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MICROWAVE MEASUREMENT TECHNIQUES FOR INDUSTRIAL PROCESS
MONITORING AND QUALITY CONTROL

JOHAN NOHLERT

Department of Electrical Engineering
Chalmers University of Technology

ABSTRACT

Process monitoring and quality control by sensor measurements are essential for the au-
tomatisation and optimisation of many industrial manufacturing processes. This thesis
is concerned with microwave sensing, which is a measurement modality with potential
to improve the in-line sensing capabilities in several industries. Two process-industrial
measurement problems are considered that involve the estimation and detection of per-
mittivity variations for granular media in a fluidised or flowing state. For these prob-
lems, we present microwave measurement techniques based on resonant cavity sensors,
accounting for the electromagnetic design and modelling of the sensor, signal processing
algorithms, and experimental evaluation in relevant industrial settings. These measure-
ment techniques make simultaneous use of multiple resonant modes with spatial di-
versity to improve the measurement capabilities. Furthermore, we exploit model-based
signal processing algorithms where knowledge of the underlying physics is utilised for
improved estimation and detection.

The first problem is to monitor the internal state of a pharmaceutical fluidised bed
process used for film-coating and drying of particles. The metal vessel that confines the
process is here treated as a cavity resonator and the complex resonant frequency of eight
different cavity modes are measured using a network analyser. Based on the resonant
frequencies, we estimate parameters in a low-order model for the spatial permittivity
distribution inside the vessel, which can be related to process states such as the liquid
and solid content of the particles in different regions.

The second measurement problem is an aspect of quality control, namely the de-
tection of undesirable objects in flowing granular materials. We present measurement
techniques based on resonant cavity sensors that are capable to detect the presence of
small dielectric objects embedded in a flowing granular material. Detection algorithms
that exploit the statistics of the noise caused by material density fluctuations and the
characteristic signatures caused by an object passage event, are evaluated based on ex-
periments which lead to quantitative assessments of the detection performance.

Keywords: Microwave measurement, cavity resonator, fluidised bed, powder,
finite element method, parameter estimation, signal detection, matched filter.
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Chapter 1
INTRODUCTION

The progress of modern industry brings a growing demand for advanced measurements
to sense various properties of materials, processes and products. Automatised and opti-
mised process control, enabled through accurate and reliable measurements of various
process states, is a key for ensuring product quality, improving productivity and min-
imising environmental footprint for essentially any manufacturing industry. A common
aim in many process industries is to monitor properties such as density, moisture con-
tent, particle size, purity and composition of solid, liquid, and granular materials (or
a mixture of these) at different processing stages. This should preferably be done in-
line, meaning that measurements are performed directly in the process flow and that
the measurement result is obtained faster than the time by which the measured prop-
erty may change. In-line functionality is vital if the sensing information is to be used for
continuous process control. Furthermore, non-destructive measurements using sensors
that do not disturb the process are advantageous or directly necessary in many indus-
trial measurement problems.

One important measurement principle is to observe how an object responds to the
exposure of an electromagnetic field – this is the basis for essentially all electromagnetic
measurements. When categorised based on frequency, electromagnetic measurements
range from quasi-static, via radio-frequency (RF) and microwave to optical, x-ray, and
gamma-ray measurements. This thesis deals with microwave measurements, which
employ electromagnetic waves that, upon interaction with the measurement object, are
attenuated, phase-shifted or scattered. As a consequence, it is possible to infer various
properties of a measurement object based on the microwave measurement response.
The wavelength in the microwave region is often comparable to the size of the mea-
surement object or the measurement domain (millimetres to metres), which may give
rise to wave interference phenomena that can dramatically improve the measurement
sensitivity. This is the basis for resonant microwave sensors, which is the sensor type
considered in this thesis. Microwave sensing has several distinguishing aspects that are
favourable for in-line process measurements. First, microwaves penetrate well through
dielectric media which makes it possible to measure material bulk properties over a rep-
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resentative volume, as opposed to optical techniques that provide only surface informa-
tion for optically opaque media. Second, microwaves can be transmitted using probes
or antennas located at a distance which enables contact-free measurements. Third, the
high dielectric constant of water at microwave frequencies enables very sensitive mois-
ture measurements. Fourth, microwaves at the power levels used for measurements
(rarely exceeding 100 mW) are non-destructive to most materials and generally consid-
ered harmless to humans, and the measurements can be performed using relatively in-
expensive measurement hardware.

The analysis and interpretation of sensor data by means of signal processing is,
alongside with the electromagnetic aspects of the microwave sensor, an equally impor-
tant aspect for a well-functioning measurement system. A significant part of this thesis
is therefore devoted to model-based signal processing techniques for parameter estima-
tion and classification where knowledge about the physical processes that underpins
the observed microwave data is utilised.

1.1 Background and overview of the thesis

This thesis presents developments in the area of microwave-based measurement tech-
niques for industrial applications, motivated by a need for new sensing capabilities in
the process industry. Two industrial measurement problems have been studied, where
the first is related to pharmaceutical process monitoring and the second to automatised
quality control in material processing industries dealing with powders and granular
materials. These problems have been addressed by considering the following aspects:
(i) the electromagnetic design and behaviour of the sensor system; (ii) the development
of signal processing algorithms to infer the desired measurement information from the
sensor data; and (iii) the evaluation of the measurement system by means of industrially
relevant experimental setups. In the following, a brief introduction to the application
problems is presented whereas a more thorough discussion that includes the developed
measurement systems can be found in Chapter 4 and in the appended papers.

In the first application problem that deals with pharmaceutical process monitoring,
we consider the Wurster-type fluidised bed process which is illustrated in Fig. 1.1. This
process is commonly used for film-coating of particles that are used in the manufactur-
ing of solid oral dosage forms such as tablets and capsules. The particles are circulated
inside a metal vessel where they are sprayed with a liquid that forms the coating layer
as the solvent dries, which ideally occurs within one circulation. The coating film may
contain an active pharmaceutical ingredient (API) or it can be designed to delay the
release of an API in the digestive system or to protect API:s from ambient conditions
during storage. Film-coated particles, possibly with several different functional layers,
is therefore an important component in pharmaceutical products featuring controlled
release of the active substances. The operating conditions of the coating process has
important implications on the quality of the coating layer and hence on the final prod-
uct, as well as the process yield and the consumption of energy and chemicals. It is
therefore desirable to monitor the internal process states by means of in-line sensors in
the strive towards real-time process control and optimisation. Furthermore, the use of
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process-analytical technologies in pharmaceutical development and manufacturing is
encouraged by regulatory agencies such as the United States Food and Drug Adminis-
tration (FDA) [1]. One important process parameter to monitor is the moisture content
of the particles in different spatial regions inside the vessel, and its evolution over time.
In Paper I, we present a step towards this goal in terms of a microwave measurement
system that exploits cavity resonances in the process vessel to estimate parameters in a
low-order model for the spatial permittivity distribution.

Wurster tube

particle flow

air in

air out

spray nozzledistributor plate

bed of fluidized 
particles

Figure 1.1: The Wurster type fluidised bed coating process.

The second application problem is related to quality control in material processing
industries dealing with powders and granular materials. Granular media are commonly
encountered in the pharmaceutical, food, agriculture, cement, and mineral processing
industries as well as in combustion processes that use pulverised solid fuels. We focus
on one particular aspect of quality control, namely the detection of anomalies such as
the presence of undesirable objects in flowing granular materials. In this context, an un-
desirable object refers to a discrete solid item that somehow contaminates the material
of interest. Undesirable objects may enter a process flow via raw materials, from frag-
ments created when factory equipment break or due to sabotage or human mistakes by
process operators. Such objects may cause damage and wear of process equipment or
lead to malfunctioning end-products and even severe hazards to humans if a harmful
object ends up in a food or pharmaceutical product. The conventional way to detect
undesirable objects in the food and pharmaceutical industries is to use metal detectors
and X-ray monitoring systems. However, these methods suffer from insufficient con-
trast and hence poor detectability for important classes of object materials including
plastics, wood, and rubber. On the contrary, at microwave frequencies these materi-
als may exhibit significant material contrast with respect to many relevant background
media. Microwave-based detection systems may therefore be an important comple-
ment to existing techniques for detection of undesirable objects in industry. In Papers
II-V, we present industrially viable measurement techniques based on microwave cav-
ity resonator sensors with demonstrated capability to detect dielectric objects in flowing
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granular materials.
This thesis consist of two parts, where the second part contains the appended pub-

lications. The first part serves to introduce the theory and methods upon which the
research in the appended papers is based, and to motivate the choices of methods.



Chapter 2
MICROWAVE SENSING

The measurement problems studied in this thesis involve fluidised or flowing granu-
lar material mixtures that exhibit random fluctuations with respect to space and time.
Our objective is to infer properties about these mixtures, such as the spatial variation
of the density and moisture content or the presence of contaminating objects, based on
microwave measurements. In the current chapter, we describe how microwave sensors
can be designed and utilised in order to obtain the desired material properties. Fur-
thermore, we review the electromagnetic theory and computational methods required
to model the relationship between these material properties and the microwave sensor
data.

2.1 Electromagnetic theory

The theory of classical electromagnetism, accomplished by J. C. Maxwell in the 1860’s [2],
describes the macroscopic interactions between electric charges in rest and in motion
with outstanding accuracy. The interactions are commonly expressed via the electric
and magnetic fields ~E and ~H and the flux densities ~D and ~B, which are related to each
other and to the sources ~J and ρ through Maxwell’s equations [3]. Throughout this
thesis, we assume that all fields exhibit harmonic time variation ejωt and adopt a cor-
responding complex phasor representation. For this case, the time-harmonic Maxwell
equations are given by

∇× ~E + jω ~B = ~0 (2.1a)

∇× ~H − jω ~D = ~J (2.1b)

∇ · ~D = ρ (2.1c)

∇ · ~B = 0. (2.1d)
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The fields and fluxes are related via the constitutive relations that involve the permittiv-
ity ε and permeability µ:

~D = ε ~E (2.2a)
~B = µ ~H. (2.2b)

By combining Eqs. (2.1) and (2.2), we obtain the vector Helmholtz wave equation

∇×
(

1

µ
∇× ~E

)
− ω2ε ~E = −jω ~J. (2.3)

For non-magnetic media where µ = µ0, the propagation of electromagnetic waves is
governed by the complex permittivity

ε = ε′ − jε′′ = ε0(ε′r − jε′′r ) (2.4)

where εr = ε′r − jε′′r is the relative permittivity or dielectric constant, and ε0 is the per-
mittivity of vacuum. The real part ε′ describes the ability of the medium to store electric
energy whereas the quantity ε′′ accounts for processes in which electric energy is dis-
sipated into heat. The latter may include conductive charge transport, so a material
with non-zero conductivity σ can therefore be modelled by including the term σ/ω in
ε′′, if the frequency is non-zero. Given the time convention ejωt, a passive material must
obey ωIm{ε} < 0 and hence, given Eq. (2.4), ε′′ > 0 for positive frequencies. The losses
in a material is commonly characterised by the loss tangent tan δ = (ε′′/ε′). The ori-
gin to a material having a real permittivity ε′ > ε0 is the polarization (i.e. local charge
separation) that is caused by an applied electric field. Depending on the constituent
substances and the structure of the material, different polarisation mechanisms may oc-
cur such as electronic, molecular, orientational, and interfacial polarisation [3]. Each
polarisation process may be associated with dissipative forces that give rise to a non-
zero ε′′. The response due to an applied electric field is generally not instantaneous but
evolves on a certain time-scale, which implies that the induced polarisation and hence
the permittivity depends on the frequency of the applied field, which is known as dis-
persion. The principle of causality, which states that the polarisation response cannot
occur before the application of the field, implies that the functional behaviour of ε′(ω)
and ε′′(ω) must fulfil certain relationships which are known as the Kramers-Kronig re-
lations [3]. Materials that contain molecules with a permanent dipole moment, such as
water, typically exhibit orientational polarisation where the dipole moments may align
with the applied electric field and thereby cause a strong net polarisation. If the external
field vanishes, thermal molecular motion leads to a decay in the polarisation which, to
a good approximation, follows a first-order step-response with a relaxation time τ . The
dispersion of water and other polar substances in a condensed state can therefore be
described by the Debye model [4]

ε(ω) = ε∞ +
εs − ε∞
1 + jωτ

, (2.5)

where ε∞ and εs are the optical and static permittivities, respectively. Hence, ε′ ≈ εs
at low frequencies and ε′ ≈ ε∞ at high frequencies, and the transition occurs around
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the relaxation frequency, ω ≈ 1/τ where also the dielectric loss ε′′ increases dramati-
cally. For pure water at room temperature, ε′r ≈ 80 at frequencies below the relaxation
frequency which occur approximately around 10 GHz.

A plane electromagnetic wave that propagates in the direction k̂ has an electric and
magnetic field that vary in space according to e−γk̂·~r, where γ = α+jβ is the propagation
constant that must fulfil γ2 = −ω2µ0ε for Eq. (2.3) to be satisfied. The attenuation factor
α and the wave number β are then given by

α =
ω√
2

√
µ0ε′

(√
1 + (ε′′/ε′)2 − 1

)
(2.6)

β =
ω√
2

√
µ0ε′

(√
1 + (ε′′/ε′)2

+ 1

)
. (2.7)

As the name suggests, the attenuation factor α describes the attenuation of the wave’s
amplitude per unit propagation distance and it can be noticed from Eq. (2.6) that α
increases with increasing dielectric losses ε′′. The wave’s group velocity is given by

vg =
∂ω

∂β
=

(
∂β

∂ω

)−1

, (2.8)

which, from Eq. (2.7), is seen to decrease as ε′ increases (unless some special frequency
dependence of ε(ω) renders the opposite). Hence, the propagation delay is generally
higher for a medium with higher real permittivity. In many microwave sensing appli-
cations, the parameters of interest to measure are related to the complex permittivity of
the measurement object. Therefore, microwave sensors are commonly designed to mea-
sure changes in the delay and attenuation of microwaves that result from the interaction
with the measurement object.

2.1.1 Homogenisation
Many materials of interest for microwave measurements are heterogeneous mixtures of
different constituent materials. This is particularly true for the granular materials con-
sidered in this thesis, where solid dielectric particles, possibly together with fine dust
and liquid droplets, are dispersed in a homogeneous host matrix, the air. The electro-
magnetic response of such mixtures can be modelled using an effective permittivity,
defined through a volume-averaged constitutive relation according to

< ~D >~r = εeff(~r ) < ~E >~r, (2.9)

which applies at a certain point ~r in space. The volume average may be defined accord-
ing to

< ~D >~r =
1

Vc

∫

Vc

~D(~r ′)dv′, (2.10)
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for a control volume Vc centred at ~r that is large compared to the size of the inho-
mogeneities. Given the permittivity, the relative occurrence, and the geometry of the
mixture components, the effective permittivity can be calculated using electromagnetic
mixing formulas, a subject thoroughly covered in the book by Sihvola [5].

ε1

ε2

ε3

εb

Figure 2.1: A multiphase mixture with spherical inclusions of different permittivities em-
bedded in a homogeneous host matrix.

In this thesis, we limit our consideration to spherical inclusions that are randomly
dispersed in a homogeneous background medium. By further assuming that the par-
ticles are small in comparison with the wavelength of the exciting field, the induced
dipole moments of the inclusions (being the source to the macroscopic polarization) can
be calculated under quasi-static assumptions where the applied field is approximated to
be homogeneous in the vicinity of an inclusion. For a mixture composed of K different
types of spherical inclusions embedded in a homogeneous background as depicted in
Fig. 2.1, the well known Maxwell-Garnett model [6] predicts the following relation for
the effective permittivity

εeff − εb
εeff + 2εb

=

K∑

k=1

νk
εk − εb
εk + 2εb

(2.11)

where νk is the volume fraction for inclusions of type k. For dilute mixtures, i.e. where
νk � 1 for k = 1, . . . ,K, the effective permittivity according to Eq. (2.11) to the leading
order in the volume fractions yields the intuitive result

εeff ≈ εb +

K∑

k=1

nkαk (2.12)

where nk is the number of inclusions of type k per unit volume and αk is the polar-
izability of the inclusions [5]. It should be emphasized that the effective permittivity
according to the Maxwell-Garnett model is independent of the particle size, as long as
the quasi-static assumption is valid for the largest particles.

An important special case of Eq. (2.11) is the two-phase mixture (K = 1) with lossy
and dispersive inclusions, which yield a complex and dispersive effective permittivity.
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For instance, a Debye material in the inclusion phase yields a mixture that is also a De-
bye material, but the parameters in the Debye model, such as the relaxation frequency,
varies with the mixing ratio [7]. Applying Eq. (2.11) with the inclusion permittivity
εi = ε′i − jε′′i and a lossless background yields the complex effective permittivity

εeff = ε′eff − jε′′eff = εb + 3νεb
ε′i − εb − jε′′i

ε′i + 2εb − ν(εi − εb)− jε′′i (1− ν)
. (2.13)

Given the dependence of ε′eff and ε′′eff on the volume fraction ν prescribed by Eq. (2.13),
we may construct a function of ε′eff and ε′′eff that eliminates the dependence of ν and
leaves us with something that only depends on the complex permittivity of the inclu-
sions. Such density-independent functions are commonly used in microwave aquametry
to obtain reliable moisture measurements of compressible materials when the density
is unknown or varying [8]. For dilute mixtures with ν � 1, it can be shown that both
ε′eff − εb and ε′′eff are proportional to ν. In this case, the ratio ε′′eff/(ε

′
eff − εb) yields a

density independent function that is commonly used in moisture measurements [9, 10].
At higher volume fractions and for more involved mixtures, other density-independent
functions are required for decent elimination of the density dependence, and several
candidate functions have been evaluated in the literature [11–13]. The best choice for
a particular application, that minimises the influence of density over a range of mea-
surement frequencies and moisture contents, is often selected based on experimental
comparisons.

It should be mentioned that several mixing models apart from the Maxwell-Garnett
rule have been proposed and are commonly used, including the Bruggeman and the
Coherent potential formulas [14, 15]. For spherical inclusions with permittivity εi and
volume fraction ν, all the mentioned models can be seen as special cases of the following
unified model

εeff − εb
εeff + 2εb + ξ(εeff − εb)

= ν
εi − εb

εi + 2εb + ξ(εeff − εb)
. (2.14)

Here, the Maxwell-Garnett rule is recovered by setting ξ = 0, whereas ξ = 2 yields the
Bruggeman formula and ξ = 3 the Coherent potential formula [16]. For low volume
fractions, all these formulas yield the same result, i.e. Eq. (2.12), but their predicted εeff

differ at higher volume fractions, especially when the ratio εi/εb is high [5].
Any mean-field theory that predicts a deterministic value for εeff for a random mix-

ture will generally be incorrect for an arbitrary realisation of the mixture configura-
tion. A reasonable approach to homogenisation is therefore to solve the field problem
for many different specific realisations of the random mixture by a numerical method,
and calculate the effective permittivity based on the volume-averaged field solutions.
This approach, which yields a distribution of random effective permittivites, has been
pursued in 2D by electrodynamic simulations using the finite-difference time-domain
(FDTD) method [17, 18] and in 3D by static simulations [19]. In these works, it is found
that the numerical results for εeff over the entire range of volume fractions tend to agree
best with Eq. (2.14) for values of ξ between 0 and 2 (in 3D), i.e. somewhere between the
Maxwell-Garnett and the Bruggeman formulas. Continued works on simulation-based
prediction of the effective dielectric properties for heterogeneous mixtures are presented
in [20–22].
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2.1.2 Computational electromagnetics
The ability to solve electromagnetic field problems is central for the design and op-
timisation of microwave sensing devices and for interpretation of the resulting sensor
data. Analytical solutions to Maxwell’s equations, which can be obtained by the method
of separation of variables, are available only in a limited number of special situations
where the boundaries of the problem conform with some of the coordinate axes in a
suitable coordinate system. In attempts to apply analytical methods also to problems
of more practical interest, one or several approximations are typically made that limit
the accuracy of the result. Therefore, numerical methods for solving Maxwell’s equa-
tions using computers are invaluable tools for predicting the behaviour of wide classes
of electromagnetic devices with high accuracy.

The field of computational electromagnetics (CEM) comprises methods for solving
Maxwell’s equations numerically, where the most prominent methods are the finite-
difference time-domain (FDTD) method, the finite element method (FEM) and the method
of moments (MoM) [23]. The two former methods are volume discretising methods,
whereas the MoM is typically used with a discretisation only of the domain boundary.
The FDTD method, proposed by Yee in 1966 [24], is very commonly used, partly due
to its straight-forward implementation and computational efficiency for time-domain
simulations that makes it particularly suitable for problems with wide-band excitation.
However, the FDTD relies on a structured Cartesian grid to represent the fields, materi-
als, and boundaries, which leads to inaccuracies for geometries that do not conform with
the surfaces defined by a constant value for one of the Cartesian coordinates. The FEM
employs unstructured meshes (e.g. tetrahedrons in 3D) that can approximate arbitrar-
ily shaped boundaries with high accuracy and, in addition, such meshes allow for local
refinement. The FEM yields implicit time-stepping in the time domain, which increases
the computational effort as compared to the FDTD. However, the FEM is well suited
for eigenvalue problems and driven problems with time-harmonic excitations [25]. The
MoM is based on the integral formulation of Maxwell’s equations in the frequency do-
main, and it typically uses the sources (i.e. currents or charges on the domain bound-
aries) as the unknown quantities rather than the fields. The sources are related to the
fields via Green’s functions and the information necessary to solve for the sources is
obtained by requiring that the fields satisfy the appropriate boundary conditions. The
MoM is well suited for free-space problems such as scattering problems and antenna
analysis. However, it has severe inherent limitations for handling arbitrary inhomoge-
neous dielectrics, unless it is hybridised with a volume discretising method (such as the
FEM) that accounts for the inhomogeneous part of the problem.

The electromagnetic field problems encountered in this thesis have certain aspects
in common: (i) the computational domain is completely or partially enclosed by curved
metal boundaries, (ii) inhomogeneous dielectrics are present, and (iii) we seek the so-
lution at frequencies close to a number of distinct resonant frequencies. These aspects
motivate our choice to use the FEM as the main computational method for the work
contained in this thesis.
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2.2 Microwave sensors

In the previous section it was concluded that, for non-magnetic materials, the propaga-
tion of microwaves is governed by the complex permittivity of the medium. By measur-
ing the propagation effects using a microwave sensing device we can therefore attempt
to estimate the complex permittivity, possibly including its spatial and temporal varia-
tion and frequency dependence. The permittivity may, in turn, be used to determine the
physical properties of interest for the measurement object. The field of microwave sens-
ing for industrial measurement problems is thoroughly covered in the book by Nyfors
and Vainikainen [26]. Microwave sensors can be categorised based on their principle
of operation, such as transmission, reflection, resonance, radiometric, and tomographic
sensors. A brief description of the sensor types that are relevant to the measurement
problems considered in this thesis, are presented in the following.

Transmission sensors

Transmission sensors are used to estimate the complex permittivity of a sample placed
between two antennas or inside a waveguide, based on the attenuation and phase-shift
caused by the sample. This method is both straight-forward and versatile, but requires
that the shape of the sample (especially the thickness) is known or can be measured
with other methods. For in-line process measurements, this typically requires that the
material is transformed into a known shape, for example using a dielectric pipe. Fur-
thermore, transmission measurements typically yield low accuracy in the determination
of dielectric losses for low-loss materials.

Reflection sensors

Reflection sensors work by the principle to register the signal reflected from the mea-
surement object. Typically, an open-ended transmission line or waveguide is put in
contact with the measurement object and the complex reflection coefficient is measured
as function of frequency. A common example is the open-ended coaxial probe that can
be used to measure the complex permittivity of liquid and moldable materials that are
put in contact with the probe. As the sensing volume is limited to that of the fringing
fields at the probe tip, this technique has limited accuracy and requires good contact
with the material to be measured, as well as careful calibration.

Radar sensors

A monostatic radar sensor, where the transmitting and receiving antennas are collo-
cated, differs from a typical reflection sensor in that a variety of transmitted signal
waveforms and receiver signal processing techniques may be employed to estimate the
range, velocity, material, and geometry of the scattering object. Range and velocity in-
formation can be inferred from time-of-flight measurements for pulsed radars, or from
the frequency-modulation of continuous-wave signals caused by moving objects due to
the Doppler effect. Bi-static radars, where the transmitting and receiving antennas are
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separated a considerable distance relative to the range of the object, can reveal more
detailed information by measuring the scattered signal at different angles.

Imaging sensors

The aim of a microwave imaging sensor is to reconstruct an “image” in the form of a
spatially varying permittivity, based on data from an antenna system that illuminates
the measurement object and measures the scattered field at multiple directions. The
reconstruction of the permittivity from the measured scattering data is, in general, a
non-linear ill-posed inverse problem that can be very challenging to solve due to the
complex scattering environment created by an inhomogeneous measurement object and
the antenna system [27].

Resonator sensors

A microwave resonator is a device that, if excited, accumulates energy that continuously
commutes between electric energy associated with charge separation and magnetic en-
ergy associated with currents. Resonator sensors are typically used by observing the
changes in the resonator’s oscillating frequency f0 and quality factor Q that are caused
by the interaction of the measurement object with the electric field. A resonator with
high Q makes it possible to obtain very sensitive measurements also for small mea-
surement objects with low permittivity and low losses. Furthermore, resonator sensors
are more robust to instrument calibration errors than transmission or reflection sensors,
which is beneficial for the long-term measurement stability. This is because it is the lo-
cation and width of the resonant peak that determines f0 and Q and not directly the
absolute amplitude and phase of the transmission or reflection coefficient.

2.2.1 Applications
Although microwave sensing is a mature subject that has been used in industrial ap-
plications for more than 40 years, it is still an active field of research where new mi-
crowave measurement systems are continuously developed to target new applications
and measurement problems. This section gives an overview (which is by no means ex-
haustive) of the reported applications of microwave sensors to various industrial and
non-industrial measurement problems.

Microwave aquametry, i.e. the determination of moisture content based on permit-
tivity measurements at microwave frequencies, is one of the most common microwave
sensing applications, and a subject of its own [28]. Moisture content is an important
property that affects the behaviour during processing and storage as well as the quality
and trading value for many materials. Therefore, in-line moisture meters play a key role
for process monitoring and quality control in many industries. Microwave sensors are
used to measure the moisture content of agricultural products [29, 30], food [31], phar-
maceutical substances [10, 32, 33], timber [34], paper [35], soil [36], and snow [37–39].

A common aim in the oil-and-gas industry is to monitor various properties of petroleum
products. For instance, the measurement of water and gas fractions of oil mixtures
flowing in pipes have been adressed using various resonator sensors [40, 41]. Also,
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wide-band dielectric spectroscopy at microwave frequencies has been employed for in-
line determination of the hydrocarbon composition in crude oil [42–44]. Furthermore,
multiphase flow characterisation of petroleum flows in pipes has been addressed using
microwave tomography [45, 46] and reflection measurements [47].

Transportation of powders and granular materials in pipes by means of pneumatic
conveying is common in many industries. Microwave sensors have been applied in
this setting to the measurement of particle size [48], particulate loading [49, 50], mass
flow [51, 52], and flow inhomogeneities [53]. Related to the flow of particulate solids
in gases is the field of gas sensing, where microwave sensors have been used to de-
tect gaseous compounds such as ammonia [54], monitoring of combustion and exhaust
fumes [55–57] and for detecting solid particulates in gas flows [58].

Microwaves can also be used to measure geometrical features such as distance, size,
and movement of objects. Some examples on this topic include measurement of material
levels in tanks and silos using radar [59], piston position and movement in combustion
engines [55], and vibrations and movements in high-voltage power lines [60]. Related to
this class of measurements is the fast growing field of automotive radars that are central
for many active safety and driver assistance systems [61, 62].

Furthermore, microwave sensing has been applied to biology related applications
such as plant growth monitoring [63], microfluidic sensing [64, 65] and in biomedical
applications such as the diagnosis of stroke [66] and breast cancer [67].

2.3 Resonator sensors

In this thesis, resonator sensors are selected for the measurement problems at hand due
to their high sensitivity and robustness. Resonant sensors can be realised in different
ways, depending on the underlying resonant phenomena and the resonating structure.
The most common types include (i) metal cavities, possibly with openings that allow for
sample insertion; (ii) dielectric resonators, either put in contact with the sample or by
using the sample itself as a dielectric resonator [68]; (iii) coplanar resonators based on
e.g. microstrip lines where the strip can be shaped as rings, spirals or straight lines in
order to comply with different sensing volume geometries and operating frequencies;
(iv) transmission line resonators with two parallel conductors; (v) coaxial resonators, ei-
ther with an open end put in contact with the sample or by filling the space between the
conductors by the material to be measured; and (vi) open resonators where transverse
electromagnetic (TEM) modes are operated between two conducting reflectors between
which the sample is located.

2.3.1 Measurements using multiple resonant modes
The traditional way to perform resonator measurements is to use one single resonant
mode whose resonant frequency and Q-value are used to determine the complex per-
mittivity of a material sample [69]. Sometimes, one additional mode that is intention-
ally insensitive to the permittivity of the sample is used to compensate for disturbances
caused by, e.g., thermal variations or dust deposition [26].
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Although taking advantage of the high sensitivity and robustness achievable with
resonators, a single-mode measurement yields no spatial information apart from a volume-
averaged permittivity that is valid at a single frequency, i.e. the resonant frequency.
Therefore, measurements that simultaneously employ multiple resonant modes open
up for new possibilities enabled by the spatial diversity of the electromagnetic fields
of the different modes, and the wide-band information obtained from multiple fre-
quencies. Quite recently, a number of microwave measurement techniques that ex-
ploit multiple resonant modes have been presented, such as (i) wide band permittiv-
ity measurements using cavities, coaxial resonators and spiral-shaped microstrip res-
onators [54, 70, 71]; (ii) simultaneous dielectric and magnetic sensing of liquids [72]; (iii)
characterisation of inhomogeneous cross-sectional flow profiles [73], and (iv) estima-
tion of a spatially varying permittivity distribution in 3D using cavity resonances [74]
(i.e. Paper I). To the best of the author’s knowledge, there are few reported examples
where multiple resonant modes are used to attempt to reconstruct a spatially varying
permittivity. Fischerauer et al. considered this problem in the context of electrochem-
ical process monitoring in vehicle catalysts and particulate filters by using the catalyst
housing as a microwave cavity [56, 57]. They observed diversity between different cav-
ity modes to inhomogeneous permittivity perturbations and registered the microwave
output of several resonances due to changes in the electrochemical state. However, they
did not proceed to solve the inverse problem to estimate the spatially dependent per-
mittivity perturbations from measured perturbations in the resonator parameters.

The measurement techniques presented in this thesis, described in Chapter 4 and
in the appended papers, are all based on the principle to exploit the spatial diversity
of multiple resonant modes for the estimation of a spatially varying permittivity or the
detection of anomalies in granular flows.

2.4 Cavity resonators

The measurement techniques presented in this thesis are all based on resonant cavity
sensors. As stated in Section 2.2, resonator sensors provide high sensitivity to small
variations in the permittivity and are relatively stable to instrument calibration errors.
Furthermore, cavities can provide volume-averaged permittivity measurements that
yield global information from an entire material volume or the entire cross-section of
a flow. In this section, we review the theory of microwave cavities including sensitivi-
ties to material and shape perturbations, and discuss practical aspects related to cavity
design and the extraction of resonator parameters from measured scattering parameter
(S-parameter) data.

A cavity resonator can be any hollow metal box that encloses a dielectric region of
space. The solutions to Maxwell’s equations inside closed cavities consist of a discrete
set of resonant eigenmodes associated with a corresponding set of resonant frequencies.
For waveguide cavities, which are formed by short-circuiting both ends of a waveguide
with circular or non-circular cross-section, the eigenmodes can be classified as trans-
verse electric (TE) and transverse magnetic (TM), characterised by a vanishing longitu-
dinal electric and magnetic field component, respectively. Details related to the eigen-
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Figure 2.2: Electrical characteristics of a resonant cavity. (a) Cavity with two coupling loops.
(b) Equivalent circuit model.

modes of rectangular and circular waveguide cavities can be found in e.g. [75] and [76].
Figure 2.2(a) shows a metal cavity that is closed except for two small coupling loops

that are connected to transmission lines with impedance Z0. If a sinusoidal voltage with
frequency ω is applied at one of the ports, the induced voltage on the opposite port will
be very low except at frequencies close to any of the cavity’s resonant frequencies. At
these frequencies, strong fields build up inside the cavity and the transmitted power be-
tween the ports increases dramatically. Close to a particular resonant frequency ω0, the
electromagnetic interaction between the probes can be modelled by the lumped circuit
shown in Fig. 2.2(b) which has the resonant frequency ω0 = (LC)−1/2 and the unloaded
quality factor Qu = 1/(ω0RC) = ω0L/R. If we neglect any series resistance and self-
inductance of the probes, the transmission coefficient can be calculated as

S21(ω) =
U2(ω)

U1(ω)
=

K

1 + jQ
(
ω
ω0
− ω0

ω

) , (2.15)

where K = 2
√
β1β2/(1 + β1 + β2), and βi = (ωMi)

2

RZ0
for i = 1, 2, are the coupling coef-

ficients that depend on the size, position, and orientation of the probes via the mutual
inductances M1 and M2 [77]. The radiation losses caused by the probes (which increase
the effective series resistance in the resonant circuit model) lower the quality factor of
the cavity, leading to a total, loaded quality factor given by

Q = Qu/(1 + β1 + β2). (2.16)

The impedance seen from port 1 can be calculated as

Z(ω) = Z0
β1

1 + β2 + jQu

(
ω
ω0
− ω0

ω

) (2.17)

which yields a reflection coefficient at port 1 given by

S11(ω) =
Z(ω)− Z0

Z(ω) + Z0
=
β1 − β2 − 1− jQuξ

β1 + β2 + 1 + jQuξ
(2.18)
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Figure 2.3: Transmission and reflection coefficients for the circuit model in Fig. 2.2(b) with
coupling coefficients β1 = 0.2 and β2 = 0.7. (a) Magnitudes of S11, S22 and S21 versus
frequency, where the dots indicate frequencies at which the accepted and transmitted powers
are half their maximum values; (b) locus of S11, S22 and S21 in the complex plane together
with the unit circle.

where ξ = ω/ω0 − ω0/ω. The corresponding expression for S22(ω) is obtained analo-
gously by swapping the positions of β1 and β2 in Eq. (2.18). Figure 2.3 shows the trace
of |S11| and |S21| versus frequency, where the peaks are centred at ω0 and has a half-
power bandwidth given by ω0/Q, and the locus of S11 and S21 in the complex plane.

Equations (2.15) and (2.18) describe the frequency domain response of a resonator
subject to a forced excitation. In the time-domain, the fields of an excited resonance and
thereby any output voltage signal, exhibit natural damped oscillations that persist for
some time after the excitation has been removed. The time-variation of the fields can be
expressed using a complex resonant frequency ωc = ωr + jωi according to

~E(~r, t) = Re{ ~E0(~r )ejωct} = Re{ ~E0(~r )ejωrt}e−ωit (2.19)

where the real part is the oscillating frequency and the imaginary part corresponds to
the damping. The complex resonant frequency is obtained from the circuit model in
Fig. 2.2(b) as the solution to Zr(ωc) = 0, where

Zr(ω) = R(1 + β1 + β2) + j

(
ωL− 1

ωC

)
. (2.20)

This is the equivalent impedance of the resonant circuit obtained by transferring the
loading of both transmission lines to the resonant circuit side, which effectively in-
creases the series resistance. The result is

ωc = j
ω0

2Q
± ω0

√
1− 1

4Q2
= jωi ± ωr (2.21)

where ωr ≈ ω0 for lightly damped resonators. The stored energy W (t) in the resonator,
which is proportional to the squared magnitude of the field, then varies in time accord-
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ing to

W (t) = W (0)e−(ω0/Q)t (2.22)

with a decay rate equal to the dissipated power P (t) = −Ẇ (t) = (ω0/Q)W (t). This
motivates the common definition of Q as the ratio between the stored energy and the
energy dissipated in one oscillation cycle times 2π:

Q = ω0
W

P
. (2.23)

2.4.1 Material and shape perturbations
The principle to measure material properties by observing the shift in the resonant fre-
quency and Q-value of a cavity resulting from the insertion of a material sample is well
known and dates back to the 1940’s [78,79]. The resonant frequency is also perturbed by
changes in the cavity’s volume due to a boundary displacement or insertion of a metal
object. The earliest treatments of the theory for material and shape perturbations were
given by Bethe and Schwinger [80] and by Slater [81], respectively.

n̂
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(b)
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∆V
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Figure 2.4: A closed metal cavity subject to material and shape perturbations. (a) Original
unperturbed cavity; (b) cavity with perturbed material; (c) cavity with perturbed shape.

Consider a closed metal cavity that initially occupies an interior volume V with the
loss-free permittivity ε and permeability µ as illustrated in Fig. 2.4(a). A certain eigen-
mode in this cavity has the fields ~Eu and ~Hu and resonant frequency ωu which are as-
sumed to be known. A material perturbation (∆ε, ∆µ) that possibly introduces dielectric
and magnetic losses, yields a change in the resonant frequency given by [82]

ω − ωu

ω
= −

∫
V

(
∆ε ~E · ~E∗u + ∆µ ~H · ~H∗u

)
dv

∫
V

(
ε ~E · ~E∗u + µ ~H · ~H∗u

)
dv

. (2.24)

If the perturbation is sufficiently small, the perturbed fields can be approximated by ~Eu
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and ~Hu and the resonant frequency by ωu, which yields

ω − ωu

ωu
≈ −

∫
V

(
∆ε| ~Eu|2 + ∆µ| ~Hu|2

)
dv

∫
V

(
ε| ~Eu|2 + µ| ~Hu|2

)
dv

. (2.25)

Eq. (2.25) states that an increase in the permittivity at a location of nonzero electric field,
or an increase in µ at a location of nonzero magnetic field, decreases the resonant fre-
quency. By viewing ω, ∆ε and ∆µ as complex, it is also evident that a small increase in
material losses yields a lower Q, via Eq. (2.21).

If a cavity perturbation measurement is used to accurately determine the complex
permittivity of a sample with known shape, Eq. (2.24) should preferrably be used, which
requires the perturbed fields inside the sample. If the sample is small compared to the
wavelength, the unperturbed fields in the vicinity of the sample are approximately uni-
form and, consequently, the perturbed fields are governed by a quasi-static boundary
value problem. For the special case of a dielectric ellipsoid in a homogeneous elec-
tric field aligned with any of the ellipsoid’s axes, the static problem has an exact solu-
tion [83]. The ellipsoid result is very useful, since it yields as special cases the solution
also for the sphere (three equal semi-axes) and the straight rod (one infinite semi-axis).
Therefore, the permittivity can be estimated to a high accuracy for spherical and rod
shaped samples by means of Eq. (2.24), also for materials whose permittivity deviates
substantially from that of the unperturbed cavity. Several generalisations and exten-
sions of the cavity perturbation method for improved accuracy and flexibility in terms
of sample shape and permittivity range, have been reported [84–87], as well as accuracy
analyses [88]. By exploiting numerical methods for electromagnetic field calculations,
the cavity perturbation technique can be further extended to more general cavity and
sample geometries [89, 90].

A cavity subject to a small boundary deformation as depicted in Fig. 2.4(c) yields
a change in the resonant frequency that is given by Slater’s theorem, which can be ex-
pressed according to

ω − ωu

ωu
≈
∫

∆V

(
µ| ~Hu|2 − ε| ~Eu|2

)
dv

∫
V

(
µ| ~Hu|2 + ε| ~Eu|2

)
dv

(2.26)

where the small volume ∆V has been removed from the unperturbed cavity [82]. This
equation states that the resonant frequency increases if the cavity’s boundary is moved
inwards at a point of strong magnetic field (i.e. strong surface currents), whereas the res-
onant frequency decreases if the boundary is moved inwards at a point of strong electric
field (i.e. high surface charge density). Eq. (2.26) is useful for cavity measurements aim-
ing to monitor movements of the metal boundaries, and it specifies how a cavity can
be tuned by the help of metal screws to change the resonant frequencies. Furthermore,
Eq. (2.26) can be used to probe the fields inside a cavity by controlled positioning of a
small metal bead, which is commonly done for cavities used in particle accelerators [91].
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2.4.2 Cavity design considerations
When a cavity is used as a sensor for industrial measurements, several aspects need
to be considered, including (i) the choice of resonant modes, (ii) the insertion of the
measurement object or material, and (iii) the coupling to external circuitry. Although a
cavity supports an infinite number of resonant modes, it is typically only a few of the
low-order modes that can be reliably identified without risk for confusion with other
modes and therefore are useful for sensing. It is clear from Eq. (2.25) that a resonant
mode used for permittivity measurements should have an electric field maximum, or at
least not a null, at the location of the sample.

Cavities used for industrial in-line measurements must necessarily allow for con-
venient insertion and removal of the measurement object or material to be measured,
which prompts for holes or slot openings in the cavity wall. Holes should then be suf-
ficiently small and slots should be oriented such that the perturbation to the surface
currents are minimised, in order to reduce the radiation losses. If the material is a thin
sheet, it is beneficial to use a circular-cylindrical cavity splitted in two halves operat-
ing in a TE01p mode, whose electric field and surface currents are entirely azimuthal
and thereby parallel to the opening. Another common solution for measuring dielectric
rods or materials inside dielectric pipes is to use a circular-cylindrical cavity operating
in the TM01p mode, with holes in the top and bottom surface of the cavity where the
sample is entered.

In order to excite resonant modes and to measure the resonator parameters, a cavity
must be coupled to external microwave circuitry via transmission lines or waveguides.
Two types of coupling devices that are commonly used together with coaxial transmis-
sion lines are E-probes and H-probes. An E-probe is formed by extending the inner
conductor a short distance into the cavity, which then resembles a monopole antenna
that couples to the normal component of the electric field of a resonant mode. The cou-
pling is mainly determined by the length of the probe and the relative magnitude of the
mode’s electric field normal to the cavity wall at the probe location. An H-probe, or
coupling loop, is formed by making a loop of the inner conductor that is short-circuited
to the cavity wall and to the outer conductor. A current flowing in the loop yields
a magnetic dipole moment directed normal to the loop surface, which may couple to
an equally oriented magnetic field of the resonant mode. Cavities can also be excited
from a waveguide through an aperture in the cavity wall, either via the tangential mag-
netic field or the normal electric field depending on the selected waveguide mode. The
coupling is controlled by the size of the aperture and its location relative to the fields
of the waveguide and cavity modes. The choice of coupling device is, among other
things, affected by the physical environment in which the cavity operates. At very high
temperatures that prevents the use of polytetrafluoroethylene (PTFE) insulated coaxial
cables, aperture coupled all-metal waveguides is a suitable option. Furthermore, tribo-
electric charging of dielectric substances such as granulates [92], may impose high static
voltages at the center conductor of an E-probe that can be harmful to the microwave in-
strumentation. More suitable in such situations are H-probes or waveguide apertures,
which prevent high voltages of low frequency to reach the external circuitry.
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2.4.3 Estimation of resonant frequency and quality factor
Resonator-based measurements usually require the resonant frequency f0 = ω0/(2π)
and the unloaded quality factor Qu to evaluate the properties of interest. Hence, there
is a need for methods to accurately and reliably estimate f0 and Qu from measured S-
parameter data. Given a resonant peak such as that shown in Fig. 2.3(a), it comes natural
to identify f0 as the location of the peak and the loaded Q from the bandwidth between
the frequency points that yield half the maximum transmitted power. If complex S-
parameter data is available at a range of frequency points around the resonance, more
accurate estimates can be obtained by fitting a function of the form of Eq. (2.15) using
all available data, from which f0 and Q is obtained [93]. The unloaded quality factor
is obtained from Eq. (2.16) for a cavity with two probes using the loaded Q and the
coupling factors, which may be obtained from the measured S11 and S22 at the resonant
frequency using Eq. (2.18).

The trace of any S-parameter follows approximately a circular path in the complex
plane as the frequency is swept across a single resonance, which implies that the res-
onator parameters can be obtained by geometrical circle fitting [94]. Due to crosstalk
and remaining transmission line delay following an imperfect calibration, the circle is
displaced and rotated about the origin [95]. Consequently, an error-corrupted transmis-
sion coefficient can be modelled as a linear fractional transformation of a normalised
frequency difference ξ = 2(ω − ω0)/ω0 according to

S21 =
a1ξ + a2

a3ξ + 1
. (2.27)

The desired resonator parameters f0 and Qu are obtained from the coefficients a1, a2

and a3, which can be estimated by a suitable fitting procedure [95, 96].
Another option is to view the resonator as a linear system and use system identifi-

cation methods to estimate the poles and residues in a generic pole-series expansion of
the system response:

Spq(ω) =
∑

m

αm
ω − ωm

. (2.28)

The complex resonant frequencies ωm (i.e. the system poles) yield the resonant fre-
quency and the loaded Q via Eq. (2.21), and the unloaded quality factor can be calcu-
lated using the coupling factors which are associated with the residues αm. There are
several methods for estimating the parameters in rational transfer function models in
the form of Eq. (2.28) such as maximum-likelihood, least-squares and subspace-based
methods [97, 98]. The subspace approach, which is employed to some extent in all of
the Papers I-V, is an example of a high-resolution frequency estimation method that has
shown to be very powerful and efficient for the estimation of complex resonant frequen-
cies from S-parameter data, especially if several neighbouring resonances are present in
the frequency band of interest.
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2.5 Microwave instrumentation

A very versatile instrument for laboratory and industrial microwave measurements is
the vector network analyser (VNA). A VNA calculates the complex S-parameters of a
microwave network by measuring the magnitude and phase of the reflected and trans-
mitted waves from the network using stepped-frequency sinusoidal radio-frequency
(RF) signals and heterodyne receivers. VNA:s can achieve very high dynamic range and
frequency precision which, together with automatic error-correction based on calibra-
tion measurements, enables very accurate measurements. However, laboratory-grade
VNA:s that provide high measurement performance and flexibility are often bulky and
expensive which prohibits their use in many cost-sensitive industrial, medical and con-
sumer applications. Furthermore, the measurement speed of a conventional stepped-
frequency VNA is limited by, among other things, the time required to sequentially
tune the oscillators to each of the desired measurement frequencies, which may be pro-
hibitive for measurements on systems that change rapidly in time. Recently, a different
VNA architecture has been introduced that is based on wide-band stimulus signals and
broad-band receivers to capture measurements over a wide frequency band simultane-
ously without relying on frequency-stepping [99]. This approach can shorten the time
for wide-band S-parameter measurements significantly, although the speed is of course
limited by the fundamental trade-off between measurement duration and accuracy.

Frequency tracking circuits can be used to monitor single mode microwave res-
onators. The resonator is then included in a feedback loop where the output frequency
of a voltage controlled oscillator (VCO) is automatically tuned to the resonant frequency.
The control voltage to the VCO can then be used as a measure of the resonant fre-
quency [100]. The VCO can also be tuned to a frequency corresponding to a given
power level (such as half the maximum transmitted power), which makes it possible
to deduce the resonator bandwidth and hence the Q-value. Frequency tracking circuits
typically have fast response times and can therefore be used to monitor fast phenomena
where the resonant frequency changes quickly in time [52, 101].

A third type of microwave instrumentation use time-domain pulsed measurements,
where the response of a microwave network to a wide-band pulsed excitation is regis-
tered in the time-domain. In order to resolve the pulses properly, the receiver must oper-
ate at a sampling rate exceeding twice the highest signal frequency of interest, from the
Nyquist sampling theorem. Pulses containing energy at microwave frequencies there-
fore requires analogue-to-digital converters (ADC) with very high bandwidth, which
is currently achieved by expensive components or low bit-resolution. One method for
extending the bandwidth of time-domain systems beyond the bandwidth of the ADC
is equivalent time sampling. In this method, several identical pulses are transmitted
repeatedly, where the sampling instant is slightly delayed between subsequent pulses
in order to capture the entire waveform [102].

Currently, a significant amount of research effort is spent on the development of low-
cost and portable VNA solutions at different levels of circuit integration [46, 103–106].
To enable a lower unit cost, these solutions are often specialised towards specific ap-
plications and therefore have limited measurement flexibility as compared to general-
purpose commercial VNA:s. There is little doubt that an increased availability of low-
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cost VNA solutions will enable the deployment of microwave measurements in an in-
creasing number of industrial, medical and consumer applications.



Chapter 3
ESTIMATION, DETECTION AND SIGNAL
MODELLING

From a signal processing point of view, the two measurement problems considered in
this thesis can be formulated as the problem to

1. Estimate a set of parameters from time-series of sensor data,

2. Decide whether or not a signal of interest is present in a given data set.

The first problem is clearly an example of parameter estimation, described by estima-
tion theory. The second is a detection problem, which can be viewed as a special case of
classification with two available classes. This chapter introduces the theory and meth-
ods concerned with parameter estimation and detection, and discusses special aspects
that occur for our measurement applications. In particular, special emphasis is put on
parametric models for signals and probability distributions used in the estimation and
detection problems at hand.

In the following, we let x = [x1, . . . , xN ]T ∈ RN denote a vector in which all relevant
data from a sensor measurement is collected. Hence, data associated with different
channels, frequencies, spatial positions, time samples, or complex data are assumed to
be vectorised into x in an appropriate manner.

3.1 Parameter estimation

The aim in many measurement situations is to assign values to a set of parameters based
on measurement data with a random component. This type of inference can be viewed
as an estimation problem. The topic of estimation theory is extensively covered in the
book by Kay [107]. The data x is here viewed as a realisation of a multivariate stochastic
variable X which has a certain probability density function (PDF, or density for short)
denoted pX(x;θ). In the following, we may omit the sub-index and use p(x;θ) to denote
the PDF of X if this is clear from the context. Here, θ ∈ Rp is a vector containing all
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parameters needed to fully specify the distribution. If some parameters in θ are not
of direct interest but still required to obtain the appropriate form of the PDF, these are
called nuisance parameters. An estimator is a function that maps a data realisation x

onto an estimate θ̂ of a “true” parameter vector θ. A consequence of the randomness of
x is that θ̂ is also a multivariate random variable. The performance of an estimator is
natural to characterise in terms of the bias b (i.e. the systematic error) and the covariance
matrix Σθ̂ (which quantifies the estimation uncertainty) of θ̂ which are defined as

b = E[θ̂ − θ] (3.1)

Σθ̂ = E[(θ̂ − E[θ̂])(θ̂ − E[θ̂])T]. (3.2)

Here E[ξ] is the expected value and ξT is the transpose of the vector or matrix ξ. The
mean-squared error (MSE) is given by

MSE(θ̂) = E[||θ̂ − θ||2] = ||b||2 + Tr
(
Σθ̂

)
(3.3)

where ||ξ||2 = ξTξ is the squared Euclidean norm of the real vector ξ and Tr(A) =∑
i Aii is the trace of the matrix A.
When designing an estimator, it is natural to simultaneously aim for zero bias and

the least possible variance in the parameter estimates. The estimator that fulfils these
criteria is called the minimum variance unbiased estimator (MVU), which is generally
difficult to find or it may depend on the unknown parameters and is hence not realis-
able. For an unbiased estimator, the smallest possible variance is given by the Cramér-
Rao lower bound (CRLB)

var(θi) ≥
[
I−1(θ)

]
ii

(3.4)

for i = 1, . . . , p, provided that p(x;θ) satisfies certain regularity conditions [107]. Here,
I(θ) is the Fisher information matrix whose entries are given by

[I(θ)]ij = −E
[
∂2 ln p(x;θ)

∂θi∂θj

]
. (3.5)

The CRLB can be intuitively understood by considering the single-parameter case where
Eq. (3.5) is the log-likelihood function’s expected curvature with respect to a single pa-
rameter θ. A larger curvature implies that the distribution of the parameter’s value is
more concentrated around its mean, which makes it possible to estimate it with smaller
uncertainty. An unbiased estimator that attains the Cramér-Rao bound is said to be ef-
ficient and, hence, it is the MVU estimator. A powerful remedy in situations when the
MVU cannot be practically realised is the maximum-likelihood estimator (MLE) which
can be formulated according to

θ̂MLE = arg max
θ

L(θ|x). (3.6)

Here, L(θ|x) = p(x|θ) is the likelihood function which is the PDF viewed as a func-
tion of the parameters, conditioned on the observed data. The MLE is asymptotically



3.1. PARAMETER ESTIMATION 25

efficient for large data records. Furthermore, it can always be realised (at least in prin-
ciple), although its implementation may involve a non-linear maximisation that can be
challenging if the number of parameters is large. We employ the maximum-likelihood
method in Papers III-V for estimating parameters in signal models that are used in de-
tection algorithms. Another important estimation method is least-squares (LS), where
the parameter estimate is obtained by minimising the squared Euclidean distance be-
tween a parameter-dependent signal model and the observed data according to

θ̂LS = arg min
θ
||s(θ)− x||22. (3.7)

In this case, no assumptions regarding the statistical distribution of the data are required
which makes the method straight-forward to implement for many different applica-
tions, although no optimality can be claimed in general. However, the least-squares
estimator becomes efficient in the special case where the signal model is linear in the
parameters and the noise in x is additive, white, and Gaussian distributed [107]. The
least-squares method is employed in Paper I for the estimation of parameters that de-
scribe a spatially varying permittivity in 3D, based on measured resonant frequencies
and temperature data.

In a frequentistic approach to estimation, θ is viewed as deterministic vector whose
value is inferred entirely based on data and the assumed signal model. This is the view-
point maintained so far in this section. On the contrary, in the Bayesian approach, θ
is viewed as a random variable that has a certain probability distribution prior to the
observation of any data, described by the prior density p(θ). After the data x has been
observed, the probability distribution of θ changes, and its posterior density p(θ|x) is
given by Bayes formula [107]

p(θ|x) =
p(x|θ)p(θ)

p(x)
. (3.8)

Hence, the posterior density is proportional to the product of the likelihood function
p(x|θ) and the prior density. The point estimate θ̂ can be obtained, for instance, from
the mean or maximum of the posterior density, where the former yields the minimum
mean-squared error (MMSE) estimator and the latter the maximum a posteriori (MAP)
estimator:

θ̂MMSE = E[θ|x] =

∫
θp(θ|x)dθ, (3.9)

θ̂MAP = arg max
θ

p(θ|x). (3.10)

The MMSE and MAP point estimates coincide if the posterior density is symmetric,
which is the case for Gaussian distributions. The Bayesian approach is appropriate
when some information about the parameters to be estimated is available beforehand, in
which case the variance and robustness to outliers in the data can be improved as com-
pared to the frequentistic approach. However, Bayesian estimation introduces a risk for
biasing the estimate towards a potentially incorrect prior distribution.
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3.2 Signal detection

Detection theory deals with the problem to make a decision whether or not an event
of interest has occurred based on a given data set. This problem finds applications in
the detection of aircraft, boats and vehicles using radar or sonar, detection of symbols
sent over a communication channel, detection of physiological disease states based on
biomedical signals, detection of objects in images, and detection of faults or anomalies
in machines and industrial processes. In this thesis, we consider the detection of unde-
sirable objects in a flowing granular material based on microwave sensor data.

An important special case is the binary problem to detect if a signal of interest is
present in noisy data, or if the data consist of noise only. Since there are only two avail-
able options, this is an example of a binary hypothesis test and of a binary classification
problem. If we denote the noise-only option as the null-hypothesis H and the option of
having a signal present as the alternative hypothesis K, a hypothesis test can be formu-
lated according to

H : x = w

K : x = s + w (3.11)

where x ∈ RN is the observed data, w is the noise and s is the signal of interest. The
detector can be expressed in terms of a discriminating function T (x) that maps avail-
able data onto a real-valued scalar that determines which hypothesis to choose upon
comparison with a threshold:

T (x)
K
≷
H

η. (3.12)

This means that we accept K (i.e. decide for a positive detect) if T (x) ≥ η and otherwise
accept H if T (x) < 0. The condition (3.12) partitions the data space RN in two regions
RK = {x : T (x) ≥ η} and RH = {x : T (x) < η} such that RK ∪ RH = RN and RK ∩
RH = ∅. The probabilities for detection and false-alarm as functions of the threshold
can be expressed either from the PDF pX(x) of x or the PDF pT (T ′) of T (x) under each
hypothesis according to

PD(η) =

∫

x∈RK

pX(x|K)dx =

∫ ∞

η

pT (T ′|K)dT ′ (3.13)

PFA(η) =

∫

x∈RK

pX(x|H)dx =

∫ ∞

η

pT (T ′|H)dT ′. (3.14)

The performance of a detector is commonly characterised by a curve known as the re-
ceiver operating characteristic (ROC), where PD is plotted versus PFA for all values of
the threshold η, which provides a graphical illustration of the trade-off between detec-
tion accuracy and false-alarm rate. Furthermore, the area under the ROC curve (AUC
for short) is a summary statistic that characterises the overall classification performance,
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where AUC = 1 corresponds to perfect classification and AUC = 0.5 corresponds to ran-
dom guessing. Furthermore, the AUC has the important statistical interpretation as the
probability that the the discriminating function T (x) attains a higher value for a random
instance where K is indeed true, than for a random instance whereH is true [108], i.e.

AUC = Pr(T (x|K) > T (x|H)). (3.15)

If p(x|K) and p(x|H) are completely known, the Neyman-Pearson theorem states
that the most powerful test, which maximises PD subject to any fixed false-alarm con-
straint PFA = α is the likelihood ratio test (LRT) where the test statistic is given by the
likelihood ratio or, equivalently, its logarithm [109]:

TLRT(x) = log

(
p(x|K)

p(x|H)

)
. (3.16)

If the signal s and the statistics of the noise w are not completely known but can be
parametrised by the parameter vectors θH and θK under each hypothesis, a reason-
able approach is to compute the maximum-likelihood estimates θ̂H = MLE (θH) =

arg maxθH p(x|H;θH), and θ̂K = MLE (θK), from data and insert the results into the
log-likelihood ratio:

TGLRT(x) = log

(
p(x|K; θ̂K)

p(x|H; θ̂H)

)
. (3.17)

This is known as the generalised likelihood ratio test (GLRT) which often works well
but lacks general optimality [107].

In a Bayesian approach to detection, prior information regarding the relative occur-
rence ofH and K is incorporated in a detector that seeks to minimise the probability for
making wrong decisions, or an associated cost [109]. In applications where it is diffi-
cult to estimate the likelihood to encounter a real target event (in our case the presence
of a contaminating object), the frequentistic Neyman-Pearson approach is usually pre-
ferred over the Bayesian one. For this reason, we choose the Neyman-Pearson approach
throughout the thesis.

For the case of a known deterministic signal s in zero-mean Gaussian distributed
noise w ∼ N (0,Σ) with known covariance matrix Σ = E[wwT], the LRT takes the
form of a matched filter where the test statistic (i.e. the data-dependent part of the log-
likelihood ratio) is given by

T (x) = xTΣ−1s. (3.18)

This discriminating function is linear in the data. Hence, in the context of classification,
the matched filter detector is an example of linear discriminant analysis (LDA) where
the data space is partitioned by a hyperplane defined by the weight vector Σ−1s [110].
If the signal is unknown but can be represented by a linear model according to s = Hθ,
where H ∈ RN×p is a known observation matrix, the maximum-likelihood estimate of
the signal is given by

ŝ = Hθ̂ = H(HTΣ−1H)−1HTΣ−1

︸ ︷︷ ︸
=P

x = Px. (3.19)
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Here, P is a rank-p projection matrix that projects onto the subspace of RN spanned by
the columns of H. The resulting GLRT test statistic is given by

T (x) = xTΣ̂−1ŝ− 1

2
ŝTΣ̂−1ŝ =

1

2
ŝTΣ−1ŝ (3.20)

where the latter equality is obtained from the relations ŝ = Px and PTΣ−1P = Σ−1P.
The detector with the test statistic in Eq. (3.20) is known as an incoherent matched filter,
and it is an example of quadratic discriminant analysis (QDA) since the discriminant
function is quadratic in the data. By further considering the eigenvalue factorisation
Σ = QΛQT where Λ = diag(λ1, . . . , λN ), Q·,i = vi, and Σvi = λivi, i = 1, . . . , N , we
can rewrite Eq. (3.20) as

T (x) =
1

2
(QTŝ)TΛ−1QTŝ =

1

2
yTΛ−1y =

1

2

N∑

i=1

y2
i

λi
(3.21)

where y = QTŝ = QTPx. Hence, the component yi = vT
i Px is the projection of the

data on the signal subspace, in turn projected onto the noise eigenvector vi. The test
static therefore attains a high value if Px has a large component in the directions vi in
which the noise is weak and thus are associated with small λi. The incoherent matched
filter is therefore very sensitive to data containing signals that lie in a subspace in which
the noise is weak, and it attains perfect classification if the noise resides in a subspace of
RN (corresponding to some λi being zero) that is orthogonal to the signal subspace.

If the dimensionality p of the expected signal subspace is increased by adding columns
to the observation matrix H, the discriminative power of the matched filter is typically
reduced as p increases. For p = N , the projection matrix becomes a full-rank matrix that
maps any x ∈ RN onto itself, i.e. Px = x. Equation (3.20) then reduces to the following
quadratic function in x

T (x) =
1

2
xTΣ−1x, (3.22)

which can be viewed as the power of the noise-whitened data Σ−1/2x. Hence, no spe-
cial information regarding the target signal is incorporated, which avoids the problem
how to model s. However, this approach will give poorer detection performance as
compared to a matched filter that employs the correct signal model.

3.3 Random processes

A random process is a collection of random variables, each associated with a point in
an underlying index set according to {Xt : t ∈ T}. The index set T commonly rep-
resents continuous or discrete time, leading to a continuous or discrete time stochastic
process, respectively. The index set may also, for instance, be points in RN that corre-
spond to physical coordinates in an N -dimensional Euclidean space and, in this case,
the stochastic process is referred to as a random field. For a fixed t ∈ T , the random



3.3. RANDOM PROCESSES 29

variable Xt maps a sample space Ω to a state space S, where S = R if the random vari-
able Xt is continuous and real-valued. Furthermore, for a fixed ω ∈ Ω, the collection
{x(t) = Xt(ω), t ∈ T} is called a realisation of the process [111].

If the random variable Xt is continuous and if its PDF pXt(x) exists, the ensemble
mean of the process is defined according to

mx(t) = E[Xt] =

∫ ∞

−∞
xpXt

(x)dx, (3.23)

where the expectation is taken with respect to all possible realisations. Furthermore, if
we adopt the nomenclature commonly employed in signal processing literature [112],
the autocorrelation function of a real-valued process is defined as

rx(s, t) = E[XsXt] = cov(Xs, Xt) +mx(s)mx(t). (3.24)

The process Xt is said to be wide-sense stationary (WSS) if its mean is independent of t,
i.e. mx(t) = m, and the autocorrelation only depends on the lag τ = t − s but not the
absolute time t according to rx(s, t) = rx(t−s) = rx(τ). In addition, the process is strictly
stationary if the joint distribution of the collection {Xt1 , . . . , XtN } for any t1, . . . , tN ∈ T ,
is invariant under an arbitrary time-shift. Furthermore, a WSS process Xt is said to be
ergodic (in the first two moments) if the mean and autocorrelation can be estimated to
arbitrary accuracy from observations of one single realisation {x[n]}N−1

n=0 of sufficiently
long duration. Here, x[n] = x(nTs) denotes the discrete-time samples of a continuous-
time process where Ts is the sampling interval. If we consider the following sample
mean and sample autocorrelation estimates, the ergodicity can be expressed according
to

m̂x =
1

N

N−1∑

n=0

x[n]→ m as N →∞ (3.25)

r̂x[l] =
1

N

N−1−l∑

n=0

x[n]x[n+ l]→ r[l] as N →∞. (3.26)

The power spectral density (PSD, also called power spectrum, or spectrum for short)
describes how the power of a random process is distributed with respect to frequency.
For a WSS discrete-time random process, the PSD can be defined as the discrete-time
Fourier transform (DTFT) of the autocorrelation sequence [113] according to

Px(Ω) =

∞∑

l=−∞
rx[l]e−jΩl. (3.27)

Here, Ω = ωTs is the normalised frequency (rad/sample) where ω is the physical fre-
quency (rad/s). If a WSS discrete-time random process x[n] is applied as the input to a
stable, linear, and time-invariant system with impulse response coefficients {h[k]}∞k=−∞
then the output

y[n] =

∞∑

k=−∞
h[k]x[n− k] (3.28)
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is also a WSS random process. The PSD for y[n] and x[n] are related according to

Py(Ω) = |H(Ω)|2Px(Ω). (3.29)

Here, H(Ω) is the DTFT of h[k] which is obtained by evaluating the transfer function
H(z) on the unit circle according to z = ejΩ for Ω ∈ [−π, π].

The concept of random processes is a useful tool for modelling sensor data that con-
tain random components (correlated or uncorrelated) where the data is collected on an
underlying temporal or spatial grid. In Paper II, we employ random processes in 3D
to generate data that models a spatially varying stochastic permittivity for evaluating
detection performance using a finite-element model. Furthermore, in Paper V, we use
stochastic processes to model the spatial and temporal variation of the permittivity of
flowing granular materials. Specifically, we use the relation (3.29) to estimate the power
spectrum of a random permittivity (i.e. the input process to a linear system that mod-
els our sensor), based on the power spectrum of the measured microwave signals (the
output process).

3.3.1 Gaussian processes
One class of random processes of particular usefulness are Gaussian processes, which
are characterised by that the random variables Xt are normal distributed. Hence, the
real-valued continuous-time random process Xt is a Gaussian process if each finite-
dimensional vector X = [Xt1 , . . . , XtN ]T evaluated at the points t = [t1, . . . , tN ]T has a
multivariate normal distribution [111] according to X ∼ N (µ,Σ) with the PDF given
by

pX(x;µ,Σ) =
1√

(2π)Ndet(Σ)
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
. (3.30)

Furthermore, the process is wide-sense stationary if the mean vector µ and the covari-
ance matrix Σ are invariant under a time-shift t → t + h1N for any real h > 0 where
1N = [1, . . . , 1]T ∈ RN . Since a normal distribution is entirely specified by its first two
moments, a Gaussian process that is wide-sense stationary is consequently also strictly
stationary.

The assumption of Gaussian statistics can often simplify the analytical manipula-
tions involved in many estimation and detection problems, which allows for closed-
form solutions to many problems of practical interest. Furthermore, many real-world
stochastic phenomena can be accurately modelled by Gaussian distributions. This is
explained by the central limit theorem, which states that the sum (and the average)
of many independent random variables is asymptotically normal distributed. For in-
stance, the thermal voltage noise across a resistor is well known to follow a Gaussian
distribution, which is reasonable if the total voltage is viewed as the series connection
of many small voltage contributions, each arising from random microscopic charge dis-
placements. Another important example in the context of this thesis is a cavity resonator
that is partly filled with a granular material mixture where the particle density fluctu-
ates randomly with respect to space and time. Hence, the permittivity can be modelled
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as a random process that is associated simultaneously with a spatial and temporal index
set. By considering the material perturbation formula (2.25), we notice that the resonant
frequency can be viewed as a weighted sum (or integral) of the permittivity variations
at different points in space. It is therefore reasonable to expect that the resonant frequen-
cies are approximately Gaussian distributed if the fluctuations in the material density,
and hence in the effective permittivity, are sufficiently uncorrelated and small in com-
parison with the wavelength of the electromagnetic field. This fact is experimentally
observed for the cavity containing a fluidised bed in Paper I, and the cavity sensors
used to observe flowing granular materials in Papers III-V. As stated previously, a well-
founded assumption of Gaussian distributed data enables or simplifies the derivation
of optimal parameter estimation and detection algorithms. In measurement situations
where the measured quantities are S-parameters, it is therefore an adequate approach
to somehow map the S-parameters to a new set of data that corresponds to the com-
plex resonant frequencies of the system, or a linear function thereof. Depending on
the quality and the nature of the S-parameter data, this mapping can be accomplished
in different ways and Section 4.3 summarises the approaches to this mapping problem
that we use in Papers I-V.

3.3.2 Complex Gaussian distribution
Complex-valued data with a random component is commonly encountered in electri-
cal engineering, hence it is useful to assign probability distributions to complex-valued
vectors of random variables. Complex data arises naturally in the representation of a
narrow-band signal x(t) by its complex base-band signal xB(t) according to

x(t) = Re{xB(t)ejωct}. (3.31)

where the spectrum of x(t) is nonzero only in a narrow frequency band around the
carrier frequency ωc (and−ωc). Here, xB(t) = I(t)+jQ(t) where I andQ are the in-phase
and quadrature signal components. This complex signal representation is encountered
for narrow-band radio-frequency signals as well as in the context of harmonic circuit
analysis. Complex data arises also in the frequency-domain representation of a real-
valued signal if the Fourier transform is expressed using complex exponentials.

For a complex random vector z = x + jy ∈ CN with x,y ∈ RN being its real and
imaginary part, the PDF p(z) is naturally equivalent to the joint PDF p(x,y). If x and y
are zero-mean Gaussian distributed vectors and [xT,yT]T is jointly Gaussian, then their
joint distribution is completely characterised by the covariance matrix

E

[[
x
y

] [
xTyT

]]
=

[
E[xxT] E[xyT]
E[yxT] E[yyT]

]
=

[
Σxx Σxy

Σyx Σyy

]
∈ R2N×2N . (3.32)

This symmetric matrix has 2N2 + N independent entries which are required to fully
specify the covariance of z. To account for all possible covariance information in a com-
plex representation, we need to consider both the covariance matrix Σz and the pseudo-
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covariance matrix Γz which are defined according to

Σz = E[zzH] = Σxx + Σyy + j(Σyx −Σxy) ∈ CN×N (3.33)

Γz = E[zzT] = Σxx −Σyy + j(Σyx + Σxy) ∈ CN×N . (3.34)

These two matrices together contain 2N2 + N real independent parameters just like in
the real representation. The actual benefit of using one complex vector z instead of the
two real vectors x and y to represent a given data set, arise in the special case where the
following relations hold

Σxx = Σyy (3.35)
Σxy = −Σyx. (3.36)

A random vector variable z obeying these properties is called circular-symmetric, which
is to say that the PDF satisfies p(z) = p(zejφ) for any real φ [114]. This further implies
that the pseudo-covariance matrix Γz vanishes, as seen by combining Eqs. (3.34), (3.35)
and (3.36). The condition (3.36) implies that the cross-covariance matrices are skew-
symmetric according to Σxy = −ΣT

xy, given the identity ΣT
xy = Σyx. For the special

case of a scalar circularly-symmetric variable z = x+jy withN = 1, the skew-symmetric
property implies that E[xy] = −E[xy] which in turn implies that E[xy] = 0 and, hence,
that x and y are uncorrelated. A circularly-symmetric complex Gaussian distributed
vector variable is denoted z ∼ CN (0,Σz) with the PDF given by [107]

p(z) =
1

πN det(Σz)
exp

(
−zHΣ−1

z z
)
. (3.37)

3.4 Modelling of resonant data

The driven response of a resonant system can be accurately modelled by a complex pole
series [115] according to

S21(ω) =
∑

k

αk
ω − ωk

. (3.38)

For measurement frequencies ω close to a particular resonant frequency ωm, all terms
k 6= m in Eq. (3.38) are approximately constant if the resonant frequencies are sufficiently
well separated. The response can therefore be approximated as

S21(ω) ≈ C +
αm

ω − ωm
=
C(ω − ωm) + αm

ω − ωm
. (3.39)

This is a linear fractional transformation (i.e. a Möbius transformation) in both ω and
ωm, which is equivalent to a Padé approximation of order 1/1. A Möbius transforma-
tion, which can be generally written

w = T (z) =
az + b

cz + 1
, (3.40)
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where w and z are complex variables and a, b, and c are complex constants, is a confor-
mal mapping that maps generalised circles (i.e. circles or straight lines) onto generalised
circles [116]. Hence, if the variable z is taken to be the measurement frequency ω and
the poles ωk and residues αk are kept constant (thus they determine a, b, and c), we
notice that the real axis Im{ω} = 0 is mapped onto a circle in the complex plane. It
is well known that such “resonance circles” are observed in the Smith chart when the
measurement frequency is swept across a resonance [75]. If we instead keep the mea-
surement frequency constant with ω ≈ Re{ωm} and study the S-parameter response
due to variations in the resonant frequencies, the result is still a Möbius transformation
where the variable z is associated with the resonant frequency ωm and the constants a,
b, and c depend on the measurement frequency ω. The latter situation is illustrated in
Fig. 3.1 which shows the distribution of the data w = T (z) given by Eq. (3.40), where z
is synthetically generated random data distributed according to

[
Re{z}
Im{z}

]
∼ N (

[
0
0

]
,

[
1 0
0 P 2

]
) (3.41)

with P 2 = 0.03. The conformal nature of the mapping T is seen in that the real and
imaginary axes in the z-plane are mapped onto circles in the w plane that intersect at
right angles at the points w0 = T (0) = b and w∞ = T (∞) = a/c. The distribution for
w shown in Fig. 3.1 is typical for measured S-parameter data at a fixed frequency near
resonance, for a microwave resonator sensor that observes a flowing granular dielectric
material, as demonstrated in section 4.2.1 and in Paper III. In this example, z represents
the perturbation in the complex resonant frequency ωm around its mean, which is ex-
pected to be normal distributed based on the arguments given in section 3.3.1. In Paper
III, we employ maximum-likelihood to estimate the parameters in the model obtained
by combining Eqs. (3.40) and (3.41), based on experimental S-parameter data.
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Figure 3.1: Normal distributed complex data z and its mapping through a Möbius trans-
formation w = T (z). Left: realisations of z in the complex plane. Right: data w in the
complex plane where each point corresponds to one realisation of z. The points w0 = T (0)
andw∞ = T (∞) are indicated by filled circles, and the images of the real and imaginary axis
under T are shown by solid and dashed curves, respectively.



34 CHAPTER 3. ESTIMATION, DETECTION AND SIGNAL MODELLING



Chapter 4
APPLICATIONS, MEASUREMENT
TECHNIQUES AND RESULTS

This chapter presents the measurement techniques which have been developed in or-
der to address the two measurement problems considered in the thesis. The industrial
applications where these measurement problems are found and the existing alternative
measurement techniques are discussed in order to clarify the motivation to our research
activities. The main results and conclusions of each individual paper are highlighted,
and the papers are finally summarised and compared in a more general perspective.

4.1 Pharmaceutical process monitoring

One challenge in the pharmaceutical industry is to achieve cost-efficient manufactur-
ing of pharmaceutical products under stringent requirements on the product quality,
including inter-batch uniformity. The traditional approach in pharmaceutical manu-
facturing is to maintain a fixed recipe and a fixed set of process control settings once
determined based on a comprehensive testing procedure. This is however not adequate
to fulfil the increasingly high requirements on the final product quality in the presence
of variations in e.g. the raw materials. The pharmaceutical industry is therefore adopt-
ing process analytical technologies with the aim to continuously monitor critical process
and quality parameters of raw materials and materials under processing. Some of the
common pharmaceutical processes are mixing, drying, granulation and spray-coating
of solid-state pharmaceutical materials, where the moisture content is a critical process
parameter of particular interest to monitor. In this thesis, we consider the spray-coating
of particles in Wurster-type fluidised bed processes where the density of particles and
the particles’ moisture content in different spatial regions inside the vessel is of interest
to monitor.

The currently most accurate and reliable methods for moisture content measure-
ments are Karl-Fisher titration [117] and loss-on-drying, but these techniques require
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sample withdrawal and can therefore not be used for in-line measurements. Near-
infrared (NIR) and Raman spectroscopy are in-line compatible methods which can pro-
vide detailed information about the chemical composition of materials, including mois-
ture content [118]. However, due to the short penetration depth at the frequencies em-
ployed by these methods, they provide mainly moisture information at the surface of
the particles in the direct vicinity of the measurement probe, which may not be repre-
sentative for the moisture content on a global process scale. Furthermore, these methods
are sensitive to deposition of particles or dust on the optical access windows which lim-
its their practical usefulness. Electric capacitance tomography (ECT) is a method where
a spatial permittivity distribution is reconstructed from measured capacitances between
pairs of electrodes in an electrode array that surrounds the measurement domain, which
has been used to monitor fluidised-beds in regions of high particle density [119]. How-
ever, the low frequencies employed by ECT (typically in the kHz range) implies that the
spatial resolution is dictated by the number of electrodes. Furthermore, the low dielec-
tric losses of pure water at these frequencies makes it difficult for ECT to distinguish
moisture content from particle density. Microwave sensing is an attractive measure-
ment modality for fluidised-bed process monitoring due to the possibilities for volume-
averaged in-line moisture measurements with high sensitivity. Stray-field microwave
resonator sensors have successfully been used for in-line monitoring of fluidised-bed
drying and granulation [32, 33]. However, the localised stray-fields limit the sensing
region to the vicinity of the sensor head and, thus, this technique cannot be used to
perform measurements at arbitrary regions inside the process vessel in a non-intrusive
manner.

Our contribution, presented in Paper I, consists of a microwave cavity resonator
technique for estimating the complex permittivity in different spatial regions, based on
several cavity modes in the metal process vessel. This technique allows us to gather
information about moisture and particle density from different spatial regions inside
the vessel in a non-invasive manner, where small amounts of moisture can be detected
due to the high sensitivity of the high-Q resonant cavity modes.

4.1.1 Microwave cavity measurement system
The fluidised-bed process vessel that we consider here is normally used for particle
coating and drying processes in laboratory-scale at AstraZeneca R&D in Mölndal, Swe-
den. The vessel is shown in Fig. 4.1, which also shows the two coupling loops that we
use to excite the cavity modes inside the vessel and measure their resonant frequencies.
The vessel is originally equipped with a number of dielectrically sealed openings in the
metal wall to allow for visual inspection and access by other measurement probes. We
cover these holes (in particular the two inspection windows) externally by metal foil to
mitigate the radiation losses of the cavity modes. A perforated metal plate is also placed
at the top of the vessel where the fluidising air exits, to prevent electromagnetic radia-
tion losses and to create an interior cavity volume that is feasible to model accurately.
With these measures, we obtain unloaded Q-values in the range from 3 000-10 000 for the
lowest modes in the empty cavity. Figure 4.2 shows the electric field of the eight reso-
nant modes that we can reliably identify based on the resonant frequencies without risk
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of confusion, where the fields are computed using a finite-element model implemented
in Comsol Multiphysics [120]. Figure 4.3 shows the S-parameters measured with a com-
mercial VNA (Agilent E8361A). This instrument is controlled by a PC via GPIB interface
to perform repeated frequency sweeps (one sweep with 2 seconds duration is repeated
every 10 seconds) throughout the duration of a process experiment, where the repetition
speed is mainly limited by the data transfer. From the transmission coefficient S21, we
estimate the complex resonant frequency associated with each mode using subspace-
based system identification [98]. The resulting pole-series model Ŝ21 as expressed in
Eq. (2.28) is shown in Fig. 4.3 together with the real part of the estimated resonant fre-
quencies. The modes TE111-TE114 each forms a degenerated mode-pair in a perfectly
axi-symmetric cavity. However, in the process vessel, the resonant frequencies of each
such mode-pair are separated due to the foil-covered inspection windows that resem-
ble a local outward displacement of the metal boundary. The high-frequency mode of
each pair has maximum electric field at the azimuth locations of the windows, as ex-
plained by Eq. (2.26). These modes are found to be more stable than the low-frequency
associates, which have strong surface currents flowing across the junction between the
cavity wall and the foil. Therefore, we use only the high-frequency polarisation in each
of these mode-pairs for the permittivity estimation.

(a) (b)

Figure 4.1: (a) The fluidised-bed process vessel connected to a network analyser and a pro-
cess control unit, and (b) the coupling loops.

Temperature variations is an inescapable aspect of fluidised-bed processing, due to
the inflow of warm fluidising air at the bottom of the vessel and the cooling caused by
evaporation of solvents during spray-coating. Temperature variations have a signifi-
cant impact on the resonant frequencies as it leads to non-uniform thermal expansion of
the vessel walls with long time-constants, as shown in Fig. 4.4. The resonant frequency
perturbations due to temperature variations is comparable in size to the perturbations
resulting from the permittivity variations we intend to measure, which is illustrated in
Fig. 4.5. Our strategy to circumvent this issue is to parametrise jointly the perturba-
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TE111 TE112 TM010 TM011 TE113 TM012 TE114 TE011

Figure 4.2: Electric field of the resonant cavity modes in the process vessel that are used to
sense the spatial permittivity distribution.
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Figure 4.3: Measured S-parameters of the empty process vessel using a segmented frequency
sweep, and the estimated pole-series model Ŝ21. The dashed vertical lines show the real part
of the estimated resonant frequencies.

tions in the permittivity distribution and the shape of the cavity walls using the spatial
basis functions illustrated in Fig. 4.6. We estimate the permittivity and shape param-
eters based on the measured resonant frequency perturbations as well as temperature
measurements at several locations on the vessel wall. The temperature measurements
serve to “assist” in the estimation of the shape parameters, so that the microwave re-
sponse can be used mainly to determine the permittivity parameters based on an over-
determined system of equations. The sensitivities in the resonant frequencies with re-
spect to material and shape perturbations are calculated from the finite-element model
using Eqs. (2.25) and (2.26). For further details on the estimation procedure, the reader
is referred to Paper I.

The estimated complex permittivity in each subregion as function of process time
is presented in Paper I for three different process experiments: (i) film-coating of mi-
crocrystalline cellulose (MCC) particles by Mannitol and a binding polymer at a low
spraying rate that yields stable process conditions, (ii) film coating by the same sub-
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Figure 4.4: Relative shift in the resonant frequencies in parts-per-million (ppm) for the empty
vessel during cyclic heating and cooling. The dash-dotted curves show the temperature of
the fluidising air at the inlet and outlet of the vessel, respectively.
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Figure 4.5: Real and imaginary part of the resonant frequency shift during spray-coating of
MCC pellets by Mannitol and a binding polymer dissolved in water. The spraying rate is
increased successively which eventually leads to partial agglomeration with particles adher-
ing to the vessel walls. The dashed vertical lines and the associated labels indicate external
changes in the process settings.
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Figure 4.6: Parametrisation of (a) the permittivity in three distinct subregions and (b) pertur-
bations in the shape of the cavity walls.

stance at high spraying rate that leads to agglomeration and process collapse (see also
Fig. 4.5), and (iii) MCC particles sprayed with a high-loss saline solution at increas-
ingly high spraying rates leading to agglomeration. We conclude that several aspects
of the process state is reflected in the estimated permittivities, such as (i) the material
re-distribution when the particle fountain is turned on, (ii) the growth in particle size
during coating, and (iii) material build-up on the cavity walls during agglomeration.
Furthermore, by analysing the covariance between the estimated permittivity’s real and
imaginary part, it is possible to detect changes in dielectric losses resulting from the
spray liquid, which is highly interesting from the application point of view. One pos-
sibility for improving this measurement technique is therefore to increase the measure-
ment speed significantly, to enable more reliable covariance estimates from larger data
samples with a higher temporal resolution.
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4.2 Detection of objects in granular flows

As stated in the section 1.1, the detection of undesirable objects is an important issue
in many material processing industries. Metal detectors and X-ray systems are domi-
nating the market for inspection systems to detect solid contaminants in bulk materials
and packaged product items, but these methods have limited detection capabilities for
low-density dielectric contaminants such as plastics, wood and rubber [121]. Several
alternative measurement methods have therefore been investigated for undesirable ob-
ject detection, including acoustic and ultrasonic measurements [122–124], thermal imag-
ing [125] and terahertz-wave measurements [126]. Although these methods show a
varying degree of success for certain combinations of objects and background materi-
als, using different modes of material transportation, it can be concluded that no method
is alone capable of detecting all occurring objects independently of the background ma-
terial.

At present, metal detectors is the only industrially feasible method to detect objects
in granular materials that flow by the aid of gravity, because X-ray imaging is hindered
by the irregular movement of the flowing particles [127]. Since metal detectors lack
sensitivity to dielectric media, it is currently an unresolved problem to detect dielectric
objects in flowing granular materials in an industrially viable manner. This is the moti-
vation to the research presented in this thesis, where we aim to develop an industrially
feasible microwave measurement technique for detecting dielectric objects of different
composition with smallest possible size in flowing powders and granulates.

4.2.1 Microwave detection systems
This section summarises the work contained in Papers II-V on the topic of object detec-
tion in powders, including the detection system developments, results and conclusions.

Short cavity sensor and simulation-based detection evaluation

In paper II, the first step to approach the current detection problem was to develop a
microwave sensor for highly sensitive permittivity measurements inside metal pipes. A
sensor concept based on a resonant cavity operating below the cut-off frequency of a
1.5 inch metal pipe was selected for this purpose, where a dielectric pipe with the same
inner diameter as the metal pipe is used to guide the material under test (MUT) through
the cavity. The cavity’s total volume was intentionally kept small to increase the sen-
sitivity to an object of given size. The geometry of the cavity, including its coupling
loops and the dielectric material, were optimised by means of FEM-simulations. Here,
the objective was to maximise the number of clearly identifiable modes in the frequency
range 2-3 GHz, which is the supported frequency range of a high-speed microwave mea-
surement instrument that is available within the scope of the project. The electric field
of the five available sensing modes and the S-parameters of the sensor prototype are
shown in Figures 4.7 and 4.8. The sensing modes, except TE111, have a relatively uni-
form electric field over the cross-section of the pipe which is beneficial for the ability
to detect an object irrespectively of its transverse position. In Paper II, we investigate
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the detection performance for a power detector on the form of Eq. (3.22), based on com-
puted eigenfrequencies given a stochastic permittivity that represents the background
material together with a dielectric object. The random permittivity ε(~r ) ∼ N (µ, σ2) is
generated on a 3D spatial grid to have the autocorrelation

cov (ε(~r ), ε(~r + ∆~r )) = σ2 exp

(
−|∆~r |

2

2ξ2

)
, (4.1)

where ξ is a correlation length. Based on these computational studies, we conclude that
the detection performance is improved by an increasing number of modes used in the
detector, and that the correlation length ξ in relation to the size of the object and the
sensor plays an important role for the detection performance.

TE101 TE111 TM110 TM111 TE102

Figure 4.7: Electric field of the resonant modes between 2-3 GHz for the short sensor.
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Figure 4.8: Measured and simulated S-parameters of the short sensor.

Experimental detection evaluation using a Möbius transformation signal model

In Paper III we proceed to study the detection performance experimentally. Here, we
use a custom-design measurement electronics that provides the high measurement speed
required for the current application where at least a few hundred measurements per
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second is required for an object passage to be temporally well-resolved. This electron-
ics (described in more detail in Paper III) resembles a VNA but provides measurement
data that is uncalibrated with respect to the true S-parameters. The calibration aspect,
together with a relatively poor frequency resolution of 5 MHz, implies that the data
from this instrument cannot be used to estimate the complex resonant frequencies of the
sensor in an absolute sense in a reliable manner. Therefore, we use the uncalibrated S-
parameter data at single measurement frequencies close to resonance for each mode, as
the input to a detection algorithm after a particular pre-processing procedure has been
applied. If we denote the raw uncalibrated measurement data by w (which resembles
S21), this pre-processing relies on the model

wm[n] = Tm(zm[n]) =
amzm[n] + bm
cmzm[n] + 1

(4.2)

where the complex variable zm is distributed according to Eq. (3.41). We emphasize that
wm, measured at a frequency ω where the resonant mode m is excited, varies stochas-
tically with respect to time due to the permittivity fluctuations of the flowing material.
The parameters, am, bm, cm, and Pm, which apply at the frequency ω, are estimated by
maximum-likelihood from the data samples {wm[n]}N−1

n=0 using iterative maximisation
of the non-linear log-likelihood function. Given the estimates of am, bm, cm, we use the
inverse of the mapping Tm in Eq. (4.2) to obtain the data zm which, to a good approxi-
mation, is Gaussian distributed and hence facilitates the derivation of an LRT detector.

Based on the arguments in Section 3.4, we may interpret the mapped data as being
linearly related to the perturbation ∆ωm in the complex resonant frequency of mode m
around its mean, according to zm = ζ∆ωm. Here, ζ is a complex constant such that, for
sufficiently small losses, the direction of ∆ωm in the complex plane that corresponds to
increasing material density is mapped onto the real part of zm, which has unit variance.
The relation between the background material’s inclusion permittivity and volume frac-
tion on the effective permittivity, the complex resonant frequencies, the S-parameters
and the mapped variable z is illustrated in Fig. 4.9 by Monte-Carlo simulation. Here, it
is clearly seen how an object with lower losses than the background yields an increase
in Im(z). Figure 12 in Paper III presents similar results based on measurement data.

In Paper III, we conclude that the data model presented above is appropriate for
modelling the statistics of the measurement response and the systematic errors associ-
ated with the uncalibrated instrument. An instantaneous power detector applied to the
mapped Gaussian data is used to evaluate the detection performance based on measure-
ments on low-loss polyethylene powder and test objects consisting of wood, polyvinyl-
chloride and polyethylene. It is concluded that this approach is efficient for detecting
objects that have significant contrast in the dielectric losses as compared to the back-
ground material.

Matched filter detector for the short cavity sensor

In Paper IV, we employ a signal processing algorithm that aims to exploit the temporal
variation in the data to improve the detection in situations where the object is difficult
to detect based solely on the locus of the S-parameters in the complex plane. This typ-
ically occurs when the object has similar loss tangent as the background material. We
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(a) (b) (c)

(d) (e)

Figure 4.9: Simulation-based illustration of a stochastic dielectric mixture and the resulting
resonant data. (a) Realisations of the inclusion permittivity εi with average loss tangent
tan δ = 0.01, (b) Maxwell-Garnett effective permittivity εeff given the stochastic volume
fraction ν ∼ N (0.1, 0.012), (c) complex resonant frequencies fc for a cavity with Q = 1000
where εeff occupies the entire cavity volume, (d) S21 given Eq. (3.39) with C = 0.1 − 0.1j,
αm = 7 · 105 and ω = 2πRe(E[fc])(1+ 0.1/Q), and (e) mapped data z. The red crosses show
the effect of adding a lossless object with permittivity εr,obj = 2.4 that occupies 0.2% of the
cavity volume. The arrows in (b)-(e) indicate the directions of increasing volume fraction ν
and loss tangent tan δ. The solid curves in (d)-(e) are contour lines of the estimated PDF at 1,
3, and 5 standard deviations.
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formulate a noise-whitening matched filter detector that incorporates the temporal and
inter-channel correlation of the noise due to the background material, and pre-recorded
target waveforms obtained from measurements on single object passages. Based on de-
tection experiments using the same experimental setup as in Paper III, we conclude that
the matched filter detector yields no significant detection improvement as compared to
the previously studied power detector. Our interpretation of this result is that, for the
current sensor, the temporal waveforms due to an object passage are similar to the tem-
poral waveforms due to the background material and, hence, that no improvement is
gained by incorporating temporal information in the detector.

Long cavity sensor and temporal signals analysis

The variation in the measurement data that is caused by the permittivity variations of
a flowing powder stems mainly from fluctuations in the local powder density. To some
extent, these fluctuations propagate downstream with the flow velocity, but the maxi-
mum cross-correlation between the density at a certain point and at another point fur-
ther downstream, decays with the separation distance due to mixing effects. The idea
pursued in Paper V is therefore to use a longer sensor that measures over a sufficiently
long flow distance, so that the correlation of the material density (and hence the permit-
tivity) at the two ends of the sensor has decayed substantially. A longer sensor can also
support a yet larger number of resonant modes in the frequency interval 2-3 GHz, where
some of these modes feature a high order field variation in the direction of the flow. The
S-parameters of the prototype sensor device is shown in Fig. 4.11 and the electric field
of the resonant modes of interest is shown in Fig. 4.10. For a high-order mode such as
TE109, the mixing of the powder that occurs inside the sensor tend to have a smoothing
effect on the temporal waveforms (such as S21 measured over time). On the contrary, a
small dielectric object that travels downstream with a certain velocity yields a temporal
waveform that resembles the spatial sensitivity of that mode along the cylinder axis.
We expect that this temporal diversity can be exploited to improve the detection by a
matched filter detector on the form of Eq. (3.20), and this hypothesis is investigated in
Paper V.

The pre-processing of the S-parameter data employed in this paper is based on lin-
ear operations, in contrast to the maximum-likelihood estimation used in Papers III-IV,
which makes the current signal processing algorithm straight-forward to implement in
a real-time detection system. For details on the detection algorithm and the associated
pre-processing and noise statistics estimation, the reader is referred to Paper V.

We evaluate the detection performance using a new experimental setup (illustrated
in Fig. 4.12) that allows for automatised release of a large number of test objects, which
makes it possible to quantify the detection performance more accurately and, hence, to
draw more detailed conclusions. Table 4.1 presents the AUC for the detection of sperical
steel and Delrin objects of varying diameter in flowing MCC granules and glass beads.
Based on these results, it can be concluded that the matched filter detector performs sig-
nificantly better than both the temporal power detector and the spatial power detector
employed in Paper III, for all combinations of object and powder.

In order to compare the performance of the long and short sensor, all experiments
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Figure 4.10: Electric field of the nine lowest resonant modes TE101-TE109 in the long sensor.

that lead to the results in Tab. 4.1 are simultaneously performed with the short sensor
mounted directly upstream of the long sensor, so that both sensors observe the same
background material and the same objects. This experimental arrangement is shown in
Fig. 4.12. By applying the signal processing algorithm i Paper V also to the data from the
short sensor, we obtain the AUC-values presented in Tab 4.2. For the short sensor, we
notice that the spatial power detector performs uniformly better than the matched filter.
This agrees with the results in Paper IV, and supports our hypothesis that a sufficiently
long flow distance is required to obtain sufficient mixing for the temporal detectors to
be more effective than an instantaneous power detector. Furthermore, by comparing
the results in Tables 4.1 and 4.2, we notice that the spatial power detector in the short
sensor performs better than the matched filter detector in the long sensor, presumably
due to the short sensor’s higher sensitivity to an object of given size. A possible future
option that combines the positive aspects of each design, is therefore to use multiple
short sensors mounted in series with an appropriate separation distance, and process
the data from the entire sensor array jointly in a matched filter detector.
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Figure 4.11: Measured S-parameters of the long sensor and the estimated pole-series model
Ŝ21. The dashed vertical lines show the real part of the estimated resonant frequencies.
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Figure 4.12: Experimental setup for studying the detection of objects in flowing granular
materials. (a) photo including the short sensor, (b) schematic drawing with the short and
long sensor mounted in series.



48 CHAPTER 4. APPLICATIONS, MEASUREMENT TECHNIQUES AND RESULTS

Table 4.1: Long sensor: Area under the ROC curve for the detection of spherical test objects
in flowing MCC pellets and glass beads, using the spatial power detector (SPD), temporal
power detector (TPD) and matched filter detector (MF), as described in Paper V.

MCC pellets (100 kg/h) glass beads (100 kg/h)
SPD TPD MF SPD TPD MF

steel 4mm 0.998 1.000 1.000 1.000 1.000 1.000
steel 2mm 0.570 0.520 0.576 0.744 0.830 0.984
delrin 8mm 1.000 1.000 1.000 1.000 1.000 1.000
delrin 6mm 1.000 1.000 1.000 1.000 1.000 1.000
delrin 4mm 0.788 0.603 0.865 0.994 0.993 1.000
delrin 2mm 0.516 0.519 0.560 0.553 0.552 0.626
pepper 4mm 0.873 0.873 0.965 1.000 1.000 1.000

Table 4.2: Short sensor: Area under the ROC curve for the detection of spherical test objects
in flowing MCC pellets and glass beads, using the spatial power detector (SPD), temporal
power detector (TPD) and matched filter detector (MF).

MCC pellets (100 kg/h) glass beads (100 kg/h)
SPD TPD MF SPD TPD MF

steel 4mm 1.000 1.000 0.999 1.000 1.000 1.000
steel 2mm 0.524 0.542 0.522 0.987 0.974 0.951
delrin 8mm 1.000 1.000 1.000 1.000 1.000 1.000
delrin 6mm 1.000 1.000 1.000 1.000 1.000 1.000
delrin 4mm 0.966 0.932 0.940 1.000 0.998 1.000
delrin 2mm 0.520 0.538 0.533 0.635 0.632 0.598
pepper 4mm 0.986 0.942 0.959 1.000 1.000 1.000
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4.3 Estimation and detection based on resonant sensor data

This section aims to compare the measurement techniques presented in Paper I-V in the
sense of identifying commonalities in the steps where data is acquired, processed and
finally used to infer the desired measurement information. Figure 4.13 gives an illus-
trative summary of the steps that constitute the measurement technique presented in
each paper. Since all measurement techniques are based on cavity resonators featur-
ing several resonances that observe a fluctuating permittivity distribution, we imagine
a common model for the “true” S-parameter response which is observed using a mea-
surement instrument with certain characteristics.

In Paper I, we use a commercial VNA instrument that provides highly accurate and
well-calibrated S-parameter measurements at high frequency resolution but at relatively
low sampling speed. From this high-quality S-parameter data on a dense frequency
grid, we estimate the corresponding complex resonant frequencies ωm using subspace-
based system identification. On the contrary, in Paper III-V, we use a custom electronics
(described in more detail in these papers) that provides high measurement speed but
low frequency resolution and, in addition, the data is uncalibrated and hence associ-
ated with systematic errors. It is therefore inappropriate to perform a direct estimation
of the complex resonant frequencies based on the data from this instrument. Instead,
we aim to map the S-parameter data at individual frequencies onto a new set of data,
here represented by the complex variable z, that resembles the variation of the com-
plex resonant frequencies around their mean values, and therefore tend to be Gaussian
distributed. Depending on the variability of the underlying resonant frequencies in re-
lation to the associated resonator bandwidth Bm = Re{ωm}/Qm, the data distribution
turns out differently where a big variability yields highly curved arc-shaped regions
and small variability yields rather Gaussian-shaped clouds. For curved clouds, we use
a mapping that involves maximum-likelihood estimation of parameters in a Möbius
transformation (Paper III-IV), whereas for clouds that are nearly Gaussian-shaped, the
mapping consist merely of linear high-pass filtering and de-correlation of the real and
imaginary parts (Paper V). It should be emphasised that while mapping uncalibrated
S-parameter data to Gaussian data that is normalised in some generic manner, we lose
the ability to estimate the permittivity of the material mixture in the absolute sense.
However, sensitive detection is still possible based on the dielectric contrast between an
object and the background material. Expressed differently, the complex Gaussian data
z obtained from uncalibrated measurements at a single frequency is related to the com-
plex resonant frequency perturbation via an unknown complex constant ζ according to
z = ζ∆ωm. Here, ζ involves the loss tangent of the effective permittivity together with
other unknown effects in the uncalibrated measurement.

The final step is the inference of the desired measurement information based on the
data that resembles the resonant frequencies. In Paper I, the desired output is a spatial
permittivity profile that we estimate by solving a linearised inverse problem by means
of a regularised least squares procedure. In Paper II-V the output is a detection decision
obtained by a detection algorithm whose degree of correctness may be illustrated by an
ROC curve.
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Chapter 5
CONCLUSION

This thesis presents microwave measurement techniques for use in the process industry,
where we consider the electromagnetic design and modelling of the sensors, the devel-
opment of signal processing algorithms, and the experimental evaluation in relevant
process-industrial scenarios. The measurement techniques are based on resonant cavi-
ties to enable highly sensitive measurements of the permittivity variations inside closed
metal vessels or metal pipes.

Two industrial measurement problems are studied in detail, where the first is to
monitor the internal state of a pharmaceutical fluidised-bed processes. This is done by
viewing the metal vessel that contains the process as a cavity resonator. Based on scat-
tering parameters measured with a vector network analyser, we estimate the complex
resonant frequencies of eight different cavity modes. From the resonant frequencies, we
estimate the parameters in a low-order model for the spatial permittivity distribution,
where the sensitivities to material and shape perturbations are computed from cavity
perturbation formulas using a detailed finite-element model. We conclude that several
aspects of the process state can be observed based on the estimated permittivity, in-
cluding the growth in particle size, the presence of lossy spraying liquids and the onset
of agglomeration, although no process quality attributes are estimated in the absolute
sense. It is expected that the estimation of statistical quantities, such as the covariation
between the real and imaginary permittivity, can be significantly improved by a consid-
erable increase in the measurement speed. Thereby, more accurate information about
the material losses and hence the liquid content of the particles may be derived.

The second problem is to detect undesirable objects in granular dielectric materials
flowing through a pipe. Two cavity resonator sensors with different lengths in the flow
direction have been developed for this purpose. The measurements are performed using
a high-speed microwave instrument that provides data with considerable systematic er-
rors with respect to the true scattering parameters. Different pre-processing algorithms
are therefore investigated which utilise the stochastic variation of the flowing back-
ground material to remove the effects of the uncalibrated instrument. The pre-processed
data is subsequently used in detection algorithms derived from the likelihood-ratio test,
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which take the form of power detectors or matched filters depending on the assump-
tions. We conclude that a significant gain in detection performance can be achieved by
using a matched filter detector if the sensor extends over a sufficiently long flow dis-
tance.

This thesis demonstrates the usefulness of resonant microwave sensors that exploit
multiple resonant modes with diverse spatial field distributions to improve the mea-
surement performance and to address new measurement problems. Furthermore, it is
demonstrated that model-based signal processing algorithms that incorporate knowl-
edge about the underlying physics can lead to distinct improvements in the estima-
tion and detection performance for process-industrial measurement problems. These
improvements become particularly clear in more challenging measurement situations
that involve larger variations in the permittivity and in the resulting measurement data.
The model-based approach to electromagnetic measurements is further aided by the ad-
vancement of numerical simulation tools and the rapid increase in available computing
power, which makes it feasible to address increasingly complex measurement problems.
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[21] L. Jylhä and A. Sihvola, “Numerical modeling of disordered mixture using pseu-
dorandom simulations,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 1, pp. 59–64,
2005.

[22] D. Wu, J. Chen, and C. Liu, “Numerical evaluation of effective dielectric properties
of three-dimensional composite materials with arbitrary inclusions using a finite-
difference time-domain method,” Journal of Applied Physics, vol. 102, pp. 024107:1–
8, 2007.



BIBLIOGRAPHY 57

[23] T. Rylander, A. Bondeson, and P. Ingelström, Computational Electromagnetics.
Springer, 2 ed., 2013.

[24] K. S. Yee, “Numerical solution of initial boundary value problems involving
Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagat., vol. 14,
no. 3, pp. 302–307, 1966.

[25] J. M. Jin, The Finite Element Method in Electromagnetics. John Wiley & Sons, 1993.

[26] E. Nyfors and P. Vainikainen, Industrial Microwave Sensors. Artech House, 1989.

[27] L. Cerullo, Microwave Measurement Systems for In-line 3D Monitoring of Pharmaceu-
tical Processes. Ph.D. dissertation, Chalmers University of Technology, Göteborg,
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