
OpenID Connect Provider Certification

Master’s Thesis
University of Turku
Department of Future Technologies
Software Engineering
2019
Anssi Kivinen

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system using the Turnitin
OriginalityCheck service.

UNIVERSITY OF TURKU
Department of Information Technology

ANSSI KIVINEN: OpenID Connect Provider Certification

Master’s Thesis, 79 p., 0 app. p.
Software Engineering
February 2019

The thesis looks into authentication and authorization theory and reviews some protocols
used for identity management. The most important protocols in the thesis are OAuth 2.0
and OpenID Connect.
The method of research used in the thesis is literature review, where a set of selected items
are examined. Many of the items are technical documentation, which were then used to
build an overview of the OpenID Connect authorization framework, as well as a set of
requirements for the OpenID Connect Provider certification.
The thesis also provides a practical view of the OpenID Connect Provider certification
process and an analysis of the OpenID Connect Provider implementation in the Trivore
Identity Service platform in terms of the certification requirements. After analysing the
implementation, recommendations on improvements to meet the certification require-
ments are given.
The implementation already conforms to the Config profile. However, the implemen-
tation has to be improved to properly conform to the Basic, Implicit, Hybrid, and
Dynamic conformation profiles. For basic and implicit profiles, the session user session
management should be improved. Additionally, support for the hybrid authorization flow
and dynamic client creation should be added as well as.

Keywords: Identity and Access Management, OpenID Connect, Software Certification,

OAuth 2.0

TURUN YLIOPISTO
Informaatioteknologian laitos

ANSSI KIVINEN: OpenID Connect Provider -toteutuksen sertifiointi

Diplomityö, 79 s., 0 liites.
Ohjelmistotekniikka
Helmikuu 2019

Diplomityössä tarkastellaan tunnistautumisen ja auktorisoinnin teoriaa sekä lisäksi joi-
tain identiteetinhallinnassa käytettäviä protokollia. Lopputyössä esitellyistä protokollista
tärkeimmät ovat OAuth 2.0 ja OpenID Connect.
Diplomityössä käytetään tutkimusmenetelmänä kirjallisuuskatsausta, jonka puitteessa
käydään läpi muun muassa teknisiä dokumentaatiota. Dokumentaatioita käytetään apu-
na muodostaessa yleiskuvaa OpenID Connect -protokollasta ja etenkin sen sertifiointiin
liittyvistä yksityiskohdista.
Diplomityössä käydään läpi myös käytännönläheisesti OpenID Connect Provider -
toteutuksen sertifiointiprosessia. Lisäksi tarkastellaan Trivore Identity Servicen OpenID
Connect Provider -toteutuksen tilannetta sertifioinnin näkökulmasta. Työn lopussa anne-
taan ehdotuksia toteutuksen parantamiseksi, jotta sen sertifiointi olisi mahdollista.
Työssä tarkasteltava toteutus noudattaa jo Config-profiilin mukaisia määrityksiä,
mutta muiden määrityksien noudattaminen vaatii toteutukselta joitain parannuk-
sia. Basic- ja Implicit-profiilien mukaisiin määrityksien toteuttaminen vaatii pieniä
parannuksia käyttäjien sessionhallintaan. Lisäksi toteutukseen täytyy lisätä tuki Hybrid-
auktorisointivuolle sekä Dynamic-profiilin mukaiselle asiakassovelluksen luonnille ja
hallinnalle.

Asiasanat: Identiteentin- ja pääsynhallinta, OpenID Connect, Ohjelmiston sertifionti,

OAuth 2.0

Contents

List of Figures

List of Tables

1 Introduction 1

2 Identity management 3

2.1 Identity in a computer system . 4

2.2 Authentication . 5

2.3 Authorization . 7

2.3.1 Access control matrix . 7

2.3.2 Role-based access control . 8

2.3.3 Attribute based access control 10

2.3.4 Mandatory Access Control . 10

2.3.5 Least privilege principle . 11

2.3.6 Segregation of duties . 11

2.3.7 Delegation of Authorization . 12

2.4 Authentication in web environment using HTTP 12

2.5 Federated identity management . 14

2.6 Single Sign-On . 14

2.6.1 Pseudo-SSO . 15

2.6.2 True SSO . 16

3 OAuth and OpenID 18

3.1 OAuth 1.0 . 19

3.1.1 OAuth terms . 20

3.1.2 Basic Authorization Flow . 21

3.1.3 End points . 22

3.1.4 Request signature . 22

3.1.5 The detailed authorization flow 23

3.2 OAuth 2.0 . 25

3.2.1 Parties . 26

3.2.2 Client types and general profiles 27

3.2.3 OAuth 2.0 Endpoints . 28

3.2.4 Basic Authorization flow . 29

3.2.5 OAuth 2.0 Tokens . 30

3.2.6 OAuth 2.0 Grant Flows . 33

3.3 OpenID 2.0 . 40

3.3.1 Discovery . 40

3.3.2 Association . 41

3.3.3 Authentication . 41

3.4 OpenID Connect . 41

3.4.1 Abstract OIDC authorization flow 42

3.4.2 The protocol suite . 43

3.4.3 Core . 44

3.4.4 OIDC Endpoints . 47

3.4.5 Authorization grant flows . 48

3.4.6 Discovery . 49

3.4.7 Dynamic client registration . 51

4 Certification 52

4.1 OpenID Certification . 52

4.1.1 Certification value . 53

4.1.2 Certification costs . 53

4.1.3 Conformance profiles . 54

4.2 The OP Certification process overview 55

4.2.1 The testing procedure . 55

4.2.2 Testing, collecting the technical evidence 56

4.2.3 Basic, Implicit and Hybrid OpenID Connect Providers 56

4.2.4 Config and Dynamic OP conformance profiles 61

5 OnePortal and the OpenID Provider certification 63

5.1 OnePortal . 63

5.1.1 Trivore Identity Service . 65

5.1.2 OpenID Connect Provider Implementation 65

5.2 Testing the OpenID Connect Provider Implementation 68

5.3 Recommendations . 72

6 Conclusion 74

References 76

List of Figures

2.1 RBAC structure, figure is based on the RBAC description from [1]. 9

2.2 An example of RBAC. Adapted with modifications from [2] 9

2.3 Pseudo-SSO. Adapted from [3] . 15

2.4 True SSO. Adapted from [3] . 16

3.1 The OAuth 1.0 basic authorization flow 21

3.2 OAuth 2.0 abstract protocol flow. Adapted from [4] 29

3.3 OAuth 2.0 refreshing an expired access token flow. Adapted from [4] . . . 32

3.4 OAuth 2.0 authorization code grant flow. Adapted from [4] 35

3.5 OAuth 2.0 implicit grant flow. Adapted from [4] 39

3.6 OpenID sequence diagram. Adapted from [5] 42

3.7 OpenID Connect protocol suite. Adapter from [6] 43

5.1 The onePortal framework overview. c©Trivore Corp. 64

5.2 The onePortal OpenID Connect flow. c©Trivore Corp. 66

List of Tables

2.1 An example of an access control matrix. Adapted from [2] 8

Chapter 1

Introduction

Identity and access management (IAM) is among the key factors in the IT infrastructure

of any organization. By implementing their IAM systems to be effective, enterprises can

decrease the cost of the infrastructure and improve information security. IAM is also

strongly related to information security. These are among the main reasons that make it

worth it to look at the IAM more closely and implement new protocols and frameworks

to manage different use cases in IAM.

This thesis looks into the certification process of the OpenID Connect authentication

framework. The information was gathered by reviewing related literature and technical

documentation. The acquired knowledge was then applied in practice to give

recommendations on how the OpenID Connect Provider (OP) implemented for the

Trivore Identity service may be certified.

The thesis is divided into five chapters. Chapters 2 to 4 are theoretical and Chapter

5 will apply the theory to practice. Chapter 2 presents some of the basic theory behind

authentication and authorization. Chapter 3 looks into the technical details of OIDC and

some of the technologies that influences it. Chapter 4 presents the OIDC certification

process and the fundamental technical details of the certification requirements. Chapter 5

CHAPTER 1. INTRODUCTION 2

introduces the Trivore identity management platform and the framework for a web based

application developed by Trivore Corp. This chapter also covers the test report, which

covers the tests required to pass in order to gain the certification for the OP. At the end of

Chapter 5, there are recommendations for gaining the OP certificate.

Chapter 2

Identity management

This chapter introduces some of the basic elements of identity, authentication and

authorization. Many other concepts and aspects related to identity management like

accountability, audit trails and reporting will not be reviewed in this chapter. Even

though they are an essential part of both authorization and authentication, they are not

directly related to the topic of this thesis, the OpenID Connect and the certification process

discussed later.

At the core of identity management lie the concepts of authorization and

authentication and, of course, the identity itself. The essential goal of identity

management is to limit the available actions and access to some resources to a limited

set of entities. Many important services, like online banking, for example, depend on

identity management. Identity and access management are also used to enforce resource

ownership.

Identity management is in direct relation with information security, organizational

efficiency, and developing new operational and business models. Identity management is

essential in regards to information security as one of the definitions of information security

is about preventing and detecting unauthorized access. Additionally, well implemented

CHAPTER 2. IDENTITY MANAGEMENT 4

identity management model helps end-users with password management and reporting of

authorization usage. [2]

Among other benefits of identity management are increased organizational efficiency

due to time savings and increased quality of service. Developing identity management

may reveal new business operation models due to decreased identity management related

costs. [2]

2.1 Identity in a computer system

In the context of computer systems, an identity is defined as a ”set of attributes related

to an entity” [7]. An entity in its turn is then defined as an ”item inside or outside

an information and communication technology system” [7] that could be, for example

a person, a device or an organization. An attribute defined in ISO/IEC 24760 [7] is a

”characteristic or property of an entity that can be used to describe its state, appearance,

or other aspects”. Attributes can be either persistent like a date of birth and eye color or

temporary like an address [8].

An identifier is something that distinguishes entities within the context of a specific

name space. It could, for example, be an account number or a social security number.

An identifier is only meaningful in its name space and only when it corresponds to the

entity that it identifies. [8]. An identifier has several properties. Ideally one identifier

should only refer to a single entity for audit trails to work properly. Each entity with an

identity must have a non-empty, non-null identifier. Identifiers should be chosen so that it

is possible to assign an identifier to all identities. [2]

A person can have an identity in a computer system so that a record in a database

has an identifier, for example a username, as well as a set of optional attributes like the

person’s full name, email address and phone number. A person may have multiple digital

CHAPTER 2. IDENTITY MANAGEMENT 5

identities across many computer systems. As an example, a person may have an email

account as well as a banking account, each with their own identifier. In an email account

the identifier could be the email address itself and in a banking system the user could have

a user account number assigned by the bank.

The process of identity management refers to the way that entities and their digital

identities are presented in a computer system. Furthermore, identity management covers

the syntax and semantics of both data in transit and on disk. The identity management

also covers organizational processes that are used to maintain the digital identities. [2]

2.2 Authentication

This section describes the concept of authentication as well as lists several forms of

authentication. Authentication has multiple levels, which are based on the strength of

the authentication.

Authentication is defined as the process of verifying an entity’s identity. In other

words, authentication links the digital identity to the corresponding entity. The strength

of this said link along with the initial user identity proofing then defines the level of

authentication. For example, the European eIDAS regulation defines three levels of

authentication, which are LOW, SUBSTANCIAL, and HIGH. [2]

Authentication differs from identification, the initial process of confirming identity, in

a sense that identification could be considered the first step in the authentication process.

The second step of the authentication process is authorization, which verifies the user’s

credentials. [9]

A good example if identification is when an end user enters his/her username to a

login prompt. The end user is successfully authenticated when he/she enters the correct

password. Finally, the user may be authorized to access some resources, like his/her files

CHAPTER 2. IDENTITY MANAGEMENT 6

on a Unix file system.

There are a number of different forms of authentication, the most common being

passwords. Additional methods are biometric, smart cards, PINs and photo IDs. The

types of authentication can be categorized roughly into four different types. These are

”what you know”, ”what you have”, ”what you are” and ”where you are”. [9]

The ”what you know” category consists of authentication types like passwords,

passphrases, PINs and security codes. The main idea is that only the correct entity

knows the secret. Passwords should be stored as a cryptographic hash by using a one-

way hashing algorithm. [9] This is done to prevent anyone from gaining access to the

plain passwords. In addition to hashing the passwords, there should be a salt value hashed

along with the password to add a layer of obfuscation and increase the difficulty of off-line

dictionary attacks.

The second category namely ”what you have”, also called ”authentication by

ownership or in possession”. It includes things like photo IDs, smart cards and security

dongles, which are electronic device-based systems used for authentication.

The ”what you are” types of authentication can be further categorized into behavioral

attributes and physiological attributes. Behavior attributes relate to a person’s behavior

pattern, for example, a person’s voice, the way a person walks or types on a keyboard.

The physiological attributes, on the other hand, are the ones that are related to the human

body and cannot be changed easily. The physiological attributes include, for example,

authentication methods like fingerprint recognition, facial recognition or retina scanning.

The physiological attributes are considered to be more reliable authentication method than

the behavioral attributes. [9]

The fourth type, ”where you are” consists of location-aware authentication methods.

The location estimation may use GPS, IP address, or cell tower ID. This authentication

type can be used with other methods to verify the identity of the user.

CHAPTER 2. IDENTITY MANAGEMENT 7

2.3 Authorization

After authentication is performed, the authenticated entity may be authorized to perform

a set of actions or access a set of resources. In a computer system the resources are

often pieces of data, that only a specific set of entities (i.e. end-users or other systems) is

supposed to access.

Formally defined, authorization is about a function f : S,O,A, e→ {yes, no}, where

• S, subject, is an authenticated entity,

• O, is an object that an action is to be performed on,

• A is the action to be performed (e.g. read or write) and

• e, environment, is a collection of properties related to the environment such as date

and time or the network the request originated from.

The function returns yes or true if and only if the authorization was granted. As seen

from the function parameters, successful subject authentication is a prerequisite for

authorization. [2]

2.3.1 Access control matrix

The simplest way to determine if an authorized entity has access to a certain resource is

to utilize an access control matrix. A column in the matrix is called an access control list,

(ACL) and each column lists a protected item along with per user access rights. A row in

the matrix represents user’s capabilities telling what resources the user can access. [2]

The example shown in Table 2.1 represents a Unix file system along with two users

with different access schemes. User with username alice is able to read and write to file

located in her own home folder but is only allowed to read file /tmp/bar. Another user

CHAPTER 2. IDENTITY MANAGEMENT 8

/home/alice/foo /tmp/bar /etc/passwd

alice read, write read -
bob read read, write -

Table 2.1: An example of an access control matrix. Adapted from [2]

with username bob is able to only read the file /home/alice/foo but can both read and write

to file /tmp/bar. However, neither of the users is able to read or write the /etc/passwd file.

An issue with such a matrix is that as the number of users and protected resources

grows, the matrix becomes more and more difficult to maintain.[2] Nevertheless, there

are other, more maintainable approaches to authorization, which are described next.

2.3.2 Role-based access control

The role-based access control (RBAC) introduces an abstraction or roles that are assigned

to the users. The roles are usually created to represent a set of tasks within the

organization. There could be a set of roles for system administrators, system auditors,

backup operators as well as roles for regular end users, who have to access the system to

do their jobs. Each user may have a number of roles and each role has a certain set of

permissions, which are referred as ”operations” in the RBAC paper [1]. The permissions

authorize the user to access the resources associated with the permissions. In other words,

whenever the system has to determine if a user has the right to access a resource, the

system will inspect the user’s roles to see if any of the roles has the required permission

to access the resource. [1]

The roles can be hierarchically organized to inherit the rights from other roles.

Inheriting roles greatly reduces the administrative overhead of RBAC. [1] Figure 2.2

shows a simple example with role inheritance. The example is described a bit later.

The Figure 2.1 shows a simplified model of the RBAC authorization scheme with role

composition. This model is a static view of the RBAC scheme, which also does not take

CHAPTER 2. IDENTITY MANAGEMENT 9

the system environment into consideration.

Figure 2.1: RBAC structure, figure is based on the RBAC description from [1].

Figure 2.2: An example of RBAC. Adapted with modifications from [2]

Figure 2.2 shows an example of an RBAC based system, that has a database of user

accounts containing data. Each user with the User role is allowed to read and modify

their own data. Additionally, the Auditor role gives a user the permission to read any

user’s data and the Admin role gives permission to modify the data of any user.

In the example, the Admin role is inherited from the Auditor role, which in turn is

inherited from the User role. The inheritance simply ensures that any user with the Admin

role is also has the same read rights as the Auditor role. Both the Admin and Auditor roles

CHAPTER 2. IDENTITY MANAGEMENT 10

have all the same permissions as the User role. This kind of approach makes it easy to

add more permissions to all roles.

2.3.3 Attribute based access control

Another method of access control is the attribute based access control (ABAC), where the

access to a protected resource is determined by the attributes of the accessing entity. [3]

For example if access to the resource is restricted by user’s current location or home town,

the system will check the user’s attributes when the user’s agent is making the request.

The request is authorized if the attributes match the predefined conditions on the server.

2.3.4 Mandatory Access Control

Mandatory Access Control (MAC) disallows the owner of the data to give permissions

to access the data. The core idea is that the system itself enforces that data has the

correct permissions. A system administrator can then define the security policy that will

be enforced for the users. [2]

The MAC scheme is described by the following two rules [2]:

No read-up states that user will not be access data above their clearance level.

No write-down states that users will not be able to write data that is below their

clearance level.

Together these rules define a system where users will only be able to write but not

read data that has a higher clearance level than the user. This scheme results in write-only

data that user cannot read after writing.

The MAC in its purest form is mostly a theoretical model. It is challenging to

CHAPTER 2. IDENTITY MANAGEMENT 11

implement correctly and difficult to use. [2]

2.3.5 Least privilege principle

According to the least privilege principle, a user may only have the access rights he/she

needs to complete his/her tasks. The least privilege principle could be considered one of

the core principles of information security. [2]

In order for the least privilege principle to be valid, the organization has to constantly

validate the access rights of the system users. Every time an employee’s job description

changes, his/her access rights have to be checked. The least privilege principle is related

to the segregation of duties (SOD) principle so that it should be actively monitored that

the access rights of any user will never break the SOD. [2]

2.3.6 Segregation of duties

The principle of segregation of duties (SOD) states that there are tasks that cannot be

assigned to the same person to minimize the chance of human error and intentional

malicious use of the system. [2] A practical example of SOD is that the firewall

configuration may be forced to be done by a different person than the one who installs

services to a system with administrator rights. The reasoning behind this is that a single

person will not be able to open services to a public network.

It may not be practical in small organizations to segregate duties due to the small

number of employees. In such cases the risk of not utilizing SOD should be noted and

other means of risk control should be implemented. [2]

CHAPTER 2. IDENTITY MANAGEMENT 12

2.3.7 Delegation of Authorization

In the context of identity management within an organization, delegation of authorization

means temporarily transferring access rights from one user to another due to, for example,

someone having a vacation or other temporary leave. Authorization can also be delegated

if someone in a relatively high position in the organization wants to give some of their

tasks to be handled by someone else. [2]

Delegating authorization should not be done by handing system credentials (i.e

username and password) to someone. The ideal situation is that the identity manager

software can specifically handle the authority delegation use-case so that the audit trail is

collected correctly. For practical reasons, the delegation is often done by giving the same

access rights to the main user and delegated user. [2]

From the technology’s point of view, authorization delegation can refer to the kind

of delegation where, some entity, for example a client in OAuth 2.0, makes requests to

protected resources on behalf of the resource owner. This kind of authorization delegation

will be further inspected in the following chapters.

2.4 Authentication in web environment using HTTP

This section provides a short overview of authentication in web based applications using

HTTP. In the context of this thesis, the most interesting technical detail is the use of

bearer tokens described in RFC 6750 [10], which are used to access OAuth 2.0 protected

resources.

In this thesis web based applications are viewed as distributed systems that consist

of a server with multiple clients connecting to it using HTTP. HTTP is used to transmit

information between the web server and the clients. The server may additionally connect

to a database server that may reside in the same system as the web server itself or in

CHAPTER 2. IDENTITY MANAGEMENT 13

another system. It is also common that the web application utilizes load balancing to

achieve high availability, but this kind of setups are more advanced and this work will not

look into them. The somewhat limited view of web applications considered in this thesis

is due to the fact that this work focuses on OAuth 2.0 and OpenID Connect, both of which

operate solely over HTTP.

The authentication process is used to reliably distinguish end users or systems. An

authenticated end user or system can be shown personalized content that may not be

accessible to others.An authenticated end user or client can also be authorized to access

some protected resources. For example, when an end user is logged in to a banking

application with his or her user-agent, he or she is able to see his or her own balance but

not anyone else’s.

HTTP itself has support for several different authentication methods such as ’Basic’

and digest. The ’Basic’ authentication scheme defined in RFC 7617 [11] simply sends

credentials as username-password pairs. The ’Basic’ authentication requires that the

username and password are in format username:password, which is then encoded as

a base64 string and sent along with HTTP requests in the HTTP header. Web applications

may also implement authentication by using cookies, defined in RFC 6265 [12], which

are small pieces of data containing both a key and an associated value. Cookies are set by

the web server, saved by the user’s client software and then retransmitted to the server on

every HTTP request. Cookies are used to manage the user’s session and remember stateful

information in the otherwise stateless HTTP protocol. This state can be associated with

a valid authentication as the client performs the authentication process, for example, by

providing valid credentials.

CHAPTER 2. IDENTITY MANAGEMENT 14

2.5 Federated identity management

Federation refers to the association between service providers and identity providers.

Both the service providers and identity providers will have to trust each other to a certain

degree to exchange messages between each other. [13]

Federated identity management on the other hand refers to federation, where the

messages exchanged between the service providers and the identity providers contain

information on user authentication and authorization credentials. Additionally, user from

one system should be able to access protected resources on another federated system. [13]

Federated identity management enables users to access several different services by

authenticating themselves only once. It also enables service providers to consume the

services of identity providers instead of having to manage user identities themselves. [13]

2.6 Single Sign-On

Single Sign-On (SSO) is a configuration that allows users to access all their resources

and systems they have access permission by authenticating and authorizing at a single

location. Many SSO systems use Lightweight Directory Access Protocol (LDAP). [9]

From the end user’s point of view the SSO works so that the user has to authenticate only

once and the SSO transparently takes care of any further authentications. SSO benefits

users and organizations by eliminating redundant usernames and passwords. This will

also reduce the number of help desk calls and administrative costs. [14] SSO systems can

be distinguished into two main types of systems, the pseudo-SSO and true SSO.

CHAPTER 2. IDENTITY MANAGEMENT 15

2.6.1 Pseudo-SSO

The first main type, called pseudo-SSO is a system where a server or some other pseudo-

SSO component acts as a proxy component between the user and the service providers

(SP). After the user authenticates him/herself to this proxy component, the proxy can

perform the authentication to the SPs. The initial authentication step to the pseudo-SSO

component is called primary authentication. The user authentication is done separately

every time the user accesses an SP during an SSO-session. The pseudo-SSO scheme is

illustrated in Figure 2.3. Each SSO identity is SP specific and a user can have many

identities for a single SP, so the relation between SSO identities and SPs is n : 1. [3]

The pseudo-SSO systems can be implemented to work either locally on the end user’s

device or by using a proxy server that seamlessly handles authentication to SPs. [3]

Figure 2.3: Pseudo-SSO. Adapted from [3]

CHAPTER 2. IDENTITY MANAGEMENT 16

2.6.2 True SSO

The second type of SSO, called true SSO, is essentially different from pseudo-SSO.

In the true SSO scheme there is an entity called the Authentication Service Provider

(ASP), which is responsible for the user authentication and the transfer of authentication

assertions to SPs. The ASP and the SPs have to have an existing relationship for true SSO

to work. In true SSO the relation between SSO identities and SPs is n : m. [3]

Figure 2.4: True SSO. Adapted from [3]

Like the pseudo-SSO, the true SSO can be either local or proxy-based. In the local

true SSO architecture a component on the user’s system is used as the ASP. The local

ASP and the SPs must still have a trust relationship. When the true SSO is proxy-based,

the ASP is an external server. [3]

For the true SSO architecture, the user identities can be tied to precise descriptions

and policy regulations. Furthermore, a true SSO system can be closed in case the user

credentials compromised. [3]

There are a number of setup, maintenance, security and usability aspects related to

both local and proxy server based architectures for pseudo-SSO and true SSO. However,

CHAPTER 2. IDENTITY MANAGEMENT 17

these aspects are not directly related to the subject of this thesis and will not be further

discussed.

Chapter 3

OAuth and OpenID

This chapter introduces the main concepts of OAuth, OpenID and finally the OpenID

Connect (OIDC). The reasoning behind covering both OAuth and OpenID even when the

thesis is mainly about OpenID Connect is that the OIDC is based on OAuth 2.0 and is

the successor of OpenID 2.0. For OAuth both the current and obsoleted versions, OAuth

2.0 and OAuth 1.0 respectively, are discussed. OpenID Connect and OAuth 2.0 protocols

are described with the accuracy that is required to properly understand the certification

requirements whereas the rest of the protocols are covered more briefly.

OAuth and OpenID protocols are fundamentally different. OAuth is an authorization

protocol, whereas OpenID is an authentication protocol. OAuth may be used for

authentication as well, but it is not the main use case for OAuth. The OpenID Connect

attempts to capture the best parts of both OpenID and OAuth.

The previous chapter viewed authentication and authorization mainly from the end

user’s point of view. In this and the following chapters, the entity to be authenticated

may be the end user but it might also be another computer system. For both OAuth and

OpenID protocols the type of the entity to be authenticated is irrelevant.

It is also worth noting that none of these protocols specify any exact means of

CHAPTER 3. OAUTH AND OPENID 19

authentication. In the context of these protocols, the authentication process may thus be

carried out in any way and it is up to the application to define the means of authentication.

Quite often in practice, end users are authenticated with a username and password

pair and computer systems are authenticated by utilizing asymmetric cryptography and

cryptographic certificates. The exact details of the workings of these cryptographic

concepts are out of the scope of this thesis, however.

3.1 OAuth 1.0

OAuth 1.0 authorization protocol, described in RFC 5849 [15], can be used to provide

delegated access to third party websites and applications. OAuth provides a process that

can be used to authorize a third party client to access protected resources without sharing

the resource owner’s credentials with the client.

Traditionally resource owners or end-users are authenticated by the server hosting

the services by entering credentials, usually a username and password pair, which are

then validated. This kind of model makes it difficult to securely authorize a third party

application (client in OAuth’s terms) to access the end-user’s (or resource owner’s)

resources. In this model, the client application would have to have access to the end-

user’s credentials in plain text, which would impose additional security risks. OAuth

protocol aims to remedy the situation by introducing flows that can be used to delegate

authorization.

OAuth 1.0 was later deprecated by its successor, OAuth 2.0, which is more flexible in

terms of client types and simplifies the encryption scheme. Despite the naming, OAuth

1.0 is not compatible with OAuth 2.0 and they are to be considered different protocols.

CHAPTER 3. OAUTH AND OPENID 20

3.1.1 OAuth terms

When discussing the OAuth protocol, some terminology has to be defined. The OAuth

1.0 specification [15] has definitions for the entities related to the protocol.

The client is simply defined to be ”an HTTP client capable of making OAuth-

authenticated requests” [15]. One has to keep in mind that in OAuth the client is not the

same thing as an end-user but rather the application working on behalf of the end-user.

The server in OAuth 1.0 is an HTTP server, which can accept OAuth-authenticated

requests. Unlike in OAuth 2.0, in OAuth 1.0 the server is expected to host the protected

resources as well as authenticate users. The OAuth 2.0 specification has definitions for

two different servers, the resource server and the authorization server.

Resource Owner in OAuth is an entity that controls the resources that the client wishes

to access. The resource owner may be the application end-user, but it can also be another

system.

Credentials are defined as a ”unique identifier and a matching shared secret” [15].

Credentials can be classified to be either either client, temporary or token credentials.

Token is a unique server to client issued identifier, which associates the authenticated

requests with a resource owner.

For the authentication, the client has to gain permission from the resource owner.

There is a token and a shared secret that together represent the permission. Tokens can

have restricted scope and a limited lifetime for added security.

CHAPTER 3. OAUTH AND OPENID 21

3.1.2 Basic Authorization Flow

The basic authorization flow has three steps which are shown in Figure 3.1. In the first

step (steps (1) and (2) in the Figure 3.1) the client obtains a set of temporary credentials

from the (authentication) server. The second step (steps (3) and (4) in the Figure 3.1) is

the authentication of the resource owner at the server. The OAuth protocol itself does not

specify how the authentication is done exactly and it is considered to be an implementation

detail. After authentication the resource owner authorizes the client’s request at the server.

In the third step ((5) and (6) in the Figure 3.1) the client makes a request for a set of

token credentials by using the temporary credentials. Finally, the client can use the token

credentials to make requests on behalf of the resource owner. These steps are described

in more detail in the following sections.

Figure 3.1: The OAuth 1.0 basic authorization flow

CHAPTER 3. OAUTH AND OPENID 22

3.1.3 End points

The OAuth 1.0 protocol defines three different endpoints that are used for requests. [16]

The endpoints are:

• Temporary Credential Request

• Resource Owner Authorization

• Access Token Request

Temporary Credential Request end point is responsible for handling the requests for

unauthorized Request tokens. The request tokens can then be used to get user approval

and the access token.

Resource Owner Authorization is used to retrieve user authorization.

Access Token Request is used to gain a token that can be further used to access

protected resources from the resource server.

3.1.4 Request signature

OAuth has support for signing requests for message authentication verification. The

methods for generating the signature are PLAINTEXT HMAC-SHA1 and RSA-SHA1.

If the message has a signature attached to it, according to the specification it must be

verified for the message to be valid.

The PLAINTEXT method is the simplest one but it provides no message

authentication or integrity. When the PLAINTEXT method is used, the messages must

be sent over a secure channel. The HMAC-SHA1 uses a shared secret to generate a digest

with the HMAC-SHA1 algorithm. The shared secret has to be known by both parties, the

CHAPTER 3. OAUTH AND OPENID 23

sender and the recipient. This requires that the secret has been previously shared between

the server and the client during a registration process.

RSA-SHA1 method utilizes public key cryptography to verify the message

authentication and integrity. The RSA-SHA1 uses RSASSA-PKCS1-v1_5 with SHA1

as the hash function. The client and the server are required to exchange public keys prior

using this method.

3.1.5 The detailed authorization flow

The OAuth 1.0 protocol specification [15] describes a so-called three-legged authorization

flow (three being the number of parties involved: the client, the server and the resource

owner) as ”redirection-based authorization”.

Requesting the Temporary Credentials

The server provides a set of temporary credentials for the client at the Temporary

Credential Request end point. The client will make an authenticated HTTP POST

request at the server’s Temporary Credential Request end point. The request

will contain the oauth_consumer_key which is used to identify the client,

oauth_signature_method, which tells the OP the signature method used and

oauth_signature, which is the signature itself. The client must add the

oauth_callback parameter to the request when fetching the temporary credentials.

The oauth_callback parameter defines the URI the server will redirect the resource

owner after completing the authorization step. The server may optionally specify

additional parameters that can be used for implementation specific purposes.

The Listing 3.1 shows an example of an HTTP POST request to the Temporary

Credential Request end point. In the example listing, the signature method used is

CHAPTER 3. OAUTH AND OPENID 24

PLAINTEXT. The signature will in this case consist of a client shared-secret with a value

of jd83jd92dhsh93js, which has to be known by the server before the client makes

the request. Additionally, since the signature method is PLAINTEXT, the request has to

be made over a secure channel.

POST /request_temp_credentials HTTP/1.1

Host: server.example.com

Authorization: OAuth realm="Example",

oauth_consumer_key="jd83jd92dhsh93js",

oauth_signature_method="PLAINTEXT",

oauth_callback="http%3A%2F%2Fclient.example.net%2Fcb%3Fx%3D1",

oauth_signature="ja893SD9%26"

Listing 3.1: Temporary credential request example from [15]

The response will contain at least the oauth_token, oauth_token_secret

and oauth_callback_confirmed parameters. The oauth_token is used to

identify the temporary credentials, oauth_token_secret is the shared secret of the

temporary credentials and oauth_callback_confirmed is set to true and is used

to differentiate from previous protocol versions.

Resource Owner Authorization

The resource owner authorization is used to gain authorization from the end-user by

re-directing the user to the Resource Owner Authorization endpoint of the server. The

only required parameter for Resource Owner Authorization is the oauth_token, that

represents the previously acquired temporary credentials. The client will then re-direct

the resource owner to the server for authorization.

After verifying the resource owner’s identity and receiving authorization, the server

will re-direct the user to the URI given to the server as the oauth_callback parameter.

The server will also generate a random verification code and send it to the client as

the value of the oauth_verifier parameter along with the oauth_token received

CHAPTER 3. OAUTH AND OPENID 25

from the client.

Token Credentials Request

After the resource owner has authorized the client, the client will make an authenticated

HTTP POST request to the server’s Token Request endpoint to acquire a set of

token credentials. The request will contain the verification code is the value of the

oauth_verifier parameter, that the client received from the server during resource

owner authorization.

The HTTP response will

contain the oauth_token as well as the oauth_token_secret. The client will

then store the credentials and be able to make authenticated request to protected resources

on behalf of the resource owner. The requests will contain the client credentials and the

received token credentials.

3.2 OAuth 2.0

This section covers the basic concepts and functionality of the OAuth 2.0 authorization

framework. The section refers to [17] and [4] as its main sources of information. The

OpenID Connect protocol is based on OAuth 2.0 and therefore understanding the basics

of OAuth 2.0 is required to be able to implement OpenID Connect. The framework is

covered in the detail, that is required to comprehend the test requirements in the OpenID

Connect certification process.

OAuth 2.0 is not backwards compatible with OAuth 1.0 due to major protocol

changes, but the three-legged authorization flow of OAuth 1.0 is comparable to the

Authorization Code flow OAuth 2.0. OAuth 2.0 adds support for additional authorization

flows on the framework specification level and also supports use-cases, where the client

CHAPTER 3. OAUTH AND OPENID 26

cannot be authenticated. Additionally, OAuth 2.0 does not require signatures to be used

like in OAuth 1.0. Therefore OAuth 2.0 is may be considered easier to implement than

OAuth 1.0.

3.2.1 Parties

The parties or ”roles” as described in [4] are among the key terms of OAuth 2.0. Even if

OAuth 1.0 already defined some of these terms, the definitions may differ.

Resource owner refers to the entity that is able to grant access to a protected resource.

If the entity is a real person, the terms end user and Resource owner can be used

interchangeably.

The authorization server is the entity that asks the Resource owner’s confirmation

that the client can be authorized to access protected resources. The authorization server

provides the client with an access token, which the client uses to specify which user is

making the request.

Resource server is the entity that serves the protected resources. In many cases it

is the same as the authorization server, but the OAuth 2.0 framework specification still

separates these two entities. The authorization server and the resource server must have

a way exchange information about the authorized clients, but this is left outside of the

framework specification.

The Client is the application making the requests on behalf of the resource owner.

OAuth 2.0 does not limit the type of the client, which could be, for example, a mobile

application or a web application. The authorization flow is different for different types of

clients.

CHAPTER 3. OAUTH AND OPENID 27

3.2.2 Client types and general profiles

Unlike OAuth 1.0, its successor, OAuth 2.0 can support several different kinds of clients.

OAuth 2.0 clients can be divided into two different types based on whether the client is

capable of keeping the client specific credentials secret. The client specific credentials

consist of a secret shared between the client and the authorization server.

Confidential clients are expected to be able to keep the client’s credentials secure.

These types of clients can be, for example, web applications that can keep the client’s

credentials on the server side.

Public clients are clients that are not able to keep the credentials secure. These can

be, for example, web applications that are fully downloaded on to the user agent (web

browser in this case) or applications that are downloaded and executed on the user agent.

The two types of clients are further categorized into three different general profiles

based on the environment the application runs in.

Web applications are confidential types of applications that are considered confidential

clients. The data is stored in on the server side and the client side will not be able to access

it.

User agent based applications are public clients that are run in a user agent

environment. These are, for example, pure JavaScript web applications that are run in

a web browser.

Native application is a public client installed on a device. The native application could

be an application downloaded on a mobile device.

CHAPTER 3. OAUTH AND OPENID 28

3.2.3 OAuth 2.0 Endpoints

Endpoints are URIs that define a logical location that entities should use when making

certain requests. Endpoints can be categorized into server endpoints and client endpoints.

The OAuth 2.0 framework defines the following end points:

• Authorization endpoint

• Token endpoint

• Redirection endpoint (client endpoint)

The Authorization endpoint is located at the authorization server. It is the endpoint

where the resource owner will be authenticated and will then grant authorization. In

the OAuth 2.0 authorization code grant flow the authorization endpoint will respond to

a successful authorization grant with an authorization code. In the implicit flow the

authorization endpoint will respond directly with an access token. Since the authorization

resource owner may have to enter clear text credentials to the authorization endpoint, the

OAuth 2.0 specification requires the connection to the endpoint to be secured with TLS.

The authorization endpoint has to support HTTP GET method and may additionally

support HTTP POST method as well. Parameters without value must be omitted and

unrecognized parameters must be ignored completely. Each parameter must be present in

a request or response at most once.

The Token endpoint at the authorization server is where the client will make an

HTTP POST request to acquire an access token. The token endpoint is used during

all authorization grant type flows except the implicit flow. The OAuth 2.0 specification

requires the endpoint to be secured by TLS.

CHAPTER 3. OAUTH AND OPENID 29

The redirection endpoint is the endpoint that the client will be redirected after the

resource owner grants authorization. It is defined at the authorization server during the

client registration process or it may be given as a parameter when the client makes an

authorization request.

3.2.4 Basic Authorization flow

The basic abstract authorization flow in OAuth 2.0 can be separated into the six steps

shown in Figure 3.2 [17].

Figure 3.2: OAuth 2.0 abstract protocol flow. Adapted from [4]
.

• (1) The Client requests authorization from the resource owner.

CHAPTER 3. OAUTH AND OPENID 30

• (2) The Resource owner authorizes the request and provides an authorization grant

to the client.

• (3) The client sends the authorization grant to the authorization server

• (4) The authorization server validates the authorization grant and sends an access

token to the client.

• (5) The client requests a protected resource from the server and provides the access

token.

• (6) Finally, the server checks the validity of the access token and if it is valid, it

responds with the requested resource.

3.2.5 OAuth 2.0 Tokens

Tokens in OAuth 2.0 are either access tokens or refresh tokens. Access tokens are used

by the client when requesting the protected resources form the server. Refresh tokens are

used to renew an expired access.

Access token

The access token is used to retrieve protected resources from the resource server.

The access token is a formal proof of resource owner’s authorization provided by the

authorization server. [17]

Listing 3.2 shows an example of an access token. The expiration value has been set to

1 hour or 3600 seconds.

CHAPTER 3. OAUTH AND OPENID 31

{

"access_token": "JOnnhkJZxJG9s6H3WcfJwz6SlymUkqxo",

"expires_in": 604799,

"refresh_token": "wimDUQlOJPnydHsMEx4C7XSAZttrS5kV",

"scope": "openid",

"token_type": "Bearer"

}

Listing 3.2: An example of an access token in JSON format.

• access_token represents authorization granted by the resource owner.

• expires_in represents the number of seconds the issued token is valid. If

protected resources are requested with an expired access token, the resource server

will return an error.

• scope (Optional) defines the parts of the protected resources the client can access.

• state (Optional) The client may use the state parameter to hold a CSRF (Cross

Site Request Forgery) token.

• refresh_token (Optional) A string containing the parameters when a new

token is requested.

Refresh token

The Refresh token can be used by the client to renew an expired access token. The client

exchanges the refresh token with the authorization server for a new access token.

The Figure 3.3 shows the flow of refreshing an expired access token. In steps (1) and

(2) the client retrieves a refresh token along with an access token from the Authorization

Server. In steps (3) and (4) the client successfully requests protected resource and the

Resource Server responds. In step (5) the client attempts to request another protected

resource but in step (6) the server responds with an invalid token error. In step (7) the

CHAPTER 3. OAUTH AND OPENID 32

Figure 3.3: OAuth 2.0 refreshing an expired access token flow. Adapted from [4]
.

client then uses the refresh token make an authenticated request a new access token and

in step (8) the Authorization server responds with a new freshly generated access token

and optionally a new refresh token.

The refresh token request must contain the parameters grant_type with value

refresh_token and a parameter refresh_token with the refresh token issued

by the Authorization server. Optionally the request may also contain scope parameter,

which may specify the scope of the new access token.

CHAPTER 3. OAUTH AND OPENID 33

POST /token HTTP/1.1

Host: server.example.com

Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW

Content-Type: application/x-www-form-urlencoded

grant_type=refresh_token&refresh_token=tGzv3JOkF0XG5Qx2TlKWIA

Listing 3.3: An example of an HTTP access token refresh request

3.2.6 OAuth 2.0 Grant Flows

OAuth 2.0 has various grant flows that support different use cases. This is an improvement

over OAuth 1.0. In addition to the existing grant flows, the OAuth 2.0 framework allows

defining additional custom types of grant flows. [17] [4]

The following sections will cover selected grant flows in the detail required to

understand the testing process described in the next chapter. The most important grant

flows in the context of the OpenID Connect certification process are the authorization

code and the implicit grant flows. The resource owner password credential flow and the

client credential flows are not tested by the OIDC testing tool and that is why they will

not be described further in this thesis.

Authorization code grant flow is used for web applications and is the most commonly

used grant flow. The authorization server works as an intermediary between the client

and the resource owner or end user. The resource owner is redirected to an authorization

server, which further redirects the resource owner back to the client after authorization is

obtained form the resource owner.

Implicit grant flow is used in case a client application will not be able to keep the

credentials secure. It is optimized for web applications implemented in a scripting

language, for example JavaScript. The main difference between the implicit grant and

CHAPTER 3. OAUTH AND OPENID 34

authorization code grant is that in the implicit grant, the authorization server returns an

access token instead of an authorization code.

Resource owner password credentials grant flow sends the actual resource owner’s

username and password pair to the authorization server to obtain an access token. This

grant flow is used when mitigating existing solutions to OAuth 2.0. The password

credential grant flow can only be used for well-trusted clients as they are required to

handle the Resource owner’s credentials.

Client credentials grant flow is used when a client applications is used to request

protected resources on their own behalf, i.e the client is the resource owner.

OAuth 2.0 Authorization Code grant flow

This section describes the OAuth 2.0 authorization code grant flow in more detail. The

authorization code flow is the most common flow used in OAuth 2.0. It is used by

authenticated confidential clients (i.e. clients, that can keep the client credentials secret

like web applications with a server side). It is roughly comparable with the ”redirection-

based authorization” in OAuth 1.0. In the Authorisation Code flow the request_type

parameter will always have the value code.

Figure 3.4 shows the steps of the OAuth 2.0 authorization code grant flow. The flow

steps are described below.

(1) The authorization code grant flow is initialized by the client. The client will

redirect the Resource Owner’s user agent to the server’s authorization endpoint. The

user agent will make an HTTP GET request to the authorization endpoint and sends at

least the response_type with value code, and the client_id, which identifies the

registered client to the server.

CHAPTER 3. OAUTH AND OPENID 35

Figure 3.4: OAuth 2.0 authorization code grant flow. Adapted from [4]
.

CHAPTER 3. OAUTH AND OPENID 36

Optionally, the client may also provide values for parameters redirect_uri,

scope and state. The redirect_uri is optional in the Authorization Code flow

and it specifies the URI that the server will redirect the Resource owner’s user agent to

after the Resource Owner authorizes the client.

The scope is also an optional parameter, which specifies a list of scopes of the

client’s access request. The authorization server may specify custom scopes to fit its

requirements. The state is a recommended parameter which ties together the requests

made and their responses during the grant flow. It is used for mitigating cross-site request

forgery attacks.

(2) The authorization server authenticates the Resource owner. The Resource owner is

presented the choice to authorize the request. The authentication process used is outside

the scope of the OAuth 2.0 specification and in considered and implementation detail.

(3) If the resource owner grants access, the user-agent is redirected back to the client

using the redirection URI. The authorization code is included in the redirection URI as the

value of parameter code. The OAuth 2.0 specification recommends that the maximum

lifetime of the authorization code is 10 minutes. Additionally, the code may only be used

once. Any subsequent uses of the authorization code must result in the request being

denied and all tokens issued for that authorization code should be revoked.

The response will also contain the state parameter with the exactly same value as it

was in the request. If the request did not have state parameter, it is also not included in

the response.

(4) The client uses the authorization code to request an access token from the server

endpoint. The client also authenticates itself and provides the redirection URL. The

request is an HTTP POST request to the token endpoint with the form encoded

CHAPTER 3. OAUTH AND OPENID 37

parameters grant_type, which always has the value set to authorization_code,

code, redirect_uri and client_id. The code is required and it contains the

authorization code that the client received in the previous step. The redirect_uri

parameter is required, if the authorization request also contained the redirect_uri

parameter. Their value must also be identical. The client_id is required, if the request

does not include client authentication information. However, the specification requires

that confidential clients should always authenticate themselves.

(5) Access Token Response The authorization server authenticates the client and

validates the authorization code. The authorization server responds with an access token

along with an optional refresh token. After acquiring the access token, the client can make

requests to the resource server on behalf of the resource owner.

The response will contain at the very least the access_token and token_type

parameters. Optionally, the response may also contain the expires_in,

refresh_token and scope. The token_type defines the type of the token. The

token may of type ”bearer” or ”mac”. The expires_in is recommended and informs

the client on the lifetime of the access token in seconds. The refresh_token may be

used by the client to obtain a new access token. The scope value is required only if the

final scope of the access token differs from the client’s initial request. [4]

Implicit

The implicit grant flow is meant to be utilized by public clients, that have a well known

redirection URI. The main difference between the implicit flow and the authorization code

flow is that in the implicit flow the client is not authenticated and it receives the access

token directly from the authorization endpoint after the resource owner authorizes the

client.

CHAPTER 3. OAUTH AND OPENID 38

The Figure 3.5 shows the detailed steps of the implicit flow. The steps of the implicit

flow are as follows.

(1) The flow is initiated by the client, which will direct the resource owner’s user agent

to make an HTTP GET request to the authorization endpoint of the authorization server.

The GET request will contain response_type, and client_id. Additionally, the

client can include redirect_uri, scope and state parameters. In the implicit flow

the value of the response_type parameter must always be token. Other parameters

are as in the authorization code flow.

(2) The resource owner is authenticated and will be requested to authorize the client at

the authorization server just like in the authorization code flow.

(3) If the resource owner authorizes the client access, the User-Agent is redirected back

to the URI that was provided as the redirect_uri in step 1. The redirect URI

will be appended with a fragment that will contain at least the values for parameters

access_token and token_type. Optionally, the server may also return values for

parameters expires_in, scope and state. All of these parameters are equivalent to

the parameters in the authorization code flow. The main difference is that in the implicit

flow the authorization server will not issue a refresh token.

(4) The user agent will be redirected to a web-hosted client resource, but, by definition,

will not pass the URI fragment part containing the return parameters to the end point .

(5) The web-hosted client resource will return a web page, which usually contains a

piece of JavaScript code capable of extracting the parameters in the URI fragment.

CHAPTER 3. OAUTH AND OPENID 39

Figure 3.5: OAuth 2.0 implicit grant flow. Adapted from [4]
.

CHAPTER 3. OAUTH AND OPENID 40

(6) The User-Agent will execute the script embedded in the web page returned by the

web-hosted client resource. The script will extract the access token from the URI.

(7) The User-Agent will pass the extracted access token to the client. The detailed way

that this is done, is left outside of the specification.

3.3 OpenID 2.0

This section provides a brief summary of the OpenID 2.0 protocol. The protocol can

be considered the predecessor of OpenID Connect 1.0 even though they do not share a

significant amount of technical details. The OpenID 2.0 is not technically compatible

with the OpenID Connect framework. The OpenID 2.0 is, however, compatible with the

OpenID 1.1 if certain implementation details described in the OpenID 2.0 specifications

are met. [18] OpenID 2.0 is a protocol that enables end-users to authenticate to third party

relaying parties without having to provide authentication credentials to the relaying party.

The protocol has some steps that have to be followed to successfully authenticate

a user. These steps are in order of execution discovery, association establishment and

finally, the user authentication. Each of these steps is described next in more detail.

3.3.1 Discovery

The initial step of the OpenID 2.0 protocol is the discovery, where the user

supplies an identifier to the Relaying Party. The identifier could be for instance

https://example.com/user. The RP then normalizes the user input and performs

OpenID Provider Discovery based on this information.

CHAPTER 3. OAUTH AND OPENID 41

3.3.2 Association

The association phase begins after the RP has discovered the OP. The protocol uses

Diffie-Hellman key exchange (DH) protocol for the RP to exchange secrets with the OP.

Alternatively, the use of may be omitted if the OP and the RP communicate on a secure

TLS channel.

3.3.3 Authentication

After the RP has discovered and associated itself with the op, it can send the authentication

request. The RP will redirect the user agent of the end-user to the OP along with an

authentication request. The end-user authenticates to the OP and the OP will check

whether the user is authorized to perform OpenID authentication.

The user agent is then redirected back to the RP along with information on whether

the authentication was successful. The RP is required to validate the information received

from the OP.

3.4 OpenID Connect

This section will explain some of the main concepts behind OpenID Connect (OIDC).

The section will not and is not meant to cover all the details of the protocol, but rather

focuses on the main things relevant to the OIDC certification process. An interested reader

is advised to look into the official OIDC documentation [5] provided by the OpenID

Foundation.

OIDC is an identity layer build on top of the OAuth 2.0 protocol. The OIDC uses

RESTful HTTP APIs and JSON data format. Most of the specifications in OAuth 2.0

apply to also to OIDC. This also means that the OIDC specification has most of the

CHAPTER 3. OAUTH AND OPENID 42

OAuth 2.0 capabilities integrated into the protocol. The focus of this section lies in some

the capabilities that the OIDC adds on top of OAuth 2.0.

3.4.1 Abstract OIDC authorization flow

The abstract authorization flow of the OIDC is much like the one basic flow of OAuth 2.0.

The OIDC adds the steps (5) and (6) to the OAuth 2.0 abstract flow.

Figure 3.6: OpenID sequence diagram. Adapted from [5]

Figure 3.6 shows an abstract overview of the flow of the OIDC protocol. The flow

steps are as follows.

• (1) The RP initializes the flow by sending a request to the OpenID Provider (OP).

• (2) The OP handles the authentication of the End-User and obtains authorization.

CHAPTER 3. OAUTH AND OPENID 43

• (3) The OP responds to the relaying party by sending an ID Token along with an

Access Token.

• (4) The Relaying Party (RP) makes a request with the Access Token to the

UserInfo endpoint.

• (5) The UserInfo endpoint sends End-User Claims.

3.4.2 The protocol suite

Figure 3.7: OpenID Connect protocol suite. Adapter from [6]

The structure of the OIDC protocol suite is shown in Figure 3.7. The OICD

specification is separated into a number of different documents which are as follows:

CHAPTER 3. OAUTH AND OPENID 44

• Core

• Discovery

• Dynamic Registration

• OAuth 2.0 Multiple Response Types

• OAuth 2.0 Form Post Response Mode

• Session Management

• Front-Channel Logout, and

• Back-Channel Logout

The core document has definitions for the main functionality of OpenID Connect.

Discovery is optional and defines how the clients can find information about OIDC

providers. The dynamic registration defines how the client can register with OIDC

providers dynamically. For the sake of the certification process, the main parts of Core,

Discovery and Dynamic Registration are covered in more detail in the in the following

sections. The rest of the documents are not relevant and will not be discussed.

3.4.3 Core

The Core document [5] defines the most fundamental functionality for OpenID Connect.

The Core contains specifications for ID Token structure, authentication flows and

endpoints as well as the standard set of Claims that can be obtained about the End-User

and the Authentication event. The Core specification also includes security and end-user

privacy considerations.

JSON Web Token

JSON Web Token (JWT) is a data structure, which can be used to represent claims

between two parties. It is described in RFC 7519 [19]. JWT has support for encryption

CHAPTER 3. OAUTH AND OPENID 45

and via JSON Web Encryption (JWE) and signing via JSON Web Signature (JWS). As

the name suggests, the JWT uses JSON objects as its data structure. JWT Claims are key

value pairs where the key (Claim Name) is always a string and the value (Claim Value)

is an arbitrary JSON value. The JWTs are, however, always encoded using the JWS

Compact Serialization or the JWE Compact Serialization.

ID Token

ID Token is a data structure built on top of OAuth 2.0 as an extension to enable end-user

authentication. ID Token can be thought to be like an identity card. ID Token uses the

JSON Web Token (JWT) format. The OIDC specification requires that the ID Tokens are

signed by the OpenID Provider using JWS. Optionally, the ID Tokens may be signed using

JWS and then encrypted using JWE. The signing provides authentication and integrity.

Additionally, encryption provides confidentiality for the token contents.

The OIDC Core document defines the following Claims for the ID Token. ID Tokens

may, however, contain additional application specific Claims. The presence of the Claims

required by the OIDC Core specification is enforced by the certification testing tool.

• iss - An issuer, which identifies the principal that issued the token. In OIDC this

is an URL with https scheme.

• sub - The locally unique subject, for which the ID Token belongs to.

• aud - The intended audience of the ID Token. The value is a single string or an

array of strings. In OIDC one of the values must be the OAuth 2.0 client id.

• exp - The expiration time of the ID Token. The time is represented as the number

of seconds after 1970-01-01T0:0:0Z.

• iat The time of issuing of the JWT. Uses the same time format as exp.

CHAPTER 3. OAUTH AND OPENID 46

• auth_time - The time at which the End-User was authenticated. Uses the same

time format as exp.

• nonce - Number used once, a string value, which links a client session to the ID

Token. The nonce is used to mitigate replay attacks. This value must be present

in the ID Token exactly like in the request, if the nonce parameter was present in

the request.

• acr - String value, which tells the Authentication Context Class Reference. The

use of this value is optional and is not required for the OP certification.

• amr - Authentication Methods References, optional value, which identifies the

authentication methods used during the resource owner authentication.

• azp - Authorized party, in the context of OIDC this claim contains the OAuth 2.0

client id. The presence of this parameter is optional, unless the ID Token has only

a single aud entity and it is not the same as the azp value. The presence of this

Claim is not tested or required for the certification.

The iss, sub, aud, exp and iat Claims are always required. Additionally, the

auth_time is required when max_time request is made or when an Essential Claim

requests auth_time. Additionally the nonce Claim must be present when the client

includes it in the request. The nonce parameter must be included in the request, when

the response_type value includes either token or id_token.

CHAPTER 3. OAUTH AND OPENID 47

{

"iss": "https://server.example.com",

"sub": "24400320",

"aud": "s6BhdRkqt3",

"nonce": "n-0S6_WzA2Mj",

"exp": 1311281970,

"iat": 1311280970,

"auth_time": 1311280969,

"acr": "urn:mace:incommon:iap:silver"

}

Listing 3.4: An example of an ID Token containing a set of Claims

3.4.4 OIDC Endpoints

The endpoints of the OIDC are very similar to those of the OAuth 2.0 framework. The

authentication

An addition to the OAuth 2.0 is the UserInfo endpoint, where the client can request

the info of the end user in a form of selected claims. The set of claims to be included

in the response is defined by the scope parameter value given during the authentication

request.

The UserInfo endpoint is a protected resource, from which the client can request a

set of Claims about the end user. The endpoint must be secured by TLS. The OIDC core

specification states, that the endpoint has to support both HTTP GET and POST methods,

and must additionally support the use of OAuth 2.0 Bearer token. The UserInfo endpoint

will respond with either a JSON object or JWT in case the response was requested to be

encrypted or signed during the client registration process.

The scope parameter value tells the OP, which claims should be returned in the

UserInfo response and in the ID Token. However, the OP does not have to support other

than the openid scope, which states that only the sub claims will be returned.

CHAPTER 3. OAUTH AND OPENID 48

3.4.5 Authorization grant flows

The OIDC supports the OAuth 2.0 authorization grant flows, from which the most

important ones are the Authorization Code and Implicit grant type flows. These two

grant flows form the basis of the OIDC certification conformance profiles.

Authorization Code Flow

The OIDC requires the OAuth 2.0 Authorization Code flow to be used with some

certain parameters. The scope parameter is required and it must at least contain

the value openid. The request must include the redirect_uri, which must

also match one of the redirect URIs registered by the client. The request may

additionally include parameters display, prompt, max_age, ui_locales,

id_token_hint, login_hint, and acr_values. The inclusion of the prompt

parameter in the request is optional, but the OP must attempt to authenticate the end user,

if the parameter value is prompt. Additionally, the OP must not interact with the user, if

the value of the prompt parameter is none. The OP must return an error, if the end user

cannot be authenticated.

The authorization code flow also requires that the ID Token optionally contains an

at_hashClaim (Access Token hash). The value of the at_hash is a base64url encoded

leftmost half of the hash of the access_token.

Implicit flow

In Implicit flow the difference in the request compared to the authorization code is

that the response_type parameter must have a value of either id_token or

id_token token. The redirect_uri must have an URI that is pre-registered at

the OP for the client. The implicit flow requires the use of nonce parameter.

CHAPTER 3. OAUTH AND OPENID 49

A successful authentication response will contain access_token parameter value,

if the response_type is not id_token. Additional included parameters are

token_type, id_token, state and optionally the response may also contain

expires_in parameter.

For the ID Token the nonce Claim is required. The at_hash is required, if the ID

Token was issued with an access_token.

3.4.6 Discovery

The OIDC Discovery specification defines a method, which clients can use to dynamically

discover the configuration of the OP. The discovery protocol utilizes WebFinger to locate

an OP. The Discovery specification can be thought to be divided into two parts. The first

part describes the use of the WebFinger protocol in the context of OIDC and the second

part describes the format of the OP metadata.

WebFinger

The WebFinger protocol, defined in RFC 7033 [20], is used to used to query information

about static objects. The query path is always /.well-known/webfinger. The

endpoint is issued an HTTP GET request with resource and optionally rel

parameters. OIDC uses the rel value of http://openid.net/specs/connect/

1.0/issuer to indicate that it requests a reference to the OIDC issuer. The resource

is a user input in either email address of URL syntax. The RP will normalize the input

and determine the location of the host.

CHAPTER 3. OAUTH AND OPENID 50

OP metadata

The Discovery specification also specifies that OPs have to make a JSON document

available at /.well-known/openid-configuration. The JSON document must

by minimum contain the parameters in the following list. The OP may provide additional

parameters, some of which are listed in the OIDC Discovery specification.

• issuer The issuer URL, must be identical to the URL provided by WebFinger

• authorization_endpoint OAuth 2.0 Authorisation Endpoint URL

• token_endpoint (optional, if only Implicit Flow is used) OAuth 2.0 Token

Endpoint URL

• userinfo_endpoint (optional, but recommended) OP’s UserInfo endpoint

URL

• jwks_uri URL of the document containing the JSON Web Key Set, which are

used by the RP to validate OP’s signatures or encrypt requests to the OP

• registration_endpoint (optional, but recommended) OP’s Dynamic Client

Registration Endpoint URL

• scopes_supported (optional, but recommended) List of scopes supported by

the OP. May not contain all supported scopes

• response_types_supported OAuth 2.0 Response Types supported by the

OP. code, id_token and the token id_token Response Types must be

supported.

• subject_types_supported list of Subject Identifier types supported by the

OP

• id_token_signing_alg_values_supported list of JWS signing

algorithms, which are supported by the OP

• claims_supported (optional, but recommended) list of Claim Names the OP

may support. May not include all claims supported by the OP.

CHAPTER 3. OAUTH AND OPENID 51

3.4.7 Dynamic client registration

The OIDC Dynamic Client Registration document [21] describes a method for RPs to use

to register themselves to the OP. The specification defines endpoints for client registration

and configuration.

A client can be registered to the OP by issuing a HTTP POST request to the Client

Registration endpoint. The request must contain at least the redirect_uris, which is

a list of redirect URIs used by the client. Additionally the clients may specify URIs for

logo, privacy policy and terms of service as logo_uri, policy_uri, and tos_uri

and, if given, the OP should show them to end-users. Also, if the client specifies jwks

or jwks_uri, the OP must use the registered keys and support key rotation. All other

metadata values are optional and as they are not required for the certification, they are not

discussed any further.

The Client Registration endpoint may also require an Initial Access Token, which

is an OAuth 2.0 Access Token can be used to restrict access to the client registration.

The specification itself does not, however, describe its use any further. Its contents and

methods of verification are application specific.

The Client Registration endpoint will return with a JSON document containing, at the

minimum, the client_id parameter, which is a unique identifier of the client. All other

parameters are optional.

Chapter 4

Certification

A software certificate represents the mapping of certified artifact to the property being

asserted and the certification authority. A certifiable artifact can be software or non-

software artifacts like documentation, for example. A certificate may additionally include

technical evidence supporting the certification. [22]

4.1 OpenID Certification

The OpenID Connect Provider certification is done in a manner of self-certification. In

self-certification the certification authority is the same as the author of the artifact being

certified. In the case of OP certification, the artifact being certified is the OpenID Connect

Provider implementation itself. In this context, there are no certificates for non-software

artifacts.

The properties being certified are the implementation details of the OP

implementation, which will be tested by using the official testing tool provided by the

OpenID Foundation. The test results will be considered technical evidence supporting the

certification.

CHAPTER 4. CERTIFICATION 53

The main purpose of the OpenID certification is to enable implementations of OpenID

Connect to be certified to meet the certification requirements. The two components of the

OpenID certification are technical evidence of conformance resulting from testing and

legal statement of conformance. Most of this chapter describes the process of collecting

the technical evidence for the certification.

The certified implementations are allowed to use the OpenID Certified logo. The

OpenID Foundation maintains a list of certified OpenID providers and certified relaying

parties.

4.1.1 Certification value

The value provided by the certification is fundamentally either technical or business

related. From the technical point of view, the certification gives more certainty for

the software and ensures that the integration of the implementation requires no custom

code. However, even though to pass the testing process successfully, the OIDC OP

implementation must follow some certain security related best practices, the OIDC OP

certification does not ensure that the implementation is secure. The certification does not

as such compete with or make security audits or security related certificates obsolete.

From the business point of view the certification may enhance the reputation of the

organization and the implementation itself. The customers may think that the certified

implementation is better than non-certified implementations and prefer to use the certified

one.

4.1.2 Certification costs

The certification costs $200 for OpenID Foundation members and $999 for non-members.

The cost for non-members wanting to certify a new deployment of an already certified

CHAPTER 4. CERTIFICATION 54

implementation is $499. The cost covers all the profiles sent within a calendar year.

Additionally, the certification is bound to have a running cost for the implementing

company due to manual testing, the maintenance of any integration test as well as the

OP implementation itself, and any additional legal fees that may occur. [23]

4.1.3 Conformance profiles

The OIDC certificate is divided into five different conformance profiles. The certificate

for the OIDC implementation may include technical evidence for any combination of the

profiles. For example, if the OP implementation supports the authorization code grant

flow only, it may be certified to only conform to the Basic OP profile.

The five examined conformance profiles for OpenID providers are as follows: [24]

• Basic OpenID Provider

• Implicit OpenID Provider

• Hybrid OpenID provider

• OpenID Provider Publishing Configuration Information and

• Dynamic OpenID Provider.

For the sake of completeness, the five comparable conformance profiles for OpenID

Relying Parties are listed below:

• Basic Relaying Party

• Implicit Relaying Party

• Hybrid Relaying Party

• Relaying Party Publishing Configuration Information and

• Dynamic Relaying Party.

The certification process for Relaying Parties is, however, not looked into any further

in this thesis.

CHAPTER 4. CERTIFICATION 55

4.2 The OP Certification process overview

This section covers the OIDC certification process itself and the legal documentation

related to it. The process consists of the following steps described in [25] and [26]. The

technical details of the testing process are covered in later sections.

1. Setting up the testing environment

2. Running the selected tests on the test suite

3. Submitting the test results along with any required documents

4. Paying the certification fee described in subsection 4.1.2.

4.2.1 The testing procedure

The testing can be done by the party implementing the deployment or by a third party. The

self-certification can be considered as trustworthy as the entity conducting the review.

The entity conducting the review is legally fully responsible for the functioning of the

implementation.

The testing is done against the OpenID specification with the web based testing

application provided by the OpenID Foundation. The application can be found in

https://op.certification.openid.net:60000.

After the tests have passed, the test result logs along with the signed legal declaration

that implementation conforms to a profile are sent to the OpenID Foundation. The

organization pays the certification fee and the implementation is verified and the

certification is granted. The certification will be listed on OpenID Foundation certified

implementations page at http://openid.net/certification and http://

www.oixnet.org/openid-certifications. The certification includes logs of

the tests in addition to the certification itself.

CHAPTER 4. CERTIFICATION 56

4.2.2 Testing, collecting the technical evidence

The collection of the technical evidence is vital for the sake of the certification process.

As the certification is done as self-certification, the technical evidence is practically the

only hard proof that the OP implementation truly conforms to the OP profiles.

This section lists the most relevant tests that the OIDC Provider (OP) implementation

must pass in order for it to be certified. The tests are listed in two parts. First

part covers the Basic OP, Implicit OP and Hybrid OP. The second part describes the

tests that are performed for OPs publishing configuration and OPs supporting dynamic

client registration. The conformance profiles for these types are Config and Dynamic,

respectively.

The list of tests was acquired from the official OIDC Provider testing tool itself [27]

and the OIDC conformance profile documentation [24]. Each of the test has to be passed

for the implementation to be eligible for certification. Warnings returned by the test tool

are acceptable, however.

4.2.3 Basic, Implicit and Hybrid OpenID Connect Providers

Essentially, the Basic OP profile requires testing for the code response type, the

Implicit OP profile requires testing for id_token and id_token+token. Finally,

the Hybrid OP profile requires testing for code+id_token, code+token and

code+id_token+token response types.

response type parameter

For the Basic, Implicit and Hybrid OP profiles, the response_type parameter must

be present in the authorization request. If the parameter is not present, the request must

be rejected.

CHAPTER 4. CERTIFICATION 57

For the Basic profile, the OP must support response_type with value code.

The Implicit profile OP must support the id_token as well as id_tokentoken+

as response_type parameters. According to the Hybrid OP conformance

profile the OP implementation must support code+id_token, code+token and

code+id_token+token response types.

ID Token

The implementations conforming to the Basic, Implicit and Hybrid profiles must support

the following ID Token claims. The claims must be present in the Id token returned by

the OP.

• iss (issuer)

• sub (subject, the identifier of the end-user)

• aud (audience, which is the name of the OIDC client)

• iat (issued at, the time when the ID Token was issued)

• kid (key id, identifier for the key used to sign the id token)

All three conformance profiles mentioned before must support ID Token signing. Both

Implicit and Hybrid profile OP implementations must always sign the ID Tokens and

include an at_hash parameter when ID Token and Access token are returned from the

authorization endpoint. Hybrid OP implementations must also provide a c_hash value

when using code+id_token response type.

The Basic OP implementations must support unsecured ID Token signatures if request

parameter signature is none.

CHAPTER 4. CERTIFICATION 58

UserInfo Endpoint

OIDC Provider implementations conforming to Basic, Implicit or Hybrid profiles must

have the UserInfo endpoint. The UserInfo endpoint must be accessible with HTTP POST

method with bearer either in the HTTP request header or body. Additionally, the endpoint

must be accessible with HTTP GET method with bearer in the HTTP request header. The

UserInfo must also contain the sub claim.

Client Authentication

The Basic and Hybrid conformance profiles require the OP implementations to support

client authentication. The client should be able to authenticate itself to the OP by making a

HTTP POST request to Token endpoint and providing the credentials in the HTTP header

as specified in the Basic schema. The credentials may also be provided by form encoding

them in a HTTP POST request to the Token endpoint.

Nonce

The implementations conforming to Implicit and Hybrid OP profiles must enforce the

presence of the nonce request parameter. Requests not containing nonce value must be

rejected. The nonce request parameter is optional in the Basic OP conformance profile,

but the OP implementation must still support it, if it is included in the request. If a nonce

is included in the request, it must also be included in the ID Token returned by the OP.

Prompt and display request parameters

The testing tool also checks the OP’s support for the prompt parameter. Basically,

the prompt parameter tells the OP, whether it should show the prompt requesting

reauthentication or user consent. The prompt parameter values can be either login,

CHAPTER 4. CERTIFICATION 59

none, consent or select_account. At least the none and login should be

supported by the OP. When the value is none, the OP must not show the authentication

dialog at all and it must return an error if the user is not logged in.

The consent tells the OP, that it should ask for the end-user’s consent before

allowing the client to access certain information. The select_account, on the other

hand, specifies, that the OP should ask the end-user with multiple accounts to select an

account. Supporting consent and select_account prompt values is optional in

practice and will not be tested.

The OP implementation conforming to either Basic, Implicit or Hybrid profile should

also support display request parameter with values page and popup. The value

page tells the OP to show the authentication UI in a full web browser page. This is also

the default mode. The value popup tells the OP that it should show the authentication

view in a popup such as a web browser popup window. At the minimum, the OP must not

return an error when the display parameter is specified.

Scope request parameter

The scope parameter tells the OP, what information the client wants to request from the

OP. The end-user is then informed which claims the client has requested. The testing tool

verifies that the ID Token contains the claims that were requested. The scopes tested are

all, address, email, phone and profile. However, since the OIDC providers

are not required to support these scopes, not including them in the ID Token is does not

fail the test. The testing tool will issue a warning, though.

Additional request parameters

Some additional testing is done to make sure that the OP functions when additional bogus

parameters are given, as well as providing acr_values and claims_locales. The

CHAPTER 4. CERTIFICATION 60

bogus parameter test makes sure that the OP continues to function correctly even when

there is an additional not understood parameter.

The login_hint parameter should be supported. The string value provided should

be written in the OP login prompt’s username field when end-user’s user agent is

redirected to that endpoint.

Additionally, it is checked that the OP functions correctly if prompt=none and

user hint via id_token_hint parameter is provided. The OP should return a positive

response when a request is made with prompt=none and the id_token_hint has

an ID Token of a user that is logged in.

Also, there are tests to see that authentication age is enforced via the max_age

parameter and that UI locales can be provided with ui_locales parameter. It is enough

that providing the ui_locales request parameter does not result in errors. For the

max_age parameter, the OP should request the end-user to re-authenticate if the previous

authentication is stale. Also, the OP should use the previous authentication if it is still

valid.

Finally, the redirect_uri sent along with any request must match a registered

redirect_uri.

OAuth behaviors

The testing tool checks some OAuth behaviors related to security. If the client attempts

to use the authorization code twice, the OP should respond with an error result. The test

is also repeated with the difference that there is a 30 second delay between uses. It must

also result in an error. Also previously issued access tokens should be revoked if there is

an attempt to use the authorization code twice.

CHAPTER 4. CERTIFICATION 61

4.2.4 Config and Dynamic OP conformance profiles

The Config and Dynamic OP conformance profiles are functionally essentially different

from the Basic, Implicit and Hybrid profiles. The features required to implement by

the Config and Dynamic profiles can be considered optional and are not directly related

to OAuth 2.0 or the OIDC authorization flows. Instead they, define and enforce a set

of specifications that the RPs can use to acquire OP configuration and a method for

registering new clients. In practice, the Config profile is a subset of the Dynamic profile

and there is probably little point in implementing just one of them. Therefore the section

4.2.4 will cover only the properties that are not required by the Config profile.

Config

The Config profile requires the implementation to share it’s configuration according to the

OP specifications.

The OP should publish OpenID

configuration discovery information at /.well-known/openid-configuration,

where must be an issuer that matches the prefix of the configuration endpoint URL. The

issuer must match the ID Token iss value. The configuration must contain the URLs for

authorization_endpoint, token_endpoint, userinfo_endpoint and

jwks_uri. The keys in OP JWK must be well formed. The configuration must

also publish parameters scopes_supported, respose_types_supported,

subject_types_supported,

id_token_signing_alg_values_supportedand claims_supported. All

of the OP endpoints must have the https scheme.

CHAPTER 4. CERTIFICATION 62

Dynamic

When the OP conforms to the Dynamic profile, if there are multiple registered redirect

URIs the OP must reject all requests that do not have redirect_uri specified. The

OP must also keep the redirect_uri parameter values in both registered and request

parameter URIs and reject any requests with non-matching query parameter. The OP

must also reject registration of redirect_uris with fragment. The OP should have

well formed keys in JWKs. The OP should also support user identity discovery with

WebFinger email and URI syntax.

The OP is required to have a registration_endpoint and that it can be used to

register a new client. The login page on the OP should display URI for logo, policy and

terms of service URI. It is not an error to not show these URIs and will not prevent the

OP implementation from being certified.

The OP must support request_uri request parameter with both unsecured and

signed requests. Additionally the OP must support the use of keys registered with the

jwks_uri and jwks. Both OP and RP signing key rotation as described in the OIDC

Core specification must also be supported.

Chapter 5

OnePortal and the OpenID Provider

certification

This chapter describes the main features of onePortal developed by the Trivore Corp. The

features of onePortal are described in the detail that is required for the reader to get an

overview of the state of the OP implementation in onePortal.

5.1 OnePortal

OnePortal is a comprehensive and flexible web application platform with a cloud database

and centralized identity management. The platform is multi-tenant by design, which

means that multiple organisations are able to use is simultaneously. Figure 5.1 shows

the platform’s most important features.

OnePortal originally consisted of the Web UI, which is nowadays referred to as the

Management UI as well as LDAP support. The REST API was developed mainly after the

Management UI. OnePortal has since the beginning also had comprehensive messaging

support for sending email and SMS messages. OnePortal later also gained support for

CHAPTER 5. ONEPORTAL AND THE OPENID PROVIDER CERTIFICATION 64

Figure 5.1: The onePortal framework overview. c©Trivore Corp.

CHAPTER 5. ONEPORTAL AND THE OPENID PROVIDER CERTIFICATION 65

OAuth 2.0 and OpenID Connect, and the REST API was then added support for OAuth

2.0 authorizations.

While onePortal is rich in features, this thesis will focus on the platform’s identity

management features, most notably its OP implementation. The details of the OP

implementation are covered in the following sections.

5.1.1 Trivore Identity Service

The Trivore Identity Service works as a federated identity management platform. It is

highly customizable to meet the requirements of customers. For example, the OAuth

2.0 sign-in screen can be themed to match the look and feel of the customer’s website.

Additionally, the group and namespace data structures are flexible and can be made to fit

a wide range of various organization structures. Additionally, onePortal is fully GDPR

compatible, it supports two factor authentication and has a Health Insurance Portability

and Accountability Act (HIPAA) compatible secure audit trail.

5.1.2 OpenID Connect Provider Implementation

OnePortal has a custom OpenID Connect Provider implementation and its overview is

shown in Figure 5.2. The following listings of supported properties were obtained from

the onePortal’s OpenID configuration endpoint.

So far, according to the OpenID configuration info published by the platform,

onePortal’s OP implementation supports the following authorization grant types:

• authorization_code

• refresh_token

• implicit

• password

CHAPTER 5. ONEPORTAL AND THE OPENID PROVIDER CERTIFICATION 66

Figure 5.2: The onePortal OpenID Connect flow. c©Trivore Corp.

The OIDC related endpoints utilized by the OP in onePortal are

• /openid/auth (The Authorization endpoint)

• /openid/token (The Token endpoint)

• /openid/userinfo (The UserInfo endpoint)

• /.well-known/openid-configuration (The configuration endpoint for

discovery)

• /openid/jwks.json (The jwks endpoint where the public key is stored)

The onePortal OP supports the response types listed below. Note, that the response

types required for the Hybrid conformance profile are not yet supported.

• code (Used for the authorization code grant flow)

• id_token token (Used for the Implicit grant flow)

• id_token (Also used for the Implicit grant flow)

CHAPTER 5. ONEPORTAL AND THE OPENID PROVIDER CERTIFICATION 67

The following default scopes are supported by the OP in onePortal. For the sake of

certification, only the openid must be supported. The rest is optional but recommended.

• openid

• profile

• email

• address

• phone

OnePortal also supports a fair number of custom scopes, used to authorize access to

various REST API endpoints. The number of these claims increases over time as more

REST API functionality is implemented.

The following standard claims are supported by the OP in onePortal:

• sub

• name

• given_name

• family_name

• middle_name

• nickname

• preferred_username

• email

• email_verified

• birthdate

• zoneinfo

• locale

• phone_number

• phone_number_verified

• address

CHAPTER 5. ONEPORTAL AND THE OPENID PROVIDER CERTIFICATION 68

• updated_at

Additionally, onePortal supports a number of custom application specific claims,

which are not relevant for the sake of certification.

The onePortal’s OP implementation has support for some discovery features and

the most current configuration can always be retrieved from any onePortal instance’s

/.well-known/openid-configuration endpoint as specified by the OIDC

discovery document.

5.2 Testing the OpenID Connect Provider

Implementation

For onePortal to gain the OIDC Provider certification, the OIDC Provider implementation

has to be tested with the OIDC test suite provided by the OpenID Connect Foundation.

Initial testing can be done using a locally hosted instance of the test suite, but when

applying for the certificate, the testing has to be conducted with the OIDC foundations

own test suite instance.

The tests in the suite were executed for each of the conformance profiles. The order

that the conformance profiled tested was Basic, Implicit, Hybrid, Config and finally, the

Dynamic profile. The following sections list the failures and inconsistencies that occurred

during the testing procedures. The results of each of the conformance profile tested are

listed in their own section. The focus of the descriptions is in the failed test cases so that

the OP can be improved to fully conform to the profile in question.

CHAPTER 5. ONEPORTAL AND THE OPENID PROVIDER CERTIFICATION 69

Basic

The test cases for the Basic conformance profile described in section 4.2.3 were mostly

run successfully. However, there were some test cases, that failed and others that resulted

in warnings or inconclusive results. The rest of this section will cover the test cases in

more detail.

The response_type related tests were run successfully. If the response_type

is missing the server correctly returns an error and when the response_type=code

the OP returns JSON encoded authentication message after authorization was granted.

The UserInfo endpoint related tests were also run successfully. The endpoint can

be accessed with an HTTP POST request with Bearer token in the request body. The

endpoint can also be successfully accessed with HTTP POST and GET methods with

Bearer token in the request header.

The claims request parameter was tested with name claim with additional attribute

essential set to true. The OP returns the requested claim from the UserInfo

endpoint and the test is passed.

The display request parameter as described in the section 4.2.3 was tested with

values page and popup. The OP does not return any errors when these values are used

and therefore passes the tests.

The prompt request parameter, as described in section 4.2.3 was tested with values

login and nonewith user logged in and not logged in. The tests were passed apart from

the prompt parameter with value none when user was logged in. The OP returned an

error with code interaction_required even when it should have determined that

the user was already logged in.

With Basic profile with request_type code, the nonce parameter as described

in section 4.2.3 may be given as part of the request. It was tested that when the nonce is

CHAPTER 5. ONEPORTAL AND THE OPENID PROVIDER CERTIFICATION 70

not given, the OP does not return any errors. Also, when the nonce was given, the OP

successfully returned it as part of the access_token.

The OP should also check that the redirect_uri request parameter is one of the

registered URIs. The OP implementation in onePortal passes the test as it returns an error,

when the given redirect_uri does not match a registered one.

Some additional request parameters described in section 4.2.3 were also tested. It was

tested, that extra query parameters, acr_values or claims_locales, do not cause

errors. Additionally, the login_hint parameter can be provided and its value is shown

in the username field as expected. A request for a specific UI locale can also be provided

with the ui_locales parameter without any errors being returned.

When the RP sends a request with the parameter prompt with value none along

with an id_token_hint, the Authorization server should be able to determine from

the ID Token of the hint, whether the user is logged in. In the conducted test case,

the authorization server should have returned a positive response, but instead an error

interaction_required was returned. This should be fixed before applying for the

certification.

The OP correctly asked the end-user to re-authenticate when the max_age request

parameter was given and the previous authentication was too old. However, when the

authentication was still valid and the OP should have used the same authentication, it

requested another unnecessary end-user authentication. This resulted in a failed test.

The OAuth 2.0 requires that, an attempt to use the same authorization code twice has

to result in an error and that any previously issued access tokens has to be revoked. The

OP correctly returned an error when the authentication code was used twice, but it still

allowed data to be retrieved from the UserInfo endpoint with a revoked access token.

This means that the access token was not fully revoked when the RP made a second

request using the same authorization code.

CHAPTER 5. ONEPORTAL AND THE OPENID PROVIDER CERTIFICATION 71

Implicit

This section covers the test results for the implicit conformance profile. Most of the test

cases are exactly the same in the Implicit and Basic profile. Thus, this section focuses

only on the test cases not present in the Basic profile test set.

The main differences between the Basic and Implicit conformance profiles is that

in the Implicit profile the access token request is made with the response_type

parameter value id_token or id_token token. Additionally the nonce parameter

is required and it must also be contained in the returned ID Token. When

response_type=id_token token the ID Token must also contain the at_hash

Claim.

The OP implementation passed all the Implicit profile related test cases. After

improving the features that fail the test cases in the Basic profile, the OP should be

certifiable for the Implicit conformance profile as well.

Hybrid

The OP does not support the request types required for the hybrid flow. The only

supported response types are code, id_token and id_token+token. For the OP to

be certified for the Hybrid conformance profile it should support the code+id_token,

code+id_token+token, and code+token response types. Therefore the testing

for the Hybrid conformance profile was not be conducted any further.

Config

The Config conformance profile tests require the OP to publish configuration information

in a well known location. More specific requirements were discussed in section 4.2.4.

It was tested, that the required set of information could be found from the OP’s .well-

CHAPTER 5. ONEPORTAL AND THE OPENID PROVIDER CERTIFICATION 72

known/openid-configuration endpoint. The Config conformance profile related

tests run successfully and therefore the OP is ready to be certified for Config conformance

profile.

Dynamic

The dynamic client registration end points and WebFinger support have not yet been

implemented in the OP. The client registration end point would have to be implemented

before as discussed in section 4.2.4 the OP is eligible for proper testing.

5.3 Recommendations

After performing testing, some recommendations were given so that the OP

implementation could be improved to fully conform to all of the OIDC conformance

profiles.

Apart form Config, the OP implementation in onePortal still does not fully conform to

any of the OIDC conformance profiles. The most significant limit in the implementation

is the fact that it does not yet support dynamic client configuration or the OIDC hybrid

flow.

The certification process can be completed in steps one or more conformance profiles

at the time without additional certification fees. It is up to the company management,

whether to initially acquire certification for Basic, Implicit and Config conformance

profiles and later for the Hybrid and Dynamic profiles. Another option is to add the

features required by the Hybrid and Dynamic profiles and do the certification for all

profiles at the same time. Between these two options the step by step certification would

seem better as the implementation could receive the certificate sooner and it does not

imply additional costs.

CHAPTER 5. ONEPORTAL AND THE OPENID PROVIDER CERTIFICATION 73

Even if the dynamic client registration process should remain closed in a way that

only selected Relaying Parties would be able to be registered, the registration endpoint

can be protected by requiring an additional token called the initial_token. The

initial_tokens can be generated and given to selected RP authors. In onePortal

this kind of feature set would be feasible to be implemented by utilizing the existing

management REST API to generate the initial token and share it to authorized parties.

After acquiring the initial token the clients could register themselves dynamically to the

OP by using the registration endpoint as described in the OIDC specification.

The following list contains the recommended improvements. The items listed should

be fixed before applying for the full certificate.

1. Session management should be improved.

(a) The correct functionality of the prompt parameter with value none should

be ensured for cases with or without the id_token_hint.

(b) Improve the handling of max_age parameter. The OP should allow the reuse

of existing and still valid authentication.

2. Correct OAuth 2.0 behavior should be ensured.

3. Support for some of the standard claims should be added.

4. Support for the hybrid flow should be added by implementing support for the

following response_types:

(a) code id_token

(b) code token

(c) code id_token token

5. An endpoint for dynamic client creation and management should be implemented.

6. Optionally, support for the rotation of signing and encryption keys should be added.

Chapter 6

Conclusion

The aim of this thesis was to find out what has to be done in order to gain the certificate

for the OP implemented as part of the Trivore Identity Management system. The results

of this thesis show that some improvements have to be made for the implementation to

conform to the certification requirements.

The first chapter worked as an introduction for this thesis explaining the subject and

the structure of the thesis. The second chapter explained some of the key concepts

of identity management, including authentication and authorization. The third chapter

explained the main parts of OAuth 1.0, OAuth 2.0, OpenID 2.0 and finally, OpenID

Connect.

The fourth chapter discussed the certification requirements for each of the

OpenID Connect conformance profiles. Finally, the fifth chapter introduced the OP

implementation and explained the test results for each of the conformance profiles. Also,

recommendations to improve the implementation were given.

The OpenID Foundation published another conformance profile called ”Form Post”.

This profile was left out of this thesis. The OP could also be tested and later certified

for this new profile. Additionally, this thesis did not cover the maintenance aspects for

CHAPTER 6. CONCLUSION 75

the conformance testing. The implementation should be tested regularly after changes are

introduced to the system. It should be figured out how the tests can be included in the

existing testing process.

References

[1] David Ferraiolo, Janet Cugini, and D Richard Kuhn. Role-based access control

(rbac): Features and motivations. In Proceedings of 11th annual computer security

application conference, pages 241–48, 1995.

[2] Mikael Linden. Identiteetin- ja pääsynhallinta. Tampere University of Technology,

2015. ISBN 978-952-15-

3568-0. URL https://tutcris.tut.fi/portal/en/publications/

identiteetin-ja-paasynhallinta(a62fef21-2c83-44c4-b771-

94bc52105a69).html.

[3] Andrea. Pashalidis and Chris J. Mitchell. A taxonomy of single sign-on systems.

Springer, 2003.

[4] D. Hardt. The oauth 2.0 authorization framework. Rfc, RFC Editor, Oct 2012. URL

https://tools.ietf.org/html/rfc6749.

[5] N. Sakimura et al. Openid connect core 1.0 incorporating errata set 1. Technical

report, Nov 2014. URL http://openid.net/specs/openid-connect-

core-1 0.html.

[6] OpenID Foundation. Openid connect, . URL http://openid.net/connect/.

[7] BS ISO/IEC 24760-1:2011: Information technology. Security techniques. A

framework for identity management. Terminology and concepts, Jan 31,

REFERENCES 77

2012. URL https://bsol.bsigroup.com/en/Bsol-Item-Detail-

Page/?pid=000000000030143799.

[8] J. L. Camp. Digital identity. IEEE Technology and Society Magazine,

23(3):34–41, 2004. doi: 10.1109/MTAS.2004.1337889. URL http://

ieeexplore.ieee.org/document/1337889.

[9] Dipankar Dasgupta, Arunava Roy, and Abhijit Nag. Advances in User

Authentication. Springer, Cham, Aug 22, 2017. ISBN 9783319588063. doi:

10.1007/978-3-319-58808-7.

[10] M. Jones and D. Hardt. The oauth 2.0 authorization framework: Bearer token

usage. Rfc, RFC Editor, Oct 2012. URL https://tools.ietf.org/html/

rfc6750.

[11] J. Reschke. The ’basic’ http authentication scheme. Rfc, RFC Editor, Sep 2015.

URL https://tools.ietf.org/html/rfc7617.

[12] A. Barth. Http state management mechanism. Rfc, RFC Editor, Apr 2011. URL

https://tools.ietf.org/html/rfc6265.

[13] David W. Chadwick. Federated Identity Management, pages 96–120. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2009. ISBN 978-3-642-03829-7. doi:

10.1007/978-3-642-03829-7 3. URL https://doi.org/10.1007/978-3-

642-03829-7 3.

[14] Kelly D. Lewis and James E. Lewis. Web single sign-on authentication using SAML.

CoRR, abs/0909.2368, 2009. URL http://arxiv.org/abs/0909.2368.

[15] Eran Hammer-Lahav. The oauth 1.0 protocol. Rfc, RFC Editor, Apr 2010. URL

https://tools.ietf.org/html/rfc5849.

REFERENCES 78

[16] OAuth Core Workgroup. OAuth Core 1.0 Revision A, June 24, 2009. URL

https://oauth.net/core/1.0a.

[17] Martin Spasovski. OAuth 2.0

Identity and Access Management Patterns. Packt Publishing, Birmingham, 2013.

ISBN 9781783285600. URL http://ebookcentral.proquest.com/lib/

kutu/detail.action?docID=1572907. ID: 1572907.

[18] OpenID Foundation. Openid authentication 2.0 - final. Technical report, Dec

2007. URL https://openid.net/specs/openid-authentication-

2 0.html.

[19] M. Jones et al. Json web token (jwt). Rfc, RFC Editor, May 2015. URL

https://tools.ietf.org/html/rfc7519.

[20] P. Jones et al. Webfinger. Rfc, RFC Editor, Sep 2013. URL https://

tools.ietf.org/html/rfc7033.

[21] N. Sakimura et al. Openid connect dynamic client registration 1.0 incorporating

errata set 1. Technical report, Nov 2014. URL https://openid.net/specs/

openid-connect-registration-1 0.html.

[22] Ewen Denney and Bernd Fischer. Software certification and software certificate

management systems. 2005.

[23] OpenID Foundation. Openid certification frequently asked questions (faq) —

openid, . URL https://openid.net/certification/faq/. Accessed:

May. 4, 2018.

[24] OpenID Connect Working Group and

OpenID Foundation. Openid connect conformance profiles v3.0. Technical report,

Jun 2018. URL http://openid.net/wordpress-content/uploads/

2018/06/OpenID-Connect-Conformance-Profiles.pdf.

REFERENCES 79

[25] OpenID Foundation. Submission of results for ops — openid, . URL https:

//openid.net/certification/submission/. Accessed: May. 4, 2018.

[26] OpenID Foundation. Conformance testing for ops — openid, . URL https:

//openid.net/certification/testing/. Accessed: May. 4, 2018.

[27] OpenID Foundation. oidctest, . URL https://github.com/openid-

certification/oidctest/tree/v1.1.5. Accessed: Jul. 2, 2018.

