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RNA-sequencing and mass spectrometry technologies have facilitated the differential
expression discoveries in transcriptome and proteome studies. However, the determi-
nation of sample size to achieve adequate statistical power has been a major challenge
in experimental design. The objective of this study is to develop a power analysis tool
applicable to both RNA-seq and MS-based proteomics data. The methods proposed in
this study are capable of both prospective and retrospective power analyses. In terms
of the performance, the benchmarking results indicated that the proposed methods can
give distinct power estimates for both differentially and equivalently expressed genes
or proteins without prior differential expression analysis and other assumptions, such
as, expected fraction of differentially expressed features, minimal fold changes and
expected mean expressions. Using the proposed methods, not only can researchers
evaluate the reliability of their acquired significant results, but also estimate the sufficient
sample size for a desired power. The proposed methods in this study were imple-
mented as an R package, which can be freely accessed from Bioconductor project at
http://bioconductor.org/packages/PowerExplorer/.
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Chapter 1

Introduction

A recent literature [1] assessed thousands of recently published statistical records in the

fields of cognitive neuroscience and psychology. They reported that most of the publica-

tions had low replication and power, which resulted in inflated false positive discoveries.

Additionally, many published significant results were found to be "only the occasional

large deviations from real effect sizes". They suggested more attention was needed for

the numerous reproduction failures in psychology and cognitive neuroscience research.

Furthermore, an on-line survey was conducted to assess the public opinion regarding

the reproducibility of academic research [2]. The given responses from 1,536 researchers

have drawn attention of the research community. More than 70% of the researchers indi-

cated that they had attempted and failed to reproduce the published work of other research

(Figure 1.1). A poorly designed experiment, such as one with inadequate sample size,

can lead to erroneous results [3]. Due to insufficient knowledge in statistics, researchers

in many fields have been overly trusting P-value as a reliable reference to significant dis-

coveries.

A simulation-based study indicated that repeated experiments with small effect size

substantially showed variation in P-values [4]. Uniformly distributed P-values were ex-

pected in reproduced experiments. However, in their study, the stability of P-value was

not yet significantly improved by moderately increasing the sample size. Only when the
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51.97 %

37.63 %

2.98 %

7.42 %

Is there a crisis of reproducibility?

A significant crisis
A slight crisis
No crisis
I don't know

Figure 1.1: Summary of responses from the survey. More than 80% of the researchers

think there is a crisis of reproducibility.

statistical power reached 90% did the P-values show much more stability among all sim-

ulations. The demonstrated results indicated that a P-value can be credited as the index

of significance only when it is complemented by sufficiently high statistical power. Most

importantly, power calculation has currently been required as a compulsory component

of a research proposal to many funding applications.

A review paper [5] has categorized a wide range of power analysis methods for vari-

ous omics studies, such as DNA sequencing, RNA Sequencing (RNA-seq), microbiome

sequencing and chromatin immunoprecipitation sequencing (ChIP-Seq). The diversity of
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technologies results in different statistical assumptions and definitions of statistical power,

which brings great difficulties in downstream statistical analysis due to the high depen-

dence of suitable model selections. Most of the existing power estimation tools depend

on the number of differentially expressed (DE) features detected by some differential

expression analysis (DEA) methods, such as edgeR [6] and DESeq [7]. However, the dif-

ferential expressions occurring in an experiment are usually unknown. Furthermore, few

power analysis methods are found to be directly available for mass spectrometry (MS)-

based proteomics data. Instead of depending on DEA methods, the proposed methods

estimate the power at single gene or protein level using parametric resamplings from the

estimated probability distribution of each gene or protein. However, this thesis only dis-

cusses about power analysis methods that are currently available for both RNA-seq and

MS-based quantitative proteomics experiments. For more simplicity, the terms "genes"

or "proteins" will be referred to as features.



Chapter 2

Background

This chapter introduces some essential concepts leading to a better understanding of this

study. It includes the brief introductions to a few contemporary transcriptomics and pro-

teomics technologies, as well as the concepts of hypothesis testing and power calculation.

2.1 Transcriptomic Analysis

A transcriptome consists of the complete set of expressed messenger RNA (mRNA)

molecules in a cell or a population of cells. Because of its dynamic states, a studied

transcriptome also includes the quantity or concentration of each detected transcript. One

of the key aims of transcriptomics technologies is to quantify and compare the expression

levels of each transcript between different tissues, time points or physiological condi-

tions. The quantification process discovers gene expression patterns potentially reasoning

for the causes of the biological changes, such as the pathological mechanism of a disease.

Transcriptomics analysis may help with understanding the mechanisms behind biologi-

cal changes by discovering the DE genes, but the proportion of available biomolecules

in samples is usually extremely low. Thus, methods based on signal amplification, such

as using fluorescence labeling, are developed to convert the nanometer-scale information

into discrete optical measurements [8].
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Most transcriptomics technologies generally require the process of RNA isolation

which uses various RNA extraction methods aiming to achieve similar goals [9]: cellular

disruption, total inhibition of RNase activity, separation of RNA from other biomolecules

(mainly protein and DNA) and concentration of RNA. However, most of the isolated RNA

are ribosomal RNA (rRNA) whereas only<5% are mRNA [10], hence mRNA enrichment

is necessarily needed to amplify the signals. Widely used mRNA enrichment methods are

generally based on rRNA capturing using sequence-specific probes, polyadenylation of

mRNA or degradation of processed RNA [11].

Transcriptomics technologies are currently based on two major approaches: hybridization-

based and sequence-based. Hybridization-based technologies quantify a set of interested

transcripts for a specific experiment, the main contemporary hybridization-based technol-

ogy is microarrays. Sequence-based technologies are currently dominated by RNA-seq,

which detects all transcripts from input RNA samples using high-throughput sequencing

(HTS) technologies.

2.1.1 Microarray

Microarrays are complementary DNA (cDNA) chips designed to measure the abundance

of a predetermined list of transcripts, each chip has a solid surface with arrays consist-

ing of short nucleotide oligomers, known as probes, targeting specific transcripts [12,

13]. After the hybridization of the fluorescence-labeled transcripts to the probes, the de-

tection of the fluorescence intensities deduces the abundance of the targeted transcripts.

However, microarray technology has become less popular due to its limitations: strong

dependence on prior knowledge of genomes of interest; difficulty in analysis of closely

related sequences owing to cross-hybridization; complexity of normalizing and compar-

ing expression levels across experiments owing to the analog nature of fluorescence-based

detection [14, 15].
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2.1.2 RNA Sequencing

Microarray technologies usually depend on an annotated genomic sequence to generate a

limited number of probes. In contrast, not only can RNA-seq determine most of the tran-

scripts in an RNA extract by mapping the acquired sequences to a reference genome, but

it also can assemble the sequences without a reference genome, which is often called de

novo sequence assembly [16]. In addition to the quantification of the transcripts present in

the RNA extract, it also directly determines the identity of the transcripts and connectivity

between transcripts [15, 17].

RNA-seq utilizes the recently developed HTS technologies, an acquired population

of isolated RNA are fragmented and reverse-transcribed to a library of cDNA fragments

with length typically ranging from 30 to 10,000 base pairs. Before being delivered for

actual sequencing, the whole library of created cDNA copies is amplified by polymerase

chain reaction (PCR) method, which aims to generate millions of copies of the cDNA

fragments in order to amplify the signals, since some RNA with small input amount may

be undetectable without amplification [18]. After PCR amplification, the fragments are

sequenced in single or both directions, i.e., single-end or pair-end sequencing. Using

alignment algorithms, the fragment sequences are aligned based on a reference genome,

depending on the sample species. The number of aligned fragments gives the read count

of the corresponding transcript. The read counts represent the relative quantity of the

mapped transcripts. Eventually, a long list of identified transcripts and the corresponding

read counts are produced. Based on the acquired RNA-seq count data, various types of

statistical analysis can be performed, for instance, quantification of transcriptomes [19],

gene regulatory network analysis based on RNA-seq time-series data [20] and identifica-

tion of DE genes between treatment groups [21].

Apart from mRNA, RNA-seq can also process other RNA populations including total

RNA and non-coding RNA, such as rRNA, transfer RNA and micro RNA [22]. Recently,

RNA-seq has also evolved with more capabilities, such as sequencing transcripts isolated
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from each single cell, which has led to an increasing understanding of cellular structures

[23–25]. However, this study only discusses about the gene expression analysis of RNA-

seq experiments for bulk populations. The expression data contain the gene read counts

corresponding to each replicate of samples in two or more groups.

2.2 Proteomic Analysis

2.2.1 Mass Spectrometry-based Quantifications

Proteomics technologies have evolved rapidly from identifying the presence of a few pro-

teins to quantifying a large amount of proteins. Quantitative proteomics technologies have

enhanced our comprehension of protein expression and the underlying changes between

organism samples collected from various conditions. MS-based proteomics approaches

are mainly categorized as labeling-based and label-free quantification [26].

Labeling-based strategies are based on stable isotope dilution which assumes that a

peptide labeled with stable isotopes should have the same physiochemical properties and

different peptides can be identified with the unique isotope labels. Hence, a mass spec-

trometer can distinguish between the labeled and unlabeled peptides. Peptides can be

quantified by comparing the respective signal intensities between the labeled and unla-

beled editions of peptides. Used labels, which usually are heavy/light isotope pairs of

the same element, can be introduced into the proteins or peptides using various labeling

methods. As a result, the proteins or peptides will have either a heavy mass label or a

light label. Over the past decade, a wide range of labeling methods have been introduced

including metabolic labeling, isobaric mass tagging and isotope-coded reagents tagging,

etc [27, 28].

Label-free quantification, mainly based on ion intensity and spectral counting, pro-

vides faster and cheaper strategies to determine the relative abundance of proteins from

unlabeled peptide mixtures. Approaches based on ion intensity estimate the peptide abun-
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dance by the measurements and comparisons of chromatographic peak areas. Whereas

spectral counting approaches determine peptide identities and protein abundance based

on the number of the acquired tandem mass spectra and theoretical peptide spectra from

a protein database [26, 27]. Similar to RNA-seq gene read count data, the MS-based

proteomics data contain the protein abundance levels corresponding to each replicate in

sample groups.

2.3 Power Analysis

2.3.1 Hypothesis Testing

Typically, a hypothesis testing involves a pair of relevant null and alternative hypotheses.

Null hypothesis, usually denoted by H0, is the hypothesis to be tested by a hypothesis

testing model. Commonly, two groups of instances are compared, a null hypothesis often

gives a statement that no associations exist, usually in terms of mean values, between

the two groups. In contrast to null hypothesis, alternative hypothesis, denoted by H1,

is the rival statement. When a null hypothesis is rejected, i.e., the data cannot reinforce

the statement of null hypothesis, the corresponding alternative hypothesis, as a result, is

proven and accepted. A hypothesis testing model usually aims to seek the evidence that

leads to the rejection of a null hypothesis, which results in a so-called positive detection

[29]. However, a hypothesis testing model cannot give absolutely correct decisions. When

testing a null hypothesis, assuming an underlying fact can be either true H0 or false H0,

there are four possible outcomes (Table 2.1) respectively defined as

1. True negative (TN): H0 is accepted when H0 is true.

2. False negative (FN): H0 is accepted when H0 is false.

3. False positive (FP): H0 is rejected when H0 is true.

4. True positive (TP): H0 is rejected when H0 is false.
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Among the aforementioned four outcomes, there exist two types of hypothesis testing

errors:

1. Type I Error (denoted by α), equivalent to FP, the probability of which is often

referred to as the significant level (α) of a test outcome.

2. Type II Error (denoted by β), equivalent to FN, the probability of which is usually

used to determine the statistical power, equivalent to 1− β, of a test outcome.

Table 2.1: Possible outcomes of hypothesis testing

H0 is true H0 is false

Accept H0 TN FN

Reject H0 FP TP

Hypothesis testing measures the strength of the evidence against the null hypothesis,

as well as the effect size between the samples. The degree of deviation toward null hy-

pothesis can be reflected as the resulting statistics from a test model. In this study, the

determination of true positive and power calculation is based on the degree of deviation

from the null hypothesis resulting from various hypothesis testing models.

2.3.2 Statistical Power

Statistical power is the probability that a hypothesis testing model successfully rejects a

null hypothesis when the null hypothesis is actually false. In other words, it is equivalent

to the probability of obtaining a statistically significant result, that is, a TP, as defined in

Section 2.3.1. Hence, a statistical power value is complementary to the Type II Error rate

(β). An experiment with high statistical power ensures a hypothesis testing model making

correct decisions, either significant or insignificant results, with high reproducibility.

For an RNA-seq or MS-based proteomics experiment, researchers often focus on seek-

ing the DE features buried in an enormous amount of other features. Before performing
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hypothesis testing, an alternative hypothesis needs to be defined. It describes the distri-

bution corresponding to the occasion that has enough effect or difference to reject a null

hypothesis, which supports the assumption that no effect or difference is present between

the studied populations [30].

Since the significant features of an experiment cannot be identified by simple obser-

vations, it often requires differential expression analysis to determine a true significance.

However, when an experiment has low statistical power, most of the significant detections

by hypothesis testing models may have high false discovery rates (FDRs) [4, 30]. The

most common cause of low power is the lack of sample replicates. With a small number

of sample replicates, each observation contains an inadequate number of data points that

can credibly describe the true distribution. Hence, based on data with ambiguous speci-

ficity of the sourced distribution, the hypothesis testing model may give inaccurate reports

of significance and insignificance.



Chapter 3

Materials and Methods

This chapter will introduce the implemented probability distributions, hypothesis testing

models and the key components of the power analysis method in this study.

3.1 Data Modeling

Before performing statistical analysis, it is essential to determine the probability distribu-

tion that well describes the acquired data. In this study, Gaussian distribution was used to

model log-transformed RNA-seq or proteomics data, and a negative binomial distribution

model was implemented for the raw RNA-seq read counts.

In this study, for MS-based protein data, the protein abundance levels were trans-

formed into log scale and modeled following normal distribution

Xijn ∼ N(µij, σ
2
ij)

where i is the index of proteins, j is the index of experimental groups and n is the sample

id. In addition, Xijn contains the abundance levels, µij describes the average abundance

level of protein i in group j and σ2
ij captures the errors resulting from biological and tech-

nical variations. In addition, for some cases in which RNA-seq count data were already

transformed into log scale, the count data were also modeled as normal distribution.
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RNA-seq measures the expression based on the number of fragments mapped to the

corresponding transcripts in a reference genome, which results in discrete counts. Count

data are usually modeled using Poisson distribution which assumes the equivalence be-

tween mean and variance. However, RNA-seq often has a much wider range of measure-

ments. As a result, the variance is usually larger than the mean, which is often referred

to as overdispersion [31, 32]. The Poisson model, however, cannot account for such

information. To take into account the additional information, negative binomial (NB) dis-

tribution is commonly used to capture the relationship between mean and variance [33,

34].

In this study, RNA-seq reads were modeled using the NB distribution

Xijn ∼ NB(µij, φij)

where i is the index of genes, and j is the index for experimental groups and n is the

index for sample replicates within each group for gene i. Additionally, the µij describes

the average read counts of gene i in group j, and φij captures the overdispersion due to

biological and technical variations.

3.2 Statistical Models

3.2.1 Maximum Likelihood Methods

The generalized linear model (GLM) method is one of the most popular approaches for

seeking an approximate distribution that can describe a set of acquired data (Refer to

Chapter 8 in book [35] for detailed concepts). Maximum likelihood (ML) estimation

requires a pre-determined assumption that a random variable X follows a selected distri-

bution p(x | θ). A vector θ contains k parameters (θ1, ..., θk) that describe the selected

distribution. Each data point of an observation (x1, ..., xn) has a probability

p(xi | θ1, ..., θk) = P (X = xi) (3.1)
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The aim of ML estimation is to iteratively find a set of parameters θ that give the

most plausibility that the acquired data points belong to the distribution described by

parameters θ, which is the maximization of the product of the distribution probabilities of

all data points, i.e., a likelihood estimation

L(θ) =
n∏
i=1

p(xi | θ1, ..., θk) (3.2)

where L(θ) is the probability to get an observation (x1, ..., xn) from a distribution with k

parameters (θ1, ..., θk), assuming the samples are independent. Usually the maximum of

L(θ) can be obtained by maximizing a logarithmic likelihood function

`(θ) = lnL(θ) =
n∑
i=1

ln p(xi | θ1, ..., θk) (3.3)

Commonly, it is more computationally convenient to maximize the logarithmic likeli-

hood function, which is also referred to as log-likelihood function, because only the sum

up of the logarithmic probabilities needs to be calculated. In terms of computational com-

plexity, multiplication is relatively more expensive than summation.

Additionally, log-likelihood function increases monotonically with its arguments due to

the nature of summation, which simplifies the subsequent analysis. For example, for a

Gaussian model, log-likelihood function can avoid exponential calculations, which will

be illustrated in the following paragraph.

In this study, the ML method is used for estimating the Gaussian parameters of fea-

tures in log-transformed RNA-seq or MS-based proteomics data. For Gaussian-distributed

observations (x1, ..., xn), the ML estimation aims to search for a Gaussian model with pa-

rameters µ and σ that describes the acquired data. Hence, the probability function of each

data point xi in Gaussian distribution N(µ, σ2) is

p(xi) = 1
σ
√

2π
e−(xi−µ)2/2σ2

(3.4)

The likelihood function is the product of the probabilities of all data points

L(µ, σ2) =
n∏
i=1

1
σ
√

2π
e−(xi−µ)2/2σ2

(3.5)
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The log-likelihood function can be finally simplified as

`(µ, σ2) = −n2 ln(2πσ2)− 1
2σ2

n∑
i=1

(xi − µ)2 (3.6)

3.2.2 Simple Linear Regression Model

Before the introduction of the GLM, consider a simple linear regression model which

corresponds to the Gaussian family and has a single explanatory variable. Suppose here it

has protein expression data from two experimental conditions (Refer to Chapter 3 in book

[29] for detailed concepts). Typically y is defined as a response variable consisting of all

observations yi. Each observation yi is believed to be drawn from a normal distribution

with mean µi depending on the experimental condition xi, which is also known as the

explanatory variable. Hence, the response of each sample yi has a linear relationship with

its experimental condition/case as

yi = β0 + β1xi + εi (3.7)

where β0 and β1are the coefficients to be estimated, xi are explanatory variables, which

are the experimental conditions, and εi are the errors that occurred in the course of mea-

surements, also assumed to follow a normal distribution with zero mean and a constant

variance

εi ∼ N(0, σ2) (3.8)

Thus, the expected response is

E(yi) = β̂0 + β̂1xi (3.9)

In this linear relationship, β̂1 determines the slope of the linear trend and β̂0 is the

intersect. In other words, β̂1 describes the effect size of the experimental conditions to the

responses. Covariate xi is usually a categorical vector, since it corresponds to experimen-

tal conditions. For a two-case experiment, coefficient β̂1 is a binary vector, which can be

simplified as a vector with only 0 and 1 elements. Suppose the two coefficients β0 and β1

are known, there will be two expected responses:
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1. When the observation is from a control sample, no effect is present, which can be

denoted as β1 = 0, the expected measurements would be the mean expression of

the control group

E(yi) = β̂0

2. When the observation is from a treatment sample, the effect is present, which can

be denoted as β1 = 1, the expected measurements would be the mean expression of

the treatment group

E(yi) = β̂0 + β̂1

3.2.3 Generalized Linear Model

GLM is the extension of the ordinary linear regression model, GLM gives more flexibility

to model the error distribution of responses using various model families, whereas the

linear regression model is only based on the Gaussian model. To build a GLM, three

essential components need to be specified (Refer to Chapter 2 in book [36] for detailed

concepts).

Firstly, the distribution of outcome vector y can be determined based on the charac-

teristics of data. The chosen distribution usually belongs to the exponential family, which

includes a wide range of distributions, such as continuous distributions (normal, Gamma)

for continuous data and discrete distributions (Bernoulli, binomial, Poisson) to model

binary and count data.

Suppose there are response variables yi(i = 1, ..., n) from n samples and k unknown

parameters β to be estimated, a design matrix can be constructed by all observation vec-

tors xi as

X = [xT1 , ..., xTn ]T

Secondly, a linear predictor η is defined to model the relationship between the location
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of response variables and the explanatory variables

η = Xβ (3.10)

Lastly, a link function G is chosen to model the relationship between linear predictor

η and the mean E(y) as

E(y) = G−1(η) = G−1(Xβ) (3.11)

Furthermore, to estimate the parameter vector β, the method of iteratively reweighted

least squares (IRLS) is used to obtain the maximum likelihood estimates of a general

linear model. The estimation is a Lp norm linear regression, which aims to find a vector

of parameters β that can minimize the square sum of errors

arg min
β
‖y −Xβ‖2 = arg min

β

n∑
i=1
|yi −Xiβ|2 (3.12)

where vector β has initial values and is updated by iteratively solving

βnew = (XTWX)−1XTWy (3.13)

where W is a diagonal matrix of weights, the initial weights are set to 1, and the weights

are also updated with βnew

wi = |yi −Xiβnew|−1 (3.14)

3.2.4 t-test

For log-transformed mass spectrometry proteomics data and RNA-seq data, GLM was

used to fit the expression data. The outcome variables were assumed to be normally

distributed, and the link function between the expected valueE(y) and the linear predictor

Xβ was an identity function

E(y) = Xβ



CHAPTER 3. MATERIALS AND METHODS 17

In an experiment consisting of two sample groups, the estimated parameter was equiv-

alent to the fold change of the two groups. The obtained t-statistics were the measure-

ments of the goodness of fit, which was equivalent to the estimated parameter divided by

the standard deviation of itself.

ti = β̂i

s.e.(β̂i)
(3.15)

3.2.5 Wald Test

For raw RNA-seq read counts of each gene, the distribution used to model response vari-

able Y was NB model. In addition, a log-link function was chosen to link the expected

observation to the linear predictor as

ln(E(y)) = Xβ

the Wald statistics was the parameter estimate β̂i divided by its standard error s.e.(β̂i)

zi = β̂i

s.e.(β̂i)
(3.16)

3.2.6 Reproducibility-Optimized Test Statistic

In addition to Gaussian and negative binomial models, a modified t-test, namely Repro-

ducibility Optimized Test Statistic (ROTS), was used for all types of data involved in

this study. ROTS has been successfully implemented for various types of data, including

RNA-seq, mass spectrometry proteomics and single-cell genomics data [37, 38]. A ROTS

statistic is formulated as

d = |x̄a − x̄b|
α1 + α2s

(3.17)

where |x̄a − x̄b| is the absolute mean expression difference between groups A and B, α1

and α2 are the optimization parameters estimated by ROTS R package, and s is the pooled
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standard error. For example, when α1 = 0 and α2 = 1, the resulting ROTS statistics

are equivalent to the standard t-statistics. The two additional parameters α1 and α2 aim

to provide a more data-driven estimation of the effect sizes by offering two additional

degrees of freedom.

3.3 Data Transformation and Normalization

Because the variable factors introduce biases in the experimental measurements, the ob-

tained data often show variances that are dependent on their mean values. The mean-

variance dependence, implying the absence of homoscedasticity, often induces difficulties

in the downstream statistical analyses [39].

3.3.1 Systematic Bias in RNA-seq Data

Compared to other hybridization-based technologies, such as microarray, RNA-seq has

become more popularized owing to its advantages [40]: less sequencing cost, increasing

sequencing depth and higher reproducibility, etc. However, RNA-seq quantifies the reads

of a transcript based on the quantities of detected mRNA fragments, each mapped read

count depends on the sequence coverage of the whole transcript. In other words, a longer

transcript usually tends to have more mapped reads due to higher coverage, whereas a

shorter transcript with similar expression has lower coverage which results in fewer reads

and higher variance [40–42]. In other words, RNA-seq only gives relative quantifications

other than absolute measurements.

In order to make the read counts comparable across experiments, normalization meth-

ods are often required, such as Counts Per Million (CPM), Transcripts Per Million (TPM)

[43] and Reads Per Kilobase of exon per Million reads mapped (RPKM), and Trimmed

Mean of M values (TMM) [44]. For instance, TMM is implemented in DEA tool edgeR

[6], it normalizes the gene read counts accounting for sequencing depth, RNA composi-
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tion and gene length.

In this study, DESeq2 [45] is employed to process raw RNA-seq count data. It handles

the read counts of each gene as variables that are proportional to the mapped numbers of

corresponding cDNA fragments in the samples. Each gene read count was scaled by a

normalization factor s, which was estimated using median-of-ratio method. To normalize

gene counts of an experiment using median-of-ratio method, the normalization factors s

were estimated in three main steps:

1. Calculate the pseudo-reference sample xpseudoi for each gene i, which was the geo-

metric mean of the read counts of all k samples

xpseudoi = 1
k

√√√√ k∏
n=1

xin

where xin is the read count of gene i in sample n, and k is the total number of

samples.

2. Calculate the count ratio of each sample to the reference sample xpseudoi for each

gene i as
xin

xpseudoi

3. The normalization factor for each gene i in sample si was then calculated using the

median of the ratios across all genes within each sample n

sn = median
i

( xin
1
k

√∏k
n=1 xin

)

The read count xin of each gene i in sample n is then scaled as
xin
sn

. For a single gene,

a sample with more mapped reads had a larger normalization factor than those with less

mapped reads [7]. As a result, the reads between samples could be brought into a similar

scale, which made the sample groups adequately comparable.

In addition, DESeq2 uses variance stabilization transformation (VST) [46] to reg-

ulate the dispersion and fold change estimates by sharing information between genes.

VST is initially designed to calibrate and transform microarray data, and it considers
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the variance-mean dependence into the model and uses maximum-likelihood methods to

calibrate parameters of the transformation model. The VST transformation is similar to

regular logarithm for large expression levels, but an error model is used to treat low ex-

pression levels by introducing bias, as genes with low expressions tend to show noisy

signals in the measurements.

Fold changes between biological conditions are usually estimated based on log-ratios

of gene expression levels, i.e., log fold change (LFC). However, log-ratios of weakly

expressed genes can be highly variable. Evaluations [47] have shown that VST transfor-

mation can stabilize the variance across the gene expression data (Figure 3.1), improve

the fold change estimates (Figure 3.2) and differential expression detection by reducing

false positives resulting from measurement noise [45].

3.3.2 Systematic Bias in MS-based Proteomics Data

During the complex sample preparations, procedures and measurements in biological ex-

periments, systematic biases can intrinsically exist due to many fickle environmental fac-

tors, such as biological conditions, instrument calibrations and temperature. However,

the sources of the biases cannot be specifically targeted, unresolved biases may lead to in-

correct conclusions in the downstream quantitative analyses [50–52]. In order to account

for the biases and improve the data comparability between samples, many normalization

methods are available [53]. In this study, variance stabilization normalization (VSN) [46]

was the default method to normalize the MS-based proteomics data, as VSN has been

tested to perform well with proteomics spike-in data [52], which were also used in the

later benchmarking sections.
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(b) mean-sd plot after using VST

Figure 3.1: Demonstration of variance stabilization transformation. To demonstrate

the effect of variance stabilization, VST was tested on an RNA-seq mice dataset [48]. The

scope of a point on the red line indicated the local mean-variance dependence, variance-

stabilized data were expected to have an approximately horizontal line. (a) Some genes

with weak expression had larger standard deviation. (b) After using VST, the mean-

variance dependence was much weaker, the red line indicated an approximately horizontal

trend.
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(b) LFC estimated using DESeq2

Figure 3.2: Improved LFC estimation using DESeq2. The LFC estimates and p-values

of the mouse dataset [48] were estimated using both DESeq2 and ordinary t-test. The

significant (p-value < 0.05) genes were highlighted as red points. DESeq2 was able

to detect more genes with weak differential expressions as significant compared to the

ordinary method. (a) The LFC estimates were calculated as the log2 mean ratios between

two groups and the p-values were obtained from ordinary t-test and adjusted using BH

(Benjamini and Hochberg) method [49]. (b) The LFC estimates and adjusted p-values

were obtained from DESeq2.
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3.4 Data Distribution Estimation

3.4.1 Log-transformed RNA-seq and MS-based Proteomics Data

Regarding log-transformed RNA-seq and MS-based proteomics data, the log-transformed

gene read counts and protein abundance levels were modeled as random normal variables.

A random normal variable xijn has a probability density function (Also see function 3.1

in Section 3.2.1)

p(xijn | µij, σ2
ij) = e

− 1
2σ2
ij

(xijn−µij)2

√
2πσ2

ij

(3.18)

where i is the index of features, j is the index for experimental conditions, n is the index

for samples and xijn contains the gene read counts or protein abundance levels, µij is the

mean and σij is the standard deviation.

Parameters µij and σij of a normal distribution were estimated using maximum like-

lihood approach, which was aimed to find a set of parameters (µij and σij) that maximize

the likelihood function (Also see function 3.2 in Section 3.2.1)

L(xijn | µij, σ2
ij) = e

− 1
2σ2
ij

∏n

n=1(xijn−µij)2

n
2
√

2πσ2
ij

(3.19)

In addition, the log-likelihood function (Also see function 3.3 in Section 3.2.1) is

LL(xijn | µij, σ2
ij) = −n2 ln(2π)− n

2 ln(σ2
ij)−

1
2σ2

ij

n=1∑
n

(xijn − µij)2 (3.20)

The normal distribution parameters (µij and σij) of each gene or protein i in condition

j were estimated by maximizing LL(xijn | µij, σ2
ij).

3.4.2 Raw Gene Read Counts

To model RNA-seq data as NB distribution, the lack of replicates is the common chal-

lenging issue, which usually results in unstable estimates of dispersion. However, with

the enormous amount of genes, the stability of estimates can be improved by borrow-

ing the information from other genes by accounting for the relationship between mean
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and dispersion [33]. DESeq [7] and edgeR [44] are the popular methods, they model the

gene-wise dispersion estimates to obtain a global reference estimate. This study utilized

the successive version of DESeq, namely DESeq2, which provides moderated estimation

methods for LFC and dispersion of RNA-seq data.

DESeq2 provides a hierarchical model to estimate dispersion and LFC. It first uses ML

to obtain the gene-wise dispersion estimates φgwij depending on the data of each individual

gene. Next, the obtained φgwij are fitted to a smooth curve based on the global dependency

relationship between dispersion and mean. Based on an empirical Bayes method, the

model then shrinks the gene-wise dispersion estimates φgwij toward the smooth curve to

obtain final estimates. The adjustment is based on the assumption that genes with similar

average expression strength should have approximately equivalent dispersions. As shown

in Figure 3.3, most of the estimated φgwij (black dots) were shifted toward the red smooth

curve and became the final estimates (blue dots). Some φgwij , which had extremely large

dispersions, were eventually kept as the original φgwij because they were distinctly different

(more than 2 residual standard deviations away from the curve) from other genes with

similar mean expression level [45].
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Figure 3.3: Dispersion estimation using DESeq2. After the gene-wise dispersions

(black dots) were estimated using maximum likelihood method, the data points were fit-

ted onto a smooth curve, and the gene-wise dispersions were adjusted toward the smooth

curve (red curve) to achieve final estimates (blue dots). Some extreme dispersion esti-

mates (black dots circled with blue), which were 2 residual standard deviations away from

the fitted curve, were kept as the gene-wise estimates, which can be caused by biological

or technical factors.
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3.5 Simulation and Power Calculation

3.5.1 Monte Carlo Simulations

The data simulation was based on the Monte Carlo method [54], which is a simulation

procedure that iteratively samples new data points multiple times from a probability dis-

tribution. The utilization of Monte Carlo method was based on the assumption that the

data collection of an experiment with sample size n is an action of randomly sampling

n possible observations from the nature following a certain order. After distribution es-

timation, the collected data were represented by the estimated distribution parameters.

Re-sampling new data from the estimated distribution created the outcomes of the same

experiment for unlimited times without requiring the actual biological experiments.

In the simulations, each feature was simulated T times both under null and alternative

hypotheses. To achieve better clarity, the data simulated under null hypothesis will be re-

ferred to as "null data", whereas the term "alternative data" stands for the data simulated

under alternative hypothesis. After performing hypothesis tests on the simulated data,

statistics for null and alternative data were produced. Statistics resulting from both hy-

potheses were respectively given terms "null statistics" and "alternative statistics". Note

that the absolute values of statistics were used because this study only accounted for the

degrees of up- or down-regulated expression changes to estimate the statistical power.

As mentioned in Chapter 1, even if the true effect size in an experiment is assumed

to be a constant value, the actual measured effect size by the statistical model will have

some levels of variability due to the random sampling error. Experiments with low sample

power may give measurements that conclude significant results but only because of the

occasionally occurred measurements that led to a large deviation [1]. To avoid the false

discovery of significant results at a desired level, the repeated simulations and tests for

null hypothesis were intended to obtain a data-specific null distribution accounting for the

variances in the input data.
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Furthermore, a threshold statistics c was calculated from the null distribution to con-

trol a fraction of FP detections, which represent the scenarios when the null hypothesis

is rejected even if it is true. As shown in Figure 3.4, based on a user-specified FDR

(α = 5% by default), the threshold statistics c was yielded as (1−α)×100th percentile of

null statistics. The threshold statistics c divided the null distribution into two parts, which

were the null hypothesis acceptance and rejection regions. The null statistics within the

acceptance region were consistent with the null hypothesis, whereas the rejection region

contained the test statistics that were opposite to the null hypothesis. Based on the same

threshold c, the acceptance and rejection regions of alternative hypothesis were also de-

termined, as when the null hypothesis is rejected, the paired alternative hypothesis will

be accepted. Moreover, the alternative statistics resulting in the acceptance region of the

alternative distribution were marked as TPs. The proportion of alternative statistics in the

rejection region of alternative hypothesis, denoted as β, was also the FN rate, which is

complementary to the statistical power (1− β).

For instance, after the parameters of probability distribution were estimated from a

two-group dataset, new data were simulated in following steps:

1. Null data were simulated under null hypothesis in scenarios of both groups, between

which no fold changes were added.

2. Simulated null data went through hypothesis tests, which will result in two null

statistics for both scenarios, the maximum of the two null statistics was kept as the

final null statistics for the current feature.

3. Similar to Step 2, alternative data were simulated following alternative hypothe-

sis. The estimated fold changes of the original dataset were applied between two

groups.

4. The alternative statistics were obtained from the hypothesis tests.
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5. Step 1 - 4 were repeated for T times to produce two vectors of null statistics S0 and

alternative statistics S1. Both had length T .

6. A threshold null statistics c, by default, was calculated as the 95th percentile of the

S0 to determine the acceptance and rejection regions of both null and alternative

distributions.

7. The power estimates were then calculated by the proportion of alternative statistics

S1 falling in the acceptance region of alternative distribution.
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Figure 3.4: Interpretation of power calculation. The statistics in vectors S0 and S1

resulting from the simulations under null (H0) and alternative (H1) hypotheses were the

null (red curve) and alternative (blue curve) distributions. By default, a threshold statistics

cα was determined as the 95th percentile of S0 to yield the intervals of acceptance and

rejection regions of null hypothesis. Null statistics that exceeded threshold cα, i.e., null

statistics in rejection region (red fill), were marked as FPs. Furthermore, the alternative

statistics falling in the acceptance region of alternative hypothesis were marked as TPs.

Additionally, the fraction of alternative statistics that were larger than cα (blue fill) was

equivalent to the statistical power.
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3.5.2 Power Calculation

For a null hypothesis, the obtained null statistics S0 followed a null distribution. Fur-

thermore, there was a probability, often denoted as α, that the null hypothesis would be

rejected even if it was true, which resulted in FPs. The null statistics representing FPs are

determined by comparing with the (1− α)× 100th percentile of null statistics in S0

FP = {X | x ≥ cα ∩ x ∈ S0} (3.21)

where cα was a threshold value c for a user-specified FDR (α ∈ (0, 1]) to yield the accep-

tance and rejection regions of both null and alternative distributions.

Furthermore, the threshold value cα determined the TPs among the alternative statis-

tics vector S1 as

TP = {X | x > cα ∩ x ∈ S1} (3.22)

Whereas the FNs were determined among alternative statistics S1 as

FN = {X | x ≤ cα ∩ x ∈ S1} (3.23)

Finally, the fraction of alternative statistics in S1 that were greater than cα concluded

the power as

Power = |TP |
|S1|

× 100% (3.24)

3.5.3 Demonstration of Power Estimation

For a more interpretable demonstration, this section presents the power estimation in a few

examples. In addition, the effect of data variance on power estimates is also illustrated.

Some features, which have similar mean expressions, can have distant power estimates

because of the differences in variations. In the demonstrations, normally distributed data

were generated respectively from Gaussian distributions with small and large variations.

As shown in Figure 3.5a, the generated data with small variance resulted in clear

differences between threshold statistics and the alternative statistics, which led to a rapid
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increase rate in power estimates (Figure 3.6a). When the data had a larger variance, the

distances between null and alternative statistics became closer as illustrated in Figure

3.5b. As a result, the power estimates had a moderate increase rate with the increasing

number of replicates (Figure 3.6b).
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(a) t-statistics from data with small variance
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(b) t-statistics from data with large variance

Figure 3.5: The effect of feature variance sizes on the resulting test statistics. (a)

t-statistics were obtained from simulations both under null and alternative hypotheses.

The data points were randomly generated from two normal distributions N(µ = 10, σ2 =

1) and N(µ = 11, σ2 = 1) 1,000 times. The threshold null statistics (green dots and

curve) substantially remained at the same level for the increased number of replicates,

whereas the alternative statistics (red dots and curve), for more sample replicates, had a

large increase rate compared to the threshold values. (b) Similar to the previous case,

the data points were randomly generated from distributions with the same means but

larger variance (σ2 = 3). Overall, the alternative statistics increased with larger number

of replicates, but exceeding the threshold null statistics required much more replicates,

compared to the previous case with small variance.
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Figure 3.6: The effect of feature variance sizes on resulting power estimates. (a)

Power estimates for the t-statistics obtained from the small-variance case. The power

estimates increased rapidly with larger number of replicates. (b) Power estimates for the

t-statistics obtained from the large-variance case. The power estimates increased with a

smaller scope while the number of replicates was increased.
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3.6 Data Descriptions

For the performance assessment of the proposed methods in this study, simulated datasets

for both RNA-seq and MS-based proteomics cases were created, in which the known

DE and equivalently expressed (EE) features were added. In addition, the found pub-

lic datasets from spike-in RNA-seq and protein mixture experiments were used for the

benchmarking with biological data.

3.6.1 Simulated RNA-seq Read Counts

Six RNA-seq datasets (A-F) were simulated by randomly generating data from NB distri-

butions. Each dataset contained 10,000 genes, of which 80% were EE and the other 20%

genes were DE with two-fold change between two sample groups. The mean expression

and the number of replicates were different between datasets, as summarized in Table

3.1. The dispersions were calculated based on the mean-dispersion relationship estimated

by using public mice dataset [48]. These settings allowed the capability to observe the

dependency between power estimates and the data with changed attributes.

Table 3.1: Simulated RNA-seq datasets

Dataset ID Mean expression (µ) Fold change (λ) # of replicates (n)

A 10 2 10

B 100 2 10

C 500 2 10

D 1000 2 10

E 10 2 50

F 100 2 50
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3.6.2 Simulated MS-based Proteomics Datasets

With similar settings as the simulated RNA-seq datasets, six protein datasets, namely

A-F, were assembled with randomly generated numbers from normal distributions with

different mean values as listed in Table 3.2. Each dataset was created with 2,000 DE

and 8,000 EE proteins randomly mixed. The DE proteins were specified to have two-fold

change between two groups. Proteins with four different log2 mean abundance levels and

two different numbers of replicates (n = 10 and n = 50) were generated to investigate

the performance of MS-based proteomics power analysis.

Table 3.2: Simulated MS-based proteomics datasets

Dataset ID Log2 mean expression (µ) Fold change (λ) # of replicates (n)

A 5 2 10

B 10 2 10

C 15 2 10

D 20 2 10

E 5 2 50

F 10 2 50

3.6.3 Dataset of RNA-seq Read Counts with Known Spike-in Genes

To assess the performance of the power analysis method on biological data, the assess-

ment used a spike-in RNA-seq dataset sourced from RNA Sequencing Quality Control

(SEQC) project. The SEQC project was designed to evaluate the performances of RNA-

seq technologies based on various sequencing platforms [55].

In this study, only the expression data of External RNA Control Consortium (ERCC)

spike-ins in samples A and B were used to assess the performance of the proposed meth-

ods because only ERCC had exactly known concentration ratios and expected LFCs, as

summarized in Table 3.3. Due to the limitation of sequencing technology, the number
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of detectable fragments decreases with lower concentration of ERCC genes. Hence, the

groups with lower LFCs were expected to have much more low read counts, which in-

troduced large variances. The ERCC spike-ins organized in four groups had different

concentration ratios, the power estimates for the four groups were expected to show four

noticeably distinct ranges. As shown in Table 3.3, for example, group I had the high-

est concentration ratio at 4 (The expected LFC was 2). The number of significant power

estimates in group I was expected to be the greatest.

Table 3.3: Summary of ERCC spike-in genes utilized in SEQC project

Spike-in groups Concentration ratio Expected LFC Total # of spike-ins

I 4 2 23

II 1 0 23

III 0.67 -0.58 23

IV 0.5 1 23

3.6.4 MS Measurements of Heterogeneous Protein Mixtures

Additionally, an MS-based proteomics dataset [56] was used to benchmark the perfor-

mance of proteomics power analysis. The proteomics dataset was derived from a compar-

ison experiment designed to assess the performance of various label-free quantification

(LFQ) tools. The dataset contained protein abundances from two hybrid proteome sam-

ples and each sample had five technical replicates. Both samples were the mixtures of

tryptic digests sourced from E. coli, human, and yeast proteomes. The concentration ra-

tios between the two samples were precisely known (1:1 for human, 2:1 for yeast and 1:4

for E. coli proteins), as shown in Figure 3.7. Similar to the RNA-seq case, most high

power estimates were expected to appear among the known DE proteins. Hence, in this

case, most of high power estimates were expected to be in both yeast and E. coli proteins,

whereas the background human proteins should be much less powerful because of the
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equal concentrations between two groups.

Figure 3.7: Mixture ratios of heterogeneous proteins in samples A and B. Sample A

and B were prepared with background human proteins in equal concentration, and then

proteins derived from non-human organisms were added into both samples A and B in

concentration ratios 2:1 for yeast and 1:4 for E. coli.



Chapter 4

Implementation and Results

This chapter will demonstrate the benchmarking results based on both simulated and real

biological data. The power estimates were accessed by referring to the known DE and EE

features, expecting most of the high power estimates would appear among DE features.

The proposed methods have been implemented as an R package called PowerExplorer

which is openly available in Bioconductor project. The R package and illustrative manuals

can be downloaded at http://bioconductor.org/packages/PowerExplorer/.

4.1 Data preprocessing

4.1.1 Raw RNA-seq Read Counts

By default, the RNA-seq raw read counts were processed by the function vst() in R

package DESeq2 [45], which is an openly available in the Bioconductor project. For each

of the six datasets, DESeq2 normalized the read counts using method VST and estimated

the dispersion and LFC of each gene using Empirical Bayes approach (Refer to Section

3.3.1 for more method details).
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4.1.2 Log-scale RNA-seq and MS-based Proteomics Data

For the cases where RNA-seq or proteomics data were transformed into logarithmic form,

the data were assumed to follow normal distribution. VSN [46] was used to transform

and normalize the data. Additionally, the distribution parameters were estimated using

ML approach (Refer to Section 3.4.1 for method details).

4.2 Performance assessments

When using R package PowerExplorer, for both retrospective power analysis (RPA) and

prospective power analysis (PPA), parameters, such as minimal log fold change (LFC),

false discovery rate (FDR) and simulation times, need to be specified. For benchmarking

purpose, the minimum LFC was set to zero so that genes and proteins within all ranges of

fold changes were included into the calculation. The simulations were repeated for 1000

times for each dataset and the FDR was the default value 0.05. For PPA, power estimates

for increased amount of replicates (n = 5, 10, 15, ..., 50) were also calculated.

The performance of PowerExplorer was assessed using the six simulated RNA-seq

and proteomics datasets described in Section 3.6, which was aimed at observing the ef-

fects on power estimates from the three main factors, i.e., fold change, mean expression

level and the number of replicates.

4.2.1 Assessment Results for Simulated RNA-seq Data

As expected, genes with stronger expression levels had higher power estimates as shown

in Table 4.1. When each sample had ten replicates (datasets A-D ), the datasets with

larger mean expression levels had substantially larger proportion of DE genes estimated

with high power (power ≥ 0.8), compared to the dataset with lower mean expression

level. For instance, with the same fold change (FC=2) and number of replicates (n=10),

there were many more DE genes estimated with high power in dataset D as compared to
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dataset A, which has the lowest mean expression level (A: 1052/2000, B:1784/2000, C:

1853/2000 and D: 1869/2000 ). In addition, the proportions of DE genes estimated with

high power increased to 100% when the number of replicates was 50 (datasets E and F ),

whereas only a negligible fraction (<0.5%) of EE genes showed unexpected high power

estimates (A: 15/8000, B:21/8000, C: 24/8000, D: 19/8000, E: 41/8000 and F: 28/8000 )

due to the random variation resulting from data simulation.

Table 4.1: Summary of power estimates for simulated RNA-seq datasets

Dataset ID # of replicates Mean expression # of DE high power genes # of EE high power genes

A 10 10 1052 15

B 10 100 1784 21

C 10 500 1853 24

D 10 1000 1869 19

E 50 10 2000 41

F 50 100 2000 28

4.2.2 Assessment Results for Simulated MS-based Proteomics Data

Similarly, proteins with larger log2 mean expression level were estimated to be more

powerful. With ten replicates (datasets A -D ), the power estimates continuously increased

with higher log2 mean expression level (A: 568/2000, B: 1936/2000, C: 1990/2000, D:

1998/2000 ). When the the number of replicates increased to 50, almost all the DE proteins

were estimated with high power as expected (E: 1994/2000, F: 2000/2000 ). In contrast,

the number of EE proteins with high power (false estimates) consistently remained low

(A: 10/8000, B:18/8000, C: 10/8000, D: 14/8000, E: 28/8000 and F: 26/8000 ).
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Table 4.2: Summary of power estimates for simulated proteomics datasets

Dataset ID # of replicates log2 mean expression # of DE high power proteins # of EE high power proteins

A 10 5 568 10

B 10 10 1936 18

C 10 15 1990 10

D 10 20 1994 14

E 50 5 1998 28

F 50 10 2000 26

4.2.3 Assessment Results for Spike-in RNA-seq Data

Using the found public RNA-seq dataset with 92 known spike-in genes, the performance

of the proposed methods were evaluated based on the power estimates of the ERCC spike-

in genes. The power estimates of the ERCC spike-ins were summarized in four groups

I-IV by the expected fold changes between samples A and B.

Retrospective power analysis (RPA)

A few ERCC genes were removed due to excessive zero counts (less than two non-zero

counts). Among the four spike-in groups I-IV, much more high power estimates were

found in group I, whereas group II had the least significant power estimates (I: 17/21, II:

3/22, III: 6/22, IV: 13/22 ). As expected, the ERCC genes with larger concentration ratios

were estimated to be more powerful. Due to the gradient concentration, ERCC genes in

group II and III, which had relatively small or no effect sizes between sample A and B,

were estimated with the lowest number of high power genes (Table 4.3).

Table 4.3: Retrospective power estimates of ERCC spike-ins

Spike-in groups Expected LFC # of filtered spike-ins # of high power spike-ins

I 2 2 17

II 0 1 3

III -0.58 1 6

IV -1 1 13
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Prospective power analysis (PPA)

For more amount of replicates (n = 5, 10, 15, ..., 50), PPA was performed expecting obvi-

ous increases of power estimates among ERCC spike-in genes, while the noticeable dis-

tances between groups still remained. As summarized in Figure 4.1, the increased number

of replicates resulted in more ERCC genes estimated with significant power. group I and

IV with larger fold changes showed faster increases of power. When n = 15, group I and

IV already had more than 90% genes with significant power, by contrast, only around

50% of genes in group II and III were powerful.
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Figure 4.1: Prospective power estimates of ERCC spike-in genes. Overall, the number

of high power genes increased with more replicates. ERCC groups I and IV, which had

the largest LFC (IV: -1 and I: 2 ), remained with a large fraction of high power genes.

Whereas groups II and III with the lowest LFC (II: 0 and III: -0.58 ) had a moderate

increase in power estimates.
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4.2.4 Assessment Results for Heterogeneous Protein Mixtures Data

To benchmark the performance on proteomics data, as described in Section 3.6.2, a public

MS-based proteomics dataset was used. The non-human proteins were expected to have

more high power estimates than the human background proteins, which were prepared in

equal concentrations between two sample groups.

Retrospective power analysis (RPA)

As expected, human background and non-human (yeast and E. coli) proteins were esti-

mated with distinct results as shown in Figure 4.2. Among non-human proteins, large pro-

portions of proteins were estimated with high power (Yeast: 766/864, E.coli: 666/699 ).

In contrast, 74.84% (1029/1375) of the estimates for human background proteins were

insignificantly powerful.

Prospective power analysis (PPA)

For the increased number of replicates n = (5, 10, 15, ..., 50), power estimates of human

background proteins and non-human proteins were shown to be distinct, as displayed in

Figure 4.3. With the fewest replicates (n = 5), 89.00% of yeast proteins and 95.99%

of E. coli proteins were significantly powerful, whereas the percentage of human back-

ground proteins estimated with higher power was only 26.61%. Moreover, the percent-

ages of high power for both non-human proteins had exceeded 95% with 15 replicates,

whereas the high power percentage of human proteins only increased to about 50% (Yeast:

95.83%, E. coli: 98.71% and Human: 50.66%).
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Figure 4.2: Retrospective power estimates for protein mixtures dataset. For human

proteins, there was a large amount of low power estimates, the mean estimate is lower

than 0.3. In contrast, non-human proteins were mostly with high power as expected, the

mean power estimates of yeast and E. coli were almost 1, the highest power level.
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Figure 4.3: Prospective power estimates for protein mixtures dataset. For the hetero-

geneous protein mixtures dataset, the power estimates substantially increased with more

replicates. A large fraction of non-human proteins remained with high power estimates

since when having the fewest replicates (n = 5), whereas the number of high power hu-

man proteins gradually increased with more replicates but remained distinct to the one of

non-human proteins.



Chapter 5

Discussion

In this study, the proposed methods were able to carry out power analysis for both RNA-

seq and MS-based proteomics data. Additionally, they were capable of both retrospective

and prospective power analyses based on acquired datasets. The work-flow contained

three main components: parameter estimation, data simulation and power calculation.

Firstly, the parameter estimation converted the provided dataset into parameter vectors,

which approximately described the feature-wise distributions of the expression data. Sec-

ondly, the data simulation utilized the resulting parameter vectors to generate null data,

where no effect sizes were introduced, and alternative data, where the actual effect sizes

were added. Thirdly, hypothesis tests were performed for both null and alternative data.

The statistics resulting from tests on null data were used to calculate a boundary statis-

tics for a user-specified FDR. The boundary statistics was used to divide null statistics

into representatives for TN and FP detections. Lastly, the boundary statistics was also the

divisional statistics that yields the FN and TP detections among alternative statistics.

However, a few existing power analysis methods are usually reliant on DE/EE de-

tection results from other DEA methods [57, 58], the proposed method in this study can

estimate the power only based on the actual statistical characteristics of a provided dataset

without the assistance of other DEA methods. In addition, some power analysis methods

also require prior assumptions, such as expected mean expression, the proportion of DE
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features and minimal fold changes [57–60]. Usually, the significant features in an experi-

ment are unknown for the researchers, thus an estimation based on uncertain assumptions

may be misleading. In contrast, the proposed methods only required the user specify

the FDR to control a proportion of false positives among hypothesis tests, as well as the

desired preprocessing methods and hypothesis testing models.

The performance of the proposed methods were tested using simulated data contain-

ing known DE features and two public datasets with known concentrations of gene or

protein mixtures. The evaluation was based on the comparison between the acquired and

expected results. Fundamentally, it was assumed that, compared to weakly expressed or

EE features, highly DE features should have higher power estimates. The benchmarking

results indicated that the proposed methods were capable of labeling the predetermined

DE features with high power estimates, whereas the power estimates for EE features were

substantially low as expected. Additionally, the power estimates were significantly greater

for features with large effect sizes, more sample replicates or stronger mean expressions.

Furthermore, with the alterable parameter of sample sizes, the simulation-based meth-

ods brought more flexibility to investigate the relationship between sample power and the

sample size. Overall, the shown performance indicated that, in addition to the power in-

vestigation of the provided data, the proposed power analysis methods can be applied to

assist the prospective experimental designs, where one of the main problems is to antici-

pate a proper sample size to achieve the adequate sample power.



Chapter 6

Conclusion and Perspective

6.1 Conclusions

Reproducibility crises took place in many academic fields, which brought a lot of ques-

tions into the published statistical results in the past literatures. Hence, sample size and

power analysis have been seen as essential procedures dedicated for the evaluation of re-

producible significant discoveries. In this study, a series of power analysis methods were

proposed and implemented for both simulated data and biological data. The performance

of the proposed methods were assessed using both simulated data and public biological

data. In addition, the proposed methods were implemented as an R software package,

namely PowerExplorer. The package is openly available in Bioconductor project and can

be freely downloaded at http://bioconductor.org/packages/PowerExplorer/.

6.2 Future improvements

Despite the performance, the proposed methods require intensive computational power.

However, the published R software package regarding this study provides the option of

using parallel computation. Nevertheless, in terms of the computational consumption,

the high demand can be further reduced by optimizing the simulation component of the
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method, such as using C or C++ programming language to potentially achieve faster ex-

ecutions. Moreover, the methods currently only support RNA-seq and MS-based pro-

teomics data. The types of supported data can be diversified if allowing more optional

statistical models and hypothesis tests to be appended. Furthermore, it is also possible

to add parameters allowing users to attach external functions for statistical models and

hypothesis tests, which can further improve the feasibility of the methods.

In terms of the performance, the benchmark results have shown that some EE or

weakly expressed features can have noticeable increase in power estimates, which are

often caused by the additional variations sourced from features with excessive missing

values. In spite of the fact that the features with excessive missing values and overly low

expressions can be removed from the estimations, the attempt of keeping most of the fea-

tures in the downstream analyses, if correctly treated, may potentially lead to interesting

discoveries. However, the estimation will perhaps be improved if some further penalty

mechanisms can be added for the features with missing values. The penalties intend to

decrease the power estimation for large amounts of missing values or extremely low ex-

pressions.

Furthermore, it is known that a small variance in an observation indicates that most

of the data points are close to the mean value. When the sample size increases, the vari-

ability of the sampling distribution gets smaller, since more performed random samplings

tend to get more values that are close to the true mean. Based on such empirical as-

sumption, the prospective power analysis may be able to be improved by decreasing the

variances of the simulated features when the sample size is increased. For this purpose,

the experiment-specific relationships between data variability and sample size still need

to be well studied.
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