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ABSTRACT 

 The objective of this study was to examine population structure in 

cottonmouths (Agkistrodon piscivorus) using Amplified Fragment Length 

Polymorphism (AFLP) and compare genetic and venom protein profiles in Texas. 

AFLP profiles using 622 fragments were generated for 105 individuals to understand 

the level of variation within Agkistrodon. In Texas, there was a significant lack of 

gene flow detected and support for the isolation of Concho Valley individuals. 

Cottonmouths showed the greatest genetic variation when compared to other 

Agkistrodon species but there was not complete support for two species of 

cottonmouths as currently proposed. RP-HPLC was used to examine venom protein 

profiles in 86 Texas cottonmouths. Relative peak heights were analyzed using PCA 

and the MANOVA demonstrated separation of populations based on profiles 

(p<0.001). Genetic and venom variation did not follow the same pattern indicating 

that there may be other selection pressures acting on the venom proteins.  
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INTRODUCTION 

 The cottonmouth or water moccasin, Agkistrodon piscivorus, is a semi-aquatic pit-

viper that occurs in the southeastern United States (Fig. 1). Owing to the large geographic 

range and observed morphological variation, the cottonmouth has been under systematic 

scrutiny the past 20 years to determine the number of species and the relationships among 

species in the Agkistrodon clade (Knight et al., 1992; Parkinson et al., 1997; Parkinson et al., 

2000). Currently, there are two proposed classifications. The historic view is that there is one 

species with three subspecies; Agkistrodon piscivorus piscivorus (eastern cottonmouth) found 

in Virginia, North Carolina, South Carolina, northern Georgia, and Alabama, A. piscivorus 

leucostoma (western cottonmouth) found in Texas, Arkansas, Missouri, Louisiana, 

Mississippi, and Alabama, and A. piscivorus conanti (Florida cottonmouth) found in Florida 

and southern Georgia (Gloyd and Conant, 1990; Knight et al., 1992; Castoe and Parkinson, 

2006). Mitochondrial DNA (mtDNA) data indicate that there are two monophyletic lineages, 

a Florida clade and a continental clade. (Guiher and Burbrink, 2008; Douglas et al., 2009). 

These two papers suggested that nuclear data be used to determine if there are in fact two 

species of cottonmouths in the United States.  

 The cottonmouth’s distribution in the United States extends into Texas where 

it occupies the eastern third of the state. It also inhabits the area along the Colorado 

River drainage which is what the Concho River connects with in west Texas (Fig. 

2). The Concho Valley cottonmouths are a disjunct population with the nearest 

population being 65 km (40 miles) away over land with no permanent water in 

between (Werler and Dixon, 2000). The nearest population following the river is on 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2	

      FIG. 

on its ta

either si

1. Distribution

axonomy. The 

ide of the dash

A. piscivo

n map of the c

three subspeci

hed line (Follo

orus leucostom

cottonmouth, A

ies are shown 

ws Werler and

0 km 

ma A. pisc

 

Agkistrodon pis

as patterns and

d Dixon, 2000;

500 km 

civorus piscivo

scivorus, show

d the proposed

; Campbell and

rus A. pis

wing the two cu

d species split 

d Lamar, 2004

scivorus conan

urrent views 

would be on 

4).

nti

 



 

 
 

 

      F

show

(Foll

IG. 2. Texa

wing the dis

lows Werle

10 km 

s distributi

sjunct popu

r and Dixon

Concho V

00 km 200 km

on map of t

lation in th

n, 2000).

Valley

m 

3 

the cottonm

he Concho V

mouth, Agki

Valley in w

istrodon pis

west-central 

 

scivorus, 

Texas 

 



 

4 

the Colorado River approximately 230 km (140 miles) away. The average home 

range of individuals in this species is small enough that gene flow would not be 

expected between populations unless they were in continuous contact (Roth, 2005). 

Most of the previous genetic studies on A. piscivorus have had few samples from 

Texas, none have included the western limit in the Concho Valley, and nearly all 

have used mitochondrial DNA to determine phylogeographic relationships (Knight 

et al., 1992; Guiher and Burbrink, 2008; Douglas et al., 2009). In my study, two 

different approaches were used to examine variability in cottonmouths. The first, 

was Amplified Fragment Length Polymorphism (AFLP) data that made it possible to 

examine gene flow directly between this presumably isolated population in west 

Texas and the remainder of individuals in Texas as well as look at population 

structure in the entire species. The second approach was venom protein variation 

among populations that was only used to compare populations in Texas.  

 Genetic variation among the cottonmouths was determined using AFLP which 

is a predominately nuclear DNA marker. AFLP selectively amplifies certain parts of 

the genome that can then be compared among snakes to examine gene flow, 

variation, and the population structure (Vos et al., 1995; Bensch and Akesson, 2005; 

Meudt and Clarke, 2006). AFLP has been used more often in recent years and, 

although it is not reliable when examining relationships at larger taxonomic levels 

(Giannasi et al., 2001; Ogden and Thorpe, 2002; Campbell et al., 2003; Simmons et 

al., 2007), it is very reliable when comparing organisms at the population and 

species level (Creer et al., 2004; Mendelson and Simons, 2006; Althoff et al., 2007; 

Makowsky et al., 2009). This technique has been attempted on three populations of 
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cottonmouths in Florida with marginal success due to small sample area and a 

limited number of primer combinations (Roarke, 2003). My study sampled the entire 

range of the species and used six more primer combinations to avoid the problems 

from Roarke’s study (2003). The advantage of AFLP is that it works by creating an 

anonymous multilocus DNA profile for each individual based on the fragments that 

are generated. This means that no prior knowledge is needed to use this technique. 

The disadvantage is that it is not possible to know where in the genome the fragment 

comes from or what the sequence is (Vos et al., 1995). AFLP is a reliable and 

reproducible method that allows profiles to be compared between individuals run at 

different times as well as in different labs (Savelkoul et al., 1999). It is a cheap and 

effective way to elucidate relationships among populations and is able to detect 

subtle structure that may not be picked up using other techniques such as gene 

sequencing (Bensh and Akesson, 2005). 

 A technique that has not been applied to cottonmouths is to examine variation 

in venom proteins and put that variation into context with patterns revealed by 

molecular data. Snake venom is a highly stable liquid that can handle many different 

types of treatment and still remain viable as a research tool (Munekiyo and 

Mackessy, 1998). Venom variation has two main sources: genetic or ecological. Due 

to the function of venom, studies tend to focus on the ecological side in relation to 

diet. The venom proteins are coded for genetically, but ecological studies assess 

how well the venom subdues the prey rather than understanding the proteins 

individually. A smaller number of studies have looked at interspecific and 

intraspecific venom variation and how it matches with phylogenetic studies (Daltry 
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et. al., 1996; Wuster et al., 1999; Fox and Serrano, 2008). Daltry et al. (1996) were 

able to eliminate all variables except for diet as the cause of venom variation. 

Several studies have demonstrated geographic variation within a species in venom 

proteins and profiles (Creer et al., 2003; Alape-Giron et al., 2008). Different species 

of snakes within a genus also show variation with weak correlation to genetic 

variation and in some instances may resolve species boundaries such as those seen 

in vipers in the genus Bitis that are found in Africa (Calvete et al., 2007). Few 

studies have examined venom variation in a species even though it has great medical 

implications with regards to antivenin production (Gutierrez et al., 2010). 

 Geographic, ontological, and dietary differences could all play a role in 

leading to variation in snake venoms among individuals and populations (Chippaux 

et al., 1991; Sasa, 1999; Eskew et al., 2009; Gibbs and Mackessy, 2009). With the 

cottonmouth, diet may be very important. They are generalists in their feeding 

behavior across the range, but smaller populations may be specializing on certain 

food items such as frogs or mice (Gloyd and Conant, 1990). The venom of pygmy 

rattlesnakes was shown to be most effective on a single prey item. For populations 

that fed on multiple prey, venom was not highly effective on a single prey type. 

Rather, it was sufficient for multiple prey types (Gibbs and Mackessy, 2009). 

Kanavage et al. (2006) demonstrated that there was variation between individual 

western diamondback rattlesnakes (Crotalus atrox) both geographically and 

ontologically using reverse-phase high performance liquid chromatography (RP-

HPLC). With species as widespread as the cottonmouth or western diamondback, 

venom variation could play a key role in the effectiveness of antivenin use. 
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Currently, antivenin is produced by milking snakes, pooling the venom, and then 

creating the antivenin (Kanavage et al., 2006). If a person was bitten by a snake in 

Texas, and the antivenin was produced using venom from snakes from Florida there 

could be problems associated with its use. This would occur if the proteins used to 

make the antivenin did not match the proteins in the snake bite. The antivenin would 

not neutralize all of the proteins in the snake bite. This could also be the case if a 

juvenile snake bit someone and antivenin produced using adult snake venom was 

used.  

 Venom is under direct natural selection pressure due to diet and other 

environmental factors. Because they are proteins, they also have a genetic 

component (in their expression). The natural selection pressure may be too great to 

allow there to be a correlation between genetic variation and venom variation. If 

there is no correlation, then that implies the natural selection forces in the 

environment, such as diet, are causing the variation in venom and it is not simply 

lack of gene flow. Venom protein variation was used as another tool to examine the 

variation in cottonmouths, but only performed within Texas. Variation in venom 

samples has not previously been quantified in this way. These data were directly 

compared to the variation exhibited in the AFLP profiles to test the hypothesis that 

protein variation is congruent with genetic variation.  

 The first objective of this study included evaluating the proposed elevation of 

the Florida cottonmouth subspecies to test the hypothesis that they are two distinct 

species. The second objective was to look at population structure and gene flow in 

Texas to determine if the Concho Valley population is genetically isolated based on 
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its current geographic isolation. I tested the hypothesis that there would be little to 

no gene flow but the level of genetic variation should be similar to other populations 

in Texas. The final objective was to compare genetic and venom variation in Texas 

to test the hypothesis that patterns of venom variation match patterns of genetic 

variation.  
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MATERIALS AND METHODS 

Sample Collection: 

 Snakes collected include cottonmouths as well as copperheads and 

rattlesnakes that were used as outgroups for the analysis (Appendix 1). They were 

collected throughout Texas under permit number SPR-0390-029. In locations in 

which voucher specimens were allowed, 1-3 specimens were sacrificed and placed in 

the Angelo State Natural History Collection (ASNHC) at Angelo State University 

(ASU) in San Angelo, TX once demographic data and tissues were collected. All 

other snakes were released at the collection location after data, blood, and venom 

samples were collected. All snakes were handled humanely and carefully to 

maximize safety for both the collector and the snake. Snakes were initially captured 

using tongs and then placed in 5-7 gallon buckets for secure transport to a location 

to handle the snakes and safely collect data. All available and accessible locations in 

a given area were sampled in the morning and at night to maximize the number of 

snakes captured. Captured snakes were maintained in a cool dark area to minimize 

stress.   

 Demographic data including head length, snout-to-vent length (SVL), tail 

length, sex, weight, and relative age was collected. Length measurements were 

determined using a squeeze box (Quinn and Jones, 1974). Weight was determined 

using a scale and relative age was determined based on yellow coloration on the tail. 

A snake with yellow under the tail is considered less than three years old (Eskew et 

al., 2009) and snakes with less than a 45cm SVL were considered juveniles (Ford et 

al., 2004). The snake was then placed in an acrylic tube and the sex was determined 
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using a cloacal probe. After this information was collected, approximately 1 cc of 

blood was taken from the caudal vein using an insulin syringe. This was stored in a 

modified Tris-EDTA Longmire lysis buffer and placed at -80°C (Longmire et al., 

1997). The modifications were that the NaCl was removed and the SDS (Sodium 

dodecyl sulfate) was increased from 0.5% to 1.0%. To collect venom, the snake was 

manipulated until its head was outside the tube. The snake’s head was placed near a 

sterile collection cup and the snake was allowed to voluntarily bite and inject venom 

into the cup. The venom was collected and stored at -80°C. The snake was then 

either sacrificed using Nembutal and placed in the ASNHC or released back at the 

site of capture.  

 To supplement samples from outside of Texas, tissue loans were used. For the 

analysis, 75 cottonmouths (Agkistrodon piscivorus) (Fig. 3), 24 copperheads (A. 

contortrix), 2 Mexican cantils (A. bilineatus), 2 Taylor’s cantils (A. taylori), 1 

western diamond-backed rattlesnake (Crotalus atrox), and 1 black-tailed rattlesnake 

(C. molossus) were used (Appendix 2). This sample represented all four species 

within Agkistrodon and at least two individuals of all currently recognized 

subspecies of cottonmouths and copperheads.  

Amplified Fragment Length Polymorphism Analysis: 

 Whole genomic DNA was extracted using a Qiagen DNA extraction kit 

(Valencia, CA) following the protocol in the kit for blood or tissue samples stored in 

lysis buffer or 95% ethanol. A 50 µL elution was obtained for each sample and then 

5 µL of that was used in a 0.8% agarose gel to determine quality of DNA extracted. 

For AFLP, the DNA must not be degraded because the process requires the entire 
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genome to be intact. If there is degradation, the homoplasy risk increases (Robinson 

and Harris, 1999). 

 To quantify the amount of DNA extracted, the Quant-iT ds DNA BR assay kit 

was used (Invitrogen, Carlsbad, California). This made it possible to determine how 

much DNA would be needed for the AFLP protocol that followed Phillips et al. 

(2007) based on modifications from Vos et al. (1995) who initially described the 

method. Restriction enzymes (EcoRI, AseI, and TaqI) were used to digest 

approximately 200 ng of total genomic DNA into fragments of different lengths. 

Generally, only two restriction enzymes are used and all primer combinations are 

created based on those. For this study, there were three restriction enzymes so each 

sample underwent two separate protocols (EcoRI and AseI; EcoRI and TaqI).    

For this analysis, there were a total of nine primer combinations used in the 

cottonmouth analyses and eight used in the analysis with all taxa. Each sample in 

the analysis had two treatments because there were three total restriction enzymes 

used. All of them used 20 units of EcoRI (New England Biolabs, Ipswich, 

Massachusetts) which was used as the end to attach the fluorescent label in the final 

step. Each sample then was subjected to two different treatments.  One treatment 

used 20 units of AseI (New England Biolabs, Ipswich, Massachusetts) as the second 

enzyme and the other treatment used 20 units of TaqI (New England Biolabs, 

Ipswich, Massachusetts) as the second enzyme. For all restriction digestions, 1X 

enzyme buffer was added to the reaction and the restriction digest was placed at 37 

ºC for three hours. Next, 75 pmoles of the appropriate enzyme adapter was ligated to 

the ends of the fragments that were created by the restriction digest using T4 DNA 
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Ligase and 4 µL of 10X Ligase Buffer (New England Biolabs, Ipswich, 

Massachusetts). The reaction was incubated at 16 ºC for 16 hours and then diluted 

with 160 µL of 10mM Tris HCl which results in the creation of “sticky ends” on the 

fragments.  

The sticky ends provided a region for the PCR (polymerase chain reaction) 

primers to bind and begin synthesizing the double stranded fragments. The first 

PCR, called the pre-selective step, decreased the number of fragments because of an 

additional base pair on the primer. With the additional base, the number of 

fragments was reduced to approximately 1/16 of those that were initially created in 

the restriction digest (Meudt and Clarke, 2007). The pre-selective step was 

conducted by taking 10 µL of the ligation reaction product and combining that with 

15 pmoles of each of the pre-selective primers, 1.5 mM MgCl2, 2.5 units of Taq 

DNA polymerase, 1X Taq buffer, and 0.8 mM deoxynucleoside triphosphates for a 

total reaction volume of 50 µL. This reaction was amplified in the thermal cycler 

(MyCycler, BioRad) which was programmed to go through the following protocol: 

initial step at 72 ºC for 60 seconds, 20 cycles of amplification (denaturation 94 ºC 

for 50 seconds, anneal at 56 ºC for 60 seconds and extension at 72 ºC for two 

minutes) followed by a final extension at 72 ºC for five minutes.   

The second PCR, the selective step, lowered the number of fragments even 

more depending on how many bases were added to the primer. This step also 

attached a fluorescent dye onto each fragment for detection by the Beckman-Coulter 

CEQ 800 Genetic Analysis System (Beckman-Coulter, Inc., Fullerton, California). 

Before this step, 10 µL of the pre-selective reaction was diluted into10mM Tris HCl. 
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For the selective PCR, a 25 µL reaction volume was used that contained 5 pmoles of 

each of the selective primers, 1.5mM MgCl2, 1.25 units of Taq DNA polymerase, 1X 

Taq buffer, 1.2 mM deoxynucleoside triphosphates and 5 µL of the diluted pre-

selective reaction. This was amplified in the thermal cycler (MyCycler, BioRad) 

which was programmed to go through the following protocol: initial step at 72 ºC 

for 60 seconds, one cycle of amplification (denaturation 94 ºC for 50 seconds, 

anneal at 65 ºC for 60 seconds and extension at 72 ºC for two minutes) followed by 

12 touchdown cycles just as the first except that the annealing temperature was 

lowered by 0.7 ºC each time. After this, there were 23 cycles of amplification 

(denaturation 94 ºC for 50 seconds, anneal at 56 ºC for 60 seconds and extension at 

72 ºC for two minutes) followed by a final extension at 72 ºC for five minutes.  

Restriction enzymes and primer combinations are listed in Table 1. A total of 

nine combinations were used to yield a large number of fragments to give an 

accurate measure of polymorphic loci in the genome. Bonin et al. (2007) suggested 

that at least 200 total fragments be used in an AFLP analysis to be able to show 

population structure. In essence, the more fragments that are scored, the higher the 

resolution and the better statistical support there should be for the analyses 

(Albertson et al., 1999; Ogden and Thorpe, 2002; Bensch and Akesson, 2005). The 

fragments in the selective PCR reactions were separated by loading 0.8 µL of the 

reaction with 0.25 µL of 400 base pair (bp) size standard in the CEQ8000 

(Beckman-Coulter, Inc., Fullerton, California). The fragments were scored as 

present (1) or absent (0) using the software available on the CEQ8000. Once the 

initial scoring was complete, 
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      TABLE 1. List of restriction enzymes, adapters, pre-selective primer, and 

selective primer sequences for the PCR used in the AFLP analysis of cottonmouths 

and outgroup taxa. Asterisk (*) indicates the primer with the fluorescent label 

attached. Primers used in combination with EcoRI-CAC are indicated with † and 

those used with EcoRI-CAT are indicated by ‡. TaqI-TTG was only used in the 

cottonmouth analysis. 

Name Sequence 
Restriction Enzymes  
     EcoRI 5’-…G|AATC…-3’ 
     AseI 5’-…AT|TAAT-3’ 
     TaqI 5’-…T|CGA…-3’ 
Adapters  
     EcoRI 5’-CTCGTAGACTGCGTACC-3’ 

3’-CATCTGACGCATGGTTAA-5’ 
     AseI 5’-GACGATGAGTCCTGA-3’ 

3’-TACTCAGGACTCAT-5’ 
     TaqI 5’-CGGTCAGGACTCAT-3’ 
 3’-AGTCCTGAGTAGCAG-5’ 
Pre-Selective Primers  
     EcoRI 5’-ACTGCGTACCAATTCC-3’ 
     AseI 5’-GATGAGTCCTGAGTAATT-3’ 
     TaqI 5’-ATGAGTCCTGACCGAT-3’ 
Selective Primers  
     EcoRI-CAC* 5’-ACTGCGTACCAATTCCAC-3’ 
     EcoRI-CAT* 5’-ACTGCGTACCAATTCCAT-3’ 
     AseI-TAG† 5’-GATGAGTCCTGAGTAATTAG-3’ 
     AseI-TCC† 5’-GATGAGTCCTGAGTAATTCC-3’ 
     AseI-TGA† 5’-GATGAGTCCTGAGTAATTGA-3’ 
     AseI-TGC‡ 5’-GATGAGTCCTGAGTAATTGC-3’ 
     AseI-TCT‡ 5’-GATGAGTCCTGAGTAATTCT-3’ 
     AseI-TAT‡ 5’-GATGAGTCCTGAGTAATTAT-3’ 
     TaqI-TCA‡ 5’-ATGAGTCCTGACCGATCA-3’ 
     TaqI-TTC‡ 5’-ATGAGTCCTGACCGATTC-3’ 
     TaqI-TTG‡ 5’-ATGAGTCCTGACCGATTG-3’ 
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fragments were evaluated by eye to ensure proper scoring of fragments. Any 

fragments that were scored inconsistently or were too close to other fragments were 

removed from the analysis leaving only unambiguous fragments. All individuals 

were scored in a random order to minimize the bias in the results (Bonin et al., 

2005; Bonin et al., 2007). 

Population Genetic Analysis: 

The binary matrix created for the fragments and individuals was imported 

into Microsoft Excel© (Appendix 3). The program GenAlEx ver. 6.41 was used to 

statistically analyze the data and visualize population structure (Peakall and Smouse, 

2006). GenAlEx initially created a genetic distance matrix based on Nei-Li distances 

from the binary matrix (Appendix 4) (Nei and Li, 1979). Both inter- and 

intraspecific Nei-Li genetic distances were calculated for all four species of 

Agkistrodon. That information was used in Principal Coordinate Analysis (PCoA) to 

visualize the population divergence. This analysis does not require groups be 

assigned before the test (a priori) and makes it possible to examine relationships in 

either two dimensional or three dimensional space depending on how many eigen 

vectors are used. PCoA was performed on all samples, then only cottonmouths, and 

finally on populations of cottonmouths from Texas to visualize the pattern at each 

level. The genetic distance matrix was also analyzed via Analysis of Molecular 

Variance (AMOVA). The AMOVA made it possible to compare variation between 

the populations to variation within the populations to determine if there was 

population differentiation based on the AFLP profiles for each snake.  
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For binary data, Фpt was calculated which is analogous to Fst. Both are 

measures of genetic differentiation between populations (Andrade et al., 2007). The 

Фpt values were calculated based on 1,000 replicates (α=0.05). This gave a statistical 

measure of gene flow among the populations and made it possible to examine the 

variation in Agkistrodon. The data matrix was then formatted for the program 

STRUCTURE ver. 2.3.3 (Pritchard et al., 2000; Falush et al.,2003; Falush et al., 

2007) using the program AFLP-SURV ver. 1.0 (Vekemans, 2002). STRUCTURE 

estimated the highest degree of genetic structure between the populations (Lee et al., 

2010). STRUCTURE calculated the number of populations (K) that were in the 

entire sample based on the genetic distance. For the STRUCTURE analysis, the 

admixture model was used with a burn in of 30,000 followed by 100,000 iterations. 

This was done for K values of 1-10 with 10 replications at each K value. The 

resulting log likelihood scores were averaged for each K. The admixture model was 

chosen because there was not any reason to assume gene flow was limited in these 

populations. If there was gene flow, STRUCTURE results should show the 

proportions of each individual’s genome that was shared with each of K populations. 

This meant that if STRUCTURE estimated that there were two populations, then you 

would see the proportion of markers that had their ancestry in each of the two 

populations. If there was no gene flow, there should not be individuals that have 

mixed markers. All markers will come from one of the proposed populations. With 

the log likelihood scores, I determined ∆K and then used that to find the true number 

of groups, K* (Evanno et al., 2005). The final test used to examine the population 

structure in all cottonmouths sampled was the Isolation by Distance (IBD) Mantel 
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test. This is a pairwise test that looks for correlation between the genetic matrix 

created in GenAlEx and a geographic distance matrix created based on the straight 

line distance between the points (Jensen et al., 2005).  

Phylogenetic Analysis: 

The binary matrix was imported into PAUP* (phylogenetic analysis using 

parsimony) ver. 4.0b10 (Swofford, 2001) to create a neighbor joining phylogram 

using the Nei-Li genetic distances (Saitou and Nei, 1987). The two rattlesnakes were 

used as outgroup taxa and the trees were statistically tested with 1,000 bootstrap 

pseudoreplicates. Parsimony methods were not used because they are not appropriate 

for binary AFLP data according to Robinson and Harris (1999) and Sullivan et al., 

(2004). For AFLP analysis, bands may be lost independently in more than one 

lineage and could result in poorly resolved trees if parsimony is used (Dasmahapatra 

et al., 2009). Moreover, analysis of discreet characters could result in the situation 

where a few markers determine the phylogenetic pattern whereas the neighbor-

joining analysis takes into account overall similarity (Dasmahapatra et al., 2009).  

Venom methods: 

 Venom protein variation was determined using reverse-phase high 

performance liquid chromatography (RP-HPLC). This technique uses a short column 

packed with beads that have a long carbon chain attached. The long carbon chains 

bind the proteins as they pass through the column. A gradient of methanol and water 

was used to break the bonds between the proteins and beads. As the percentage of 

methanol in solution goes up, more and more proteins are washed through the 

column and detected by a spectrophotometer (Kanavage et al., 2006). Using this 
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technique, it was possible to obtain a venom profile of absorbance peaks for each 

individual to compare among and within populations.  

 The venom samples were diluted into a 90% water/10% methanol solution to 

match starting conditions of the gradient. Trifluoroacetic acid (TFA) was added to 

lower the pH of the samples to prevent degradation of the column. Ten µL of venom 

was diluted into 1 mL of solution. Venom samples were filtered through Spin X 

centrifuge tubes (VWR, Radnor, PA) to remove any cell fragments or anything else 

that could clog the column. The samples were then placed in an HPLC auto sampler 

vial and loaded into the auto-sampler. Each sample ran through the HPLC machine 

(Waters Corp., Milford, MA) and separation column (SUPELCO SUPELCOSIL™ 

LC-18 Column 50x4.6mm 3µm, Sigma-Aldrich, St. Louis, MO) following the 

gradient (Table 2) with each sample giving absorbance readings at 210 nm and 280 

nm. The absorbance at 280 nm was used for the analysis. Each sample took 

approximately 60 minutes to run through the HPLC machine. There were 86 venom 

samples used and all of them came from cottonmouths from Texas. Duplicates were 

run for several individuals during the sampling as well as afterward to make sure 

results were repeatable. Samples that were collected over time from the same 

individual were also run to make sure there was not large variation in one 

individual’s venom over time.  

 The resulting venom profiles were analyzed using the Breeze v.3.30 software 

published by Waters Corp. (Milford, MA) because it produced data that could be 

exported and used for statistical analysis. The relative peak heights were compared 
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      TABLE 2. Gradient method used in the RP-HPLC of 86 cottonmouth venom samples in the SUPELCO 

C18 HPLC column. Each step is a linear gradient (Curve 6) in which the percentage of water and the 

percentage of methanol change the same amount for each unit of time. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Step Time (min) Flow Rate (mL/min) Water % Methanol % Curve 

 0 1 90 10  
1 1 1 90 10 6 
2 3 1 75 35 6 
3 33 1 35 75 6 
4 37 1 10 90 6 
5 47 1 10 90 6 
6 50 1 90 10 6 
7 60 1 90 10 6 
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via Principal Component Analysis (PCA) which does not need a priori groups 

defined using SYSTAT 12.0 (SYSTAT software, Inc., San Jose, California). The 

first two principal components were then graphed to visualize the venom variation 

pattern in Texas. MANOVA was used to statistically test the population means to 

determine the possibility of differentiating populations based on venom samples. 

This type of analysis to compare snake venom samples has not been done before.  
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RESULTS 

AFLP Results: 

 There were eight primer combinations used to create 622 AFLP fragments for 

all taxa. Of these, 498 (80%) were polymorphic and between 59 and 102 fragments 

were scored from each primer combination (Table 3). These fragments were used in 

GenAlEx which generated a PCoA for all 105 individuals used. The first three axes 

explained 83.7% of the variation (Fig. 4). In this PCoA, the two rattlesnake species 

were pulled out of the Agkistrodon plane based on the third axis. The cottonmouths 

had the largest number of polymorphic loci (44.5%) which can be visualized by the 

amount of spread in the cottonmouth cluster. The copperheads (32.53%) and Texas 

cottonmouths (31.36%) had a similar level of polymorphism as indicated by the 

similarity in shape of their clusters on the PCoA. Because there were only two 

samples from each of the two cantil species, it was not possible to determine the 

amount of variation seen in each of those species.  

 For the neighbor-joining analysis, branches recovered in more than 50% of 

bootstrap pseudoreplicates are shown (Fig. 5).  Branches with over 70% support 

were considered to be significantly supported (Felsenstein 1985; Hillis and Bull, 

1993).  This analysis was able to identify the species level relationships as currently 

understood, but there was little resolution within any of the species. When Nei-Li 

genetic distances were calculated, cottonmouths had the highest amount of 

intraspecific variation (6.4%) based on the Nei-Li genetic distances and the two 

cantil species were the closest in genetic distance (Table 4). 
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          TABLE 3. Number of fragments scored and the percentage of polymorphic loci for each of the eight  

   primers used for all samples in the analysis including outgroup taxa. 

Primer Combination # of Fragments Scored % of Fragments Polymorphic

EcoRI-CAC/AseI-TAG 87 86% 

EcoRI-CAC/AseI-TCC 60 80% 

EcoRI-CAC/AseI-TGA 87 85% 

EcoRI-CAT/AseI-TGC 62 79% 

EcoRI-CAT/AseI-TCT 101 87% 

EcoRI-CAT/AseI-TAT 102 65% 

EcoRI-CAT/TaqI-TCA 64 78% 

EcoRI-CAT/TaqI-TTC 59 83% 
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          TABLE 4. Average Nei-Li genetic distances within and between all four species of Agkistrodon based   

   on the AFLP data. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 A. piscivorus A. contortrix A. taylori A. bilineatus 

A. piscivorus 6.4%    

A. contortrix 17.8% 5.1%   

   A. taylori 17.6% 22.1% 3.9%  

A. bilineatus 18.3% 22% 9.5% 5.1% 
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After outgroups were removed, nine primer combinations were used and all 

cottonmouths were analyzed. There were 481 fragments used in the analysis with 

44.7% of them (215) polymorphic (Table 5). The average population level of 

polymorphism was 10.07% ± 1.42%. The AMOVA indicated that there was a 

significant lack of gene flow (Фpt=0.466, p<0.001). For this PCoA, only the first two 

axes were used (73.34% variation explained) but it did not show any clustering and 

there was an east to west pattern for all cottonmouths (Fig. 6). The Mantel Isolation 

by Distance test showed that genetic distance was correlated with geographic 

distance (r2=0.731, r=0.8551, p<0.0001; Fig. 7). Using STRUCTURE, a value of 

K=2 was determined for the number of groups within cottonmouths. There appeared 

to be a geographic cline based on the pattern observed in the STRUCTURE output 

(Fig. 8). Samples from the middle of the distribution had some proportion of their 

genes estimated to be from both of the populations. The neighbor-joining tree did 

not support the two groups of cottonmouths proposed in the previous studies, but 

there is support for two groups of cottonmouths -- an Eastern and a Western clade 

(Fig. 5). 

 For the final analysis, only cottonmouths from Texas were used. Once again, 

all nine primer combinations were used and it yielded 440 total fragments with 

31.36% polymorphic (138) (Table 6). The average population level of polymorphism 

was 8.23% ± 0.95%. The AMOVA analysis indicated significant lack of gene flow 

between populations (Фpt=0.348, p<0.001). The PCoA indicated that there was a 

cluster of individuals from the Concho Valley that was separated from the other 

populations. Individuals from the Llano River in Junction, Texas (Kimble Co.) were  
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TABLE 5. Number of fragments scored and the percentage of polymorphic loci for each of the nine 

primers used for all cottonmouth samples in the analysis. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Primer Combination # of Fragments Scored % of Fragments Polymorphic

EcoRI-CAC/AseI-TAG 56 55% 

EcoRI-CAC/AseI-TCC 32 28% 

EcoRI-CAC/AseI-TGA 54 54% 

EcoRI-CAT/AseI-TGC 39 31% 

EcoRI-CAT/AseI-TCT 76 47% 

EcoRI-CAT/AseI-TAT 76 16% 

EcoRI-CAT/TaqI-TCA 44 41% 

EcoRI-CAT/TaqI-TTC 45 62% 

EcoRI-CAT/TaqI-TTG 58 66% 
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TABLE 6. Number of fragments scored and the percentage of polymorphic loci 

for each of the nine primers used for only Texas cottonmouth samples. 

 

  

Primer Combination # of Fragments Scored % of Fragments 
Polymorphic 

EcoRI-CAC/AseI-TAG 47 32% 

EcoRI-CAC/AseI-TCC 31 19% 

EcoRI-CAC/AseI-TGA 47 45% 

EcoRI-CAT/AseI-TGC 35 23% 

EcoRI-CAT/AseI-TCT 72 36% 

EcoRI-CAT/AseI-TAT 73 11% 

EcoRI-CAT/TaqI-TCA 42 31% 

EcoRI-CAT/TaqI-TTC 41 41% 

EcoRI-CAT/TaqI-TTG 52 46% 
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also isolated (Fig. 9). STRUCTURE analysis indicated that there were 4 groups. One 

of the groups was comprised of solely the Concho Valley individuals  

and the other three groups were split up in east Texas. All groups had mixing of 

genes from other populations (Fig. 10). The neighbor-joining analysis did not detect 

any splits in Texas that would indicate separate populations (Fig. 5).  

Venom Protein RP-HPLC Results: 

 For the 86 cottonmouth venom samples used (Appendix 1), there were up to 

18 peaks scored for a single individual. All samples had the initial two large peaks 

and then contained between 9 and 16 additional peaks. Using the PCA scores for 

each sample, they were plotted on a graph with the 75% confidence interval around 

the mean (Fig. 11). Using the mean for each population, they were compared using 

three test statistics (Wilks’s Lambda, Pillai’s Trace, Hotelling-Lawley Trace) and all 

indicated that the populations were significantly different from each other 

(p=0.000). Overall, there was not a pattern visible in the PCA and the first two axes 

only explained 45.59% of the variation. 
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DISCUSSION 

 The AFLP data generated an overall pattern that is consistent with the current 

understanding of Agkistrodon. The PCoA (Fig. 4) reveals that the rattlesnakes fall 

out on a third axis relative to the four currently recognized species of Agkistrodon. 

Because it is not possible to statistically test a PCoA, a neighbor-joining phylogram 

was created. The species relationships were consistent with those of Parkinson et al. 

(2000). There was significant support for the monophyly of Agkistrodon as well as 

support for each of the four species currently recognized within Agkistrodon. The 

hypothesized relationships were confirmed with copperheads falling separately from 

the cottonmouth and cantil sister relationship. The neighbor-joining tree also 

showed that cantils and copperheads were monophyletic and that there was 

significant support for the two species of cantils. Within cottonmouths, there was 

significant support for two groups. There was a clade that included the Texas, 

Mississippi, and Louisiana individuals and a clade that included the Florida, 

Georgia, and South Carolina individuals. Within the second clade, there was also 

significant support for the Georgia and Florida individuals as a monophyletic group. 

There does not seem to be enough evidence from this study to conclude that 

there are two distinct cottonmouth species as currently proposed (Douglas et al., 

2009; Guiher and Burbrink, 2008). The two previous studies proposed that Florida 

cottonmouths were separate from the rest of the cottonmouths in the United States. 

The results from the AFLP data suggest an east to west split with the Florida 

individuals falling out with those that are on the East coast. There was also no 

evidence for three subspecies of cottonmouths based on the groupings returned by 



 

38 

STRUCTURE (Fig. 8) and the support in the neighbor-joining tree (Fig. 5). The 

Mantel test showed a significant correlation with geographic and genetic distance 

meaning that cottonmouths show isolation by distance (Fig. 7). Because the 

cottonmouths had this pattern, STRUCTURE should be interpreted with caution 

(Pritchard et al., 2000). STRUCTURE has a tendency to return a greater number of 

populations than what are actually present when the species shows isolation by 

distance (Frantz et al. 2009). STRUCTURE and the K* calculations both indicated 

two populations (Evanno et al. 2005). Based on the value of two populations, 

STRUCTURE was used to look at the genes shared between the population for the 

two populations it predicted (Falush et al., 2003). This indicated that markers were 

being shared from Florida to Texas (Fig. 8). The markers from the East coast found 

in Texas only just made it into the eastern side of Texas and markers from Texas 

found in the eastern populations made it into Florida but did not make it all the way 

throughout Florida. This suggests considerable gene flow across the range and does 

not support separation of the cottonmouth into two species. If STRUCTURE did 

overestimate the number of populations, this would yield the same interpretation. 

Therefore, the STRUCTURE analysis is useful as an interpretive tool even though it 

is possible that it could be predicting more populations than what are actually 

present.  

The PCoA for all cottonmouth samples also showed an East to West pattern 

in population structure (Fig. 9). There is also somewhat of a gap visible when 

looking at the distribution of cottonmouths in the PCoA (Figs. 4 and 9). This could 

mean that there are two groups within cottonmouths, but that seems unlikely given 
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the overall pattern of gene flow predicted by STRUCTURE and the fact that there 

are not any samples from the center of the distribution of cottonmouths where the 

gap appears to be. The pattern seen in the PCoA was the same relationship seen in 

the neighbor-joining analysis. There was significant support for two groups within 

cottonmouths (Fig. 5). There are several possibilities for the incongruence in the 

data and the difficulties in interpreting the results; one of the main ones being a lack 

of samples from each area of the distribution. Another possibility is that the current 

biogeographical hypothesis is not correct in explaining what actually happened since 

the last glaciation event. 

 Douglas et al. (2009) proposed that the cottonmouth/cantil ancestor rafted to 

northern Florida 3-4 million years ago. After this, it colonized southern Florida and 

during interglacial periods, it moved into the southeastern United States. During 

periods of glaciation, Florida served as a refuge for cottonmouths that was stable 

over long periods of time and allowed for the eventual speciation event that is 

proposed based on their mtDNA data. Douglas et al. (2009) did not assert that there 

are two distinct species, but found some support for the consideration of the Florida 

subspecies as a distinct species. Guiher and Burbrink (2008) also used mtDNA 

sequence and found similar results. North Carolina individuals fell out closer to 

individuals from Texas than from Florida in their parsimony tree. They also 

concluded that the Florida cottonmouth might be a separate species but did not have 

enough evidence to elevate it. The phylogenetic trees presented in these two papers 

were consistent with one another, but are not consistent with my findings.  
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 The inconsistencies may have been a result of the samples collected for 

cottonmouths. The samples in my study did not cover the entire range and may not 

have sampled enough of the areas that are needed to clearly understand the 

population structure of cottonmouths. In Fig. 3, there are areas where samples were 

not collected that could be very important in understanding the level of gene flow in 

cottonmouths. The areas that are not adequately sampled can be found in the middle 

of the distribution (Alabama) and at the northeastern edge of the distribution (North 

Carolina and Virginia). In the PCoA for all cottonmouths, the gap located in the 

center may correspond with Alabama. If individuals from that area were added, they 

might fill the gap in both the PCoA analysis and the neighbor-joining tree. The 

results based on AFLP do not support the relationships based on the mtDNA data 

(Guiher and Burbrink, 2008; Douglas et al. 2009). When compared to the other 

members of the genus, the cottonmouth does show the highest level of genetic 

variation but it follows a geographic gradient as indicated by the Mantel test. In my 

study, the individuals from South Carolina were in the same group as the individuals 

from Florida and Georgia whereas in the previous studies they fell out with 

individuals from Texas and Mississippi. It is possible that the proposed species 

boundary could be farther north than presented in either Guiher and Burbrink, 

(2008) or Douglas et al. (2009) and would actually include the samples from South 

Carolina used in my study. The separation seen in my study based on AFLP does 

show evidence for an alternative biogeographic hypothesis than what was proposed 

by Dougles et al. (2009).  
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 If at any point in the cottonmouth’s history it was separated into geographic 

isolates, it does not appear that that split was between Florida and the rest of the 

United States. Considering the history proposed by Douglas et al. (2009), it seems 

possible that Texas could have also served as a refuge for cottonmouths during the 

glacial periods along with Florida. If this happened, the results from my AFLP study 

would be consistent with the expansion of the two refuge populations (Texas and 

Florida) of cottonmouth into the southeastern United States that came into secondary 

contact with each other resulting in the currently continuous distribution. Given the 

exchange of markers in the STRUCTURE results (Fig. 8), it appears that the time 

that they were separated was not sufficient to cause genetic or reproductive 

isolation. Once they came into contact, genes were shared and have moved across 

the range. Enough time may not have passed for the markers to make it into the 

eastern and western ends of the distribution. Based on the large integrade zone 

proposed by Gloyd and Conant (1990) and seen in Fig. 1, this would be a possible 

scenario. The neighbor-joining phylogram and the significant Фpt value from the 

AMOVA may be reflecting the historic separation whereas the PCoA and the 

STRUCTURE results are demonstrating the exchange of genes that has occurred 

since they have come back into contact. Overall, there does not appear to be enough 

evidence from the AFLP data to consider the Florida cottonmouth (A. piscivorus 

conanti) as a separate species of cottonmouth. Further samples need to be collected 

and other analyses such as nuclear gene sequencing need to be used to test the 

proposed history of the cottonmouth in the United States.  
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 In regard to gene flow and genetic variation of cottonmouths in Texas, the 

objective of the study was met. The population in the Concho Valley is isolated and 

exhibits less genetic variation than any other population in the state. The majority of 

the other populations that were sampled in Texas were from a much smaller 

geographic area than the area sampled in the Concho Valley but still had higher 

levels of genetic variation based on the visualization of populations in the PCoA 

(Fig. 9). The Concho Valley population is on the western limit of the range and is 

geographically isolated. Eckert et al. (2008) analyzed data from 134 studies and 

showed that 60-70% of plant and animal species had lower genetic variability at the 

periphery of the species’ distribution, especially when isolated.  

The pattern seen in the PCoA (Fig. 9) suggests either a founder event or 

bottleneck occurred in the Concho Valley as opposed to solely a fragmentation 

event. If it would have been strictly a fragmentation event, then the variation seen in 

the Concho Valley should be similar to that seen in other populations. A founder 

event would show the pattern seen in the PCoA because a few individuals with a 

limited gene pool would have invaded the Concho River system and then colonized 

the area. This would show low genetic variation over a relatively large geographic 

area. The bottleneck could have occurred in conjunction with a fragmentation event. 

Historically, there were at least eight springs south of the headwater springs of the 

South Concho River (Brune, 1975). These springs would have connected the Concho 

Valley with the San Saba River near Menard, Texas (Menard Co.). Given the close 

proximity of the one individual from the headwaters of the San Saba to those in the 

Concho Valley in the PCoA (Fig. 9), it is possible that the drying period over the 
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last 200 years has slowly shrunk the western population of cottonmouths. Now all 

that remain are those isolated in the Concho Valley and the population at the head of 

the San Saba River.  

 The STRUCTURE results showed there were 4 groups within Texas, one of 

which was the Concho Valley population. The other three groups represent 

geographic areas in Texas. There are more shared characters between the three 

eastern groups than in the Concho Valley population (Fig. 10). This, along with the 

significant Фpt value indicates that the population has recently become genetically 

isolated. To understand the history of cottonmouths in the Concho Valley, a more 

thorough sample will be needed from areas directly surrounding the Concho Valley. 

This would make it possible to determine if cottonmouths entered the area from the 

south when there were other springs that extended the South Concho River or if they 

entered from the Colorado River and traveled upstream into the Concho River 

system. 

 The results of the analysis of the venom samples from Texas were not 

consistent with the genetic variation as expected. At best, it was possible to 

differentiate populations based on venom samples. Beyond that result, no pattern 

was discernable other than the lack of any pattern at all. Because only Texas 

samples were used in the study, it is not possible to draw conclusions for the entire 

species. However, it appears that there is not much venom variability in 

cottonmouths in Texas. There are several possible explanations for this. First, 

venom is under direct natural selection pressures based on diet which restricts 

variability (Daltry et al., 1996; Wuster et al.1999; Fox and Serrano, 2008). 
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Cottonmouths are generalist feeders and have been known to eat mice, fish, lizards, 

and frogs. Based on the dietary breadth of cottonmouths, the venom may have to be 

less specialized (Gibbs and Mackessy, 2009). It would be in the snake’s best interest 

to have venom that is effective on several prey types as opposed to one type. This 

could explain the lack of variation in Texas.  

A second possible reason for low venom variability that is somewhat related 

to the first is that the type of proteins required in a venom sample may be similar 

(Chippaux et al., 1991). Venom samples contain many enzymes in them, particularly 

proteases. If a venom sample does not have “housekeeping” proteins contained 

within it, the proteins may degrade each other causing the venom to be ineffective in 

neutralizing a prey item. This would force the venom samples to be similar.  

The final possibility for little variation seen is that this method is not useful 

for examining venom variation. As mentioned previously, this method of comparing 

relative peak heights has not been used to try to examine variation in venom samples 

before. Each peak in the profile could potentially be many proteins causing there to 

be low resolution in trying to compare entire profiles at once. Trying to then 

compare variation to genetic variation has added complications. For instance, AFLP 

markers fall predominately in areas that are non-coding areas where there are not 

any genes (Cooper and Hausman, 2007). This is due to the fact that there are much 

more non-coding portions of the genome than there are coding portions. Venom 

proteins are coded for by genes that the AFLP markers are not likely measuring. 

Accurately comparing venom and genetic variation would require sequencing the 

genes that are coding for the proteins in the venom as well as the amino acid 
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sequence of each of the proteins and then measuring variation in that manner. The 

previous methods of looking at a particular protein or enzyme activities may be 

better suited for examining variation in a species (Alape-Giron et al., 2008). Further 

analyses on other species using this technique will be needed to evaluate its 

usefulness in comparing venom samples before it is possible to put the variation into 

a phylogenetic context.   
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APPENDIX I 

Specimens collected in Texas. An * indicates samples used in the AFLP analysis. ASK 

numbers are associated with the tissue vouchers and ASNHC numbers are the specimen 

vouchers. An † indicates samples used in the venom analysis. 

ASK Snake ID ASNHC Species County UTM Block Northing Easting 

9044* JLS 11† 14264 Agkistrodon piscivorus Tom Green 14 R 3459114 342280 

 JLS 12† 14265 Agkistrodon piscivorus Tom Green 14 R 3459114 342280 

9045 JLS 13†  Agkistrodon piscivorus Walker 15 R 3404871 263071 

9046 JLS 14†  Agkistrodon piscivorus Walker 15 R 3404871 263071 

9047 JLS 16  Agkistrodon piscivorus Walker 15 R 3404871 263071 

9048* JLS 17†  Agkistrodon piscivorus Walker 15 R 3404871 263071 

9049* JLS 18†  Agkistrodon piscivorus Walker 15 R 3404871 263071 

9050* JLS 19†  Agkistrodon piscivorus Walker 15 R 3404871 263071 

9051 JLS 20†  Agkistrodon piscivorus Walker 15 R 3404871 263071 

9052 JLS 21†  Agkistrodon piscivorus Walker 15 R 3404871 263071 

9053* JLS 22†  Agkistrodon piscivorus Walker 15 R 3404871 263071 

9054 JLS 23†  Agkistrodon piscivorus Walker 15 R 3404871 263071 

9055* JLS 24†  Agkistrodon piscivorus Walker 15 R 3404871 263071 

9056* JLS 25  Agkistrodon contortrix Walker 15 R 3404871 263071 

9057 JLS 26  Agkistrodon contortrix Walker 15 R 3404871 263071 

9058* JLS 27  Agkistrodon contortrix Walker 15 R 3404871 263071 

9059* JLS 28  Agkistrodon contortrix Walker 15 R 3404871 263071 

9060 JLS 29  Agkistrodon contortrix Walker 15 R 3404871 263071 

9061* JLS 30  Agkistrodon contortrix Walker 15 R 3404871 263071 

9191 JLS 31 14266 Agkistrodon piscivorus Irion 14 R 3455779 338146 

9191 JLS 32† 14267 Agkistrodon piscivorus Irion 14 R 3456435 339203 

9062* JLS 33†  Agkistrodon piscivorus Gonzales 14 R 3273919 637144 

9063* JLS 34†  Agkistrodon piscivorus Gonzales 14 R 3273543 637158 

9064 JLS 35† 14281 Agkistrodon piscivorus Gonzales 14 R 3273528 637455 

9065* JLS 36†  Agkistrodon piscivorus Gonzales 14 R 3773919 637144 

9066* JLS 37† 14284 Agkistrodon piscivorus Gonzales 14 R 3773919 637144 

9067* JLS 38† 14286 Agkistrodon piscivorus Gonzales 14 R 3273993 636759 

9068* JLS 39† 14279 Agkistrodon piscivorus San Patricio 14 R 3111944 658172 

9069 JLS 40† 14282 Agkistrodon piscivorus San Patricio 14 R 3111695 663663 

9070 JLS 41†  Agkistrodon piscivorus San Patricio 14 R 3111695 663663 

9071* JLS 42†  Agkistrodon piscivorus San Patricio 14 R 3111695 663663 

9072* JLS 43†  Agkistrodon piscivorus San Patricio 14 R 3111695 663663 

9074 JLS 44† 14280 Agkistrodon piscivorus San Patricio 14 R 3111695 663663 

9075 JLS 45†  Agkistrodon piscivorus San Patricio 14 R 3111695 663663 

9193 JLS 46  Agkistrodon piscivorus Aransas 14 R 3129134 708193 

 JLS 47 14273 Agkistrodon contortrix Angelina 15 R 3442848 374178 

9076 JLS 48†  Agkistrodon piscivorus Angelina 15 R 3433297 374318 
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9077* JLS 49 14274 Agkistrodon contortrix Angelina 15 R 3442848 374178 

9078 JLS 50  Agkistrodon contortrix Jasper 15 R 3433297 374318 

9079 JLS 51†  Agkistrodon piscivorus Jasper 15 R 3433297 374318 

9080 JLS 52†  Agkistrodon piscivorus Jasper 15 R 3433297 374318 

9081 JLS 53† 14283 Agkistrodon piscivorus Jasper 15 R 3433297 374318 

9082* JLS 54†  Agkistrodon piscivorus Angelina 15 R 3440919 374830 

9083* JLS 55† 14276 Agkistrodon piscivorus Angelina 15 R 3440432 377952 

9084* JLS 56†  Agkistrodon piscivorus Jasper 15 R 3436807 378353 

9085* JLS 57†  Agkistrodon piscivorus San Augustine 15 R 3473297 381483 

9086 JLS 58†  Agkistrodon piscivorus San Augustine 15 R 3471690 381420 

9087 JLS 59  Agkistrodon contortrix Jasper 15 R 3433297 374318 

9088* JLS 60  Agkistrodon contortrix Angelina 15 R 3440426 377324 

9089 JLS 61† 14285 Agkistrodon piscivorus Jasper 15 R 3434758 377857 

9090 JLS 62†  Agkistrodon piscivorus Kimble 14 R 3373641 427083 

9091* JLS 63†  Agkistrodon piscivorus Kimble 14 R 3373641 427083 

9092* JLS 64†  Agkistrodon piscivorus Kimble 14 R 3373641 427083 

9093* JLS 65†  Agkistrodon piscivorus Kimble 14 R 3373641 427083 

9094 JLS 66†  Agkistrodon piscivorus Kimble 14 R 3373641 427083 

9095* JLS 67†  Agkistrodon piscivorus Smith 15 S 3570656 294259 

9096 JLS 68†  Agkistrodon piscivorus Smith 15 S 3570656 294259 

9097 JLS 69†  Agkistrodon piscivorus Smith 15 S 3608400 280324 

9098* JLS 70†  Agkistrodon piscivorus Smith 15 S 3608521 280410 

9099 JLS 71†  Agkistrodon piscivorus Smith 15 S 3609224 279945 

9194 JLS 72  Agkistrodon contortrix Smith 15 S 3603907 283090 

9100* JLS 73 14272 Agkistrodon contortrix Smith 15 S 3609143 281189 

9101* JLS 74† 14275 Agkistrodon piscivorus Smith 15 S 3608525 280398 

9102 JLS 75†  Agkistrodon piscivorus Smith 15 S 3570306 293924 

9103* JLS 76†  Agkistrodon piscivorus Smith 15 S 3570831 292801 

9104 JLS 77†  Agkistrodon piscivorus Smith 15 S 3607603 276345 

9105* JLS 78  Agkistrodon piscivorus Smith 15 S 3607603 276345 

9106 JLS 79  Agkistrodon piscivorus Smith 15 S 3607603 276345 

9107 JLS 80†  Agkistrodon piscivorus Tarrant 14 S 3635934 640930 

9108* JLS 81†  Agkistrodon piscivorus Tarrant 14 S 3635934 640930 

9109* JLS 82†  Agkistrodon piscivorus Tarrant 14 S 3635934 640930 

9110* JLS 83†  Agkistrodon piscivorus Tarrant 14 S 3635934 640930 

9112* JLS 85  Agkistrodon contortrix Pecos 13 R 3420696 780558 

9113 JLS 86  Agkistrodon contortrix Pecos 13 R 3420696 780558 

9114 JLS 87  Agkistrodon contortrix Pecos 13 R 3420696 780558 

9115 JLS 88  Agkistrodon contortrix Pecos 13 R 3420696 780558 

9116* JLS 89  Agkistrodon contortrix Pecos 13 R 3420696 780558 

9117* JLS 90  Crotalus atrox Pecos 13 R 3420696 780558 

9118* JLS 91  Crotalus molossus Pecos 13 R 3420696 780558 

9119* JLS 92  Agkistrodon contortrix Brewster 13 R 3257619 644841 

9121* JLS 94†  Agkistrodon piscivorus Tom Green 14 R 3458882 341789 

9122 JLS 95  Agkistrodon contortrix Jeff Davis 13 R 3377969 611799 
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9123* JLS 96  Agkistrodon contortrix Jeff Davis 13 R 3413020 612494 

9124* JLS 97  Agkistrodon contortrix Brown   No GPS Locality 

9125 JLS 98†  Agkistrodon piscivorus Menard 14 R 3411854 394058 

9126 JLS 99†  Agkistrodon piscivorus Menard 14 R 3411854 394058 

9127* JLS 100  Agkistrodon piscivorus Menard 14 R 3411854 394058 

9128 JLS 101†  Agkistrodon piscivorus Menard 14 R 3411854 394058 

9129 JLS 102†  Agkistrodon piscivorus Tom Green 14 R 3458882 341789 

9073 JLS 103†  Agkistrodon piscivorus Tom Green 14 R 3467218 344135 

9130 JLS 104  Crotalus lepidus Brewster 13 R 3265451 706748 

9131* PIT 114938716A†  Agkistrodon piscivorus Tom Green 14 R 3446925 357057 

9132 PIT 114409631A  Agkistrodon piscivorus Tom Green 14 R 3446925 357057 

9133 PIT 114625792A†  Agkistrodon piscivorus Tom Green 14 R 3446925 357057 

9134 PIT 114625691A†  Agkistrodon piscivorus Tom Green 14 R 3446925 357057 

9135 PIT 114626164A†  Agkistrodon piscivorus Tom Green 14 R 3446925 357057 

9137* PIT 115222097A  Agkistrodon piscivorus Tom Green 14 R 3446925 357057 

9141 PIT 114973520A†  Agkistrodon piscivorus Tom Green 14 R 3446925 357057 

9147 PIT 114625256A  Agkistrodon piscivorus Tom Green 14 R 3446925 357057 

9150* PIT 114979652A  Agkistrodon piscivorus Tom Green 14 R 3446925 357057 

9170 PIT 115235247A  Agkistrodon piscivorus Tom Green 14 R 3446925 357057 

9146 PIT 115313251A  Agkistrodon piscivorus Tom Green 14 R 3446925 357057 

9149 PIT 114956610A  Agkistrodon piscivorus Tom Green 14 R 3446925 357057 

9145* PIT 114952455A†  Agkistrodon piscivorus Tom Green 14 R 3446925 357057 

9144* PIT 115317467A†  Agkistrodon piscivorus Tom Green 14 R 3446925 357057 

9143* PIT 114967277A  Agkistrodon piscivorus Tom Green 14 R 3446925 357057 

9142 PIT 114966190A†  Agkistrodon piscivorus Tom Green 14 R 3446925 357057 

9145 PIT 114625445A†  Agkistrodon piscivorus Tom Green 14 R 3446925 357057 

N/A PIT 114969127A†  Agkistrodon piscivorus Tom Green 14 R 3445671 357544 

9157 PIT 114619730A†  Agkistrodon piscivorus Tom Green 14 R 3445671 357544 

9158 PIT 114624595A†  Agkistrodon piscivorus Tom Green 14 R 3445671 357544 

9154* PIT 114616122A†  Agkistrodon piscivorus Tom Green 14 R 3445671 357544 

9159 PIT 114629526A  Agkistrodon piscivorus Tom Green 14 R 3445671 357544 

9166 PIT 115136320A  Agkistrodon piscivorus Tom Green 14 R 3445671 357544 

9153 PIT 113932567A  Agkistrodon piscivorus Tom Green 14 R 3445671 357544 

9169* PIT 115322477A†  Agkistrodon piscivorus Tom Green 14 R 3445671 357544 

9167 PIT 115221756A†  Agkistrodon piscivorus Tom Green 14 R 3445671 357544 

9162 PIT 114945673A  Agkistrodon piscivorus Tom Green 14 R 3445671 357544 

9163 PIT 114948663A†  Agkistrodon piscivorus Tom Green 14 R 3445671 357544 

9156 PIT 114617670A  Agkistrodon piscivorus Tom Green 14 R 3445671 357544 

9164* PIT 114949391A†  Agkistrodon piscivorus Tom Green 14 R 3445671 357544 

9152* PIT 114954121A†  Agkistrodon piscivorus Tom Green 14 R 3445671 357544 

9161* PIT 114633364A†  Agkistrodon piscivorus Tom Green 14 R 3445671 357544 
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APPENDIX II 

Samples received via tissue loan, tissue purchases, or individuals borrowed from their owner. An * indicates samples used in 

the analysis, an ‡ indicates samples that were too degraded to use for AFLP analysis, and an † indicates a sample that did not 

work properly during the AFLP procedure. JLS is my field abbreviation, CLP indicates tissue loaned by Christopher Parkinson 

at the University of Central Florida, MF indicates tissue loaned from Michael Forstner from Texas State University, KW 

indicates tissue loaned by Ken Wray from Florida State University, BG indicates samples collected by Brian Greene at 

Missouri State University, NCSM indicates samples loaned from North Carolina Museum of Natural Sciences, TNHC 

indicates those loaned from the Texas Natural History Collection, LSUMZ indicates tissues loaned from Louisiana State 

University Museum of Natural Science, and samples with no abbreviation were purchased from the Venom Research Center. 

Specimen ID Species Country State County UTM  Northing Easting 
JLS 84* Agkistrodon taylori Mexico Tamaulipas No GPS Location 
CLP 140* Agkistrodon taylori Mexico Tamaulipas No GPS Location 
CLP 159* Agkistrodon piscivorus USA FL Collier 17R 2867258 468888 
CLP 160† Agkistrodon piscivorus USA FL Collier 17R 2864020 473753 
CLP 984* Agkistrodon piscivorus USA GA Grady 16R 3433116 773608 
CLP 986* Agkistrodon piscivorus USA GA Thomas 17R 3426148 228246 
CLP 989* Agkistrodon piscivorus USA GA Grady 16R 3433116 773608 
MF 2931† Agkistrodon piscivorus USA FL Collier 17R 2892830 465527 
MF 3943† Agkistrodon piscivorus USA TX Franklin 15S 3685245 301641 
MF 17541† Agkistrodon piscivorus USA TX Concho 14R 3488009 401969 
011-310-839* Agkistrodon contortrix USA TX Tarrant No GPS Location 
058-843-771* Agkistrodon contortrix USA TX Colorado No GPS Location 
058-557-565* Agkistrodon contortrix USA KY Wolf No GPS Location 
058-594-037* Agkistrodon contortrix USA MO Cole No GPS Location 
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058-375-116* Agkistrodon contortrix USA MO Boone No GPS Location 
011-367-560* Agkistrodon contortrix USA TX Midland No GPS Location 
058-625-027† Agkistrodon contortrix USA TX Pecos No GPS Location 
011-311-367* Agkistrodon piscivorus USA FL N/A No GPS Location 
010-820-563* Agkistrodon piscivorus USA TX Galveston No GPS Location 
010-325-361* Agkistrodon piscivorus USA TX Harris No GPS Location 
KW0548* Agkistrodon piscivorus USA FL Glades 17R 2980990 487878 
KW0549* Agkistrodon piscivorus USA FL Glades 17R 2988305 497561 
KW0602* Agkistrodon piscivorus USA FL Madison 17R 3374591 243791 
KW0655* Agkistrodon piscivorus USA FL Columbia 17R 3357972 358132 
KW0661* Agkistrodon piscivorus USA FL Columbia 17R 3350773 353292 
KW0670† Agkistrodon piscivorus USA FL Alachua 17R 3270599 378055 
KW0728* Agkistrodon piscivorus USA FL Baker 17R 3347081 361934 
KW0253† Agkistrodon piscivorus USA FL Levy 17R 3249658 302021 
KW0679* Agkistrodon piscivorus USA FL Levy 17R 3249658 302021 
KW0693† Agkistrodon piscivorus USA FL Levy 17R 3253174 335392 
KW0727* Agkistrodon piscivorus USA FL Jefferson 17R 3341918 788037 
KW0579* Agkistrodon piscivorus USA FL Jefferson 17R 3361897 214009 
KW0660* Agkistrodon piscivorus USA FL Liberty 16R 3378646 694603 
KW0662† Agkistrodon piscivorus USA FL Liberty 16R 3378646 694603 
KW0791* Agkistrodon piscivorus USA FL Wakulla 16R 3344522 731050 
KW0805* Agkistrodon piscivorus USA FL Wakulla 16R 3354557 743918 
KW0752† Agkistrodon piscivorus USA MS Lafayette 16S 3812469 280185 
KW0759* Agkistrodon piscivorus USA MS Lafayette 16S 3812469 280185 
KW0769* Agkistrodon piscivorus USA MS Lafayette 16S 3812469 280185 
KW0629* Agkistrodon piscivorus USA SC Barnwell 17S 3667094 440962 
KW0631* Agkistrodon piscivorus USA SC Barnwell 17S 3667094 440962 
KW0648* Agkistrodon piscivorus USA SC Jasper 17S 3579393 488555 
KW0623* Agkistrodon piscivorus USA SC Aiken 17S 3676256 430431 
BG1020 Agkistrodon piscivorus USA MO Stone 15S 4087699 447132 
BG4600† Agkistrodon piscivorus USA MO Stone 15S 4087699 447132 
BG4947† Agkistrodon piscivorus USA MO Stone 15S 4087699 447132 
BG0225 Agkistrodon piscivorus USA MO Stone 15S 4087699 447132 
BG2D41† Agkistrodon piscivorus USA MO Stone 15S 4087699 447132 
BG397E Agkistrodon piscivorus USA MO Stone 15S 4087699 447132 
BG4C53 Agkistrodon piscivorus USA MO Stone 15S 4087699 447132 
BG5E25 Agkistrodon piscivorus USA MO Stone 15S 4087699 447132 
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BG711E† Agkistrodon piscivorus USA MO Stone 15S 4087699 447132 
BG265B Agkistrodon piscivorus USA MO Stone 15S 4087699 447132 
NCSM 75992‡ Agkistrodon piscivorus USA NC Moore 17S 3887970 630020 
TNHC 65313* Agkistrodon piscivorus USA TX Fort Bend 15R 3252039 243601 
TNHC 65358* Agkistrodon piscivorus USA TX Jefferson 15R 3299012 388744 
TNHC 66514* Agkistrodon piscivorus USA TX Chambers 15R 3283335 356025 
TNHC 68394‡ Agkistrodon piscivorus USA TX Kimble 14R 3373641 427083 
TNHC 65357‡ Agkistrodon piscivorus USA TX Travis 14R 3356854 627207 
TNHC 74705‡ Agkistrodon piscivorus USA TX Travis 14R 3346294 638002 
TNHC 65352‡ Agkistrodon contortrix USA OK Pottawatomie 14S 3880774 678734 
TNHC 58828* Agkistrodon contortrix USA TX Edwards 14R 3299034 364753 
TNHC 61851* Agkistrodon contortrix USA TX Lee 14R 3353109 719479 
TNHC 84300* Agkistrodon contortrix USA TX Travis 14R 3369368 610454 
LSUMZ H-6416* Agkistrodon bilineatus Mexico No GPS Location 
LSUMZ H-20951* Agkistrodon bilineatus Mexico No GPS Location 
LSUMZ H-2240* Agkistrodon contortrix USA MS Forrest 16R 3451142 286596 
LSUMZ H-9234* Agkistrodon contortrix USA IL Jersey 15S 4320257 712483 
LSUMZ H-18955‡ Agkistrodon contortrix USA KS Elk 14S 4148918 743703 
LSUMZ H-18958‡ Agkistrodon contortrix USA KY Hardin No GPS Location 
LSUMZ H-18959* Agkistrodon contortrix USA KY Hart 16S 4127712 598361 
LSUMZ H-1888‡ Agkistrodon piscivorus USA NC Dare 18S 3900238 449837 
LSUMZ H-2020* Agkistrodon piscivorus USA MS Perry 16R 3437640 305743 
LSUMZ H-2367* Agkistrodon piscivorus USA MS Wilkinson 15R 3466137 667029 
LSUMZ H-2368* Agkistrodon piscivorus USA MS Wilkinson 15R 3466137 667029 
LSUMZ H-18953‡ Agkistrodon piscivorus USA KY Daviess No GPS Location 
LSUMZ H-19042* Agkistrodon piscivorus USA LA East Baton Rouge 15R 3375547 690463 
LSUMZ H-19697‡ Agkistrodon piscivorus USA FL Liberty 16R 3378646 694603 
LSUMZ H-19879‡ Agkistrodon piscivorus USA LA East Carroll 15S 3630649 671028 
LSUMZ H-19883‡ Agkistrodon piscivorus USA LA East Carroll 15S 3630649 671028 
LSUMZ H-20010‡ Agkistrodon piscivorus USA LA Lafourche 15R 3309355 715174 
LSUMZ H-20648‡ Agkistrodon piscivorus USA LA St. Tammany 15R 3362370 782106 
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APPENDIX III 

Nei-Li genetic distance matrix calculated in GenAlEx. All individuals are left justified and 

then the comparisons are read from left to right and then down. The comparisons are in the 

same order as the individuals in the left column. 

ASK 9082 0           
ASK 9083 19 0          
ASK 9084 21 22 0         
ASK 9085 21 18 20 0 
ASK 9044 34 37 35 41 0 
ASK 9121 32 29 27 31 14 0 
011-367-560 81 83 78 91 83 82 0 
KW 0548 82 85 77 91 80 80 43 0    
KW 0549 81 86 76 90 83 81 36 19 0   
KW 0579 74 75 65 77 78 76 46 38 33 0 
KW 0602 72 71 63 75 76 72 37 40 31 24 0 
KW 0679 67 66 62 74 73 67 54 47 46 41 33      

0 
KW 0727 82 83 77 86 88 86 56 60 59 44 44  

49 0          
KW 0728 84 87 79 91 88 86 51 50 47 40 40

 47 22 0         
KW 0791 70 73 69 79 80 78 47 50 49 40 36
 39 40 40 0         
KW 0805 64 67 61 71 74 72 47 50 47 34 36
 33 42 46 24 0       
CLP 159 65 66 62 74 69 67 38 45 40 39 37
 38 53 45 41 35 0       
ASK 9108 31 24 26 22 33 27 83 79 84 75 71
 64 79 81 73 65 64 0      
ASK 9109 32 27 33 27 36 34 88 84 87 84 76
 73 90 92 82 74 73 13 0     
ASK 9110 28 29 33 31 32 30 85 82 83 82 76
 73 86 90 76 74 69 23 26 0    
010-325-361 27 24 30 20 39 31 85 85 84 75 73
 74 83 87 79 71 72 28 31 25 0   
010-820-563 27 24 26 26 37 29 81 85 82 75 71
 68 85 83 79 71 68 30 33 35 24 0  
TNHC 66514 25 22 26 22 35 29 81 77 78 67 65
 70 85 85 73 69 66 28 25 29 20 26 0 
TNHC 65358 21 26 28 30 37 33 74 75 74 65 63
 64 77 79 71 69 60 34 39 33 24 30 22
 0            
TNHC 65313 24 23 25 31 26 22 80 78 81 76 68
 69 86 86 78 70 67 25 26 28 29 29 27
 29 0           
CLP 984 65 62 60 70 69 63 46 53 46 43 35
 46 53 51 39 35 28 62 69 65 66 70 64
 62 65 0         
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CLP 986 63 70 60 72 69 65 51 51 42 41 35
 36 49 45 41 37 30 66 75 67 74 70 70
 64 69 34 0         
CLP 989 67 68 62 74 67 67 45 49 44 39 37
 40 45 49 31 31 36 62 71 69 74 70 70
 66 67 28 30 0       
  
ASK 9048 32 27 33 33 40 34 84 88 85 80 74
 73 82 84 82 74 71 31 32 36 33 39 35
 39 30 67 73 71 0       
ASK 9049 33 32 36 34 41 39 77 81 78 67 65
 66 71 75 73 61 66 36 41 41 34 40 36
 38 31 62 62 64 23 0      
ASK 9050 27 22 26 30 29 27 81 81 82 69 67
 66 77 79 73 65 66 28 33 37 32 32 26
 32 23 64 66 62 21 26 0     
ASK 9053 24 25 27 31 22 22 84 82 85 76 72
 71 80 80 78 72 69 29 26 26 29 31 25
 33 20 67 69 67 24 27 19 0    
ASK 9055 32 33 33 35 36 40 79 80 77 76 70
 69 78 78 76 66 67 35 40 34 33 31 33
 35 30 67 65 65 32 25 31 26 0   
ASK 9154 35 36 34 40 9 17 86 81 82 81 77
 74 88 91 81 75 72 34 39 27 40 40 36
 38 27 72 68 70 39 42 32 23 35 0  
ASK 9150   44 43 39 45 20 22 89 84 83 78 78
 79 90 90 86 78 77 39 44 34 37 39 37
 41 36 73 71 69 42 47 35 30 40 19 0 
ASK 9143 34 31 27 33 16 12 86 80 81 74 70
 69 84 84 80 72 71 27 30 30 31 31 27
 33 22 67 67 65 32 35 25 16 36 15 16
 0            
ASK 9152 33 30 26 30 15 13 88 85 86 77 75
 70 83 83 79 71 72 24 29 25 28 30 30
 38 25 70 68 68 35 36 26 17 33 14 17
 9 0           
ASK 9161 34 31 31 33 12 10 83 80 83 80 74
 73 86 86 80 74 69 23 28 22 31 33 29
 33 22 67 67 65 34 37 29 16 32 11 16
 8 7 0          
ASK 9164  34 35 35 35 14 14 81 80 83 82 76
 73 86 86 80 74 69 27 32 22 31 33 31
 31 26 67 69 65 38 39 33 20 32 13 18
 12 11 4 0         
ASK 9169 32 33 33 33 10 14 85 82 85 80 78
 75 84 86 82 76 71 27 28 24 31 33 29
 33 26 69 71 67 32 35 29 16 32 15 16
 10 9 6 8 0        
ASK 9131 35 30 30 34 11 9 84 81 84 75 73
 72 87 87 81 73 70 26 29 27 32 30 26
 32 23 66 70 66 35 38 26 17 35 14 17
 9 8 5 9 7 0       
ASK 9145 44 39 41 45 22 20 92 89 92 87 82
 80 95 95 89 80 78 35 37 34 43 41 36
 43 32 73 78 75 44 47 37 26 44 23 27
 18 19 14 16 18 13 0      
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ASK 9144 32 31 31 35 12 12 83 80 83 82 76
 73 86 86 80 74 69 25 30 20 33 33 31
 33 22 67 67 65 34 39 29 16 30 9 16
 10 9 2 4 6 7 16 0     
ASK 9137 34 29 27 33 14 8 83 82 83 76 72
 73 86 88 82 72 71 27 32 24 29 31 27
 35 22 65 69 69 32 39 27 18 36 11 16
 10 9 6 10 10 5 16 6 0    
ASK 9091 38 37 33 33 26 24 83 82 85 84 80
 75 90 90 84 74 75 27 30 32 33 31 37
 45 30 71 73 71 42 45 39 28 42 29 32
 22 17 18 20 20 19 30 20 20 0  
  
ASK 9092 27 28 30 28 17 19 84 83 86 83 77
 70 85 85 77 71 68 20 23 23 32 30 32
 38 23 66 66 64 37 40 34 21 31 20 25
 17 14 11 13 13 16 25 11 17 17 0  
ASK 9093 29 32 30 32 21 25 78 73 76 75 73
 66 83 83 73 67 64 24 23 23 34 34 30
 34 27 62 68 62 37 40 34 23 35 24 29
 19 18 15 17 15 18 27 15 21 23 14 0 
LSUMZ H-19042 34 31 29 35 46 40 72 69 67 62
 54 53 70 72 58 52 59 31 36 40 31 35
 31 31 34 56 59 57 40 45 37 42 42 45
 48 38 39 40 42 44 39 48 42 38 44 39
 39 0          
  
ASK 9127 37 38 36 42 9 17 84 79 80 79 77
 72 87 89 79 73 72 34 37 29 38 40 34
 36 29 70 68 68 39 42 34 25 39 6 17
 11 16 11 13 13 14 23 11 13 27 18 22
 41 0           
KW 0762 33 34 34 40 37 35 75 74 74 67 65
 64 79 79 71 63 66 42 43 39 34 42 32
 38 31 64 72 70 41 44 32 35 43 38 41
 35 34 37 39 37 34 45 37 35 43 38 38
 37 36 0          
KW 0769 49 50 46 50 55 49 85 78 80 68 71
 71 83 81 69 66 67 48 51 51 48 52 42
 48 43 66 74 69 55 54 48 49 53 56 57
 49 50 51 55 53 46 59 53 49 57 52 52
 41 52 36 0         
LSUMZ H-2020 45 42 36 46 49 43 74 67 66 61
 57 60 73 77 67 57 62 42 41 45 44 44
 38 42 39 61 64 56 51 44 44 45 43 50
 53 43 46 45 47 49 44 53 47 45 50 44
 48 33 46 36 41 0      
  
LSUMZ H-2367 42 41 39 47 46 42 77 72 72 68
 66 63 76 78 70 60 63 43 46 46 43 43
 39 43 36 62 71 61 46 49 41 42 44 45
 48 42 45 44 44 46 43 52 42 40 49 39
 43 30 43 33 40 27 0     
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LSUMZ H-2368 38 39 33 41 48 44 74 68 68 66
 60 57 74 76 64 56 61 37 42 40 45 43
 39 43 34 60 63 55 46 47 41 40 40 45
 48 40 43 42 44 46 43 52 40 42 47 39
 41 30 43 33 37 27 26 0     
ASK 9062 31 32 30 36 25 27 79 79 80 73 71
 68 71 73 73 67 68 28 35 29 34 34 34
 32 25 66 62 56 35 34 28 23 29 26 27
 19 22 19 21 19 24 33 19 25 29 18 28
 41 22 36 52 40 41 39 0    
ASK 9063 28 29 27 31 20 22 81 82 83 74 72
 67 80 80 74 68 67 29 34 28 29 27 29
 31 26 65 61 59 32 33 23 22 30 23 22
 16 17 18 20 16 19 30 18 20 26 19 23
 38 19 31 47 43 40 38 15 0    
ASK 9065 42 39 35 41 36 36 91 89 94 84 80
 75 90 88 86 76 73 35 40 42 42 41 41
 49 36 68 79 77 42 45 41 34 42 43 42
 34 29 32 34 30 31 40 34 34 34 31 35 

42 41 45 57 49 52 50 35 34   0  
ASK 9066 24 23 25 25 22 22 77 78 81 76 70
 63 78 78 70 64 61 17 26 20 27 29 29
 29 22 59 63 59 30 29 25 22 28 23 28
 22 17 14 16 18 19 28 14 20 24 13 17 

34 23 33 47 41 40 36 19 14 30 0 
ASK 9067 25 22 26 24 27 25 82 85 86 73 71
 68 77 81 75 65 68 24 27 27 24 28 24
 34 25 62 72 66 27 26 24 21 33 32 33
 25 20 23 27 21 22 33 25 21 27 20 24
 35 30 34 46 40 39 43 22 19 29 11 0 
KW 0629 62 63 55 67 68 62 58 58 55 48 42
 55 60 58 42 44 59 63 68 66 65 69 63
 61 60 54 49 49 68 59 57 62 66 67 72
 64 63 64 68 70 65 74 66 64 70 67 65
 52 65 53 57 51 58 50 59 58 72 56 59
 0           
KW 0631 50 47 45 55 54 50 60 62 57 60 46
 49 54 58 48 46 53 47 54 52 53 53 49
 41 52 51 47 43 58 57 49 54 54 55 58
 50 53 52 54 54 51 60 52 52 60 53 53
 34 53 49 55 43 48 40 45 48 64 46 49 

36 0          
KW 0648 57 56 52 62 59 53 60 59 56 51 41
 38 57 57 49 47 54 58 63 61 60 60 58
 58 55 56 50 46 65 62 56 57 63 58 63
 55 56 57 57 61 58 67 57 57 61 56 62
 45 56 52 63 48 49 47 54 49 69 51 58 

47 37 0         
ASK 9095 14 15 17 19 32 26 80 80 81 70 66
 67 80 84 70 60 63 25 26 28 23 19 21
 23 18 59 65 65 30 33 25 24 32 33 38
 24 27 28 30 28 27 36 28 26 28 23 27
 26 31 31 43 37 34 34 27 26 34 26 23 

60 48 55 0        
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ASK 9098 21 18 24 24 37 33 76 81 82 73 67
 66 83 85 71 61 62 28 33 33 28 28 30
 30 25 60 64 64 39 36 32 29 31 36 47
 37 32 33 35 37 32 41 33 31 35 30 34
 31 40 40 52 44 41 43 34 33 41 27 28 

59 53 58 17 0       
ASK 9101 20 19 21 23 30 24 80 78 81 74 68
 65 84 86 72 64 65 25 24 26 27 25 23
 27 18 61 65 63 34 41 27 26 36 31 38
 30 27 28 30 28 25 36 26 24 30 23 25
 28 33 27 41 35 30 32 31 26 38 24 25 

60 46 51 14 21   0      
ASK 9103 19 22 20 26 31 27 75 73 76 71 65
 62 83 83 65 61 60 26 29 25 26 28 22
 20 21 58 64 62 35 40 26 29 37 32 37
 31 30 29 31 29 28 39 27 27 35 28 26
 27 32 26 38 38 33 29 30 25 37 21 26 

55 41 54 17 26 11 0     
ASK 9105 17 12 22 22 31 31 81 77 78 73 69
 64 83 81 69 65 62 24 27 27 26 22 24
 26 21 60 64 62 35 38 26 25 25 32 39
 31 28 29 31 29 30 39 27 31 35 24 26
 31 36 34 48 42 39 35 30 27 39 23 28 

63 49 54 15 18 17 20   0    
ASK 9068 28 27 29 25 30 28 85 88 89 76 76
 75 80 84 80 70 73 27 26 28 23 25 27
 37 24 67 75 69 30 31 29 24 34 37 34
 28 23 26 30 22 25 36 28 26 28 23 21
 40 35 37 49 45 42 44 27 22 32 20 11 

64 58 63 24 31 24 29 27 0   
ASK 9071 24 25 29 29 32 30 79 86 85 74 70
 69 80 80 74 64 65 27 30 24 27 25 31
 37 24 61 67 65 32 29 33 24 30 35 38
 30 27 26 28 28 27 36 26 26 28 23 23
 36 35 41 51 47 40 40 29 28 36 22 19 

66 56 61 20 23 26 31 25 12 0  
ASK 9072 25 28 30 34 27 27 79 77 78 81 75
 66 83 81 75 69 68 24 27 19 30 26 30
 36 25 64 66 64 37 40 32 23 27 26 33
 27 22 19 21 21 22 31 17 23 27 18 18
 39 28 36 50 46 41 39 24 23 37 17 24 

63 49 56 25 28 23 26 22 23 19 0 
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