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Abstract. Differentially private mechanisms enjoy a variety of composi-
tion properties. Leveraging these, McSherry introduced PINQ (SIGMOD
2009), a system empowering non-experts to construct new differentially
private analyses. PINQ is an LINQ-like API which provides automatic
privacy guarantees for all programs which use it to mediate sensitive
data manipulation. In this work we introduce featherweight PINQ, a for-
mal model capturing the essence of PINQ. We prove that any program
interacting with featherweight PINQ’s API is differentially private.

Keywords: Differential privacy, dynamic database, PINQ, Formaliza-
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1 Introduction

Differential privacy [3–5] shows that by adding the right amount of noise to
statistical queries, one can get useful results, and at the same time provide a
quantifiable notion of privacy. The definition of differential privacy for a query
mechanism (a randomized algorithm) is made by comparing the results of a query
on any database with or without any one individual: a query Q is ε-differentially
private if the difference in probability of any query outcome on a data-set only
changes by a factor of eε (approximately 1+ε for small ε) whenever an individual
is added or removed.

Of the many of papers on differential privacy, a mere handful (at the time
of writing) describe implemented systems which provide more than just a static
collection of differentially private operations. The first such system is the PINQ
system of McSherry [9]. PINQ is designed to allow non-experts in differential-
privacy to build privacy-preserving data analyses. The system works by leverag-
ing a fixed collection of differentially private data aggregation functions (counts,
averages, etc.), and a collection of data manipulation operations, all embedded
with a LINQ-like interface from otherwise arbitrary C# code. PINQ mediates all
accesses to sensitive data in order to keep track of the sensitivity of various com-
puted objects, and to ensure that the intended privacy budget ε is not exceeded;
a budget could be exceeded by answering too many queries with too high accu-
racy. In this way PINQ is intended to make sure that the analyst (programmer)
does not inadvertently break differential privacy.



Foundations of PINQ McSherry argues the correctness of PINQ by pointing
out the foundations upon which PINQ rests. In essence these are:

1. A predefined collection of aggregation operations (queries) on tables, each
with a parameter specifying the required degree of differential privacy. Stan-
dard aggregation operations such as (noisy) count and average are imple-
mented. The core assumption is that each aggregation operation Q with
noise parameter ε, written here as Qε, is an ε-differentially private ran-
domised function.

2. Sequential composition principle: if two queries performed in sequence (e.g.
with differential privacy ε1 and ε2 respectively) then the overall level of
differential privacy is safely estimated by summing the privacy costs of the
individual queries (ε1 + ε2).

3. Parallel composition principle: if the data is partitioned into disjoint parts,
and a different query is applied to each partition, then the overall level of
differential privacy is safely estimated by taking the maximum of the costs
of the individual queries.

4. Stability composition: the stability of a database transformation T is defined
to be c if when ever you add n extra elements to the argument of T , the
result of T changes by no more than n × c elements. If you first transform
a database by T , then query the result with an ε-private query, the privacy
afforded by the composition of the two operations is safely approximated by
c× ε.

These ”foundations” of PINQ provide an intuition about how and why PINQ
works, but although a novel aim of PINQ was “providing formal end-to-end dif-
ferential privacy guarantees under arbitrary use”, the foundations are inadequate
to build an end-to-end correctness argument since they fall short of describing
number of PINQ features of potential relevance to the question of its differential
privacy:

– Sequential composition is described in an oversimplified way, assuming that
the queries are chosen independently from each other. In practice the second
query of a sequence is issued by client code which has received the result of
the first query. Thus the second query may depend on the outcome of the
first. To argue correctness this adaptiveness should be modelled explicitly.

– Parallel queries partition data, but the data which is partitioned might not
be the original input, but some intermediate table. The informal argument
for taking the maximum of the privacy costs of the query on each partition
relies on the respective queries applying to disjoint data points. But the data
might not be disjoint when seen from the perspective of the original data set
of individuals. Data derived from a participant might end up in more than
one partition, so a correctness argument must model this possibility to show
that it is safe.

– As for sequential composition, parallel queries are not parallel at all, but can
be adaptive - the result of a query on one partition might depend on the
result of a query on another. This means that the implementation greatly



complicates the bookkeeping necessary to track the ”maximum” cost of the
queries.

– The foundations suggest how to compute the privacy cost of composed op-
erations from their privacy and stability properties. But in practice PINQ
does not measure the amount of privacy lost by a PINQ program, it enforces
a stated bound. Because of this, there are two kinds of results from a query:
the normal noisy answer, or an exception. An exception is thrown if answer-
ing the query normally would break the global privacy budget. To prove
differential privacy it is not enough that the query is differentially private in
the normal case – it must also be shown to be private in the case when an
exception is thrown, since this information is communicated to the program.

In this paper we provide a foundation for PINQ by defining a minimalistic se-
mantics, Featherweight PINQ, intended to model it’s essence, while at the same
time abstracting away from less relevant implementation details. By idealising
the interface we make clear the intended implementation, but not the details
of its realisation in any particular language. Thus we model the client program
completely abstractly as a deterministic labelled transition system which inter-
acts with tables via the PINQ-like API but which is otherwise unconstrained.
For this model we instantiate the definition of differential privacy, taking into ac-
count the interactive nature of the system, and prove that Featherweight PINQ
provides differential privacy for any program.

2 PINQ

In this section we provide a brief description of the PINQ system from the
user perpective. PINQ is a .NET API which provides an interface similar to
the Language Integrated Queries (LINQ) that is a language extension to .NET.
Analyses that use PINQ are typically written in C#.

Listing 1.1 shows a code fragment for a sample analysis producing the average
ages of adult males and adult females, respectively and then separately compute
the average of age for all individuals.

Listing 1.1. PINQ sample code

1 var agent = new PINQAgentBudget(budget);

2 var data = new PINQueryable<recordstype>(rawdata, agent);

3 var adults = data.Where(x => x.age > 17);

4 var genders = new [] {0,1};

5 var parts = adults.Partition(genders, x=>x.gender);

6 foreach (var a in genders) {

7 Console.WriteLine("Average age of {0} is {1}",

8 a==0? "Males " : "Females ",

9 parts[a].NoisyAverage(budget/2, x=>x.age)

10 }

11 Console.WriteLine("Average age (all):" + data.NoisyAverage(c))

The first two lines of the program initialises a PINQueryable object with sample
sensitive data (rawdata) structures and set the privacy limit (budget). A PIN-



Queryable object is a wrapper to the database which enables PINQ to track the
properties that are relevant for differential privacy. The supplied “agent” param-
eter expresses the amount of differential privacy that the system will enforce on
this database.

The analysis starts by selecting (line 3) a subset of records of interest (those
who are adults). Behind the scenes PINQ records the fact that the stability of
data is unchanged: adding a single record to the rawdata does not change the
size of the result of this transformation by more than a single record.

In line 5 a partitioning operation splits the data into two groups based on
the gender field (0 for Male, 1 for Female). Partition is not a standard LIN-
Q/SQL style operation, but is specific to PINQ. For each partition (i.e. for each
gender), the code outputs a noisy average of the age. NoisyAverage is one of a
collection of built-in differentially private primitive aggregation operations pro-
vided by PINQ. The amount of differential privacy for each query in the loop
is budget/2. After executing the foreach loop there will be budget/2 of the
original budget remaining. The outcome of the last line depends on the accu-
racy/privacy parameter c. If c is larger than budget/2 the program will throw
an exception (because answering the query with that degree of precision would
break the budget).

3 Idealised Program

In this section we describe the abstract model of the program and API to
the PINQ operations. In the section thereafter we go on to model the PINQ
internals, what we call the protected system, before combining these components
into a the overall model of Featherweight PINQ.

The first thing that we will abstract away from is the host programming lan-
guage. Here one could chose to model a simple programming language, but it is
not necessary to be that concrete. Instead we model a program as an arbitrary
deterministic system that maintains its own internal state, and issues commands
to the PINQ internals. In this sense we idealise PINQ by assuming that the API
cannot be bypassed. In fact the PINQ system does not successfully encapsulate
the all the protected parts of the system, and so some programs can violate
differential privacy by bypassing the encapsulation [8], or by using side effects in
places where side-effects are not intended. By idealising the interface we make
clear the intended implementation, but not the details of its realisation in any
particular language. By treating programs abstractly we also simplify other fea-
tures of PINQ including aspects of its architecture which promote certain forms
of extensibility.

Before describing the program model it is appropriate to say a few words
about the protected system (described formally in the next section). The pro-
tected system contains all the datasets (tables) manipulated by the program.
Since these are the privacy sensitive data, we only permit the program to access
them via the API. The protected system tracks the stability of all the tables
which it maintains, together with a global budget. Our program interacts with
the protected system by the following operations:



Assignment Tables in the protected system are referred to via table variables.
A program can issue an assignment command. The model allows the program
to manipulate a table using transformation that assign a new value to table
variables.

The general form of assignment is of the form tv := F (tv1, . . . , tvn), where
F is taken from a set of function identifiers representing a family of transforma-
tions with bounded stability (i.e. for each argument position i there is a natural
number ci such that if the size of the ith argument changes by n elements, then
the result will change by at most ci · n elements). This stability requirement
comes from PINQ and is discussed in more detail in the next section. Trans-
formations include standard operations such as the .Where(x => x.age > 17)

from the example in listing 1.1, and simple assignments t1 := t2 (taking F to be
the identity function), as well as assignments of literal tables (the case when F
has arity 0).

Query The only other operation of the PINQ API is the application of a primi-
tive differentially private query. In the example above we saw a compound trans-
formation and query operation parts[a].NoisyAverage(budget/2, x=>x.age).
It is sufficient to model just the query, since the transformation (x=>x.age) can
be implemented via an intermediate assignment. Thus we assume a set of prim-
itive queries Query, ranged over by Q, which take as argument a positive real
(the ε parameter) and a table, and produce a discrete probability distribution
over a domain of result values Val.

We generalise the single query operation to a parallel query, with syntax
query(tv , f,

#»

Q, ε), where

1. tv is the table variable referring to the table that will be used for the analysis,
2. f is the partitioning function that maps each record to an index in codomain(f) =
{1, . . . , k} for some k ∈ N,

3.
#»

Q is a vector of k queries from Query.

The execution of this operation (as described in the next section) involves com-
puting the sequence of randomised values

Qi(ε, {r ∈ T | f(r) = i}), i ∈ codomain(f)

where T is the table bound to tv . This is the “parallel query” operation described
informally in the description of PINQ [9]. We use a single ε for all queries because
if we chose an εi for each query the privacy cost will be maximum of all the
epsilons in any case, so we may as well enjoy the accuracy of the largest epsilon.
However, we note that the implementation of PINQ is more general than this,
since the queries on each partition may be performed in an adaptive way. Here
we are making a trade-off in keeping our model simple at the expense of not
proving differential privacy for quite as general a system.

Client Program Model The above abstraction of the PINQ API allows us
to abstract away from all internal details of the programming language using
the API. Following [6] we model a program as an arbitrary labelled transition
system with labels representing the API calls:



Definition 1 (ProgAct Labels). The set of program action labels ProgAct,
ranged over by a and b, are defined as the union of three syntactic forms:

1. the distinguished action τ , representing computational progress without in-
teraction with the protected system,

2. tvar := F (tv1, . . . , tvn) where F is a function identifier, i.e. the formal name
of a transformation operation of arity n,

3. query(tv , f,
#»

Q, ε)? #»v , where f is a function from records to {1, . . . , k} for

some k > 0, where #»v is a vector of values in Valk, and
#»

Q is a vector of k
queries.

Every label represents an interaction between a client program and the pro-
tected system. The labels represent the observable output of a system which are
a sequence of those actions: internal (silent) steps (τ) modelling no interaction,
and vectors of values #»v which are the results of some query being answered and
returned to the program.

To define these transitions, we assume a client program modelled by a labelled
transition system modelling the API to the protected system. For client pro-
grams, the label corresponding to a query call is of the form query(tv , f,

#»

Q, ε) ? #»v ,
and models the pair of query and the returned result (as described before) as a
single event. This allows us to model value passing with no need to introduce
any specific syntax for programs. Note that the value returned by the query is
known to the program, and the program can act on it accordingly. From the
perspective of the program and the protected system together, this value will be
considered an observable output of the whole system.

Definition 2 (Client Program). A client program is a labelled transition
system 〈P,→, P0〉, with labels from ProgAct, where P is all possible program
states, P0 is the initial state of the program, and the transition relation → ⊆
(P × ProgAct × P) is deadlock-free, and satisfies the following determinacy

property: for all states P , if P
a−→ P ′ and P

b−→ P ′′ then

1. if a = b then P ′ = P ′′,
2. if a is not a query then a = b,
3. if a = query(tv , f,

#»

Q, ε) ? #»v then b = query(tv , f,
#»

Q, ε) ? #»u for some #»u , and

for all actions c of the form query(tv , f,
#»

Q, ε) ? #»w there exists a state Pc such

that P
c−→ Pc.

The conditions on client programs are mild. Deadlock (i.e. termination) free-
dom simplifies reasoning; a program that terminates in the conventional sense
can be modelled by adding a transition P

τ−→ P for all terminated states P .
Query transitions model both the query sent and the result received. Since we are
modelling message passing using just transition labels, the condition on queries
states that the program must be able to accept any result from a given query.
Modulo the results returned by a query, the conditions require the program to
be deterministic. This is a technical simplification which (we believe) does not
restrict the power of the attacker.



Remark: Implicit parameters We will prove that Featherweight PINQ pro-
vides differential privacy for any client program. To avoid excessive parametri-
sation of subsequent definitions, in what follows we will fix some arbitrary client
program 〈P,→, P0〉 and some arbitrary initial budget ε and make definitions
relative to these.

4 Featherweight PINQ

In this section we turn to the model of the internals of PINQ, and the overall
semantics of the system. We begin by describing the components of the pro-
tected system, and then give the overall model of Featherweight PINQ by giving
a probabilistic semantics (as a probabilistic labelled transition system) to the
combination of a client program and a protected system.

4.1 The Protected System

Global Privacy Budget The first component of the protected system is the
global privacy budget. This is a non-negative real number representing the re-
maining privacy budget. The idea is that if we begin with initial budget b then
Featherweight PINQ will enforce b-differential privacy. The global budget is
decremented as queries are computed, and queries are denied if they would cause
the budget to become negative. In PINQ the budget is associated with a given
data source. In our model we assume that there is only one data source, and
hence only one budget. Further, PINQ allows the budget to be divided up and
passed down to subcomputations. This does not fundamentally change the ex-
pressiveness of PINQ since, as we show later, we are free to extend Featherweight
PINQ with the ability to query the global budget directly. Thus any particular
strategy for dividing the global budget between subcomputations can be easily
programmed.

The Table Environment The other data component of the protected system
is the table environment, which maps each table variable to the table it denotes,
together with a record of the scaling factor, which is a measure of the stability of
the table relative to the initial data set. We define this precisely below. Formally
we define a table as power-set of records, P(Record), a protected table is a pair
of a table with its scaling factor:

ProtectedTable
def
= Table×N

4.2 The Featherweight PINQ Transition System

Featherweight PINQ is defined by combining a client program with the protected
system to form the states of a probabilistic transition system.

Definition 3 (Featherweight PINQ States). The states (otherwise known
as configurations) of Featherweight PINQ, ranged over by C, C′ etc., are triples
of the form 〈P,E,B〉 where P is a client program state, E ∈ TVar→ ProtectedTable
is the table environment, and B ∈ R+ is the global budget.

There is a family of possible initial states, indexed by the distinguished input
table, and the initial budget. We define these by assuming the existence of a



distinguished table variable, input , which we initialise with the input table, while
all other table variables are initialised with the empty table:

Definition 4 (Initial configuration).

Init(T,B)
def
= 〈P0, ET , B〉 where ET (tv) ,

{
(T, 1) if tv = input

({}, 0) otherwise.

The operational semantics of featherweight PINQ can now be given:

Definition 5 (Semantics). The operational semantics of configurations is given

by a probabilistic labelled transition relation with transitions of the form C
a−→p C

′

where a ∈ Act
def
= {τ,⊥}∪

⋃
n∈N Valn, and (probability) p ∈ [0, 1]. The definition

is given by cases in Figure 1.

Silent
P

τ−→ P ′

〈P,E,B〉 τ−→1 〈P ′, E,B〉

Assign
P

tv :=F (tv1,...,tvn)−−−−−−−−−−−→ P ′

〈P,E,B〉 τ−→1 〈P ′, E[tv 7→ (T ′, s)], B〉
where


E(tv i) = (Ti, si), i ∈ {1,..., n}
stability(F ) = (c1,..., cn)

s =
∑n
i=1 ci × si

T ′ = JF K(T1,..., Tn)

Query⊥
P

query(tv,f,
#»
Q,ε) ? ⊥−−−−−−−−−−−−→ P ′

〈P,E,B〉 ⊥−→1 〈P ′, E,B〉
where

{
E(tv) = (T, s)

ε · s > B

Query
P

query(tv,f,
#»
Q,ε) ? #»v−−−−−−−−−−−−→ P ′

〈P,E,B〉
#»v−→p 〈P ′, E,B − s · ε〉

where


E(tv) = (T, s), ε · s ≤ B

codomain(f) = {1,..., n} #»v ∈ Valn

Ti = {s | s ∈ T, f(s) = i}, i ∈ {1,..., n}
p =

∏n
i=1 Pr[Qi(ε, Ti) = vi]

Fig. 1. Operational semantics

We note at this point that some of the primitives have not yet been defined
(e.g. stability in the Assign rule), and that the rules of the system do not, a
priori, define a probabilistic transition system. We will elaborate these points in
what follows. We begin by explaining the rules in turn.

Assign When a program issues an assignment command tv := F (tv1, . . . , tvn),
the value of the stored table for tv is updated in the obvious way. We must also
record the scaling factor of the table thus computed. The scaling factor is com-
puted from the scaling factors of the tables for tv1, . . . , tvn, and the stability of
the transformation f . We assume a mapping J·K from formal function identifiers
F to the actual table transformation functions JF K of corresponding arity.

Definition 6. A table transformation f of arity n has stability (c1, . . . , cn) if
for all i ∈ {1, . . . , n}, we have

|f(T1, . . . , Ti, . . . , Tn)	 f(T1, . . . , T
′
i , . . . Tn)| ≤ ci × |Ti 	 T ′i |



This is the n-ary generalisation of McSherry’s definition [9], and bounds the
size change in a result in terms of the size change of its argument. This is made
more explicit in the following:

Lemma 1. If f has stability (c1, . . . , cn) then |f(T1, . . . , Tn)	 f(T ′1, . . . , T
′
n)| ≤∑n

i (ci × |Ti 	 T ′i |)
Note that not all functions have a finite stability. An example of this is the

database join operation (essentially the cartesian product); adding one new el-
ement to one argument will add k new elements to the result, where k is the
size of the other argument. Thus there is no static bound on the number of
elements that may be added. Thus PINQ (and hence Featherweight PINQ) sup-
ports only transformation operations which have a finite stability. Table 4.2 illus-
trates the stability of some of the transformations that are introduced in PINQ.
The variant of the join operation, Join∗ deterministically produces bounded
numbers of join elements. For the purpose of this paper we do not need to be
specific about the transformations. We simply assume the existence of a func-
tion stability which soundly returns the stability of a function identifier, i.e., if
stability(F ) = (c1, . . . , cn) then JF K has stability (c1, . . . , cn).

The transition rule for assignment in featherweight PINQ is thus

P
tv :=F (tv1,...,tvn)−−−−−−−−−−−→ P ′

〈P,E,B〉 τ−→1 〈P ′, E[tv 7→ (T ′, s)], B〉
where


E(tv i) = (Ti, si), i ∈ {1,..., n}
stability(F ) = (c1,..., cn)

s =
∑n
i=1 ci × si

T ′ = JF K(T1,..., Tn)

The label on the rule τ says that nothing (other than computational progress)
is observable from the execution of this computation step. The subscript 1 is the
probability with which this step occurs.

Transformation Stability

Select(T , maper) (1)
Where(T , predicate) (1)
GroupBy(T1, keyselector) (2)
Join*(T1,T2, n, m, keyselector1, keyselector2) (n,m)
Intersect(T1,T2) (1,1)
Union(T1,T2) (1,1)
Partition(T , keyselector, keysList) (1)

Table 1. Transformation stability

Understanding the scaling factor Here we provide more intuition about
the scaling factor calculations, and explain some differences between the PINQ
implementation and the Featherweight PINQ model. As an example, suppose
we have a computation of a series of tables A–G depicted in Figure 2.

The figure represents a PINQ computation involving three unary transfor-
mations (producing B, C, and D), one binary transformation producing G, and
one partition operation (splitting C into E and F ). We have labelled the trans-
formation arcs with the stability constants of the respective transformations.
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Fig. 2. Transformations

s Calculation

A 1 Input table
B 2 s(A)× 2
C 1 s(A)× 3
D 10 s(B)× 5
E 3 s(C)
F 3 s(C)
G 22 s(D)× 1 + s(E)× 4

Fig. 3. Scaling factors (s)

What is the privacy cost of an ε differentially private query applied to, say, table
D? Since D is the result of two transformations on the input data, the privacy
cost is higher than just ε. The product of the sensitivities on the path from D
backwards to the input A provide the scaling factor for ε. In this case the scaling
factor for a query on D is 10. The remaining scaling factors are summarised in
the table in Figure 3.

The scaling factor is the stability of that specific table; it bounds the max-
imum possible change of the table as a result of a change in the input dataset,
assuming that it was produced using the same sequence of operations. The scal-
ing factor is computed from the stabilities of transformations that produced it.
The scaling factor for each protected table (except input table which has the scal-
ing factor one) is computed compositionally using the scaling factors (si) of all
the arguments and the sensitivities of corresponding transformation arguments
(ci) using the following formula: sA =

∑
i∈parent(A) ci × si

Figures 2 and 3 allow us to explain two key differences between PINQ and
our model:

1. In PINQ, the tree structure depicted in the figure is represented explicitly,
and scaling factors are calculated lazily: at the point where a query with
accuracy ε is made on a table it is necessary to calculate its scaling factor
s in order to determine the privacy cost s.ε. To do this the tree is traversed
from the query at the leaf back to the root, calculating the scaling factor
along the way. At the root the total privacy cost is then known and deducted
from the budget (providing the budget is sufficient). In Featherweight PINQ
the scaling factors of each table are computed eagerly, so the tree structure
is not traversed.

2. In Featherweight PINQ we restrict the partition operation to the leaves of the
tree, and combine it with the application of primitive queries to partitions.

The consequence of these two simplifications is that we do not need to represent
the PINQ computation tree at all – all computations are made locally at the
point at which a table is produced or queried.

Queries Parallel queries were described in detail in the previous section. When
a program issues a query is it represented as a parallel query and a possible
result – i.e. we model the query and the returned result as a single step. There
are two cases to consider, according to whether the budget is sufficient or not. If
the queried table T has scaling factor s then the cost of an ε query is s×ε. If this



is greater than the current global budget then the result is the exceptional value
⊥. This value is the observable result of the query, and it occurs with probability
1. On the other hand, if the budget is sufficient, then the vector of query results
#»v is returned with probability p =

∏
i Pr[Qi(ε, Ti) = vi] where Ti is the ith

partition of T . Note that p is indeed a probability, since the component queries
are independent.

5 Differential Privacy for Featherweight PINQ

In this section we prove that Featherweight PINQ is differentially private.
We begin by recapping the goals of differential privacy, before showing how to
specialise the definition to Featherweight PINQ. Doing this entails building a
trace semantics for Featherweight PINQ.

Differential privacy, guarantees that a data query mechanism (abstractly, a
randomized algorithm) behaves similarly on similar input databases. This “sim-
ilarity” is a quantitative measure ε on the difference in the information obtained
from any data set with or without any individual. When this difference is small,
the presence or absence of the individual in the data set is difficult to ascertain.

Definition 7. Mechanism f provides ε-differential privacy if for any two datasets
A and B that differ in one record (| A	B |= 1), and for any two possible out-

come f(A) and f(B), the following inequalities holds : e−ε ≤ Pr[(f(A)∈S)]
Pr[(f(B)∈S)] ≤ eε

In this definition, S is subset of the range of outcomes for f (S ⊆ Range(f))
and for similarity of outcomes we use the ratio between the probabilities of
observing outcomes Pr[(f(datasets) ∈ S)] when the analyses are executed on
any two similar datasets A and B. Finally for similarity of datasets hamming
distance is used as a metric. In this work we assume that the primitive query
mechanisms (and thus Featherweight PINQ) provide answers over a discrete
probability distribution, so that it is sufficient to consider S to be a singleton
set.

5.1 Trace semantics

The first step to instantiating the definition of differential privacy to Feather-
weight PINQ is to be able to view Featherweight PINQ as defining a probabilistic
function. In fact each client program gives rise to a family of probabilistic func-
tions, one for each length of computation that is observed. This is given by
building a trace semantics on top of the transition system for Featherweight
PINQ.

The semantics of Featherweight PINQ is a probabilistic labelled transition
system of the simplest kind: for each configuration C, the sum of all probabilities
of all transitions of C is equal to 1. The system is also deterministic, in the sense
that if C

a−→p1 C1 and C
a−→p2 C2 then p1 = p2 and C1 = C2. This makes it

particularly easy to lift the probabilistic transition system from single actions to
traces of actions:



Definition 8 (Trace semantics). Define the trace transitions ⇒ ⊆ Config×
Act∗× [0, 1]×Config inductively as follows: (i) C

[]
=⇒1 C where [] ∈ Act∗ is the

empty trace, and (ii) if C
a−→p C

′ and C′
t

=⇒q C
′′ then C

at
=⇒p.q C

′′

Traces inherit determinacy from the single transitions:

Proposition 1 (Traces are Deterministic). If C
t

=⇒p1 C1 and C
t

=⇒p2 C2

then p1 = p2 and C1 = C2

This follows by an easy induction on the trace, using the fact that the single
step transitions are similarly deterministic.

Lemma 2 (Traces are Probabilistic). Define

µ(C, t)
def
=

{
p if C

t
=⇒p C

′

0 otherwise.

For all configurations C, and all n > 0,∑
t∈Actn

µ(C, t) = 1

where Actn is the set of traces of length n.

The proof is a simple induction on n, using the proposition above. The lemma

says that whenever C
t

=⇒p, then p is the probability that you see trace t after
having observed size(t) steps of the computation of C. We will thus refer to the
probability of a given trace to mean the probability of producing that trace from
the given configuration among all traces of the same length. We denote this by

writing Pr[C
t

=⇒] = p when C
t

=⇒p.

Differential Privacy for Traces We are now in a position to specialise the def-
inition of differential privacy for Featherweight PINQ. How can we view Feath-
erweight PINQ as a probabilistic function? The probabilistic function is deter-
mined by the client program (which we have kept implicit but unconstrained),
the initial budget ε, and the length of trace n that is observed for any combina-
tion of these we define the function which maps a table T to trace t of length n

with probability p precisely when Pr[Init(T, ε)
t

=⇒] = p.
The instantiation of the differential privacy condition to Featherweight PINQ

is thus:

∀t, T, T ′, ε. if |T 	 T ′| = 1 then e−ε ≤ Pr[Init(T, ε)
t

=⇒]

Pr[Init(T ′, ε)
t

=⇒]

≤ eε

Towards a proof of this property we introduce some notation to reflect key
invariants between the pairs of computations (for T and T ′ respectively).

Definition 9 (Similarity). We define similarity relations ∼ between tables,
environments, and configurations as follows:

– For tables T and T ′, and s ∈ N define T ∼s T ′ (“T is s-similar to T ′”) if
and only if |T 	 T ′| ≤ s.



– For protected environments E and E′, define E ∼ E′ if and only if for all
tv , if E(tv) = (T, s) and E′(tv) = (T ′, s′) then s = s′ and T ∼s T ′.

– For configurations, define 〈P,E,B〉 ∼ 〈P ′, E′, B′〉 if and only if P = P ′,
E ∼ E′ and B = B′.

The configuration similarity relation captures the key invariant between the
two computations in our proof of differential privacy. First we need to show that
the invariant is established for the initial configurations:

Lemma 3. If T ∼1 T
′ then Init(T,B) ∼ Init(T ′, B).

This follows easily form the definition of the initial configuration. Now the
main theorem shows that this is maintained throughout the computation:

Theorem 1. If T ∼1 T
′ and Init(T,B)

t
=⇒p C, then Init(T ′, B)

t
=⇒q C

′ where
C ∼ C′ and p ≤ q. exp(B − ε) for some ε ≤ B.

The proof, an induction over the length of the trace, is given in Appendix A.

Corollary 1 (B-differential privacy). If T ∼1 T
′ and Pr[Init(T,B)

t
=⇒] = p

then Pr[Init(T ′, B)
t

=⇒] = q for some q such that p ≤ q · exp(B).

6 Related Work

The approach described in this paper owes much to the model used in the
formalisation developed in our recent work on personalised differential privacy
[6]. The idea to model the client program as an abstract labelled transition
system comes from that work. That work also shows how dynamic inputs can
be handled without major difficulties.

The closest other prior work is developed by Tschantz et al [12]. Their work
introduces a way to model interactive query mechanisms as a probabilistic au-
tomata, and develop bisimulation-based proof techniques for reasoning about the
differential privacy of such systems. As a running example they consider a sys-
tem “similar to PINQ”, and use it to demonstrate their proof techniques. From
our perspective their system is significantly different from PINQ in an number of
ways: (i) it does not model the transformation of data at all, but only queries on
unmodified input data, (ii) it models a system with a bounded amount of mem-
ory, and implements a mechanism which deletes data after it has been used for a
fixed number of queries (neither of which relate to the implementation of PINQ).
Regarding the proof techniques developed in [12], as previously noted in [6], a
key difference between our formalisation and theirs is that they model a passive
system which responds to external queries from the environment. In contrast,
our model includes the adaptive adversary (the client program) as an explicit
part of the configuration. In information-flow security (to which differential pri-
vacy is related) this difference in attacker models can be significant [14]. However
it may be possible to prove that the passive model of [12] is sound for the active
model described here (c.f. a similar result for interactive noninterference [2]).

Haeberlen et al [8] point out a number of flaws an covert channels in the PINQ
system. This may seem at odds with our claims for the soundness of PINQ, but



in fact all the flaws described are either covert timing channels (which we do
not attempt to model), flaws in PINQ’s implementations of encapsulation, or
failure to prevent unwanted side-effects, or combinations of these. Following this
analysis, Haeberlen et al introduce a completely different approach to program-
ming with differential privacy (an approach further developed and refined in [11]
[7]) based on statically tracking sensitivity through sensitivity-types. This non-
interactive approach is rigorously formalised and proven to provide differential
privacy.

Barthe et al [1] introduce a relational Hoare-logic for reasoning formally
about the differential privacy of algorithms. They include theorems relating to
sequential and parallel composition of queries in the style of those stated by
McSherry [9]. Unlike the present work, [1] does not rely on differentially private
primitives, but is able to prove differential privacy from first principles.

7 Limitation and Extension

In this section we discuss what we see as the main limitations of Feather-
weight PINQ in relation to the PINQ system. We also discuss some easy exten-
sions that become apparent from the proof of differential privacy.

Parallel Queries The form of parallel query that we model matches the infor-
mal description in [9], but is not as general as the construct found in the imple-
mentation. We believe that this is the main shortcoming in the Featherweight
PINQ model, as more general form is interesting, and thus its correctness is not
immediately obvious. (Whether the shortcoming has any practical significance in
the way one might write programs is less clear.) The difference was described in
Section 4 in connection with Figure 2, which depicts a partition operation which
is not supported by Featherweight PINQ since it is not immediately followed by
queries on the partitions. In fact the queries in PINQ need not be parallel at
all, but can be adaptive (i.e., a query on one partition can be used to influence
the choice of query on other partitions). This change is not easily supported by
a small change to our model since it does not seem to be implementable using
Featherweight PINQ’s simple history-free use of explicit scaling factors. A proof
of differential privacy for a more general protected system model encompassing
this is left for future work.

Extensions to the PINQ API We mention one extension to PINQ that
emerges from the details of the correctness proof. In PINQ, the budget and
the actual privacy cost of executing an ε differentially private query on some
intermediate table is not directly visible to the program:

“An analyst using PINQ is uncertain whether any request will be accepted
or rejected, and must simply hope that the underlying PINQAgents accept
all of their access requests.” [9](§3.6)

Recall that the key invariant that relates the two runs of the systems on neigh-
bouring data sets (Definition 9) states that the budgets and the scaling factors
in the respective environments are equal. This means that they contain no infor-
mation about the sensitive data. This, in turn, means that we can freely permit



the program to query them. This would allow the analyst to calculate the cost
of queries and to make accuracy decisions relative to the current privacy budget.

Here we briefly outline this extension. We add two new actions to the set of
program actions ProgAct, namely a query on the sensitivity of a table variable
of the form tv ? s, where s ∈ N, and a query on the global budget, budget ? v
where r ∈ R≥0. The transition rules are given in Figure 4.

Query sensitivity
P

tv?s−−→ P ′

〈P,E,B〉 τ−→1 〈P ′, E,B〉
where E(tv) = (T, s)

Query budget
P

budget?B−−−−−→ P ′

〈P,E,B〉 τ−→1 〈P ′, E,B〉
Fig. 4. Budget- and Scaling-Factor-Query

8 Conclusion

We started by presenting some shortcomings(gaps) between the theory of dif-
ferential privacy and the implementation of PINQ framework. To verify privacy
assurance of analysis written in PINQ framework and to address the mentioned
concerns, we introduced an idealised model for the implementation of PINQ. In
the model, only PINQ’s internal implementation has direct access to the sensitive
data. An analysis written in this framework has indirect access to the protected
system by calling some limited well defined/crafted interface APIs. In addition
to the standard PINQ APIs, we extended the model with our own proposed
APIs responsible to retrieve scaling factor and the budget from the protected
environment. Furthermore we instantiated the definition of differential privacy
to prove any analysis constructed in this setting and its communications with
protected system would not violate the privacy guarantee promised by PINQ.

We believe that our model (and our general approach to modelling such sys-
tems) could be of benefit to formalise emerging variants on the PINQ framework,
such as wPINQ [10], or Streaming PINQ [13].
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A Proof of Theorem 1

Proof. Assume Init(T,B)
t

=⇒p C. We proceed by induction on the length of the
trace t, and by cases according to the last step of the trace.
Base case: t = []. In this case p = q = 1 and C = Init(T,B) and C′ =

Init(T ′, B). So ε = ε′ = 0 and C ∼ C′.
Inductive step: t = t1a. Suppose that Init(T,B)

t1=⇒p1 〈P1, E1, B1〉
a−→p2

〈P,E,B〉 = C, and hence that p = p1p2.
The induction hypothesis gives us q1, P1, E′1 and ε1 such that

Init(T ′, B)
t1=⇒q1 〈P1, E

′
1, B1〉 (1)

E1 ∼ E′1 (2)

p1 ≤ q1. exp(B − ε1) (3)

by cases that is applied to the rule as the last transition (〈P1, E1, B1〉
a−→p2

〈P,E,B〉) we have p2 = 1 except for query execution and that 〈P1, E
′
1, B1〉

a−→1 C
′

for some C′. In those cases it follows that p ≤ q · exp(B − ε) by taking ε = ε1
and using (3).

Case 1: Silent. In this case a = τ and P1
τ−→ P .

〈P1, E1, B1〉
τ−→1 C = 〈P1, E1, B1〉

〈P1, E
′
1, B1〉

τ−→1 C
′ = 〈P1, E

′
1, B1〉

It follows directly from (2) that C ∼ C′.
Case 2: Assign. Here P1

t:=F (t1,...,tn)−−−−−−−−−→ P , and so we have

C = 〈P,E1[tv 7→ (T, s)], B1〉
C′ = 〈P,E′1[tv 7→ (T ′, s)], B1〉



where for i ∈ (1, . . . , n)

E1(tv i) = (Ti, si)

E′1(tv i) = (T ′i , s
′
i)

stability(F ) = (c1, . . . , cn)

s =
∑
∑n

i

ci × si

T = JF K(T1, . . . , Tn)

T ′ = JF K(T ′1, . . . , T
′
n)

From (2) we have E1(tv i) ∼ E′1(tv i) which means si = s′i and Ti ∼si T ′i . Using
similarity definition and Lemma 1 we have T ∼s T ′ and hence we have C ∼ C′.
Case 3: Query. The result of query execution depends on the remained

budget and the sensitivity of the table that the query is executed on. If privacy
budget is insufficient an exception is thrown to inform the program about the
shortage of budget, otherwise each query in the list of queries will be executed
on its corresponding partition and the result of execution is returned as a list of
values, #»v .
Case 3.1: Query(run out of budget). Here we have a rule instance of the

form:

Query⊥
P

query(tv ,f,
#»
Q,ε) ? ⊥−−−−−−−−−−−−→ P ′

〈P,E,B〉 ⊥−→1 〈P ′, E,B〉
where

{
E(tv) = (T, s)

ε · s > B

In this case C ∼ C′ and is similar to silent case.
Case 3.2: Query. Similarly we have a rule instance of the form:

Query
P

query(tv ,f,
#»
Q,ε) ? #»v−−−−−−−−−−−−−→ P ′

〈P,E,B〉
#»v−→p 〈P ′, E,B − s · ε〉

where


E(tv) = (T, s), ε · s ≤ B
codomain(f) = {1,..., n} #»v ∈ Valn

Ti = {s | s ∈ T, f(s) = i}, i ∈ {1,..., n}
p =

∏n
i=1 Pr[Qi(ε, Ti) = vi]

Hence we have a transition : 〈P1, E1, B1〉
#»v−→p2 C = 〈P,E,B〉 and the analogous

transition : 〈P1, E
′
1, B1〉

#»v−→q2 C
′ = 〈P,E′, B〉. ε = ε1+(s ·ε2) is the value needed

for theorem 1.
For parallel queries on disjoint set we have the following equation:

Pr[P1
query(tv ,f,

#»
Q,ε) ? #»v−−−−−−−−−−−−−→ P ] =

n∏
i=1

Pr[Qi(s · ε2, Ti) = vi]

Here we need to show that the following inequality is valid:
n∏
i=1

Pr[Qi(s · ε2, Ti) = vi] ≤
n∏
i=1

Pr[Qi(s · ε2, T ′i ) = v′i]×
n∏
i=1

exp(ε2× | Ti − T ′i |)

From
∑n
i=1(| Ti − T ′i |) = s, we have

∏n
i=1 exp(ε2× | Ti − T ′i |) ≤ exp(ε2 × s)

which we conclude:
n∏
i=1

Pr[Qi(s · ε2, Ti) = vi] ≤
n∏
i=1

Pr[Qi(s · ε2, T ′i ) = v′i]× exp(ε2 · s)



These parallel queries provide (s · ε)-differential privacy which means:

p2 ≤ q2 · exp(ε2 · s)

Multiplying two sides of the previous inequality with (3) we get:

p1 · p2 ≤ q1 · q2 · exp(ε1) · exp(ε2 · s)

Knowing B1 = B − ε1 result in choosing ε to be ε = B − ε1 − (ε2 · s). Finally
it is easy to see C ∼ C′ as the proper reduction in the global budget is the only
change in the configuration.


