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Abstract 
We suggest a straightforward strategy how to quantify how much "computation" a given morphology is 

performing while transforming a stimuli. 

Background 

In (Pfeifer, R. and Iida, F., 2005) on p. 54 the following intriguing question was raised: 

“One problem with the concept of morphological computation is that while intuitively plausible, it has 

defied serious quantification efforts. We would like to be able to ask "How much computation is actually 

being done?" We will discuss a possible way to quantify the morphological computation involved in the 

perception process, but not the morphological computation at the output action, such as locomotion 

etc, see for example (Paul, 2006).  

 

The model 

In Figure 1, where we depict the process of interest as the transformation between the data presented 

at the receptor 2, and the presentation at 4 into the central 

computing unit 5, or “brain” if you wish. That is, we are interest-

ed in how much the data-presentation at 4, differs from the very 

stimuli detection at 2. Suppose that we have the presentation 

site well defined at 4. The interface has a certain capacity, i.e. 

the amount information that can be presented. We can view this 

as a dynamic capacity, e.g. bits per second, or as a static capaci-

ty, a vector, matrix or tensor with certain dimension where the 

elements has a given information capacity. We can also allow 

combinations; for example a matrix of size m×n which is re-

newed at a rate of p (Hz). We denote a presenta-

tion process at 4 of a given capacity by P(t). We 

then imagine that this presentation unit was di-

rectly mounted at 2, and being able to receive un-

disturbed, or rather, “unpreprocessed”, infor-

mation directly from the external stimuli at that 

very specific capacity that is at hand at 4. Let us call this imaginary process the raw input process, R(t). 

We now define the morphological computation of this system as a functional, F, which maps R(t) to P(t). 

Figure 1. External information, 1, is feed to the receptor 2. The 
morphological computation we want to quantify is the transfor-
mation of the detected data in 2 through the channel 3 into the 
presentation at 4 of the stimuli to the central computation center 
at 5. We will not discuss any output-actions 6. Note that this sepa-
ration of such parts in the process is rather arbitrarily, especially 
seen from an evo-devo perspective. 



Since we are interested in the amount of morphological computations preformed we are interested in 

finding the most efficient (computational efficient) functional which maps R(t) to P(t). Furthermore, 

since we are aiming at general definition also including biological processes, we need to be able to allow 

a certain amount of slack in such a functional. Let us therefore introduce a threshold  . The natural, but 

not easily quantifiable, choice would be to pick as the limit of conscious separation of different stimuli 

processes, i.e. if for such an   one would not be able to tell the difference between the stimuli presenta-

tion processes  ̃( ) and  ( ) if ‖ ̃( )   ( )‖   <  , and where   would be the largest such limit. Here 

‖ ‖   stands for the capacity-norm, i.e. if the presentation process has a capacity as in the example 

above with a matrix size of m×n which is renewed at a rate of p Hz, we let the capacity norm of the pro-

cess be defined as 

‖ ( )‖   ∫ ‖ ( )‖    

 
 

 

  

where we might for example let k=2 for concreteness. Let us now define another norm, the numerical 

norm ‖ ‖   of a functional F as the minimal number of arithmetic operations needed to realize, or 

compute, F locally. We are now ready to define the amount morphological computation for this system 

as 

      {‖ ‖     ‖ ( ( ))   ( )‖      }  

Let us just comment on two trivial extreme cases. Suppose that the system is perfectly faithful, that is  

 ( )   ( ). We can then simply find our optimal functional as the identity mapping. For that we need 

no computations, that is       The other case is even more simple. Suppose now that the sensory 

transportation is not working at all, i.e.  ( )     Then we also have        Note that we have so far 

not said anything at all about the functionals F. We have not even said what space we take the infimum 

in the above definition. In fact all of the “definitions” above are rather vague. Instead of discuss these 

issues more at this point, let us look at two examples in order to better illustrate the above technical 

formulations (together with a few alternative description) in a more concrete setting. Both of those ex-

amples are dealing with vision, but the suggested definition of  , the amount of morphological compu-

tation is applicable to all kinds of perceptions, sound, taste, tactile perception, electro-magnetic waves 

etc 

The morphological computation in the visual apparatus 

Before we start with our main examples, let me point out that a large amount of highly interesting work 

has been done in the area relating insect vision with robot vision, essentially introduced in (Franceschini, 

N.; Pichon, J. M.; Blanes, C., 1992); see for example (Zufferey, J.C. ; Floreano, D., 2006), or Section 2 in 

(Pfeifer, R. and Iida, F., 2005) for a short overview.  

Humans 

In (Cowan, 1977) an explicit mapping, called the human retinocortical map, between the retina and the 
visual (striate) cortex was presented, see (Murray, 2003) p. 628 for a short overview, and (Bressloff, P. 
C., Cowan, J. D., Golubitsky, M., Thomas, P. J., & Wiener, M. C., 2001) p. 301-303, for more details. 
This map from a point on the retina with polar coordinates (      )  to the point with the Cartesian co-

file:///C:/Documents%20and%20Settings/Administrator/My%20Documents/_Forskning/Morphological%20computation/grupperochsyn.pdf


ordinate (   )  on the striate cortex can be expressed in the following way:  

  
 

 
  (  

 

  
  )   and    

      

  
  where          and        , and where   and   are 

scaling constants in appropriate units. We will also discuss some important approximation of this map. 
Now using this retinocortical map and a simple transformation from polar- to Cartesian coordinates, we 
will be able to estimate  , the amount of morphological computations in the visual system for humans. 
By doing that we will also display different possible variants of the “definitions” indicated above. 
 
Cubomedusae  

The little box jellyfish, or Tripedalia cystopho-

ra, has an impressive number of 24 eyes of 

four different types. Their vision system has 

been studied in (Nilsson, D.-E., Gislen, L., 

Coates, M.M., Skogh, C. and Garm, A., 2005), 

and (Garm, A., Ekström, P., Boudes , M., 

Nilsson, D.-E., 2006). Eight of these 24 eyes are 

highly complex and developed with lenses etc. We will study one such eye, and give some estimates of 

  for that visual system. We will also comment on how elegantly the little jellyfish computes. 

 

A dual definition: 

 The family of “short” algorithms M := {Ai : (Ai)  }   

 We can then compute the dual of the amount of morphological computation preformed as:    ()  

             (  ) 

THEOREM 

If the extremal algorithms, A     and B   M  (i.e. “the book algorithms”), exists for all reasonable  and 

, so that () = (A) and  ()=  (B), then we have that ( ())= and  (())=. 

Proof: A    ⇒  (A)       and have  (  )    ( )     We then have that there exist an extreme 

algorithm,   , such that          so that   (  )     and  (  )   ( )  implying         ( ) . 

Hence  ( ( ))   (  )      Similarly, we have that    in    so that  ( )   (  )    

⇒   ( ( ))   ( )      Thus we have that  ( ( ))   ( )   If    is injective, then we can conclude 

that  ( )     The other relation, ( ())=, is shown in an analogous way. □ 
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Figure 2. The box jellyfish. Each of 
the four sensory centers, the 
rhopalia, consists of six eyes of four 
morphological types. Two of these 
eyes have lenses –the upper-, and 
the lower lens eye. 
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