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Abstract: The role of inherent dynamics for the improvement of control strategies of 
robotic systems is studied. A mathematical formulation of the optimal control 
problem that is suitable for this investigation is proposed. In solving this problem 
closed-form expressions have been obtained for the optimal control strategies for n 
degrees-of-freedom robotic systems with passive (unpowered) drives and no 
restrictions upon their controlling stimuli, and with non-linear viscoelastic spring-
damper actuators. The obtained results can be used in designing optimal spring-
damper-like passive drives for robotic systems. 

 
 
 

 
 1. INTRODUCTION 

 
Today our knowledge in mechanics, control 
engineering, electronics and computer 
science is actively integrated into a new 
interdisciplinary science - mechatronics. 
One of the primary goals of mechatronics is 
to gain as many advantages as possible of 
an optimal interaction between the 
mechanical, control, electronic and 
computer subsystems. This leads to a need 
to study many fundamental problems of 
mechanics and control engineering, which 
can give deeper insight into this interaction 
(Stadler, 1995; Bolton, 1999). 

 
In this paper, the dynamics and optimal 
control problems are studied for robotic 
systems having passive actuators, e.g. 
springs, dampers, etc. The reasons for this 
study are as follows. Usually, the existing 
control systems for robots are designed 
under the assumption that a separate 
actuator governs each degree of freedom of 
the robot. This leads to complexity of the 
control system and to large energy 
consumption. It seems reasonable to attempt 
to simplify the control system of a robot by 
decreasing the number of actively controlled 
degrees of freedom. It can give great 



 

advantages to use different passive 
compliance elements like springs, dampers, 
brakes, etc. to control some degrees of 
freedom of a manipulator robot, e.g., during 
the performance of working tasks with 
periodic laws of motion (Akinfiev and 
Armada, 1998; Berbyuk and Kudyn, 1999). 
 
The idea of the utilisation of inherent 
dynamics and passive compliance elements 
in the modelling of the motion and study of 
control problems of robotic and biorobotic 
systems was partially exploited by several 
investigators. For example, Formal'sky  
(1996) proposed an approach for the control 
of a bipedal locomotion mechanism based 
on the utilization of active short duration 
pulses at advantageous time intervals while 
allowing natural passive dynamics during 
the remainder of the walk. Garcia, et al. 
(1998) demonstrated that a simple, 
uncontrolled two-link model, vaguely 
resembling human leg, could walk down a 
shallow slope, powered only by gravity. 
This model is the simplest special case of 
the passive-dynamic models pioneered by 
McGeer (1990). Adolfsson, et al. (1998) 
also studied the inherent dynamics of a 
bipedal mechanism with particular emphasis 
on the existence of stable three-dimensional 
gait in the absence of external, actively 
regulated, control. Mennito and Buehler 
(1996) and Hardarson, et al. (1998) have 
demonstrated new compliant articulated 
robot legs, which were constructed as a 
prototype for an autonomous robot 
quadruped.  
 
Previously Berbyuk, et al. (1998), have 
proposed an optimisation approach for the 
design of rotational spring-damper actuators 
providing the programmed goal-directed 
motion of a bipedal walking robot. The 
problem was formulated as an 
approximation procedure for the controlling 
torque acting at the joints of the robot 
during its optimal motion. The motion and 
the respective torques were determined by 
the solution of the optimal control problem 
for the dynamical system modelling the 
robot (Berbyuk, et al., 1999). 

 
In this paper the problem of control and 
optimisation of robotic systems having both 
active (powered) and passive (unpowered) 
drives is considered. These robotic systems 
are called semi-passively actuated. The 
closed-form expressions are determined for 
the optimal control laws for two types of 
semi-passively actuated robotic systems: an 
n degrees-of-freedom robotic system having 
no restrictions on the controlling stimuli of 
the passive drives, and a robotic system with 
non-linear viscoelastic spring-damper 
actuators. 
 
 
 2. STATEMENT OF THE PROBLEM 
 
Consider a manipulator robot with n 
degrees-of-freedom. Using the Lagrangian 
approach the controlled motion of the robot 
can be described by the following equations: 
 

)()(),()( tuqCqqBqqA =+           (1) 
 
Here ),...,,( 21 nqqqq =  is a vector of the 
generelized coordinates, ),...,,( 21 muuuu =  
is a vector of the controlling stimuli (forces, 
torques) generated by the active (powered) 
drives of the robotic system, 

)(),,(),( qCqqBqA  are given matrices. 
 
Assume that several springs, dampers and 
some other elements have been incorporated 
into the structure of the manipulator robot. 
These springs and dampers (passive drives) 
exert additional forces and/or torques due to 
the action of the external controlling forces 
upon the system and also due to motion of 
its respective parts. Assuming that the 
masses of the passive drives are negligibly 
small in comparison with the masses of 
other links of the system  the equations of 
motion of the semi-passively actuated 
manipulator robot can be written as follows: 
 

),()()()(),()( qqwqDtuqCqqBqqA  +=+ (2) 
 

Here ),...,,( 21 rwwww =  is a vector of the 
controlling stimuli of the passive drives, 



 

)(qD is a matrix which is determined by the 
structure of the passive drives. 
 
Usually some constraints and restrictions 
are imposed on the phase coordinates 

)(),( tqtq  , the controlling stimuli of the 
passive drives ),( qqw  , and the external 
control laws )(tu  of the system. These 
restrictions can be written in the following 
way: 
 
{ } [ ]TtQtqtq ,0,)(),( ∈∈                    (3) 
 

[ ]TtWqqw ,0,),( ∈∈         (4) 
 

[ ]TtUtu ,0,)( ∈∈         (5)   
 
In formulas (3) - (5), Q and U are given 
domains in the phase and control spaces of 
the system, respectively; W is a set of 
addmissible controlling stimuli determined 
by the structure of the passive drives; T is 
the duration of the controlled motion of the 
robotic system, e.g. the duration of a pick-
and-place operation. 
 
The differential equation (2) together with 
the restrictions (3)-(5) is called the 
mathematical model of the semi-passively 
actuated robotic system. This model can be 
used for many applications, e.g. for 
computer simulations of the motion of 
closed-loop chain manipulator robots with 
passive drives (Lidberg and Berbyuk, 2000), 
for the study of control strategies for the 
stable motion of bipedal locomotion 
systems with compliance elements at the 
joints (Berbyuk, 1996), etc. 
 
Assume that there exists a non-empty set of 
vector-functions  
 

[ ]{ }Ttqqwtutq ,0),,(),(),( ∈  
 
which satisfy the equation (2) and the 
constraints (3)-(5).  The following optimal 
control problem can be formulated. 
 
Problem A. Given a robotic system the 
controlled motion of which is described by 

equation (1). It is required to determine the 
vector-function of passive drives ),( qqw ∗ , 
the motion of the system )(tq∗  and the 
external controlling stimuli ),,( ∗∗∗ wqtu  
which alltogether satisfy the equation (2), 
the restrictions (3)-(5), and which minimize 
the given objective functional [ ])(tuΦ . 
 
As a result of the solution of Problem A the 
optimal structure of the robotic system 
having both powered and unpowered drives 
is designed. The external controlling stimuli 
for the system is also found which minimize 
the given objective functional. 
 
One of the primary goals for the 
incorporation of passive drives into the 
structure of robotic systems is an 
improvement of their control processes. It 
means that the validity of the following 
inequality is expected: 
 
[ ] [ ]),(),,( 00 ∗∗∗∗∗ Φ<Φ qtuwqtu  

 
where )(),( 00 tutq ∗∗  are the optimal 
motion and the controlling stimuli of the 
robotic system (1) obtained under the 
restrictions (3), (5). In this sense the solution 
of Problem A could help to estimate the 
limiting possibility of improvement of the 
external control strategies for robotic 
systems due to incorporation of different 
passive drives determined by the constraints 
(4) into their structure. 
 
In the general case to solve Problem A for 
robotic systems with many degrees-of-
freedom powerful numerical algorithms are 
needed. Futhermore, during the calculation 
of optimal control laws for a robotic system 
it is necessary to design at the same time the 
optimal structure of the passive drives 
taking into account the restriction (4). This 
can significantly increase the complexity of 
the computation. 
 
Problem A was solved previously by 
Berbyuk (1996, 1997, 1999) for a 2D model 
of a bipedal locomotion system having  
springs and pneumatic or hydraulic 



 

actuators at their joints. The obtained results 
can be used for design of optimal lower 
limb prostheses and locomotion machines 
having compliance elements at their legs. 
 
Closed-form solutions of Problem A 
obtained for some practically important 
cases are presented in the next paragraph of 
this paper. 
 
 

3. OPTIMAL PASSIVE DRIVES FOR 
GIVEN MOTION OF A ROBOTIC 
SYSTEM 

 
Below it is assumed that every degree-of-
freedom of the robotic system has one 
external drive and also one passive drive. It 
means that the parameters n, m and r which 
correspond to the dimensions of the vectors 
q(t), u(t) and ),( qqw  , respectively, are 
supposed to be equal. 
 
Let an admissible  motion )(00 tqq =  of the 
robotic system (1) be given. To execute this 
motion by the robotic system it is necessary 
to apply the following external controlling 
stimuli: 
 

)),()()(()( 00000
1

0 qqBqqAqCtu  += −      (6)   
 
For the same  motion )(00 tqq = the external 
controlling stimuli of the robotic system 
with passive drives can be calculated using 
the equation (2) and the formula (6). These 
controlling stimuli can be represented as 
follows: 
 

),()()()(),( 0000
1

00 qqwqDqCtuqtuw 

−−=  (7) 

 
where )(0 tu  is determined by the formula 
(6). 
 
Assume that there are no restrictions on the 
passive drives of the robotic system. Then 
from the formula (7) follows that the 
passive drives exerting the controlling 
stimuli of the kind 
 

[ ]TttuqCqDw ,0),()()( 000
1 ∈= −

∗         (8) 
 
are optimal ones. This is in the sense that 
the given motion )(00 tqq =  can be fully 
executed only by means of the controlling 
stimuli of the passive drives. 
 
Consider a manipulator robot having n 
degrees-of-freedom. Let the equation of its 
controlled motion be as follows: 
 

[ ]TttuqqBqqA ,0),(),()( ∈=+          (9) 
 
The external controlling stimuli are studied 
that transfer the robot from the initial phase 
state  
 

00 )0(,)0( qqqq  ==        (10) 
 
 
to the final phase state 
 

0)(,)( == TqqTq T
                          (11) 

 
Here )0,(),,( 00 Tqqq   are given points in 
the phase space of the system, and T is the 
duration of the control process. 
 
At the same time, assume that the robot has 
additional passive drives, namely non-linear 
visco-elastic spring-damper actuators in its 
structure. The mathematical model of the 
semi-passively actuated manipulator robot 
can be written as follows: 
 

),()(),()( qqwtuqqBqqA  +=+       (12) 
 

[ ]Ttqqkfqqw ,0,0),(),( ∈=+        (13) 
 
where the function ),( qqf   determines the 
inherent dynamics of the passive drives 
under the restriction (4) and k is a damper 
coefficient. 
 
To estimate the quality of the control 
processes the following objective functional 
is exploied 
 



 

[ ] ∫=Φ
T

dttutu
0

2)()(        (14) 

 
where 2/122

1 ))(...)(()( tututu n++= . 
 
In many cases this functional can be used to 
estimate the energy consumption needed for 
the controlled motion of the mechanical 
systems driven by the electromotors (Athans 
et al., 1963; Krasovskii, 1968). 
 
Let [ ]{ }Tttutq ,0),(),( 00 ∈  be any pair of 
functions that satisfy equation (9) and  
boundary conditions (10), (11). Then, as 
follows from equation (9), the functional 
(14) will be equal to  
 

[ ] ∫=Φ
T

o

dttutu 2
00 )()(       (15) 

 
where 
 

),()()()( 00000 qqBtqqAtu  +=      (16) 
 
It is assumed that the motion 

[ ]{ }Tttq ,0),(0 ∈  can also be realised by 
the considered semi-passively actuated 
robot. Using equations (12), (13), the 
external controlling stimuli are written as 
follows 
 

),()()( 0000 qqkftutuw +=       (17) 
 
where )(0 tu  is determined by the formula 
(16). 
 
For the control law (17) the objective 
functional will be equal to 
 

[ ] [ ]∫ +=Φ
T

w dttqtqkftutu
0

2
0000 )(),()()(   

 
This formula can also be written as follows: 
 
 
[ ] [ ] bkaktutuw 2)()( 2

00 ++Φ=Φ      (18) 
 

where  
 

∫=
T

dtqqfa
0

2
00 ),(   

 

∫=
T

dtqqftub
0

000 ),(),(         (19) 

 
)...(),(),( 0101000 nn fufuqqftu ++=  

 
It can be shown that the function (18) has a 
global minimum with respect to the damper 
coefficient k. The value of this minimum is 
equal to  
 

[ ] abtu /)( 2
0min −Φ=Φ        (20) 

 
for the following optimal damper coefficient 
 

abk /−=∗          (21) 
 
In the formulas (20) and (21) the parameters 
a and b are determined by the expressions 
(19). 
 
The above makes it possible to conclude 
that for a manipulator robot with n degrees-
of-freedom and for any motion 

[ ]{ }Tttq ,0),(0 ∈  satisfying the two-point 
boundary conditions (10), (11) the energy-
optimal non-linear visco-elastic spring-
damper actuators are determined by the 
formulas (13), (19), (21). 
 
As follows from (19) and (20) the decrease 
in energy consumption due to the 
incorporation of the optimal spring-damper 
actuators into the robot structure is equal to 
 
[ ]

∫∫








=Φ−Φ
TT

dtqqfdtqqftu

tu

0

2
00

2

0
000

min0

),(/),(),(

)(



 

 
This value depends only on the given 
motion [ ]{ }Tttq ,0),(0 ∈  and the function 

),( qqf  determining the inherent dynamics 
of the passive drives. 



 

Usually some restrictions are imposed on 
the external controlling stimuli )(tu . In this 
case the function ),( qqf  can not be choosen 
arbitrarily. Indeed, let us assume that the 
external controlling stimuli )(tu  are 
restricted by the constraint 
 

[ ]Ttutu ,0,)( max ∈≤      (22) 
 
with given positive number maxu  . Then as 
follows from the formulas (17) and (21) the 
function ),( qqf   must satisfy not only the 
restriction (4) but also the inequality 
 

[ ]Ttuaqqbftu ,0,/),()( max000 ∈≤−   
 
where atu ),(0 and b are determined by 
the expressions (16) and (19). 
 
Example. Consider a system the controlled 
motion of which is described by the 
equation 
 

)(tux =         (23) 
 
and the restriction 
 

[ ]Ttutu ,0,)( 0 ∈≤       (24) 
 
Let the given motion of the system be 
determined by the formula 
 

[ ]TttutVxtx ,0,2/)( 2
000 ∈−+=      (25) 

 
where 000 ,, uVx  are given parameters, 
and TuV 00 = . 
 
For the motion (25) the objective function 
(14) is equal to 
 
[ ] Tutu 2

0)( =Φ        (26) 
 
Consider the same system but with an 
additional visco-elastic damper-like passive 
drive. The equations of motion of the 
obtained semi-passively actuated system are 
as follows 

0)(),()( =++= txkwxwtux       (27) 
 
where k is the damping coefficient of the 
passive drive. 
 
The control stimuly needed to execute the 
motion (25) by this system  can be written 
by the formula 
 

000 )()( utuVktuw −−=          (28) 
 
and the respective value of objective 
function (14) is equal to 
 

[ ]∫ −−=Φ
T

o
w dtutuVk 2

000 )(        (29) 

 
The function )(kwΦ  has a global minimum 
in parameter  k . This minimum is equal to 
 

4/3 00
2
0* VuTuw −=Φ                   (30) 

    
for the damping parameter value: 
 
 

)2/(3 00* Vuk =         (31) 
 
Using the formulas (28) and (31) the 
optimal external control stimuly for the 
semi-passively actuated system which 
satisfy the restriction  (24) can be written in 
the way 
 

00000* )2/()(3)( uVtuVutuw −−=           (32) 
 
As follows from (26) and (30) the decrease 
in energy consumption due to the 
incorporation of the optimal damper-like 
actuator into the system’s structure is equal 
to 
 
[ ] 4/3)( 00* Vutu w =Φ−Φ  

 
and this value depends only on the 
parameters of the given motion (25). 
 
 

 
 



 

4. DISCUSSION AND CONCLUSION 
 
In this paper the fundamental problem of 
optimal interaction between the controlling 
stimuli generated by active (powered) drives 
and passive (unpowered) drives of robotic 
systems has been studied. This problem is 
one among several general problems about 
the role of inherent dynamics in control of 
mechatronic systems. For instance, it is very 
important to know how much the 
mechatronic system should be governed by 
the external drives and how much by the 
system’s inherent dynamics. 
 
A mathematical statement of the problem 
(Problem A) is proposed, which is suitable 
for studying the above problems for semi-
passively actuated n degrees-of-freedom 
robotic systems. This problem is formulated 
as an optimal control problem for an n 
degrees-of-freedom mechanical system 
modelling a semi-passively actuated robot. 
The interaction between the external 
controlling stimuli acting upon the robotic 
system and the control forces and/or torques 
exerted by its passive drives is considered. 
This is made by introducing the additional 
constraints imposed both on the phase 
coordinates and the controlling stimuli of 
the passive drives. The specification of 
these constraints (formula (4)) depends on 
the type and structure of the passive drives. 
Usually the constraint (4) is some additional 
differential equations describing the 
inherent dynamics of the passive drives 
incorporated into the structure of the robotic 
system. 
 
In the present paper the closed-form 
solution of Problem A has been obtained for 
two cases. First, for an arbitrary robotic 
system having n degrees-of-freedom 
without any restriction on the controlling 
stimuli for its passive drives. Second, for an 
arbitrary robotic system with n degrees-of-
freedom having non-linear visco-elastic 
spring-damper actuators. In both cases the 
motion of the robotic system is assumed to 
be specified in advance. 
 

The analysis of the obtained results shows 
that in several cases the incorporation of 
passive drives into the structure of a robotic 
system can decrease the energy 
consumption needed for the given motion of 
the system. 
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