Proposed Algorithm

The proposed algorithm in Paper C recovers the carrier phase and SOP for arbitrary
modulation formats using a non-data-aided decision-directed architecture. Similarly to
the Kabsch algorithm, the proposed algorithm operates jointly on both polarizations,
but in a symbol-by-symbol fashion without averaging blocks. The algorithm has been
developed based on the channel model proposed in Paper A and is the first model-
based SOP tracking algorithm. Model-based algorithms have a restricted flexibility, and
therefore fewer DOFs to adjust, resulting in a more efficient impairment cancellation,
rather than scanning over a larger domain in order to find the optimal setup. At similar
or better performance, the proposed algorithm offers a good trade-off between complexity
and performance compared to state-of-the-art algorithms, regardless of the modulation
format. The details of the algorithm can be found in Paper C.
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CHAPTER 5

Contributions and Future Work

This chapter summarizes the contributions of the appended papers and discusses poten-
tial future research connected to the topics addressed in this thesis.

5.1 Paper A

“Polarization Drift Channel Model for Coherent Fibre-Optic Systems”

In this paper, we propose a theoretical framework to model the dynamical changes of the
SOP in coherent fiber-optic systems, based on a generalization of the one-dimensional
phase-noise random walk to higher dimensions, accounting for the random polarization
drift. The model is stated in the Jones, Stokes, and real 4D formalisms and can be easily
combined with other transmission impairments to form a complete channel model. The
proposed polarization drift model is the first of its kind and will likely be useful in many
areas of photonics where stochastic polarization fluctuation is an issue. Based on this
model, better polarization tracking algorithms can be found and more accurate simu-
lations that reflect fiber behavior closely can be performed in order to quantify system
performance.

Contributions: CBC designed and analyzed the model, carried out simulations, and
wrote the paper. MK and EA formulated the problem and contributed to the analysis. PJ
provided mathematical expertise and interpretation of the results. All authors reviewed
and revised the paper.

Context: Section 3.3.
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5.2 Paper B

“Temporal Stochastic Channel Model for Absolute Polarization State and

Polarization-Mode Dispersion”

In Paper B, we extend our channel model proposed in Paper A to account for PMD
and its temporal variation. The model is in the discrete-time domain and models the
temporal drift of the absolute polarization state and PMD. The autocorrelation function
of the Jones matrix in frequency and time is derived and validated with experimental
data. The model can be used in simulations to test and develop DSP for coherent re-
ceivers, such as, polarization-tracking or nonlinearity mitigation, where PMD is an issue.

Contributions: CBC proposed, designed, and analyzed the model, carried out simula-
tions, and wrote the paper. MK, EA, and PJ contributed to the analysis and provided
mathematical expertise. All authors reviewed and revised the paper.

Context: Section 3.4.

5.3 Paper C

“Modulation Format Independent Joint Polarization and Phase Tracking for

Coherent Receivers”

Based on the model proposed in Paper A, we propose an algorithm to recover jointly
the carrier phase and SOP for arbitrary modulation formats. The algorithm uses a non-
data aided, decision-directed architecture, hence zero overhead, and operates jointly on
both polarizations. The performance and complexity of the algorithm is investigated by
comparing it with state-of-the-art algorithms for different modulation formats. The pro-
posed algorithm performs similarly or better than state-of-the-art algorithms presented
in Sections 4.2–4.4.1 and provides a good trade-off between complexity and performance
regardless of the modulation format. High performance and fast convergence rate, for
any modulation format at low complexity, make the algorithm a strong candidate for
future elastic optical systems, where the modulation format can be changed dynamically
during transmission to accommodate for various channel and network conditions.

Contributions: CBC analyzed the algorithm, carried out simulations, and wrote the
paper. EA proposed the algorithm and contributed to the analysis. MK and PJ pro-
vided mathematical expertise and interpretation of the results. All authors reviewed and
revised the paper.

Context: Section 4.4.

5.4 Paper D

“Polarization-Mode Dispersion Aware Digital Backpropagation”
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5.5 Paper E

In this paper, we study a modified SSFM-based DBP algorithm that accounts for PMD.
Based on the accumulated PMD at the receiver, the algorithm distributively compensates
for PMD in the reverse propagation and outperforms the conventional approach by up
to 2.1 dB SNR gains. The PMD sections in the reverse propagation are selected based
on the Nelder–Mead simplex optimization algorithm such that concatenated they equal
the inverse of the PMD accumulated over the link. We compare the proposed algorithm
with the conventional algorithm for various PMD coefficients and investigate how the
initialization of the optimization algorithm impacts the performance.

Contributions: CBC designed and analyzed the algorithm, carried out simulations,
and wrote the paper. DL formulated the problem and contributed to the analysis. GL,
MK, and SJS provided mathematical expertise and interpretation of the results. EA and
PB contributed to the analysis and interpretation of the results. All authors reviewed
and revised the paper.

Context: Section 4.1.

5.5 Paper E

“A PMD-adaptive DBP Receiver Based on SNR Optimization”

In this paper, the algorithm in Paper D is extended such that it further optimizes
the backwards-PMD sections in order to maximize the estimated SNR. After the ini-
tial selection of the PMD sections in the reverse propagation based on the Nelder–Mead
simplex optimization algorithm, the sections are continuously updated using the same
optimization algorithm such that the SNR is maximized. In the studied cases based on
up to 2000 iterations, the SNR is monotonically increasing with the number of iterations.
However, a further study is required to assess the convexity of the problem and potential
singularities.

Contributions: GL designed and analyzed the algorithm, carried out simulations, and
wrote the paper. CBC contributed to the design of the algorithm, provided mathematical
expertise, interpretation of the results, and contributed to the analysis. PB contributed
to the analysis and interpretation of the results. All authors reviewed and revised the
paper.

Context: Section 4.1.

5.6 Paper F

“Digital Backpropagation Accounting for Polarization-Mode Dispersion”

In this paper, we study the same problem as in Papers D and E of a modified SSFM-
based DBP algorithm that takes into account PMD. Instead of selecting the reverse
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PMD sections based on an optimization algorithm, we choose them analytically based
on a generalized nth-root operation of the matrix that models the accumulated PMD of
the entire link. We show that this matrix can be accurately recovered from the channel
equalizers at negligible penalty. Accounting for nonlinear polarization-related interac-
tions in the modified DBP algorithm, we obtain average SNR gains over conventional
DBP of 1.1 dB for transmission over 1000 km for both 1-channel and 7-channel full-field
backpropagation. We also examine the effects of the stochastic nature of PMD on the
performance and how the performance changes as a function of the number of reverse
PMD sections.

Contributions: CBC analyzed the algorithm, carried out simulations, and wrote the
paper. CBC and MK designed the algorithm. GL, DL, MK, and SJS provided mathemat-
ical expertise and interpretation of the results. EA and PB contributed to the analysis
and interpretation of the results. All authors reviewed and revised the paper.

Context: Section 4.1.

5.7 Paper G

“Volterra Series Digital Backpropagation Accounting for PMD”

In this paper, we study a perturbative DBP algorithm based on Volterra series that ac-
counts for PMD by only considering nonlinear terms that are (partially) PMD-insensitive.
This restriction leads to both performance enhancement and substantial complexity re-
duction in the high-PMD regime. The discrimination between PMD-sensitive and PMD-
insensitive terms is based on an assumption that approximates the spectral autocorrela-
tion function of the PMD-Jones matrix as a step function. This approximation allows
us to distinguish between different types of four-wave mixing products and to carefully
select the integration domain in (3.89). Considering a 1000-km link with strong PMD,
DPMD = 0.5 ps/

√
km, the proposed algorithm provides 0.4 dB SNR improvement com-

pared to conventional Volterra series DBP, at a reduced complexity by 42%.
Contributions: CBC designed and analyzed the algorithm, carried out simulations,

and wrote the paper. RD formulated the problem and the solution method, provided
mathematical expertise, and contributed to the analysis and interpretation of the results.
Both CBC and RD reviewed and revised the paper.

Context: Section 4.1.

5.8 Future Work

An interesting direction for future work is to adapt the channel models presented in
Papers A and B for multi-mode dispersion. Conceptually, the phenomena of PMD and
modal dispersion are very similar. In fact, the two orthogonal polarizations are two
different modes. However, the difference in modeling these two phenomena consists in
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the number of modes to model and in the coupling strength between the modes. In the
case of multi-mode dispersion, different modes interact differently with the other modes;
therefore leading to a nonuniform coupling matrix. Moreover, the temporal dynamics of
modal dispersion have many different sources that vary at different time scales and have
to be accounted for [159], similarly to how phase noise varies at a much faster pace than
the SOP drift.

The algorithm in Paper C is limited to SOP and phase-noise tracking and does not
compensate for PMD. However, long-haul links suffer from PMD, which becomes detri-
mental once a certain link length is exceeded. The overcome this, similarly to [157], the
algorithm in Paper C can be coupled with a separate equalization stage that compensates
for PMD only, after which the SOP is tracked with the proposed algorithm. In this case,
the tracking of PMD and absolute SOP are decoupled, and, since the two phenomena
drift at different time scales, they can be tracked at different rates, leading to complexity
savings.

A possible interesting research direction regarding DBP in the presence of PMD would
be to investigate an optimal approach to this problem. This can be achieved, e.g., based
on the factor-graphs framework, which was used in [59] to derive an improved DBP
that accounts for signal–noise interactions. Such a contribution would be useful for i) in
establishing the fundamental limits and ii) comparing existing algorithms (like the ones
present in this thesis) with optimal detection. Another interesting direction would be
to apply the concepts presented in Papers D–G on DBP for multi-mode systems. When
performing nonlinearity mitigation in multi-mode systems, the performance is degraded
if multi-mode dispersion is not properly accounted for. Due to the similarities between
PMD and multi-mode dispersion, DBP algorithms can be modified as in Papers D–G to
account for multi-mode dispersion.
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Popular Scientific Summary

Data transmission through optical fibers is the fastest form of digital 
communication available today and comprises the backbone of the Internet 
network. Every time a web page is accessed, an image is Instagrammed, or 
a YouTube video is watched, the data will travel most likely through an optical 
fiber at some point on the way to the user. 

Even though optical fibers can provide very high-speed communications, the 
transmitted signal is disturbed along the way by various sources of noise. 
If the noise is beyond some acceptable levels, the information intended by 
the transmitter cannot be “understood” by the receiver, therefore leading 
to a failed communication attempt. In order to avoid these situations, the 
transmitter and receiver are designed such that they are able to distinguish 
between noise and useful information.

Before designing the transmitter and receiver such that they can tolerate 
more noise, the nature of the noise has to be understood and modeled 
mathematically. These mathematical models, often called channel models, 
have to reflect the behavior of the noise accurately. On the contrary, designing 
the transmitter and receiver based on inaccurate channel models leads to 
suboptimal performance.

In this thesis, we are concerned with modeling and mitigation of noise related 
to polarization effects. We first develop channel models for polarization 
effects that occur during propagation. These models can be used in 
computer-based simulations to reproduce polarization effects that occur in a 
fiber-optic communication system. Simulations offer a greater flexibility than 
experiments and can be used to predict the behavior of a system before 
setting up time-consuming experiments. Furthermore, we propose various 
methods that improve the tolerance to polarization effects of fiber optical 
communication systems, leading to an increased transmission speed and 
improved energy efficiency. The interested reader is referred to page i of the 
thesis for a technical abstract summarizing the contributions.
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