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“The only place success comes before work is in the dictionary.” 

-Stubby Currence
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Abstract 

UNIVERSITY OF TURKU 

Faculty of Science and Engineering, Department of Chemistry, Laboratory of 
Materials Chemistry and Chemical Analysis 
 
NORRBO, ISABELLA: Synthetic hackmanites and their optical properties – 
from theory to applications 
Doctoral thesis, 147 p. 
March, 2019 
 

Synthetic hackmanite is a material that resembles the natural mineral, 

hackmanite. The structure of hackmanite, Na8Al6Si6O24(Cl,S)2, together with its 

simple preparation with solid state synthesis enables the doping of different ions 

into the hackmanite matrix, resulting in materials with a wide variety of optical 

properties. 

The synthetic hackmanites show photoluminescence, persistent luminescence 

and photochromism, when excited with different wavelengths. During this thesis 

work, a synthetic hackmanite material showing up-conversion luminescence was 

also prepared. 

This thesis focuses on the optical properties of synthetic hackmanites and their 

mechanisms. A detailed mechanism for persistent luminescence as well as 

photochromism in synthetic hackmanite materials is presented. Also, a new 

method called thermotenebrescence is introduced. This method can be used to 

study the energetics of photochromism. 

With wide and tunable optical properties, cheap production and the fact that 

synthetic hackmanites do not include any heavy metals or toxic elements, many 

possible applications can be presented for the materials and they are listed in the 

end of the thesis. 
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Tiivistelmä 

TURUN YLIOPISTO 

Luonnontieteiden ja tekniikan tiedekunta, Kemian laitos, Materiaalikemian ja 
kemiallisen analyysin laboratorio 
 
NORRBO, ISABELLA: Synteettiset hackmaniitit ja niiden optiset ominaisuudet 
– teoriasta käyttökohteisiin 
Väitöskirja, 147 s. 
Maaliskuu, 2019 
 

Synteettinen hackmaniitti on mineraali, joka muistuttaa luonnon mineraalia, 

hackmaniittia. Hackmaniitin rakenteen (Na8Al6Si6O24(Cl,S)2) ja helpon 

valmistusmenetelmän ansioista synteettisten hackmaniittien rakenteeseen 

voidaan seostaa erilaisia ioneja, jolloin materiaalille saadaan laaja kirjo erilaisia 

optisia ominaisuuksia. 

Kun synteettisiä hackmaniitteja viritetään eri aallonpituuksilla, voidaan 

havaita luminesenssia, viivästynyttä luminesenssia ja fotokromismia. Tämän 

väitöskirjatyön aikana valmistettiin myös synteettinen hackmaniitti, jossa 

havaitaan käänteisviritteistä luminesenssia. 

Tämä väitöskirja keskittyy synteettisten hackmaniittien optisiin 

ominaisuuksiin ja mekanismeihin ominaisuuksien takana. Yksityiskohtainen 

mekanismi esitetään sekä viivästyneelle luminesenssille että fotokromismille 

synteettisessä hackmaniittimateriaalissa. Lisäksi esitellään uusi menetelmä, jota 

kutsutaan termotenebresenssiksi. Tätä menetelmää voidaan käyttää tutkittaessa 

fotokromismin energetiikkaa. 

Koska synteettisillä hackmaniiteillä on monia, muokattavia optisia 

ominaisuuksia, niiden valmistus on halpaa eivätkä ne sisällä raskasmetalleja tai 

myrkyllisiä alkuaineita, voidaan niille esittää monia mahdollisia käyttökohteita. 

Tällaisia käyttökohteita on listattuna väitöskirjan lopussa. 
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□  vacancy in the chemical structure 

3D  three dimensional 

a.u.  arbitrary unit 

DFT  density functional theory 

Dist.  distribution 

DOS  density of states 

E  energy 

ET  trap energy 
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F level  energy level in photochromic material arising from defects 

FTIR  Fourier-transform infrared 

g  gravitational force 

ICP-MS inductively coupled plasma-mass spectrometry 
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k  Boltzmann constant 

LED  light emitting diode 

MAS  magic angle spinning 

MW  microwave 

NMR  nuclear magnetic resonance 

PBC  periodic boundary condition 
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TEM  transmission electron microscopy 

TL  thermoluminescence 

TT  thermotenebrescence 

U level  energy level in photochromic material arising from dopants or  

  impurities 

UV  ultraviolet 

VCl  chloride vacancy 

VO  oxygen vacancy 

VOM  volt-ohm-milliammeter 

XPD  X-ray powder diffraction 

XPS  X-ray photoelectron spectroscopy 

XRF  X-ray fluorescence 
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1. Introduction 

Synthetic hackmanites are materials that are prepared synthetically to mimic the 

natural mineral, hackmanite. The mineral hackmanite Na8Al6Si6O24(Cl,S)2 

belongs to the sodalite (Na8Al6Si6O24Cl2) family together with nosean 

Na8Al6Si6O24(SO4), haüyne (Na,Ca)4–8Al6Si6O24(SO4,S)1–2, lazurite 

(Na,Ca)8Al6Si6O24(SO4,S,Cl2), tugtupite Na8Be2Al2Si8O24(Cl,S)2, danalite 

Fe8Be6(Si6O24)S2, helvite Mn8Be6(Si6O24)S2 and genthelvite Zn8Be6(Si6O24)S2 

[1]. Hackmanite is defined as the photochromic, sulfur containing variety of 

sodalite [2–4]. Thus, photochromism i.e. the ability to change color when 

absorbing radiation of a suitable wavelength is characteristic to hackmanites. 

Despite the first official record of natural hackmanites being from 1834 [5], it 

was not until 1920s that the research of synthetic hackmanites started, led by 

Frans Jaeger [6] who studied synthetic hackmanites for their photochromic 

properties and was also able to solve their crystal structure. After Jager, there 

were only a couple of publications in 1950s, 1960s and 1970s (e.g. [7–9]) but 

none of the research groups published more than one publication. Weller 

published a few publications in the beginning of 2000s [10,11] but after that, there 

were again just single articles published (e.g. [12]). 

In photochromism, the material absorbs energy forming a color center. The 

energy absorption of the color center gives the material a different color from its 

original one. When the color center absorbs a photon with high enough energy, 

the color center discharges and the material loses its color. If not enough energy 
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is present to discharge the color center, the obtained color will last. This 

coloration and discoloration cycle can be repeated indefinitely. 

In addition to photochromism, synthetic hackmanites sometimes also exhibit 

photoluminescence (PL). During the course of this thesis work, strong persistent 

luminescence (PeL) was also obtained from synthetic hackmanites. PeL is in a 

way a similar property to photochromism, because also here energy is first 

absorbed, stored and then released. In PL, the energy absorption and the release 

happen successively, without the energy being stored in between [I,III]. 

This work focused on preparing synthetic hackmanite materials using solid 

state synthesis, since it is the most repeatable way to produce synthetic 

hackmanite materials with favorable optical properties despite the long synthesis 

time. The prepared materials were then studied for their optical properties and the 

mechanisms behind the properties [I-IV]. 

X-ray powder diffraction (XPD), X-ray fluorescence (XRF) and nuclear 

magnetic resonance (NMR) measurements were used, among other methods to 

characterize the prepared materials. After this, the luminescent and photochromic 

properties of the synthesized materials were studied using, for example, 

thermoluminescence (TL), luminance and reflectance measurements. 

During the course of the work, a mechanism was presented for both PeL and 

photochromism in synthetic hackmanite materials [II]. With the knowledge of the 

mechanism, new synthetic hackmanite materials were prepared with improved 

optical properties. As a result, a synthetic hackmanite material with a record long 

white PeL was synthesized and characterized [III]. 

With the new knowledge and new, versatile hackmanite materials several 

possible applications for synthetic hackmanite materials were proposed, 

including personal ultraviolet (UV) dose monitoring, [IV] use as a non-specific 

label in luminescence diagnostics [III] and a hackmanite based optical sensor with 

multiple possible signals from one material [V].   
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2. Literature review 

2.1. Hackmanite mineral 
Hackmanite is a mineral that can be found in nature, e.g. in Afghanistan [13], 

Brazil [14], Canada [15] and Greenland [3]. By definition, hackmanite is the 

photochromic variety of sodalite, with the composition of Na8Al6Si6O24Cl2 [7]. In 

other references, the definition of hackmanite also includes the presence of sulfur 

(i.e. Na8Al6Si6O24(Cl,S)2 ) [3,10,11]. It has been named after a Finnish geologist, 

Victor Hackman [12]. 

Hackmanite has a cubic crystal structure with the space group P4̅3n [16]. The 

unit cell axis length of hackmanite is usually referred to be 8.877 Å, as calculated 

for a natural hackmanite from Quebec [10,15]. Hackmanite structure consists of 

SiO4 and AlO4 tetrahedra that are linked together to form a three dimensional 

(3D) network structure [11]. The tetrahedra form four-membered rings of 

alternating SiO4 and AlO4 units. The four-membered rings are then linked 

together forming six-membered rings and thus, the 3D cubo-octahedral structure 

of hackmanite is formed (Figure 1) [17]. The 3D framework hosts the Na and Cl 

atoms inside. The Na atom is coordinated to three framework oxygens and one 

Cl atom. The Cl atom on the other hand is coordinated tetrahedrally to four Na 

atoms. When sulfur is present, it replaces one Cl and creates a chloride vacancy 

(VCl) to balance the different charges with the anions. [18] 
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Figure 1 Hackmanite unit cell structure drawn from data in [18]. [V] 

The literature is not in agreement on what the sulfur species in hackmanite 

actually is. It has been suggested that the form is one of the following: S2
2–, S2–, 

S2
– SO4

2– or SO3
2– [10,15,19]. Also, the content of sulfur varies widely between 

samples and different locations. Peterson [15] reported sulfur contents for 

hackmanite samples obtained from Quebec, Canada to be between 0.05 and 

0.30 mass-%, whereas Cano et al. [14] found SO2 content of natural hackmanite 

from Brazil to be below the detection limit of XRF, i.e. less than 0.01 mass-%. 

The natural hackmanite is known for its photochromic property. It has been 

first noted in 1834 by Robert Allan [5]. Blue, reddish and/or yellow luminescence 

has also been reported from natural hackmanites in multiple publications (e.g. 

[1,3,20–22]). The color and intensity of photochromism and luminescence vary 

between different locations and also between different samples from the same 

location. In addition to this, also the chemical compositions of different samples 
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obtained from different locations vary a lot [5]. This indicates that the chemical 

environment within the hackmanite material affects the optical properties. 

2.2. Theory of luminescence 
Luminescence, the emission of light from a material after it has been excited with 

external energy, is a term used to describe both fluorescence and 

phosphorescence. Both organic and inorganic materials can exhibit luminescence. 

Since the theory and terminology differs between these two, this review focuses 

only on inorganic materials. Still, it is important to note that also many organic 

compounds have luminescent properties. 

By definition, fluorescence is light emission from allowed transitions, whereas 

phosphorescence results from forbidden transitions. Allowed transitions happen 

between states with the same spin whereas forbidden transitions are transitions 

between states with the same parity (e.g. all d-d transitions). [23] Whether a 

transition is allowed or forbidden affects the lifetime of the emission, i.e. allowed 

transitions give short luminescence and forbidden transitions give longer 

emission lifetimes. In inorganic materials, the electronic states participating in the 

luminescence process are seldom pure states. Thus, it is difficult to define whether 

an emission is actually fluorescence or phosphorescence. However, it is common 

in the literature that all short-lived emission is called fluorescence and all long-

lived emission is phosphorescence, even if this is not strictly true. All solid 

luminescent materials are called phosphors, which comes from Greek, meaning 

light bearer [24]. 

Like with many phenomena, the different types of luminescence have different 

names and sometimes they have different meanings. In this work, PL is used to 

describe short, photon induced luminescence that emits during the excitation. In 

literature this sometimes falls under fluorescence. Persistent luminescence (PeL) 

is used for the longer emission that is visible for minutes after the excitation 

source has been removed. In the literature, phosphorescence is sometimes used to 

describe the latter phenomenon. 
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The first human made luminescent material is the Bologna stone from 1602 

that was prepared by an alchemist Vincentinus Casciarolo. He heated barite 

(BaSO4) and it resulted in barium sulfide (BaS) that would glow orange/red light 

after the exposure to the sun. The impurities present in both the barite and the 

charcoal used in the heating are held responsible for the luminescence, according 

to the knowledge today. Since the light emission continues a long time after the 

excitation the material exhibits persistent luminescence. [24–26] 

Luminescence occurs inside a host material, within or around an activator. The 

activator is usually an impurity, vacancy or other defect inside the host crystal 

that somehow disturbs the otherwise organized structure of the host lattice. The 

activator absorbs the excitation energy and gets excited forming a luminescent 

center alone or together with the surrounding atoms from the host lattice. The 

excited state then relaxes and returns back to the ground state. The return can be 

radiative or non-radiative (i.e. host lattice vibrations). If the return is radiative, 

luminescence is obtained (Figure 2). [24,27] 

 
Figure 2 Schematic overview of luminescence phenomena. 
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In some cases, the activator can not be directly excited. In this case, another 

ion can absorb the energy and transfer it to the activator. This other ion is called 

a sensitizer. In this, more complex luminescence mechanism, the sensitizer gets 

excited, then the energy transfers non-radiatively to the activator. When the 

excited state of the activator then relaxes, the radiative return emits luminescence 

[27]. The mechanism and application of different types of luminescence are 

looked into in more detail in the following sections (2.2.1–2.2.3). 

2.2.1. Photoluminescence 
PL emission occurs during or directly after (within milliseconds) the excitation. 

In Figure 2 a simplified scenario is presented. In reality, the process is more 

complex and involves also the vibrational levels of the ground and excited state. 

Some of the energy gets always lost to vibrations, which is why the emission 

(E = hν2) is of lower energy, i.e. higher wavelength than the excitation (hν1). 

Thus, equation 1 applies to PL emission. 

 hν1 > hν2 (Eq. 1) 

A more detailed description of the processes in PL is shown in Figure 3, but 

also this is somewhat simplified and does not consider e.g. the differences 

between the bonding in the ground and excited states that can be accounted for 

by using configurational coordinate diagrams [27]. First, the material absorbs a 

photon with the energy of hν1. This energy lifts the system from the ground state 

to one of the vibrational states of the excited state. Here, the system quickly seeks 

the minimum energy position releasing some of its energy non-radiatively. From 

the lowest energy state of the excited state, the system then returns back to the 

ground state releasing a photon with the energy of hν2. The times involved in PL 

are really short. The non-radiative relaxation happens in a time scale of 1013 s–1 

and the emission lifetime is between ns and ms. [27] 
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Figure 3 Simplified PL mechanism including vibrational states. 

There are many possibilities for the activation ion in PL materials. Common 

activation ions include, for example, rare earth ions [28] and transition metal ions 

[29]. Rare earth ions have two different emission types. The first one is line 

emission that results in narrow, sharp lines in the emission spectra. This emission 

occurs from the 4 f n configuration of the ions. A couple of examples of these ions 

include Gd3+ (4 f 7), Eu3+ (4 f 6) and Tb3+ (4 f 8). The other emission type in rare 

earth ions is band emission, where the emission band is wider. This emission 

happens when electrons return from a 5 d orbital to the 4 f orbital. This emission 

can be obtained from both trivalent (e.g. Ce3+ and Nd3+) and divalent (e.g. Eu2+ 

and Yb2+) ions. From transition metal activation ions, a couple of examples 

include Cr3+, Mn4+, Mn2+ and Fe3+ [29]. PL emission can also be obtained from 

alkali halides. In the case of alkali halides, the emission is exciton emission. 

Alkali halides have large band gaps and are thus transparent as pure crystals [30] 

but PL can still be observed from alkali halides doped with ns2 ions [27,31]. In 

ns2 the n represents the number of shells and s2 represents the population on the 
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s-orbital. There is a large variety of such ions and they are shown in Table 1 [30]. 

The exciton emission can be obtained from pure alkali halides, but with doping, 

the emission can be enhanced. For example, phosphors of thallium alkali halides 

have been extensively studied [32,33]. [27] 
Table 1 ns2 ions and their charge. [30] 

n Ion 

4 Cu– Zn0 Ga+ Ge2+ As3+ 

5 Ag– Cd0 In+ Sn2+ Sb3+ 

6 Au– Hg0 Tl+ Pb2+ Bi3+ 

 

PL is used in many applications, from which the most common is lighting and 

displays [34]. Light emitting diodes (LEDs) [35] and fluorescent lights used today 

are based on the PL induced in phosphor materials. PL has also other applications 

that do not show up in everyday life. A couple of examples of these applications 

include luminescence sensors [36] and luminescence thermometry [37]. 

2.2.2. Persistent luminescence 
During the first years after the creation of the first manmade PeL material, the 

Bologna Stone, the research in persistent luminescence materials didn’t advance 

much [38]. Only in the 1990s new, efficient PeL materials were created. This is 

also the time when different proposals for PeL mechanisms started to appear [25]. 

Long after this, only in 2012, the mystery of the Bologna stone was finally solved 

repeating the synthesis using materials obtained from Bologna and using modern 

methods to study its properties [26]. 

For a long time, ZnS was the best PeL material but in 1993 the real 

breakthrough  was made when T. Matsuzawa et al. discovered the long and bright 

persistent luminescence of SrAl2O4:Eu2+,Dy3+ [39]. The new phosphor met the 

needs of the time showing bright PeL for over 30 h with green emission extremely 

suitable for the sensitivity range of human eyes. The material could be excited 

with conventional lamps instead of UV that was needed before. In the consumer 
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point of view the best improvement was the fact that no radioactive elements were 

used to produce the PeL. Before this, radioactive elements like radium and 

promethium were used in PeL materials to obtain longer PeL durations. [38,39] 

Currently, many efficient PeL materials based on lanthanide emission are 

available in the red, green and blue (RGB) colors (Figure 4). A couple of 

examples of these materials are SrAl2O4:Eu2+,Dy3+ (green), [39] 

CaAl2O4:Eu2+,Nd3+ (blue), [40] Sr2MgSi2O7:Eu2+,Dy3+ (blue) [41] and 

Y2O2S:Eu3+,Mg2+,Ti4+ (red) [42]. The blue and green PeL materials are efficient 

with many commercial applications. The intensity and duration of the red PeL 

materials are considerably weaker compared to green and blue phosphors. Also, 

with all current materials, the problem arises from lanthanides that are expensive 

which makes the total costs for the materials higher. [38] 

 
Figure 4 Synthetic PeL materials in RGB colors minutes after excitation with 254 nm. 

31089720_Turun_yliopisto_Vaitoskirja_Isabella_Norrbo_Luonn_tiet_ja_tekn_sisus_19_04_15.indd   24 16.4.2019   7.48.49



 Theory of luminescence    
 

25 
 

When talking about PeL duration, the terms short and long are used somewhat 

arbitrarily. There has not been any set limits to quantify the time needed for PeL 

to be called long. In addition to this, PeL is usually measured in arbitrary units 

(a.u.) which is connected to the current spectrometer in use and can not be 

compared with other measurements made elsewhere. Also, measurement 

parameters such as the detector voltage used in the measurements affects the 

observed intensity. Xu and Tanabe show a typical example of this when 

measuring the light emission of a commercial LED with different photomultiplier 

tube (PMT) detector input voltages [38]. The signal varies between 1 and 

12 600 000 µV depending on the detector voltage. Thus, a common unit is needed 

for PeL duration measurements. A good option is luminance, which is measured 

in mcd/m2. There is a set value of 0.32 mcd/m2 (corresponding to 100 times the 

perception limit of the human eye) that is commonly used as a limit when 

measuring luminance [43]. The time needed for the PeL material to reach this 

limit is considered to be the time that the luminescence can be seen with the naked 

human eye. Since the luminance measurement takes into account the human eye 

sensitivity to light, it is thus a good unit to use, when comparing materials used 

in applications viewed by people (for example exit signs and glow-in-the-dark 

toys). 

It is not possible to give a general mechanism for PeL since the mechanism 

depends on the host lattice and active ions present. Because of this, only the basic 

principles are presented here. In PeL, two different centers are present: the 

emission center and the trap center. The emission center is usually either a 

lanthanide ion or a transition metal ion [44–46]. Trap centers are usually 

intentionally introduced co-dopants but they can also be minor impurities or 

lattice defects [40,47–49]. In general, the PeL process involves 4 steps: the 

excitation, trapping, detrapping and recombination. A schematic overview of the 

processes is shown in Figure 5. [38] 
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Figure 5 Excitation, trapping, detrapping and recombination processes involved in PeL 
as described in [38]. 

In the excitation process the external excitation energy lifts electrons from the 

ground state of the emitting center to conduction band. The energy needed for the 

excitation depends on both the band gap and the position of the emission center’s 

ground state with respect to the conduction band and is thus characteristic for the 

host lattice – emission center combination. In the trapping process the electrons 

in the conduction band are non-radiatively captured by traps located close to the 

bottom of the conduction band. When the electrons are then thermally stimulated 

to leave the traps, the detrapping process happens. This suggests that the depth 

and density of the traps affects the duration and intensity of PeL. Lastly the 

electrons travel back to the emission center. There the recombination of the 

electron–hole pair happens yielding delayed emission characteristic for the 

emission center. [38,50] 

The research of PeL phosphors has advanced in the years after its discovery 

and today PeL materials are in use in many applications, for example self-lit exit 

signs, [51] glow-in-the-dark toys [52] and some medical and diagnostic 

applications [53–55]. The challenges with PeL phosphors still remain with red 

and white emitting materials. While commercial red PeL phosphors are currently 
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in the market, the intensity and duration of green and blue phosphors is far 

superior compared to the red ones. As with the white PeL phosphors, some are 

listed in refs. [38,56] and in Table 2. The duration of PeL in these phosphors 

varies from minutes to a couple of hours with the limit of 0.32 mcd/m2 [57–62]. 

Another possibility to obtain white PeL could be to combine the RGB colors. 

With this approach the different intensities and lifetimes of different phosphors 

would highlight and the color would soon shift away from white, especially 

because the short lifetimes of red PeL phosphors. The red and white PeL 

phosphors will thus stay in the research interest of scientists. 
Table 2 White PeL materials presented in refs [38] and [56]. 

Host material Activator Host material Activator 

CaMgSi2O6 Dy3+ SrSiO3 Dy3+ 

CaSnO3 Pr3+ Sr2Al2SiO7 Ce3+ → Dy3+ 

CaZnGe2O6 Dy3+ Sr3Al2O5C12 Eu2+ 

CdSiO3 Dy3+ ZbGa2O4 defects 

 

2.2.3. Up-conversion luminescence 
Up-conversion luminescence is a rare case of luminescence, where the emitted 

photon has a higher energy than the excitation photon. This is achieved by 

stacking of low energy photons. Different routes for the stacking have been 

suggested and the energy levels of the sensitizer and the activator ion determine 

which route is used. If the activator ion has multiple energy levels capable of 

absorbing energy, the mechanism can be APTE or 2-steps absorption. If there are 

not suitable energy levels for this kind of absorption, the co-operative 

mechanisms or second harmonic generation can happen, to enable the 

luminescence. All the different mechanisms are presented in Figure 6. [63] 
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Figure 6 Different mechanisms for up-conversion luminescence. [63] 

Trivalent lanthanides are usually used in up-conversion luminescence, since 

they have multiple energy levels suitable for absorption and emission [64]. A 

common pair of sensitizer and activator ions is ytterbium and erbium. The 

up-conversion luminescence obtained from materials containing these ions is 

based on the energy transfer up-conversion, also called APTE [63]. In this 

mechanism, two ytterbium sensitizers absorb the infrared (IR) excitation. Then, 

they transfer the excitation energy to an erbium ion located nearby. The energy 

levels of erbium allow the stacking of the two photons and when the excitation 

then relaxes, red and green luminescence are observed (Figure 7). 

 
Figure 7 Energy transfer up-conversion mechanism with ytterbium and erbium ions. [V] 
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Up-conversion luminescence can be used, for example in solar cell 

applications, [65] in pH sensors [66] and in biological detection [67]. The 

advantage of up-conversion materials is that when IR excitation is used, there is 

no auto fluorescence in biological medium at the visible wavelengths, where the 

up-conversion emission is detected. The drawback is that the up-conversion 

process is so weak that a strong excitation source (typically a laser) is needed to 

induce visible emission. 

2.3. Photochromic materials 
Photochromism is a phenomenon where coloration of a material is reversibly 

induced with a photon [11,68]. The phenomenon is sometimes also referred to as 

tenebrescence, especially among mineralogists. The two are thus the same 

phenomena. 

Both organic and inorganic materials exhibit photochromism. In organic 

materials, the color transformation is induced by breaking and reforming bonds, 

[69] whereas in inorganic materials, the photochromism is induced by the 

formation of F centers [70]. The F center, also known as color center, is an anionic 

vacancy in the material which has been filled with an electron. When the trapped 

electron then absorbs light, the color of the material changes. This review is again 

going to focus only in the photochromism observed in inorganic materials. 

In inorganic materials, photochromism is observed for example in alkali 

halides, [70] silver halides, [71] alkaline earth fluorides, [72] many minerals [73] 

and in titanium dioxide [74]. The photochromic materials where the coloration is 

induced with UV radiation and the discoloration with ambient light, are the most 

studied ones. [11] 

The mechanism for photochromism is always related to the material in which 

it happens. The host material and its dopants and defects all play a role in the 

mechanism. Medved [70] proposed a mechanism for color center formation in 

1954 for hackmanite and sodalite. This mechanism is now used as an example to 

better understand the processes involved in photochromism. 
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The mechanism is presented in Figure 8, where the F and U levels between 

valence band and conduction band represent normal defects in material and 

dopant or impurity levels, respectively. In the photochromism mechanism, there 

are 4 different processes. The first process (1) happens when electrons located in 

the U energy levels absorb UV radiation and raise to the conduction band. After 

this, processes 2 and 3 compete. In the process 2 the electrons get trapped to 

empty F energy levels forming color centers. In the process 3, the electron returns 

back to U energy levels possibly releasing luminescence emission. If color centers 

are formed (process 2), the color of the material changes. After this, if the color 

center absorbs a suitable amount of energy that can raise the electron back to the 

conduction band (process 4), the processes 2 and 3 compete again. Since some 

electrons always relax via process 3, in time all the color centers will have been 

discharged and the material has returned back to its original color. Since the 

discoloration needs some energy, that is usually received from light or heat, if the 

material is kept in dark in room temperature, the color centers can not discharge 

and the colored form stays permanently [10]. [70] 
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Figure 8 Processes 1-4 involved in photochromism mechanism in sodalites according to 
[70]. 

Photochromic materials are already in use in many applications and they are 

also studied for some interesting new application areas. Some application areas 

for photochromic materials are optical memories, [68,75] optical switches, 

[68,76] jewelry, [10] colorable eyeglasses [77] and even fabrics [78]. Some more 

recent possible applications for photochromic materials are focused on UV 

detection [79]. 

2.4. Optical properties of hackmanites 
Natural hackmanites have been reported to show photochromism and sometimes 

also PL [5,20,21] (Figure 9). In synthetic hackmanites, photochromism and PL 

are usually present [7,9,80]. The photochromism in natural hackmanites is usually 

visible when the mineral is first mined and after this, the coloration disappears 

when the mineral is exposed to natural light [81,82]. In addition to this, some of 

the natural hackmanites obtain the purple color, when kept in the dark [5]. 
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Figure 9 A photograph of a rock containing natural hackmanite mineral in its colored 
form. 

In 1936 Lee discovered, that the pink color of a natural hackmanite could also 

be induced using UV radiation and reversibly erased with an electric lamp [20]. 

Some years later Medved prepared synthetic hackmanites and observed a similar 

coloration with an absorption maximum around 530 nm, when exciting with 
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x-rays but only after using a reducing atmosphere in the synthesis, was he able to 

prepare synthetic hackmanite with photochromism excitable with UV radiation 

[7]. 

In 1969 Williams et al. studied the photochromism in hackmanites and found 

out that the partial substitution of Cl with other halogens speeds up or slows down 

the coloring rate in synthetic hackmanites, depending on the electronegativity of 

the halogen. The absorption maximum, i.e. the color of the material could also be 

shifted from 530 to 510 nm, when fluoride was added. [8]  

The structural changes happening during color center formation in synthetic 

hackmanites have also been studied. The research shows that when a color center 

is formed, the atomic distances between sodium and oxygen increase and the 

distance between sodium and chloride decreases. This results in an expansion in 

the lattice parameter indicating that the hackmanite framework bends during the 

formation of a color center. When the hackmanite is then bleached, the parameters 

return back to their original values indicating reversible bending. [10]  

Gaft et al. have studied the laser-induced luminescence in natural hackmanites 

obtained from Russia and Afghanistan. The natural hackmanites exhibited red 

and violet-blue luminescence under short UV excitation resulting from Fe3+ or 

Cr3+ and mercury type s2 centers, respectively (Figure 10). Under 355 nm 

excitation, yellow-orange luminescence from S2
– was observed. The results 

concluded that the emission of natural hackmanites is not resulting from only one 

luminescence center, but several luminescence centers contribute to the emission. 

[3]  
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Figure 10 Time-resolved luminescence under 266 nm excitation at 300 K from a 
hackmanite obtained from a) Russia and b) Afghanistan. [3] 

Also the luminescence in synthetic hackmanites has been studied. Kirk noted 

in his research that the luminescence is similar in natural and synthetic 

hackmanites and is not affected by the fact if the material is photochromic or not. 

Thus he concluded that the luminescence center is different than the color center 

in hackmanites. In this work Kirk assigned the luminescence to the polysulfide 

ion present in the material. [21] 

Later, the effects of sulfur on the optical properties has been studied even 

more. Recently it was reported that the addition of extra sulfur into hackmanite 

structure destroys the photochromic property of the material and leaves it in a 

permanent blue or green state. This is probably caused by the concentration of the 

photoactive species S2
– exceeding the threshold for the concentration quenching. 

This means that the excitation energy is released by radiation less decay instead 

of forming color centers. [12] 

The natural hackmanite is commonly used as a jewelry because of its lovely 

color and the ability to change color, when in contact with UV (Figure 11). To 

date, no commercial applications are available for the synthetic hackmanites, 

even though the use of hackmanites in, for example, storage displays has been 

studied [83]. 
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Figure 11 Natural hackmanite UV colorchange ring before and after excitation. Picture 
from etsy.com. [84] 

2.5. Synthesis of sodalite materials 
Hackmanite minerals can also be synthesized. Different methods have been 

suggested for the synthesis. The synthesis of hackmanite is usually the same as 

for common sodalite, only sulfur is added. High temperatures and long reaction 

times are a common factor in most of the methods. 

In sodalite synthesis regardless of the synthesis method, starting materials 

usually include zeolite or other Si and Al containing precursors and NaCl. The 

starting materials can vary depending on the desired stoichiometry of the end 

product. When preparing hackmanites, a source for sulfur is also needed. For this, 

Na2SO4 is usually used. 

2.5.1. Solid state synthesis 
The most common synthesis method used for sodalite preparation is the solid state 

synthesis. In this method, the solid starting materials are ground together and 

heated at high temperatures in two steps, in air and in a reducing atmosphere. The 
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order of these steps can be reversed and both methods have been used in the 

literature before. 

For example, Kirk et al. have used a method that first reduces the sample, 

prepared from oxides forming NaAlSiO4 and NaCl + Na2SO4, at 900 °C under 

hydrogen atmosphere. After this, the sample is heated for 15 min under air, again 

at 900 °C to oxidize some of the sulfur in the hackmanite material. The 

hackmanites prepared in this way showed orange-yellow luminescence and had 

efficient, reversible photochromic properties. [21] 

On the other hand, Armstrong et al. used a solid state synthesis with reverse 

order to produce photochromic hackmanite, though there is no mention about 

luminescence. In this synthesis, the ground mixture of Zeolite A, NaCl (or NaBr) 

and Na2SO4 is first heated at 850 °C under air for 48 h. After cooling down the 

material is re-ground and then heated in H2/N2 (5%/95%) atmosphere for 2 h. The 

synthesis also includes a washing step with distilled water to remove excess 

sodium starting materials. [10] 

Exceptionally, Medved has been able to prepare sodalites with a solid state 

reaction in just one step. In this synthesis, Al2O3, SiO2, NaOH and NaCl were 

mixed in a mortar and ball milled. The mixture was then placed into a clod oven 

in a platinum crucible. The temperature of the oven was then raised to 1060 °C 

and kept there for 24–72 h. The materials prepared this way showed 

photochromism under x-ray excitation. [70] 

With solid state synthesis, pure sodalite phase is usually achieved after 

washing the excess starting materials away. Since the temperatures are high and 

reaction time is long, the obtained materials are microcrystalline in size. To 

produce nanosized sodalite, different methods are needed. 

2.5.2. Hydrothermal synthesis  
Hydrothermal synthesis is one way to prepare nanosized sodalite. This method 

also allows the preparation of sodalite at considerably lower temperatures. 
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In the synthesis introduced by Mikuła et al., aluminate solution and silicate 

solution (Table 3) are mixed together at 95 °C while first shaking for 5 min and 

then allowing them to crystallize for 24 h without stirring. The materials were 

then washed and dried to reach pH 7. [85] 

 

Table 3 Chemicals and amounts needed to prepare aluminate and silica solutions used in 
ref [85]. 

Aluminate solution Silica solution 

Chemical Amount Chemical Amount 

Sodium hydroxide 40.0 g Sodium hydroxide 60.0 g 

Aluminum hydroxide 15.6 g Sodium chloride 87.6 g 

Deionized water 200 ml Deionized water 318 ml 

  Aerosil 18 g 

 

Another hydrothermal synthesis uses autoclaves to achieve higher pressures 

for the synthesis. In this method starting materials (SiO2, Al2O3, NaOH, NaCl and 

Na2SO4) are thoroughly mixed in water at 100 °C in an open beaker. Then, the 

mixture is transferred to an autoclave and heated at 200–400 °C for 12–48 h. The 

pressure is between 13700–27600 kPa. After the synthesis the product is filtered 

and washed. The synthesis produces sodalite, but to obtain photochromism in the 

material, a third step is needed. In this step, the product is heated at 900 °C for a 

maximum of 30 min in an inert or a reducing atmosphere. [8] 

Chong et al. used also a hydrothermal synthesis to prepare iodosodalites. They 

used NaI, NaAlO2 and SiO2 as starting materials together with NaOH as a 

mineralizing agent. The starting materials were dissolved in water and NaOH was 

dissolved separately. Then the solutions were mixed and heated in an autoclave. 

The time varied between 1 and 20 days and the temperature varied between 100 

and 200 °C. The results indicate that the optimal temperature for this synthesis is 

between 140 and 180 °C. [86] 
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Hydrothermal synthesis offers a good way to prepare sodalite in lower 

temperatures. Still, synthesis times varying between 12 and 120 h [8,85,87] make 

the hydrothermal synthesis as time consuming as the solid state synthesis. 

2.5.3. Solution synthesis 
A solution synthesis can also be used to prepare sodalite materials. In this method 

used by Johnson et al. to produce Ga and Ge sodalites, stoichiometric amounts of 

framework precursors (Na2GeO3, NaGaO2, NaAlO2 and Na2SiO3 • 5 H2O) are 

refluxed together with a salt that is to be incorporated in the cavities. The water 

mixture is refluxed for 24 h at 120 °C. To stabilize the anions in the mixture, some 

base can be added. [88] 

The solution synthesis is similar to hydrothermal synthesis but it can be done 

in ambient pressure enabling the synthesis without any special equipment. The 

preparation times needed for this synthesis are also considerably shorter than the 

2–20 days needed in some of the previously introduced synthesis methods. 

2.5.4. Microwave synthesis 
Microwave (MW) synthesis offers a fast and efficient synthesis method for 

sodalite production. It produces good quality samples with less energy, since the 

preparation times are short. 

In a MW synthesis, stoichiometric amounts of framework precursors 

(NaAlO2, Na2GeO3 and Na2SiO3 • 5 H2O in case of Johnson et al.) are mixed in 

water with a salt that is to be incorporated in the cavities. The synthesis can be 

performed in a domestic microwave oven using a microwave digestion bomb 

inside. At 1000 W the synthesis can be performed in only 10 s, but 20 s synthesis 

produces the best crystallinity in the samples. The method works well on Ge 

containing sodalites, but aluminosilicate sodalites produced this way had poor 

crystallinity. Also, since the pressure and temperature can not be regulated 

properly in this method, damage to the autoclave is possible. [88] 
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Another type of MW synthesis is the microwave-assisted structure-conversion 

method proposed recently, to produce photochromic hackmanites in just one    

12–20 min step [89]. In this kind of synthesis, Zeolite A is used as a starting 

material for the hackmanite since it has a similar structure with Si- and Al-cages 

with the correct Si/Al ratio. In this method, Zeolite A and other starting materials 

are mixed and exposed to MWs with activated carbon surrounding the sample 

holder. The activated carbon acts as a susceptor, absorbing the MWs and 

generating heat and a reducing atmosphere (Figure 12). With 400 W power and 

12–20 min reaction time, a temperature of around 829 °C is achieved. This 

temperature is enough to convert the structure of Zeolite A together with NaCl 

and sulfur to hackmanite. 
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Figure 12 A Cross-section of a setup used in a MW synthesis. 
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3. Aims of the experimental work 

The aim of this work was to study synthetic hackmanite minerals and their 

properties (photoluminescence, persistent luminescence, photochromism and 

up-conversion luminescence). The research was conducted using different 

spectroscopic methods on synthesized hackmanite materials. The main research 

topics were the following: 

 

1. Understanding the mechanisms of the optical properties of synthetic 

hackmanites (I–IV). 

 

2. Improving the brightness and duration of photoluminescence and persistent 

luminescence in synthetic hackmanites (I and III). 

 

3. Controlling the photochromism in synthetic hackmanites (II and IV). 

 

4. Preparing a synthetic hackmanite material with multiple different optical 

properties suitable for optical multiplexing (V). 
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4. Materials and methods 

4.1. Materials preparation 
Synthetic hackmanites were prepared using a solid state synthesis [10]. The basic 

components for hackmanite synthesis were 0.7 g of Zeolite A (dried for 1 h at 

500 °C), 0.24 g of NaCl and 0.06 g of Na2SO4. The starting materials were first 

ground in a mortar for 20 min. When thoroughly mixed, the starting materials 

were transferred to a ceramic alumina crucible and heated in a Lenton furnaces 

TLF 1400 tube furnace in a static air atmosphere for 48 h. After the heating the 

furnace was let to cool down freely to room temperature. 

After cooling down, the samples were again ground in a mortar for 10 min and 

then they were transferred to the crucibles and heated in a flowing H2/N2 

atmosphere (10%/90%) inside a glass reactor in a Thermo-Lindberg/blue M tube 

furnace. The furnace was heated for 45 min to acquire the desired temperature of 

850 °C and the temperature was held stable for 2 h. After this the furnace was let 

to freely cool down and the gas flow was turned off once the temperature had 

reached temperatures below 150 °C. Finally, the samples were ground to achieve 

a more uniform structure throughout the sample. 

Some samples were also washed after synthesis to remove the non-reacted 

starting materials. The samples were washed with about 1 ml of quartz distilled 

water per 200 mg of sample. The samples were then centrifuged for 10 min at 

5000 g. After this, the excess water was removed and the samples were dried in 

a desiccator usually overnight. [I-V] 
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4.1.1. Finding the optimal S/Cl composition for 
hackmanites 

The precursor amounts of 0.7 g Zeolite A, 0.24 g of NaCl and 0.06 g of Na2SO4 

were used as a starting point for the research as described by Armstrong et al. 

[10]. The optimal concentration for Cl and S in Na8(AlSiO4)6(Cl2–2x–0.2Sx□0.2) was 

tested, while the vacancy concentration was kept constant at 0.2. During these 

tests five different ratios of NaCl and Na2SO4 were used during the synthesis. The 

amounts used are listed in Table 4. The synthesis was carried out as described in 

chapter 4.1 with all NaCl and Na2SO4 amounts. 

 
Table 4. Amounts of NaCl and Na2SO4 used in synthetic hackmanite synthesis and the 
resulted n(S):n(Cl) ratios [I]. 

NaCl (g) Na2SO4 (g) n(S):n(Cl) 

0.2727 0.0000 0.00 

0.2400 0.0600 0.06 

0.2121 0.1200 0.13 

0.1818 0.1800 0.26 

0.1515 0.2400 0.37 

 

4.1.2. Doping synthetic hackmanites 
When preparing synthetic hackmanites doped with different ions the dopant was 

added to the hackmanite starting material mixture usually as an oxide. The 

amounts were calculated in mol-% compared to NaCl and the equivalent molar 

amount of NaCl was then deducted from the mixture. Different dopant ions used 

in the syntheses are listed in Table 5. 

After adding the dopants to the mixture, the hackmanite synthesis was carried 

out as described in the chapter 4.1. 
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Table 5. Different dopants used in the hackmanite syntheses and their molar amounts. 

Dopant 
Amount 

(mol-%) 
Dopant 

Amount 

(mol-%) 

TiO2 2 MnO2 2 

Yb2O3 

3 

Er2O3 

1 

6 2 

9 3 

20 6 

YbCl3 • 6 H2O 
6 

ErCl3 • 6 H2O 
2 

20 6 

 

4.1.3. Exchanging the alkali metal cation in synthetic 
hackmanites 

When preparing synthetic hackmanites, the Na cation was sometimes partly 

replaced with Li, K or Rb. This was done by replacing some or all of NaCl in the 

synthesis with different chlorides. The total molar amount for all chlorides was 

kept constant during different synthesis. 

After replacing NaCl partly or totally with different chlorides the hackmanite 

synthesis was carried out as described in the chapter 4.1. 

4.1.4. Adding a flux to hackmanite synthesis 
To make PeL last longer in synthetic hackmanites a small amount of boric acid 

(H3BO3) was added to the synthesis. Different amounts from 2.5 to 20 mass-% 

were tested. The boric acid was added to the starting mixture with the rest of the 

chemicals and the synthesis was carried out as described in the chapter 4.1 

4.2. Characterization methods 
To verify the structure and to compare the properties of the produced hackmanite 

samples different characterization methods were used. 
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4.2.1. Methods studying the structure 
The structure and purity of the synthesized materials was checked using XPD 

measurements. The XPD results in the diffraction pattern of the studied material 

which can then be compared to existing reference patterns to confirm the crystal 

structure of the material. Hackmanite reference pattern [90] was used to confirm 

the right material was obtained. The XPD results can also be used to determine 

crystalline impurities within the sample material when comparing the resulting 

reflections to patterns for starting materials as well as other possible impurities 

[91]. The XPD patterns were recorded for 20 min using a Huber G670 detector 

with Cu Kα1 radiation at λ=1.54060 Å. The sample holder was shaken 

horizontally during the measurement to minimize the effect of preferred 

orientation. 

From the obtained XPD data, unit cell volumes and interatomic distances were 

calculated with Rietveld analysis [92] using the FullProf program [93–95]. The 

Rietveld analysis uses the reflection positions and intensities to optimise the 

positions for atoms inside the unit cell. 

For more detailed information about the impurities and dopant concentrations 

in the prepared samples, XRF measurements were carried out using a PANalytical 

Epsilon1 apparatus. The contents of elements heavier than sodium were tested 

with a 1 h measurement program. The spectra were compared against the internal 

Omnian calibration. The X-ray source in the apparatus was an Ag anode X-ray 

tube. 

The impurities in hackmanite samples were investigated using inductively 

coupled plasma-mass spectrometry (ICP-MS). A PerkinElmer 6100 DRC 

apparatus was used for the measurements. The results gave the ppm amounts of 

impurities present in the material. 

Particle sizes and stability in water was studied using transmission electron 

microscopy (TEM). The images were obtained with a JEM-1400 Plus apparatus. 
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The same apparatus was also used to obtain electron diffraction patterns. ImageJ 

program [96] was used to calculate the reflection d-spacings. 

X-ray photoelectron spectroscopy (XPS) was used to study the valence of 

selected elements in the hackmanite materials. The measurements were carried 

out using PerkinElmer PHI 5400 spectrometer and the analysis of the results was 

conducted with CasaXPS software version 2.3.16 [97]. The X-ray source used 

was Mg Kα. A hemispherical electron energy analyzer was used as well as a 

neutralizer with a constant electron flux. To study the structural changes 

happening after excitation, some measurements were conducted after first 

exciting the material with 254 nm hand-held UVP UVGL-25 UV lamp for 

30 min. 

Scanning electron microscopy - energy-dispersive X-ray spectroscopy 

(SEM-EDS) was used to study the elemental distribution in sample grains. The 

method used a Leo 1530 Gemini microscope and a Thermo Scientific UltraDry 

SDD EDS-system. The microscope images were used for example to confirm the 

even distribution of dopant ions in the samples. 

Magic angle spinning (MAS) NMR measurements were used to study the local 

structures in the solid samples. 23Na, 27Al and 35Cl measurements were carried out 

for various samples to compare the environment around these elements in 

different samples. From minor differences in the resulting spectra, conclusions 

were drawn from the structure changes to induce different optical properties in 

the samples. The NMR apparatus used was a Bruker AV400 and the spinning rate 

used was 12 000 Hz or 10 000 Hz. Relaxation time was 0.1 s in all measurements. 

The ppm scale for 23Na, 27Al and 35Cl measurements was calibrated against 

0.1 molar NaCl in D2O, 1.1 molar aqueous Al(NO3)3 and 1 molar aqueous NaCl 

respectively. To examine the radiation induced changes in the local structure, 

some samples were irradiated ex situ (30 min with a 254 nm 4 W UVGL-25 UV 

lamp) before the measurement. 

Electron paramagnetic resonance (EPR) spectra were used to study unpaired 

electrons in the materials. The measurements were carried out using either a 
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Bruker ELEXSYS E500 X band EPR spectrometer or a homemade X band EPR 

spectrometer. The Bruker apparatus was equipped with a SuperX EPR049 

microwave bridge and a SHQ4122 resonator. In the measurements, a frequency 

of ca. 9.0, 9.3 or 9.8 GHz was used. The microwave power was 5 mW for the 

Bruker apparatus and ca. 1 mW for the homemade apparatus and the modulation 

amplitude in the Bruker apparatus was 3 G whereas in the homemade apparatus 

a modulation field of 100 kHz was used. Measurements were carried out at 

temperatures ranging from 15 K to room temperature. An Oxford instruments 

cryostat and an ITC-4 temperature controller were used to monitor the 

temperature. In addition to measuring pristine samples, some samples were 

irradiated in situ (4 min with a 355 nm Nd:YAG laser) or ex situ (10–30 min with 

a 254 nm 4 W UVGL-25 UV lamp) to examine the changes the radiation induces 

in the electronic structure. 

The local structures and bonds in the material were studied using Fourier-

transform infrared (FTIR) spectroscopy. A Nicolet Nexus FTIR ESP 

spectrometer was used with a 4 cm–1 resolution. Each spectrum was measured 

between 400 and 4000 cm–1 from samples mixed with KBr in transparent disks. 

The disk preparation used a ball mill and a vacuum press. The measurements were 

carried out for selected samples before and after excitation with a 254 nm and 

365 nm 4 W UVGL-25 UV lamp. 

4.2.2. Methods studying the luminescence properties 
When measuring the PL properties of the synthesized hackmanite materials, a 

Varian Cary Eclipse Fluorescence spectrophotometer was used. The 

spectrophotometer is equipped with a Hamamatsu R928 photomultiplier tube and 

a 15 W xenon lamp. The measurements were done from powder samples in a 

sample holder located at a 135° angle against the excitation radiation. The 

detector is located at a 90° angle against the excitation source. The parameters for 

the PL measurements using phosphorescence mode are listed in Table 6. The PL 

spectrum was usually recorded with 254, 310 and 365 nm excitation. 
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Table 6 Fixed parameters used in the Varian Cary Eclipse Fluorescence 
spectrophotometer for luminescence measurements. 

Parameter Value Parameter Value 

Total decay time 0.005 s Excitation slit 10 nm 

Number of flashes 1 Emission slit 2.5 nm 

Delay time 0.1 ms Data interval 0.2 nm 

Gate time 5 ms Detector voltage 800 V 

Averaging time 0.005 s   

 

To observe the best excitation wavelength for synthetic hackmanite PL, 

excitation spectra were recorded with the same Varian Cary Eclipse Fluorescence 

spectrophotometer using phosphorescence mode. The parameters used for 

luminescence spectra (Table 6) were also used for excitation spectra 

measurements. The excitation spectra were recorded at the emission maximum 

locating around 470 nm depending on the samples. In some cases, also other 

emission wavelengths were used to record the emission spectrum, for example 

530 and 660 nm. 

The Varian Cary Eclipse Fluorescence spectrophotometer was also used to 

record the PeL spectra. For this the Bio/Chemi-luminescence mode was used. 

When measuring PeL spectra, the powder sample was first irradiated with a 

hand-held UV lamp at either 254 or 365 nm for 30 min. The measurement was 

then carried out using parameters listed in Table 7. For basic PeL spectra, the 

luminescence was recorded 1 min after ceasing the excitation. When PeL decay 

curves were measured, the luminescence was automatically measured in set 

intervals (1 min or 30 min) until the intended measurement time was reached. 
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Table 7 Fixed parameters used in the Varian Cary Eclipse Fluorescence 
spectrophotometer for persistent luminescence measurements. 

Parameter Value 

Measurement range 350–700 nm 

Measurement time 4 s 

Emission slit 20 nm 

Data interval 1 nm 

Averaging time 0.005 s 

Detector voltage 800 V 

 

Luminance measurements were carried out to determine the time needed for 

the materials’ PeL to fade to the standard photopic limit of 0.3 mcd m–2 [98]. The 

apparatus used was a Hagner ERP-105 luminance photometer connected to a 

computer via a volt-ohm-milliammeter (VOM) (Figure 13). Before the 

measurement the samples were excited for 30 min with a UVM-57 6 W 302 nm 

hand-held UV lamp. During the measurement the data was recorded every second 

for at least 3 h. If the time needed to reach the 0.3 mcd m–2 limit exceeded 3h, it 

was extrapolated from the collected results. 

 
Figure 13 Schematic overview of the luminance measurement setup including the sample 
holder and detector, luminance photometer, volt-ohm-milliammeter (VOM) and the 
computer to record the data from the measurement. 

TL measurements were carried out to further investigate the PeL properties of 

the materials. The equipment used was a MikroLab Thremoluminescent Materials 
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Laboratory Reader RA’04. The measurements were carried out using a 10 °C s–1 

heating rate. The samples were irradiated prior to the measurement for 5 min 

using one of the following excitation courses: 4 W UVGL-25 UV lamp at 254 or 

365 nm, LOT/QD LS0500 solar simulator lamp at 1000 W m–2, Osram Dulux S 

11 W fluorescent lamp, or Airam 9 W white LED lamp. The delay between 

excitation and measurement was 1 min. In some cases the sample was first 

preheated to a selected temperature and after that the glow curve was recorded. 

All TL curves were corrected for thermal quenching of luminescence and the 

initial rise method [99,100] was used to analyze the data. The trap depths were 

calculated from TL data plotted as ln(I) versus 1/T using the following equation 

(the initial rise method): 

 

 I (T) = C exp (–ET/kT) (Eq 2) 

 

where C represents a constant that includes the frequency factor s which is 

assumed not to be temperature dependent, ET is the energy of the trap, k is the 

Boltzmann constant and T is temperature in Kelvin [100]. 

Up-conversion luminescence was measured from glass capillaries filled with 

powder sample using an Avantes AvaSpec HS-TEC detector connected to a 

computer, and a 972 nm Fiber-coupled NIR laser diode IFC-975-008-F. A filter 

was used before the sample to allow only IR excitation to enter the sample 

(Edmund optics, hot mirror). The measurements were carried out at room 

temperature at a 90° angle between the laser excitation and the detector 

(Figure 14). A short-pass filter (Newport 10SWF-850-B) with a cutoff of 850 nm 

was used after the sample to block excitation radiation from the detector. The 

sample was spun during the measurement. The integration time was 1 000 ms and 

10 averaging measurements were done. 
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Figure 14 Schematic overview of the up-conversion luminescence measurement setup 
including laser, filters, sample holder, HS-TEC detector, and the computer to record the 
data from the measurement. 

4.2.3. Methods studying the photochromic properties 
The photochromic properties of synthetic hackmanites were studied using 

reflectance spectroscopy. This allows a quantitative comparison of the sample 

color induced by the excitation radiation. The reflectance spectra were collected 

under a 60 W incandescent light bulb with an Avantes AvaSpec 2048-14 

spectrometer connected to a computer using 400 ms integration time and 30 

averaging measurements (Figure 15). The reflectance of the samples was 

measured before and after excitation and the difference in the resulting spectra 

was used to measure the photochromism in the sample. For sample excitation a 

254 nm 4 W hand-held UVP UVGL-25 UV lamp was used for 5 min. 

 
Figure 15 Schematic overview of the reflectance measurement setup including light bulb, 
UV lamp, sample, 2048-14 detector, and the computer to record the data from the 
measurement. 
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Sample coloring and discoloring wavelengths were also investigated to get the 

excitation spectra for photochromism. Reflectance spectroscopy with an Avantes 

AvaSpec 2048-14 spectrometer was also used to detect this. The samples were 

illuminated from 20 cm above with 60 W incandescent light bulb. The coloring 

in the samples was induced using a 30 min excitation with a 150 W Osram XBO 

150W/4 xenon short-arc lamp with an Optometrics DMC1-01 monochromator. 

The discoloring by optical stimulation was studied by first coloring the sample 

for 5 min with a 254 nm 4 W hand-held UVP UVGL 25 UV lamp. Next, optical 

stimulation was given using the same xenon short-arc lamp and exposure time as 

described above for the coloration study. 

To study the thermal discoloration of photochromism, a new method was 

developed called thermotenebrescence (TT). In the method, colored samples were 

exposed to rising temperature and their reflectance spectrum was measured as a 

function of temperature (Figure 16). The reflectance was recorded as described 

above and a temperature controller connected to a hotplate was used to determine 

the temperature. Since the fading of color in synthetic hackmanites is induced 

both with heat and light, a second measurement had to be done without heating 

to determine the fading rate induced by the light bulb used for illumination. Once 

this was done, the effect of light-stimulation could be removed from the TT 

measurement to reveal the effects of heating alone. The energy required for color 

removal was evaluated from the TT with the initial rise method presented earlier 

in Chapter 4.2.2. 
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Figure 16 Schematic overview of the thermotenebrescence measurement setup including 
light bulb, temperature controller, sample holder and hotplate, 2048-14 detector, and the 
computer to record the data from the measurement. 

The color of the samples was also determined from photographs taken of the 

samples. In this case ImageJ program [96] was used to determine the color 

intensity in the picture. The program calculates the RGB value of the selected 

area and the different RGB values of different samples can be used to compare 

the color intensity of the samples. 

4.2.4. Computational methods 
In addition to experimental methods, computational calculations were also used 

to get more detailed results from the hackmanite material. The calculations were 

carried out using a 2x2x2 supercell of the primitive sodalite unit cell that had a 

chloride vacancy VCl in the center. For the geometry optimizations the reciprocal 

space was sampled using Γ point as a single k-point. The doping concentration of 

6.25% for S2
2– ion was chosen in comparison to chloride concentration resulting 

in one chloride being replaced with S2
2– in the supercell. 

Computational work aimed in determining the most probable doping site for 

cations replacing Na in the system. Four different sites (a–d) were considered 

being either in the proximity of VCl and/or S2
2– or neither (Table 8). 
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Table 8 Na sites a–d used in computational measurements and their location in relation 
to VCl and S2

2–. 

Site Close to VCl Close to S2
2– 

a no yes 

b yes yes 

c yes no 

d no no 

 

After this, the computational method was used to study the mechanism of 

photochromism in synthetic hackmanites. For the calculations several doping 

concentrations for cations in Na site were used between 0 and 4.8%. The 

calculations were used to study the effects the doping had on the gaps between 

conduction band, highest occupied orbital and lowest unoccupied orbital. 

All computational calculations were carried out using Density Functional 

Theory (DFT) framework [101] and the global hybrid functional PBE0 in 

periodic boundary condition (PBC) with the ab initio CRYSTAL14 code. A fixed 

value of 10–7 Ha per unit cell was used as the convergence criterion for the 

self-consistent field (SCF) cycle. The localized (Gaussian) basis sets together 

with solving self-consistently the Hartree-Fock [102] and Kohn-Sham [103] 

equations allowed the efficient use of hybrid functionals. 

For the Na, Si, Cl, Al, O, Li and K atoms the all-electron double-zeta basis set 

was used with the polarization functions of 85–11G(d), 88–31G(d), 66–31G(d), 

86–21G(d), 66–31G(d), 5–11G(d), and 865–11G(d), respectively. For the S atom 

the triple-zeta basis set 86–311G(2d) was used and for the Rb atom the Hay-Watt 

small core pseudopotential was used with the 31G(d) basis. Lastly for the electron 

trapped in VCl, a basis with the 11G(d) structure was optimized for each system. 

In addition to this, density of states (DOS) calculations were conducted using 

a 4x4x4 k-points mesh. The DOS calculations show the total density of states as 

well as the DOS projected on S2
2– and VCl orbitals separately.  
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5. Results and discussion 

5.1. Different compositions of synthetic hackmanites 
The solid state synthesis protocol was used to prepare different hackmanite 

materials. The first step in hackmanite synthesis optimization was to find the 

proper S/Cl ratio [I]. The results indicated that both Cl and S are needed to 

produce luminescence and photochromism in hackmanite materials. From the 

samples that contained both Cl and S, luminescence and reflectance spectra were 

measured (Figure 17). The results indicate that the S/Cl ratios of 0.06 and 0.13 

have the best results in both aspects [I]. Since the increasing amount of S in the 

material results in a redshift in the luminescence color the S/Cl ratio of 0.06 was 

chosen as the best one and this was then used in most materials. The superiority 

of the 0.06 material was confirmed with repeating the synthesis a couple of times. 

The material turned always out better than the other materials. However, minor 

differences in luminescence and photochromic properties were found between the 

different samples. Thus, the same sample with S/Cl ratio of 0.06 was used as a 

reference throughout the thesis. 
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Figure 17 Luminescence (a) and photochromism (b) in synthetic hackmanite samples 
prepared with different S/Cl ratios (Table 4). [I] 

In the next phase of the materials preparation Na was partly replaced in the 

synthesis with other alkali metals. The results showed that partly replacing Na 

with a lighter element, Li, improved the PL and PeL properties of synthetic 

hackmanites [III] whereas the substitution with heavier elements, K and Rb, 

improved the photochromism of the materials [IV]. The same results were also 

obtained from computational work [IV]. Replacing Na with Li increases the 

energy gap between S2
2– and VCl (Figure 18). The increase in gap energy prevents 

the efficient trapping of electrons in VCl required in photochromism. Since PeL 

and photochromism are somewhat competing phenomena in synthetic 

hackmanites the decrease in photochromism allows more energy to be used in 

PeL thus enhancing this phenomenon. [IV] 
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Figure 18 Computed results on the effect of Na substitution around VCl in the energy gap 
between S2

2– and VCl [IV]. 

Computational results shown in Figure 18 support the experimental findings 

that K and Rb substitution results in materials with stronger photochromism. This 

happens when the S2
2– – VCl gap becomes smaller and thus the electrons are 

trapped more easily to form color centers. The photochromism mechanism 

becomes then dominant over the PeL mechanism. [IV] 

To enhance the PL intensity and lengthen the duration of PeL, Li-hackmanite 

was then doped with different elements to find the optimal composition for 

luminescence in hackmanites. The luminescence properties were then enhanced 

even further by introducing boric acid in the synthesis as a flux to help the 

arrangement of ions as well as to increase crystal growth during synthesis. [I–III] 

To study the possibility of hackmanite materials acting as host materials for 

up-conversion luminescence, the basic hackmanite with S/Cl ratio of 0.06 was 

doped with different amounts of ytterbium and erbium, which have good records 

in producing up-conversion luminescence in different host materials [63]. [V] 
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Since the results indicated that luminescence properties and photochromism 

in synthetic hackmanites can be enhanced with different compositions, the 

research focused on preparing synthetic hackmanites for optimal luminescence 

properties and also on other materials that have strong photochromic properties. 

In the last step the material composition was optimized to yield a material with 

all optical properties possible in one material. This multifunctional material could 

then be used in optical multiplexing [V]. 

5.2. Purity in materials 
The purity of prepared materials was first studied with XRD. The results showed 

that in most materials some alkali metal chloride was present as an impurity either 

as an unreacted starting material or resulting from the decomposition of formed 

hackmanite. This impurity was successfully removed from the sample when it 

was washed with quartz distilled water. After the washing only a small amount 

of RbAlSiO4 was present as an impurity in Rb-hackmanites [IV]. This impurity 

was concluded to be minor and not affecting the optical properties of 

Rb-hackmanite. 

From the XRD results obtained, Rietveld analysis was carried out to determine 

the unit cell volume of prepared materials. The first results showed an increase in 

unit cell volume with increasing sulfur content with the exception of the sample 

with S/Cl ratio of 0.06 [I]. The increase was expected since the ionic radii 1.84 Å 

for S2– is larger for that of 1.81 Å for Cl– in 4-coordination [104]. The composition 

with S/Cl ratio of 0.06 might be somehow optimal for the material since it differs 

from other samples in the series in optical properties as well, as can be seen later. 

 Rietveld analysis was also used to calculate interatomic distances in 

hackmanite material. In the case of ytterbium and erbium doped materials, the 

information from Rietveld analysis was used to evaluate whether the dopants 

have entered the host lattice. With small dopant concentrations the unit cell 

parameter a decreases clearly. This indicates that the dopants have entered the 

material causing changes in the unit cell size. With higher concentrations, the 
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(Yb,Er)2O3 impurity phase forms decreasing the amount of dopant concentration 

in the hackmanite material. This is supported by the fact that with higher doping 

concentrations, the unit cell parameter a is more close to that of non-doped 

material. [V] 

After XRD, the chemical composition was studied with XRF. The source of 

impurities in the final product was discovered to be in the zeolite starting material. 

The XRF results for elements present in zeolite starting material in a quantity of 

at least 0.1‰ are listed in Table 9. The impurity elements found in zeolite proved 

to be really important for the luminescence properties of synthetic hackmanites 

(see 5.3). [I] 
 
Table 9 XRF results of zeolite starting material [I]. 

Element Content (%) Element Content (%) 

Si 48.6 Mn 0.01 

Al 34.3 Fe 0.04 

Na 16.2 Ti 0.03 

Cl 0.66 Ca 0.03 

K 0.10 S 0.01 

 

The XRF measurement was also used to study the S/Cl ratio of the prepared 

materials. The results confirmed that the S/Cl ratio, after subtracting the amount 

of Cl resulting from the NaCl impurity phase, was the same in the final product 

as calculated from the amounts of starting materials used [I]. This confirmed that 

the synthesis was successful and Cl and S have entered the hackmanite structure. 

In a similar manner the Er/Yb ratio of ytterbium and erbium doped materials was 

studied (Table 10) [V]. Again the results show a close relation between the 

calculated and measured ratios indicating successful doping. 
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Table 10 Calculated and measured Er/Yb ratios for synthetic hackmanite materials. [V] 

Sample 
Er/Yb 

cal. 

Er/Yb 

meas. 
Sample 

Er/Yb 

cal. 

Er/Yb 

meas. 

Yb 3 mol-% 

Er 1 mol-% 
0.32 0.32 

Yb 9 mol-% 

Er 3 mol-% 
0.32 0.30 

Yb 6 mol-% 

Er 2 mol-% 
0.32 0.36 

Yb 20 mol-% 

Er 6 mol-% 
0.29 0.28 

Yb 6 mol-% 

Er 2 mol-% 

(Cl) 

0.32 0.30 

Yb 20 mol-% 

Er 6 mol-% 

(Cl) 

0.29 0.31 

 

After getting the overall idea of the impurities present in hackmanite materials, 

a more detailed analysis was carried out using ICP-MS. The material studied was 

a non-doped material with a S/Cl ratio of 0.06. The measurement focused on 

elements known to act as luminescence centers. The measurement found 4 

possible luminescence centers, titanium (content 74 ± 50 ppm), iron (content 

136 ± 4 ppm), manganese (content 2 ± 0.4 ppm), and chromium (content 

11 ± 1 ppm). Their effects on hackmanite luminescence are discussed in chapter 

5.3. [II] 

TEM imaging was used to study the materials’ stability in aqueous media. The 

synthesized Li-hackmanite was suspended in water solution for several weeks. 

After this both the bulk material and suspended material were studied using TEM. 

The results show that both samples contain large particles that are several 

micrometers in size and also smaller particles that are about 200 nm in size. The 

notable difference between these two samples was that with the sample kept in 

water, the smaller particles had a more regular size. [III] 

XPS measurements were carried out to study the oxidation state of sulfur and 

titanium present in hackmanite materials. The method was also used to study the 

changes in oxidation state when the material was exposed to UV radiation.         
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[II–IV] With titanium, there are only two oxidation states present, Ti4+ and Ti3+. 

The Ti4+ originating from TiO2 starting material is the most common state. The 

reduction of hackmanite samples reduces a part of the titanium to Ti3+ that can be 

seen in the XPS spectra of the final product [II]. With sulfur there is a larger 

variety of different oxidation states present (Figure 19) [IV]. Oxidation states of 

S6+, S4+, and S2– or S– are present in the XPS spectrum of white Rb-hackmanite 

material. Once the material is exposed to UV radiation and the color of the 

material changes due to photochromism (for more details see 5.4) a new oxidation 

state of S0 or S–0.5 appears in addition to the old ones. This new oxidation state is 

related to the photochromism mechanism in hackmanites that is described in 

chapter 5.4. 
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Figure 19 XPS spectrum for Rb-hackmanite in white and coloured form. [IV] 

SEM-EDX analyses were conducted to see the distribution of elements (Ti, K 

and Rb) in selected materials. The titanium measurement was used to prove the 

even distribution of doped Ti over the whole material. As can be seen from 

Figure 20, the distribution is even and the conclusion can be made that the dopant 

has entered the hackmanite structure. [II] 
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Figure 20 SEM-EDS image of synthetic hackmanite with the S/Cl ratio of 0.06 and 
2 mol-% of Ti doping showing the distribution of titanium in the grain. [II] 

When studying the SEM-EDX results of K- and Rb-hackmanites the focus 

was on the success of Na substitution in hackmanite. From both materials 100 

particles were chosen at random and their K or Rb composition was determined. 

According to the synthesis protocol, 25% of Na should be substituted to K or Rb. 

Despite this, the results showed substitution rates of 14% and 10% for K and Rb, 

respectively. The results indicated that the doped cations have poor solubility in 

the Na site, probably due to geometrical difficulties when larger cations (K+ and 

Rb+) try to enter the smaller Na+ site. [IV] 

The changes occurring in hackmanite after UV excitation were studied in more 

detail using solid state MAS-NMR. Selected samples were measured before and 

after excitation. The measurements were carried out for 23Na, 27Al and 35Cl. From 

all spectra measured only 23Na showed a difference between samples before and 

after excitation. This small but notable shift that could be seen after normalizing 

the spectrum according to the internal reference of 0.1 molar NaCl in D2O 
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(Figure 21) turned out to be an important result when confirming the mechanism 

for PeL (see chapter 5.3.2). [III] 

 
Figure 21 Solid state NMR results of Ti doped Li-hackmanite measured before and after 
30 min excitation with 254 nm. [III] 

Even if the 35Cl MAS-NMR results didn’t show any differences for samples 

before and after excitation the results could still be used to estimate the amount 

of F centers present in the materials. The signals present in 35Cl MAS-NMR 

spectra at ca. –132, –52 and +2 ppm are attributed to the regular, vacancy free 

form of sodalite, to the NaCl impurity present in the material, and to the chloride 

ions close to a high number of F centers, respectively. [I] The signal close to           

–130 ppm was also used to estimate the concentration of F centers in the whole 

material. It has been shown before [105] that the signal moves to lower ppm 

values with decreasing concentration of F centers. The obtained value of ca.           

–130 ppm for hackmanite, K-hackmanite and Li-hackmanite indicates that the 
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actual concentration of F centers is significantly lower that the nominal 

concentration of 5%. [IV] 

The results obtained from EPR measurements were also used to study the 

structure and especially the changes taking place in the structure after the 

excitation of the sample. Selected samples were measured with EPR before and 

after excitation at 355 nm or 254 nm. The data from the non-irradiated sample 

shows signals attributed to Mn2+ which is present as an impurity in the material 

as confirmed earlier by ICP-MS and XRF. When exciting the material with 

355 nm the selected hackmanite with S/Cl ratio of 0.06 exhibits PeL but not 

photochromism. The EPR results of this material show a similar structure to the 

non-irradiated sample. The only difference occurs at 3510 G. This change is thus 

the result of the unpaired electrons resulting from the PeL mechanism. In the same 

manner, the sample was excited at 254 nm. With this excitation the material 

exhibits both PeL and photochromism. To be able to study the effects of 

photochromism alone the material was kept in the dark for one week after the 

excitation. After this time there is no longer PeL since it discharges on its own 

after the excitation ends. Photochromism on the other hand stays in the material 

when kept in the dark. After one week the EPR was measured and the results 

showed that the signal attributed to PeL mechanism was no longer present. 

Instead a new feature at 3517 G was present which could then be taken to be 

resulting from unpaired electrons from photochromism (Figure 22). [II] 
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Figure 22 EPR spectra measured from synthetic hackmanite before and after excitation 
with 254 and 365 nm. [II] 

EPR measurements were also carried out for Ti doped Li-hackmanite. In this 

material the presence of Ti3+ is clearly observed. When excited, the signals for 

Ti3+ decrease which is a result of Ti3+ being oxidized to Ti4+, which does not have 

any unpaired electrons and can thus not be seen in EPR spectra. This oxidation is 

closely related to PeL mechanism which is discussed in more detail in chapter 

5.3.2. [III] 

Lastly the, FTIR measurements of a hackmanite sample with S/Cl ratio of 0.06 

before and after excitation confirm the different structural changes taking place 

during luminescence phenomena and photochromism. While the IR spectra for 

non-irradiated and 365 nm irradiated samples are identical, the spectrum for 

254 nm irradiated sample shows a change at the signal at ca. 1000 cm–1 that can 

be assigned for asymmetric T–O–T (T = Si, Al) bending [106]. This shows that 

luminescence induces changes in the structure that is not IR active and 

photochromism induces changes observable via IR. [II] The different properties 

and their mechanism are discussed in chapters 5.3 and 5.4. 
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5.3. Luminescence properties 
Like natural hackmanites, synthetic hackmanites show photoluminescence when 

excited with UV. The synthetic hackmanites also exhibited strong persistent 

luminescence, unlike their natural counterparts that usually do not show PeL and 

if they do, it only lasts for a couple of minutes. The first observations showed that 

synthetic hackmanites can have different luminescence properties depending on 

the composition and the excitation source. This led us to study the different 

luminescence properties and the mechanisms behind them. 

5.3.1. Photoluminescence 
This work’s first observations of PL in synthetic hackmanites were made after the 

first synthetic hackmanite series, the different S/Cl ratios, was made. This series 

showed clearly the range of different luminescence properties that can be 

obtained from synthetic hackmanite (Figure 23). The different S/Cl ratios all 

show PL with different colors and the color also depends on the excitation 

wavelength. When sulfur is present in the sample, the emission maximum shifts 

to a higher wavelength. 

 
Figure 23 Luminescence in synthetic hackmanites prepares with different S/Cl ratios 
(Table 4) and excited with 365 and 254 nm. [I] 
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Since the hackmanite luminescence is strongly dependent on the excitation 

wavelength, the luminescence excitation spectrum was measured for the samples 

with different S/Cl ratios. The emission wavelength of about 460 nm was chosen 

to be measured since it is the center of the main emission peak. For all samples 

the excitation spectrum was similar and it had the maximum at 310 nm. Below 

310 nm the excitation spectrum drops fast meaning that higher energies will not 

excite the PL efficiently. 

To get a better understanding of the PL of synthetic hackmanite, the 

luminescence center needed to be determined. Based on XRF and ICP-MS 

measurements discussed above, the luminescence center could be determined to 

be one of the following: titanium, chromium, manganese or iron. Since the main 

emission peak of hackmanite has its maximum at about 460 nm, we could discard 

chromium and iron, since they are known to have mainly red luminescence and 

thus can not contribute to the 460 nm emission [107]. After this, the effects of 

titanium and manganese on synthetic hackmanite PL were tested by preparing 

hackmanite samples with 2 mol-% doping of Ti or Mn. 

The prepared Ti and Mn doped samples were compared to a non-doped sample 

to better understand the effects of doping in hackmanite luminescence. In    

Figure 24 we can see that the titanium doping has a minimal effect on both 

luminescence emission and excitation spectra compared to the non-doped sample. 

Manganese doping on the other hand changes the shape and the position of both 

emission and excitation spectrum. This highly suggests that manganese is not 

responsible for hackmanite luminescence. 
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Figure 24 Normalized spectra of hackmanite a) emission and b) excitation in non-doped 
as well as Ti and Mn doped hackmanites. Adapted from [II]. 

The shape of the PL spectrum of synthetic hackmanite suggests that there 

might be more than one luminescence centers responsible for the PL. Since O2
– 

has been known to show blue luminescence in minerals, the possibility of its 

contribution was tested. Synchrotron measurements carried out at 20 K showed 

the typical vibrational bands with ca. 1000 cm–1 intervals located at 400 nm. This 

suggests that both O2
– and titanium are responsible for the PL in synthetic 

hackmanites. The fading time for O2
– luminescence is generally a lot faster than 

that of titanium. Therefore, the emission decay times recorded at different 

emission wavelengths suggest that the O2
– luminescence dominates the blue side 

of the emission peak while titanium dominates the red side (Figure 25). [II] 
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Figure 25 Emission decay curves for synthetic hackmanite with S/Cl ratrio of 0.06. The 
curves have been recorded at different emission wavelengths. [II] 

The location of the doped titanium was then assumed to be in the Al3+ site in 

the synthetic hackmanite. The ionic radius of four-coordinated Ti4+ (0.42 Å) is 

closest to that of four-coordinated Al3+ (0.39 Å) [104]. The other possible sites in 

hackmanite are four-coordinated Na+ (0.99 Å) and four-coordinated 

Si4+ (0.26 Å). From these, the titanium could possibly also occupy the Si4+ site 

because of the match in the valence. XPS results then showed that in synthetic 

hackmanite, both Ti3+ and Ti4+ are present. The titanium in the starting material 

TiO2 is only in the form of Ti4+ but during the reduction part of the hackmanite 

synthesis, a part of Ti4+ reduces to Ti3+. [II] 

The total luminescence process for synthetic hackmanite PL was then 

concluded to happen in a close pair of titanium and oxygen vacancy (Ti3+–VO• 

pair) when electron excites from Ti3+ to VO• and a charge transfer then happens 

from VO• to Ti4+. [II] 

Once the mechanism for PL was confirmed, efforts could be made to make the 

luminescence stronger. When looking into the mechanism of photochromism that 

will be discussed in chapter 5.4 it can be seen that replacing sodium partly with 

lithium will allow the PL to be stronger. This is because the presence of lithium 
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raises the energy needed for photochromism and thus more energy is left for the 

luminescence phenomena. This was supported by the preparation of 

Li-hackmanites. The prepared Li-hackmanite with an alkali metal composition of 

LiNa7 (compared to Na8 of original, synthetic hackmanite) showed even stronger 

PL than the hackmanites synthesized before. [III] 

The synthetic hackmanite shows luminescence in different colors ranging 

from blue to red. The excitation wavelength strongly affects the color and 

intensity of the luminescence. This study focused mostly on the blue/white PL, 

since this is not studied before as widely as the red/orange PL of natural 

hackmanites. The strongest luminescence in synthetic hackmanites can be 

obtained with 310 nm excitation. Maybe the most interesting property of 

hackmanite luminescence is that it can produce white luminescence with a broad 

emission. For example the PL of LiNa7 hackmanite doped with 2 mol-% titanium 

is white according to the CIE color coordinates assigned to white by Fortner and 

Meyer [108] (Figure 26) [III]. 
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Figure 26 CIE color coordinates for synthetic Li-hackmanite PL. [III] 

5.3.2. Persistent luminescence 
Persistent luminescence in synthetic hackmanites was first reported by us in 2015 

[I]. The phenomenon opened a wide new research area in synthetic hackmanites. 

Not all synthetic hackmanites show PeL and the color and intensity of persistent 

luminescence varies in the samples widely (Figure 27). The first observation was 

that the sample that did not contain sulfur did not have any PeL observable either 

in photographs or with a spectrometer [I]. This suggests that sulfur might play an 

important role in the mechanism of persistent luminescence in synthetic 

hackmanites. 
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Figure 27 Persistent luminescence in synthetic hackmanites prepares with different S/Cl 
ratios (Table 4) and excited with 365 and 254 nm. [I] 

The mechanism of PeL was then studied in more detail. Since titanium was 

determined to be responsible for the photoluminescence in synthetic hackmanites 

it was also studied in the case of persistent luminescence. The comparison was 

made between non-doped and Ti-doped hackmanites with the S/Cl ratio of 0.06 

(Figure 28). The shape of the emission spectra is similar in both samples. 

However, the intensity and duration of PeL in the titanium doped sample is 

superior to the non-doped sample. [II] 

 
Figure 28 PeL a) emission and b) decay in non-doped and Ti-doped synthetic 
hackmanites. [II] 

The comparison of PL and PeL spectra of synthetic hackmanites shows that 

the shoulder clearly visible in the PL spectra on the higher wavelengths       
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(Figure 24 a) is not present in the PeL spectrum. This suggests that the PeL 

originates from just one luminescence center, contrary to PL. 

During the investigation of the luminescence centers with synchrotron 

excitation a blue-shift was noticed in the luminescence spectrum when compared 

with the data obtained with the regular laboratory setup. The shift is due to the 

different delay time in the synchrotron measurements compared to the 

conventional luminescence measurements. When the matter was studied in more 

detail it was clear that the emission maximum shifts to higher wavelengths with 

the increase in delay time. When the time increases enough so that there is no PL 

left, the position of the PeL emission spectrum becomes fixed and no longer 

moves with increasing delay time (Figure 29). This finally confirms that the 

mechanism of PeL involves only one luminescence center whereas PL has two 

different centers. 

 
Figure 29 Hackmanite emission with different delay times with 310 nm excitation. [II] 

The thermoluminescence measurements carried out for non-doped synthetic 

hackmanite with S/Cl ratio of 0.06 after excitation with 254 nm showed two 

different peaks in the TL glow curves. This indicates that there are two traps with 

different energies within the hackmanite material. By preheating the material to 

250 °C the second trap locating at ca. 300 °C was revealed. After this the energies 
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of both traps were calculated with the initial rise method [100]. The energies for 

the shallower and deeper traps are 0.5 and 1.2 eV, respectively. The deeper trap 

is not observed in the TL curve when the excitation is made with 365 nm    

(Figure 30). [II] 

 
Figure 30 Thermoluminescence glow curves for synthetic hackmanite with S/Cl ratio of 
0.06. Sample was excited with 254 and 365 nm. [II] 

Based on the results presented above, the mechanism for PeL in synthetic 

hackmanites was concluded to take place in a Ti3+-VO pair. The energies of 3.4 eV 

and more are absorbed by the pair and electrons are transferred to the conduction 

band. From there, the electrons are trapped in the oxygen vacancies that lie 0.5 

and 1.2 eV below the conduction band. When electrons are released from the traps 

by thermal energy, they migrate to the excited levels of Ti3+ from where they relax 

emitting a photon at 2.4 eV. This results in the PeL visible at 515 nm (Figure 31). 
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Figure 31 A schematic of the energies involved in the persistent luminescence 
mechanism of synthetic hackmanites. Modified from [II]. 

The efficiency of PeL can best be measured by the duration of the 

luminescence. First, the duration was measured with a luminescence spectrometer 

after 30 min of excitation with a 254 nm UV lamp. The measurement was carried 

out for 100 h measuring the spectrum every 30 min. At the end of the 

measurement the spectrometer was still able to detect the luminescence from the 

Ti-doped Li-hackmanite material (Figure 32 a). Another good way to measure 

the length of the PeL is to record its luminance and determine the time the 

intensity stays above the limit of 0.3 mcd m-2 [98] set by the industry. The same 

measurement was carried out for commercial phosphors in use today to compare 

the new Li-hackmanite to other materials (Figure 32 b). The measurement shows 
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that while commercial SrAl2O4 and Sr2MgSi2O7 doped with Eu and Dy are 

superior to the new material, synthetic hackmanite can match the length of 

commercial CaAl2O4 doped with Eu and Nd and it exceeds the length of Y2O2S 

doped with Eu, Ti and Mg by hours. The advantage of the present Li-hackmanite 

is that it does not contain expensive lanthanides unlike all of the commercial 

phosphors. [III] 

 
Figure 32 a) PeL of Ti-doped Li-hackmanite measured with a luminescence spectrometer 
after 30 min excitation with 254 nm. b) Comparison of luminance in Ti-doped 
Li-hackmanite and comercial phosphors after 30 min excitation. [III] 

The color of the PeL emission depends on the composition of the material 

similarly as in the case of PL. With suitable composition, for example Ti-doped 

Li-hackmanite, the color of PeL falls to the white category in the CIE coordinates 

[108]. The color temperature of the PeL is 7556 K which corresponds to cool 

white. [III] 

5.3.3. Up-conversion luminescence 
To study if hackmanites could act as host materials for up-conversion 

luminescence, synthetic hackmanites with ytterbium and erbium doping were 

prepared. The Yb/Er ratio was chosen based on previous results in different host 

materials indicating that the ratio produces efficient up-conversion luminescence 

[109]. The samples were prepared using both lanthanide oxides and lanthanide 
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chlorides as starting materials. This way it was possible to study in which form 

the lanthanides can be best introduced to the hackmanite host lattice. 

All synthesized samples show up-conversion luminescence but the intensity 

in the samples prepared from oxides is 5 times stronger than the intensity in the 

chloride samples (Figure 33). In the oxide samples the up-conversion 

luminescence resulting from the 4F9/2→4I15/2 transition (650-700 nm) increases 

with the increasing lanthanide concentration. The increase in the luminescence 

intensity is natural, since the samples then have more luminescence centers. This 

is why the luminescence intensity was also compared to the molar amount of 

ytterbium in the sample. In this comparison the sample with the lanthanide 

composition of 3 mol-% Yb and 1 mol-% Er stands out. [V] 

 
Figure 33 Up-conversion luminescence in synthetic hackmanites under 972 nm 
excitation. Samples are prepared using a) lanthanide oxides and b) lanthanide chlorides. 
[V] 

When using lanthanide chlorides the diffraction results show intense 

reflections originating from non-reacted lanthanide chlorides. This together with 

the luminescence results suggests that ytterbium and erbium have difficulties 

entering the host lattice, when chlorides are used as starting materials. Thus, 

lanthanide oxides should be used when preparing up-conversion materials using 

synthetic hackmanites as hosts. [V] 

The doping of ytterbium and erbium into hackmanite structure did not change 

the shape of the PL or PeL spectrum of the hackmanite. The PL intensity was 
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comparable to the non-doped sample and in some cases the up-converting 

samples had even stronger PL than the non-doped sample. In the case of PeL the 

incorporation of Yb and Er to the lattice decreased the intensity. Nevertheless, all 

the lanthanide doped samples show notable PeL emission when excited with 

365 nm. The decrease in PeL is probably due to the charge compensation after 

Na+ sites are filled with Yb3+ or Er3+ anions. This results in oxygen vacancies 

being filled and because they are responsible for storing the energy in PeL, the 

intensity decreases. [V] 

The results show that synthetic hackmanite can be used as a host material for 

up-conversion luminescence. The property could not be optimized during this 

work but the current results give a good starting point for further research. This 

also widens the possibilities of different optical outputs if the hackmanites were 

to be used in sensors. 

5.4. Photochromic properties 
The photochromic properties of hackmanite have been known since the discovery 

of the natural hackmanite. The ability to reversibly change color with UV 

irradiation made the mineral an interesting topic to study. Now also the synthetic 

version of hackmanite is studied for its photochromic properties. 

Like with luminescence, in this work the study of photochromism started from 

the comparison of the structural differences to the observed properties. 

Photochromism was studied for the samples prepared with different S/Cl ratios 

under 254 and 365 nm excitation. The color did not change under 365 nm but the 

excitation with 254 nm made most of the samples turn purple (Figure 34) [I]. The 

only sample not turning purple was the sample with no sulfur. This confirmed the 

assumption that sulfur plays a role in the mechanism of photochromism. 

Interestingly, the sample with S/Cl ratio of 0.00 actually bleached during the 

254 nm excitation which can be seen from both the photo (Figure 34) and the 

measured reflectance spectrum [I]. 
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Figure 34 Photochromism in the synthetic hackmanites prepared with different S/Cl 
ratios (Table 4) before the excitation and after they have been excited with 365 or 254 nm. 
[I] 

In addition to photographs and visual observation, another way of measuring 

the photochromism in the synthetic hackmanites was needed. For this, the 

measurement of reflectance proved to be the most suitable. The reflectance of the 

material was measured before and after excitation. When the starting spectrum 

was deducted from the latter, the intensity of the color change could be seen. The 

difference curve showed a broad spectrum with a minimum located around 

550-560 nm. This corresponds to the purple color also visible with naked eye. [I] 

The duration of the photochromism was also studied. The study was made 

with the sample with S/Cl ratio of 0.06 since it has the strongest color change of 

the prepared samples. It is known that some optical stimulation is needed to 

change the color of photochromic materials back to their original state. That is 

why the sample was illuminated with a light bulb during the experiment. The 

results and observations show that with naked eye the purplish color can be 
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observed for about 48 h and even after 60 h the color change can still be observed 

with reflectance spectrometry. [I] 

The mechanism of photochromism in the synthetic hackmanite was then 

studied in more detail. The findings about the importance of sulfur for the 

photochromism mechanism are also supported by literature [10,12]. The question 

still remains as to what form the sulfur is in. The sulfur can be present either as 

S2–, S2
2– or S2

–. Since the mechanism proposed for tenebrescence before [10] 

involves an electron transferring from the sulfur to a VCl resulting in a color center 

and a sulfur radical, effort was made to identify this radical from the colored 

hackmanite material. The emission spectrum made with 155 nm synchrotron-

radiation excitation show a band at 685 nm that could be attributed to S2
– based 

on the vibration peaks that are present in the spectrum [II] with a 500 cm–1 

separation. This indicates that the mechanism for photochromism in synthetic 

hackmanite involves an electron being exited from S2
2– to a VCl creating a S2

– 

radical. 

Next, the energies involved in photochromism were studied. The first part was 

to find the energy needed to color the material. For this, synthetic hackmanite was 

excited with different wavelengths and the reflectance was measured (Figure 35) 

[II]. From these measurements the energy needed to induce the color change in 

the hackmanite material was found to be 4.3–5.5 eV. Next, the energy needed to 

remove the color was studied with a similar measurement after first coloring the 

sample with 254 nm. The energy needed to totally bleach the color is 2.0–2.5 eV 

(Figure 35).  [II] 
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Figure 35 The energies coloring and bleaching the synthetic hackmanite materials. [II] 

The last energy needed to complete the mechanism is the absorption of the 

color center. The material appears purple when it is in the colored state. The 

reflectance measurement shows the absorption to be between 425 and 700 nm 

corresponding to 1.8–2.9 eV. In the first part of the photochromism, the S2
2– ion 

absorbs at 4.3 eV and an electron is lifted to the conduction band. From there, the 

electron can transfer to VCl and a color center is formed. The color center can then 

absorb energies of 1.8–2.9 eV giving the material its purple appearance. From 

there the electron can get back to the conduction band and transfer back to S2
2– 

ion gradually fading the color of the material (Figure 36). [II] 
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Figure 36 A schematic of the energies involved in the photochromism mechanism of the 
synthetic hackmanites. Modified from [II]. 

For an even better understanding of the photochromism mechanism, some 

computational measurements were carried out. The first calculations aimed in 

understanding which Na sites will be replaced with cations when preparing Li-, 

K- and Rb-hackmanites. The results clearly show that the sites located next to the 

vacancy (b and c sites, see Table 8 for details) are the most probable sites     

(Table 11). Only for the K substitution a site further away (d site) is also possible. 

The preferred substitution around the vacancy is easily explained with the easier 

adaption of the surroundings for the presence of a different sized cation. [IV] 
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Table 11 Results from the DFT simulation indicating the energy (E) and distribution 
(Dist.) of Li, K and Rb cations in different Na sites inside the hackmanite material. 

Site Li K Rb 

 
Multi-

plicity 

E 

(eV) 

Dist. 

(%) 

E 

(eV) 

Dist. 

(%) 

E 

(eV) 

Dist. 

(%) 

a 4 0.21 0 0.29 0 0.62 0 

b 1 0.00 95 0.31 0 0.47 0 

c 3 0.11 5 0.00 16 0.00 100 

d 56 0.36 0 0.03 84 0.22 0 

 

Next computations were made on the energies involved in the photochromism 

mechanism. The first energy involved is the energy between S2
2– and the 

conduction band. The calculations show that this energy is not affected much by 

the doping of Li, K or Rb in the hackmanite [IV]. The other energy involved is 

the energy between the S2
2– and VCl. The energy of the second gap increases when 

doped with Li and decreases when doped with K and Rb (Figure 18). This is in 

agreement with the results obtained from the synthetic hackmanites. These results 

support a direct through space electron transfer instead of a two step excitation 

and relaxation mechanism for the photochromism (Figure 37). [IV] 
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Figure 37 Possible electron transfer routes for color center creation in the hackmanite 
photochromism. Left: Two step electron transfer. Right: Direct trough space electron 
transfer. [IV] 

The computational results discussed above help understand the mechanism but 

in addition to that, they also indicate that different hackmanites can be prepared 

with tunable properties. With the energy gap changing the activation energy for 

photochromism also changes. This allows the manufacturing of materials in 

which the photochromism can be induced with different energies. Thus, synthetic 

hackmanites, K-hackmanites and Rb-hackmanites were prepared and the 

excitation energies for photochromism was recorded. The results show that 

photochromism in K- and Rb-hackmanites can be induced with higher 

wavelengths than in common Na-hackmanites (Figure 38). The possibility to 

tune the excitation energy might prove valuable in possible applications for 

hackmanites that will be discussed in chapter 5.5. [IV] 
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Figure 38 Excitation energies for the photochromism in the different synthetic 
hackmanites. [IV] 

This work’s last results about photochromism were obtained with a technique 

called thermotenebrescence (TT), which was developed during this work. With 

the new technique it is possible to follow the color bleaching with increasing 

temperature. Because the measurement is done in lit conditions to be able to 

measure the reflectance of the sample, the effect of light in the bleaching has to 

be taken into account. After subtracting this, the TT curves show that bleaching 

due to light is dominant until 80 °C (K-hackamnite) or 100 °C (Na- and 

Rb-hackmanite). After this, the thermal bleaching becomes dominant          

(Figure 39). It is also possible to calculate the energy needed to bleach 

hackmanites from TT curves. When the initial rise method [100] is applied to the 

obtained TT curves, the energy can be calculated like in the TL case. [IV] 
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Figure 39 Thermotenebrescence curves for the synthetic Na-, K- and Rb-hackmanites. 
[IV] 

The photochromism property in synthetic hackmanites can be widely tuned 

with different doping elements. The computational results obtained during the 

research help to understand the phenomena even more and the deeper insight 

allows easier preparation of different materials tunable for different applications. 

5.5. Possible applications for synthetic hackmanites 
The natural mineral hackmanite has some uses mostly in jewelry production, 

where its photochromic property is valued. Now, the results obtained in this work 

indicate that the synthetic hackmanites could also have many interesting 

applications in other different fields. 

The white luminescence in the synthetic hackmanites has a wide spectrum and 

a tunable color. This makes it a promising option for lighting applications. The 

wide spectrum of the hackmanite luminescence is gentler for human eye 

compared to the line spectrum obtained from fluorescent lamps in use today. The 

wide spectrum mimics the spectrum obtained from the sun. The light obtained 

from the hackmanites is less strong than that of a commercial lighting at the 
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moment but it is expected to get stronger with more research in the field. The 

study of quantum yields could give a better understanding of the luminescence, 

but since it is difficult to measure it from powder samples, it was not measured 

during the thesis work. Even now the synthetic hackmanite could be used in areas 

where less brightness is needed, for example in the night time lighting, where the 

current lights seem too strong. [III] 

The results also indicate that hackmanite luminescence can be used in 

diagnostics. It was proven that hackmanite PL and PeL can differentiate between 

the expensive spice saffron from its most common counterfeits, turmeric and 

annatto (Figure 40). These promising results suggest that synthetic hackmanites 

could be used as a label in other kind of diagnostic methods as well. When the 

fact that the hackmanite luminescence can be exited with sunlight is added to this, 

it gives the possibility to prepare cheap point-of-care tests using hackmanite that 

could be used in difficult conditions without any expensive equipment, just using 

the sun as an excitation source. 
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Figure 40 PL and PeL measurements from Saffron, Turmeric and Annatto samples using 
synthetic Li-hackmanite as a lable [III]. 

For the photochromic part, it has been suggested that the synthetic 

hackmanites could be made into wearable UV detection tags that could help 

customers to follow their own UV exposure [IV]. Since the excitation spectrum 

for K-hackmanite follows the erythemal action spectrum of the human skin well, 

the color intensity in the UV tag could warn the carrier of too much exposure to 

harmful radiation. In addition to the use in personal health indication, similar tags 

with different activation energy could be prepared for other objects suffering from 

damage caused by UV, for example wine and beer, some food items and plastics. 

Lastly, the addition of the up-conversion luminescence to the hackmanites 

resulted in one material with 4 different optical properties all excited with 

different wavelengths. Materials like this can be used in optical multiplexing, 

where one material gives different signals depending on what kind of radiation it 

is exposed to. In this way, for example, the wavelength (range) of an unknown 
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radiation source could be determined based on the mixture of optical signals 

obtained from the synthetic hackmanite after it has been exposed to the radiation 

(Figure 41). 

 
Figure 41 Shematic overwiev of the hackmanite material used in multiplexing 
determining the wavelenght of the unkonwn radiation. 

The synthetic hackmanites have already many possible applications. Since the 

subject is still quite new and the research on synthetic hackmanites will still go 

on, other possible applications might come up even in the near future. 

 

31089720_Turun_yliopisto_Vaitoskirja_Isabella_Norrbo_Luonn_tiet_ja_tekn_sisus_19_04_15.indd   90 16.4.2019   7.48.59



 

91 
 

 

 

 

6. Summary 

Synthetic Li-, Na-, K- and Rb-hackmanite materials were successfully prepared 

using solid state synthesis. Their chemical composition and crystalline structure 

were confirmed to be that of hackmanite using XRF and XPD measurements. 

The synthetic hackmanite materials exhibited PL, PeL and photochromism. 

The color and the intensity of the luminescence as well as the photochromism 

could be tuned by adding dopants to the material. Ti doped Li-hackmanite showed 

the strongest luminescence. The color of the luminescence falls to white in CIE 

color coordinates and thus shows great potential in possible applications in 

lighting industries. 

K- and Rb-hackmanites showed strong photochromism, and the activation 

energy for the phenomenon was tunable with different hackmanite compositions. 

The formation of F centers changes the body color of hackmanite from white to 

dark purple. The color change can be reversed with proper radiation or heating of 

the material. The material stays intact during the coloration and de-coloration 

cycles and they can be repeated numerous times. 

Na-hackmanites doped with ytterbium and erbium were prepared resulting in 

hackmanite materials showing up-conversion luminescence. The results proved 

that the hackmanites can act as host materials for the up-conversion luminescence 

but more optimization would be needed to get the luminescence emission 

stronger. 

In addition to the properties of the hackmanite materials, the mechanism was 

also studied. During the research a mechanism was proposed for both PeL and 

photochromism in synthetic hackmanites. The mechanism of PeL involves 
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titanium and oxygen vacancies forming in the material. The titanium can be doped 

or it can be found as an impurity in starting materials used in the hackmanite 

synthesis. For the photochromism mechanism, S2
2– and VCl were found to be 

responsible. 

The results obtained lead to many promising possibilities for commercial use 

for synthetic hackmanites. Lighting applications and UV monitoring are good 

examples for these kinds of applications and many more might appear in the 

future. 

The current research gives a good basic understanding on the optical 

properties of the synthetic hackmanites. Next steps in the research should include 

the testing of different doping ions and the larger variation of the hackmanite 

structure to prepare materials with even stronger luminescence or different colors 

of photochromism. The solid state synthesis in use now works well in the 

laboratory conditions, although if moved to commercial use, the synthesis should 

be made shorter to save time and heating expenses. Because of this, different 

synthesis methods for hackmanites should be studied. Different methods could be 

for example combustion synthesis, microwave synthesis or liquid phase 

synthesis.  
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