

A User-Centric Access Control Framework for Cloud

Computing

UNIVERSITY OF TURKU

Department of Future Technologies

Master of Science in Technology Thesis

Networked Systems Security

December 2018

Imran Khan

Supervisors:

Farhoud Hosseinpour

Juha Plosila

The originality of this thesis has been checked in accordance with the University of Turku quality assurance

system using the Turnitin Originality Check service.

UNIVERSITY OF TURKU

Department of Information Technology

Imran Khan: A User-Centric Access Control Framework for Cloud

Computing

Master of Science in Technology Thesis, 64 p., 1 app. p.

Networked Systems Security

February 2019

A huge amount of data is generated due to the growth of advanced information technology,

online availability and easy access to cloud computing. In cloud computing, user can easily

store and share their information across the cloud. With the rapid growth of cloud computing,

user’s security and privacy has become a serious concern. Despite various existing security

mechanisms, enterprises are still afraid of losing their outsourced data and unauthorized access.

In most cases, access control mechanism and authorization rule follow a web application. This

makes it limited, tightly bound to web application functionality and also doesn’t complete the

security requirements for the individual user that results in poor protection against unauthorized

access. To overcome the issue of privacy and protection, a suggestion is given in this study to

empower the owner of any piece of data and information to protect their resource according to

their own semantics.

In this thesis, a new approach is presented that externalize access control policy and empower

the user to control access on their data according to their semantics and wishes. The proposed

framework provides PKI standard base secure access control mechanism and describes the

protocol interface between the different components to enforce user-centric access control

policy.

Keywords: Resource certificate, Access control, Certificate Authority, Public key

infrastructure (PKI), cloud computing

Acknowledgement

I would like to thank and praise God Almighty, for blessing opportunity and strength to

complete this Master thesis.

I would also like to thank my supervisor Farhoud Hossienpour and co-supervisor Juha Plosila

for their guidance, interest and having the patience during the study period. Their support and

supervision made this study smooth and swift.

This opportunity would not have been possible without the support of University of Turku, for

which I am very grateful.

I would also like to thank my friends and family especially my wife. Without their support and

help, it would not be possible to complete my Master thesis.

Table of contents

Acknowledgement ... 3

Table of contents ... 4

List of Figures .. 7

List of Abbreviations .. 9

1 Chapter 01: Introduction .. 11

1.1 Introduction ... 11

1.2 Background ... 12

1.3 Problem Statement .. 12

1.4 Methodology ... 13

1.5 Aim and Objective .. 13

1.6 Motivation ... 13

1.7 Outline ... 14

2 Chapter 02: Literature Review ... 15

2.1 Internet of Things .. 15

2.2 Information Security ... 16

2.3 Access Control .. 17

2.4 Cryptography ... 17

2.5 Privacy ... 18

2.6 Public key infrastructure ... 18

2.7 Certificate Authority (CA) .. 19

2.8 SSL .. 19

2.9 Smart Data ... 19

2.10 Related work ... 20

2.11 Summary of Related work... 26

3 Chapter 03: Framework .. 27

3.1 Protocol ... 27

3.2 Authentication and Authorization of clients ... 29

3.3 Access protecting policy specification .. 30

3.4 Access protected resources.. 30

4 Chapter 04: Framework Implementation ... 32

4.1 Summary ... 32

4.2 Tools Selection for implementation .. 33

4.3 Overview ... 34

4.4 Actors .. 35

4.4.1 Data owner ... 35

4.4.2 Requester.. 35

4.5 How data owner or requester is authenticated .. 36

4.5.1 Data owner client ... 36

4.5.2 Browser Emulation .. 36

4.5.3 Client Implementation ... 37

4.6 Cloud ... 38

4.6.1 Google Cloud Platform .. 38

4.6.2 Firebase .. 39

4.7 OAuth 2.0 .. 40

4.7.1 Sign-In Methods... 40

4.7.2 Data owner’s Admin Authority ... 41

4.7.3 User Role Authorization .. 41

4.8 Gateway ... 42

4.8.1 Access Rules Component .. 43

4.8.2 Authorization Server .. 43

4.8.3 Operation.. 43

4.9 Actor Operations ... 45

4.10 Project Details ... 47

4.10.1 Summary .. 47

4.10.2 Directory Structure... 48

4.10.3 Python Language, Packages and Versions ... 49

4.10.4 Certificate Authority (CA) Implementation... 58

5 Chapter 05: Conclusion ... 60

5.1 Future work ... 60

References .. 61

List of Figures

Figure 2.1 Internet of Things [16].. 16

Figure 2.2 Access Control Steps [21] .. 17

Figure 2.3 Cryptography .. 18

Figure 2.4 Structure of Smart Data [5] .. 20

Figure 2.5 xAccess architecture and workflow scenario [8] .. 21

Figure 2.6 Communication flow for the Smartie Decentralize Access control mechanism

DCapBAC and CP-ABE [26] .. 22

Figure 2.7 Main component of Open Architecture [6] .. 23

Figure 2.8 Profile Graph [28]... 24

Figure 2.9 Security Policy: Relationship between document types and security levels [29] .. 24

Figure 2.10 LTS Model of User Privacy with system behavior [30]....................................... 25

Figure 2.11 User Centric Access control Policy management Framework for cloud application

[31] ... 26

Figure 3.1 User Centric Access control policy Mechanism .. 28

Figure 3.2 Authentication and Authorization Process ... 29

Figure 3.3 Client Request Access process ... 30

Figure 4.1 implementation specific broader view of the implemented framework. 34

Figure 4.2 running implementation.. 37

Figure 4.3 Interface to produce or consume Information .. 38

Figure 4.4 Most populate OAuth Authentication providers that firebase supports 40

Figure 4.5 Interface available to data owner to control requester authentications. 41

Figure 4.6 Typical storage access rule ... 42

Figure 4.7 snippet that demonstrates how rules can be scripted using Firebase’s rule 42

Figure 4.8 figure summarizes the position of Gateway in a framework and the initialization of

clients for each actor. ... 45

Figure 4.9 top-level directory organization of the project ... 48

Figure 4.10 Operation of run.py .. 49

Figure 4.11 Python versions .. 50

Figure 4.12 python packages ... 51

Figure 4.13 Server directory .. 52

Figure 4.14 Files of Gateway ... 53

Figure 4.15 owner Django app ... 54

Figure 4.16 static directory .. 56

Figure 4.17ui directory... 57

Figure 4.18 Certificate Authority (CA) ... 58

Figure 4.19 cert directory ... 59

List of Abbreviations

IoT: Internet of things

IoE: Internet of Everything

CA: Certificate Authority

RBAC: Role base access control

RFID: Radio frequency identification

TCP/IP: Transmission control protocol/Internet protocol

PKI: Public key infrastructure

QoS: Quality of service

SSL: Secure socket layer

JWT: Json web token

CSP: cloud service provider

LTS: Labelled transmission system

OAuth: open Authorisation

EK: Encryption key

GCP: Google service provider

Aka: Also known as

CEF: chromium embedded framework

SDK: Software development key

AC: Access

PCM: Profile centric model

XACML: eXtensible Access control markup language

FC: Functional component

SAAS: Software as a service

IAAF: Infrastructure as a service

ITU: International telecommunication union

IETF: Internet engineering task force

IEEE: Institute of electrical and electronic engineers

1 Chapter 01: Introduction

1.1 Introduction

Stanford encyclopedia of philosophy called 21st century as the century of big data and

advanced information technology. As computing becomes ubiquitous, e.g. big data and

processing become in gegobyte (10^31), security and privacy have been realized to more

crucial than ever. Regulators use comprehensive and sectorial laws for the collection and

dissemination of confidential information in many sectors, for example, education, banking,

and health care industry etc. [1][2]. Cisco estimates that there will be 27.1 Billion of network

devices and connections by 2021[3]. These networks are very crucial regarding security as they

are collecting very critical confidential information in our day to day life in health, banking,

security infrastructure etc.

Privacy and confidentiality of an entity is the degree of personal information that defines what

information needs to be shared along with the purpose and with whom. The unauthorized entity

is not allowed to access sensitive information. [4] Access control of data is the core part of

security in Information and Communication Technology. Many IoT industries have proven to

be insecure due to their weak Access control mechanism. Online viewing and unauthorized

grant access of Interconnection of sensors and cameras are examples of weak access

mechanism of smart cities and big data.

As the world is moving towards the Internet of Thing (IoT) and the Internet of everything (IoE)

entity, the consequence of cyberattack has become crucial and compromises the privacy and

safety of citizens. This also resulted in an economic and non-economic loss. Due to the

interconnection of the devices (IoT and IoE), vulnerabilities from cyber attacks are a significant

issue, and current technologies fail to address the security of big data very well. To solve this

issue, we believe that users are the ones that can determine the semantic and importance of

their data. Thus, in this thesis, we aim to facilitate and empower the user to define their own

Access Rule.

Many alliances have investigated User-centric Access control policy and different frameworks

and protocols have been introduced to increase the level of security in big data, yet it requires

a significant research focus. Examples of few techniques that are proposed are smart data by

Farhoud [5], active bundle by Othamnei [2], open’s personal cloudlet framework by

McCarthy[6], information flow control from apps by Thomas [7] and a framework xAccess by

Kapil Singh [8]etc. All schemes have their importance but, in this dissertation, our primary

focus is to investigate an access rule for the data owner. For this purpose, different user-centric

access control policy has been systematically reviewed, and a specific access control

framework will be proposed for data owner in which user can secure their resources according

to their access control policy, e.g. giving limited time access to their data.

1.2 Background

Advance information security implements different access control mechanism and policies to

determine access of right subject to the right object. These mechanisms make an access

decision to meet the security requirement of the system. Access control mechanism has two

main components: 1) subject: who executes or requests an action. 2) object: a resource that

needs to be controlled [9].

Several mechanisms of access controls policy have been introduced, and the most popular are

given below

1. Discretionary access control: absolutely based on the subject identity and their access

to the object specified by rule

2. Mandatory Access control: an access control in which an administrator defines and

manages access control and policy whereas the user cannot change or modify it. It

mostly used in the system where priority is based on confidentiality. [10]

3. Role-based access control: RBAC based on the role of the user or subject within the

system.

In this master thesis, different user-centric access control mechanisms have been reviewed and

technically analysed, and a framework for user-centric access control mechanism will be

proposed.

1.3 Problem Statement

We want the user to have access control on their data and should have a choice to decide a

specific period to provide access to the data. Although existing security mechanism research

shows that people afraid of adopting cloud computing due to unauthorised access and losing

outsource data. To solve the issue of unauthorised access control, we will use PKI standard

mechanism to empower the owner of the data who will decide on access decision.

1.4 Methodology

Interconnection of networks and keeping data with a third party (cloud computing) makes the

data less secure or increases the risk of cyber-attack. To overcome the issue of protection and

secure the data over the network, the following procedure will be conducted in this thesis:

1. Different user-centric Access controlled policies will be reviewed.

2. A new user-centric Access controlled framework that facilitates the user to protect their

data according to their own criteria will be proposed.

3. A demo of the proposed Framework will be implemented.

 The framework will be practically implemented by using a computer program written in

Python language. First, a lightweight, secure cryptography technique will be selected, and

second, a scenario will be developed in python language that explains the proposed framework

and shows the movement of authorised and denial of unauthorised access to the data.

1.5 Aim and Objective

The study aims to protect the big data and facilitate the user to secure their data according to

their specific access control requirements. Also to investigate the existing access control policy,

to propose a new framework that facilitated the cloud environment efficiently to secure big

data.

1.6 Motivation

Advancement of Information technology and the growth of IoT made everything

interconnected and accessible from everywhere. It shrinks the world and facilitates the users;

however, it easily opens the ways for cyber-attacks. data breaches have become a common

occurrence and can happen in daily routine. Just today on 10 July 2018, an incident reported

on www.trendmicro.com, www.databreachtoday.com, and www.infosecurity-magazine.com.

This news confirmed data breaches on German-based host provider “Domain factory”, A

smartphone app “Timehop” and Macy’s and sister retailer company “Bloomingdale’s”. About

http://www.trendmicro.com/
http://www.databreachtoday.com/
http://www.infosecurity-magazine.com/

21 million users are affected by this breach and resulted in confirming stealing of the important

and sensitive information.[11]

 To overcome the issue of data breaches and protection of own resource, a user-centric Access

control policy framework will be investigated. This involves user to secure their data according

to their security and access control requirements. In this framework, the owner of data will be

alerted in case of any unauthorized access. So, whenever an unauthorized user accesses the

confidential data, an alert will be sent to the owner and owner can protect their data.

1.7 Outline

The remaining part of the thesis is organized as follow. Chapter 2 explains the technical

background of Information security and multiple other topics, which are essential for

understanding the crux of this thesis. Chapter 3 proposes a new framework that facilitates a

user to protect their resource according to their requirements. The implementation of the demo

of the proposed framework is explained in chapter 4. The dissertation is concluded, and

remarks for future work are presented in chapter 5.

2 Chapter 02: Literature Review

The Internet of thing (IoT) and the Internet of everything (IoE) have revolutionized the way

we live and made dramatic changes in our life. It is called the efficiency enabler in different

sectors including health, transport, logistic, banking and manufacturing etc.

However, IoT assists in the optimization of processes and works as a catalyst for innovative

marketing, but their growth provokes challenges to our freedom and security. [12] Growth in

cyber-attacks and data breaches make the information security and privacy as the top priority

for IT leaders and businesses. These attacks can be controlled through a powerful enterprise

information management strategy and tools. [13]

2.1 Internet of Things

Internet of thing (IoT) emerge itself as a more successful and prosperous area in the era of

smart advance technology and ubiquitous computing. In 1999, Kevin Ashton gave the idea

based on a challenge to the network published in the seventh report of ITU in 1997. The idea

was to propagate the information of the physical world through the web. Later this name was

called as “Internet of Things” in 2005. [14]

Currently, we have a different definition of IoT. There is not a single definition, but it is defined

differently by organizations that work for the standardization process. According to IEEE IoT

is a “network of items-embedded with sensors which are connected to the Internet”. ETSI does

not use the word Internet of Things. They define it as a machine-to-machine communication.

ITU called it a “Ubiquitous Network” which means everywhere. So, they endorse the definition

of IoT as a “network that is available anywhere, anytime by anything and anyone”. According

to IETF “the basic idea is that IoT will connect objects around us (electronics, electrical and

non-electronics) to provide seamless communication and contextual service provided by them.

Development of sensors, RFID tags, activators, and mobile phones make it possible to

materialize IoT which interconnect and cooperate to make service better and accessible

anytime from anywhere”. [15]

Figure 2.1 Internet of Things [16]

2.2 Information Security

Information security is a vast subject; therefore, its definition varies in literature, but almost all

of them correctly define the basic principle adequately. A brief and simple definition of

information security is the confidentiality, integrity, and availability of information or

protecting the information in all forms from unauthorized access, disclosure, use, modification,

examination, moving, copying, and destroying. The most crucial attributes of information

security are given below [17] [18]

• Confidentiality: Confidentiality means that information is only accessed by authorized

entity or process and prevents it from unauthorized access or disclosure.

• Integrity: integrity is the righteousness, trustworthiness, completeness, and

accurateness of data and protection of information from improper and unauthorized

modification, deletion or alteration.

• Availability: availability refers to the reliable accesses and use of information by an

authorized entity. An attack that affects availability is called denial of service attack.

• Non-Repudiation: a property in information security that protects the denial of sender

or receiver of certain information. In ICT, non-repudiation assures the delivery of data

to the sender and the sender’s identity to the receiver. This is done by digital signature

so that none can deny it later.

• Accountability is another important principle that assures the traceability or evaluation

of an individual’s or organization’s performance. [19]

2.3 Access Control

Access control is the core part of information security. At this part, security engineering meets

computer science. Access control prevents unauthorized access to the resource and limits the

access of the user to a specific boundary to prevent the security breach. [20]

Figure 2.2 Access Control Steps [21]

• Identification: Identification is the first step that occurs numerous times by user or

computer while accessing the information or information process.

• Authentication: Authentication followed by Identification is the stage or property that

verifies the authenticity of the identity.

• Authorization: authorization refers to the right, permission, and privileges of an

authenticated user. It ensures the right of the requested operation and prevents an

unauthorized request. The authorization process is defined by security policy and set

by the security administrator. [18][21]

2.4 Cryptography

Cryptography is a Greek word, which means ‘hidden words’, Cryptography is a science that

protects the data by converting them into an unintelligible form. It is the most important and a

basic building block of Information security. It is used to store or transmit the data over an

unsecured network so that only an intended receipt accesses it. [22] [23]

Figure 2.3 Cryptography

2.5 Privacy

Information privacy also known as data privacy is a concept used for both individuals and

society. Individual privacy means, the individual has control over their data and defines what

data can be collected, shared and used. Societal privacy is the autonomy of society that limits

the power of the government interferes.

The concept of privacy changes over time, area and culture. For example, sharing of family

picture and information 100 years ago was less common than now.

2.6 Public key infrastructure

Public key infrastructure (PKI) is a system or framework that creates, stores, distribute,

manages and revokes both public keys and digital certificates. The main purpose of PKI is to

facilitate secure transfer of electronic credential and information over the Internet, e.g. online

banking, emails, shopping etc. PKI built trust that is confidence in, reliance on. PKI consists

of many standards, policies, and procedures to build trust between two persons and entities. In

public key infrastructure, trust comes from a Certificate authority called C.A. [24]

2.7 Certificate Authority (CA)

Certificate Authority is an important entity of PKI framework that verifies the identity of the

users in online communication. CA has the responsibility to generate, validate, revoke, and

manage the digital certificate. A digital certificate is the electronic credentials that are used in

verification and establishment of identities in electronic communication and transaction. In

other words certificate, authority is an entity in the PKI system that protects the authenticity

and integrity of the certificate to maintain trustworthiness between strange users. [24]

2.8 SSL

Secure socket layer (SSL) is a cryptographic protocol that is widely used to secure

communication over the Internet. SSL provides a secure encrypted link between the web server

and a web browser. The encrypted link ensures the transaction between a web browser and

server will remain integral and private.

SSL certificate is a small data file that needs to be installed on the web server. SSL certificates

normally contain a domain name, company detail, details of certificate Authority responsible

for issuance certificate, the expiry date of the certificate, and public keys etc. [25]

2.9 Smart Data

Smart data is a data structure that is design and developed by Farhoud et al. in his doctoral

project to tackle the big data in the IoT system. The proposed approached is an encapsulated

data structure of payload, metadata, and a virtual machine. Metadata has the rule and regulation

for processing of payload while virtual machine executes the rules of metadata. In other words,

they made the data in an intelligent and active form that facilitates in reducing/saving cost,

network traffic, energy as well as QoS. Initially, the smart data is generated by IoT in a very

basic form, but due to their intelligence and smart nature, it evolves on their life cycle into a

piece of meaningful information. [5]

Figure 2.4 Structure of Smart Data [5]

2.10 Related work

A. Kapil et al. in their work on user-centric access control policy for a web application,

proposed a framework called xAccess. The framework is based on Role-based access

control scheme that has two main components. The first component is hosted on user’s

computer and works as an extension within the browser to implement the rules on the

content, while the second runs on the server side of the web application to analyze the

content according to the defined rule. The author also mentioned that the proposed

framework is generically based and can be incorporated with other Access control

models. [8]

Figure 2.5 xAccess architecture and workflow scenario [8]

B. Beltran, Martinez, and Skarmeta in 2017 presented a decentralized security and access

control policy for smart cities. In their research work, they proposed a Functional

Component (FC) in the SMARTIE Platform that is compliant with IoT Architectural

Reference model (ARM). XACML, DcapBAC (capability Based Access Control) and

CP-ABE (ciphertext Based Attribute-based encryption) are the main components of

security and privacy. DcapBAC defines authorization rules for the IoT Devices

regarding client perspective. It issues a JSON/encoded base token that defined the

client’s authorization. CP-ABE functional component encodes the data according to

user-defined preference. The user defines the rules at XACML for application-specific

attribute data type and gives access to the related client. [26]

Figure 2.6 Communication flow for the Smartie Decentralize Access control mechanism DCapBAC and CP-

ABE [26]

C. McCarthy et al investigated how the application can use their data over Openi’s

platform and empower the user for fine-grained access control. They investigated to

incorporate the mechanism for fine-grained access control, data reuse, user control,

support for existing business model and web scalability. These objectives are achieved

by object base AC, stateless JSON Web Token (JWT), REST-based endpoints and

OPENi Types. The main feature in personal cloudlet Framework is OAuth & JWT,

Openi Type Registry, Fine-Grained Access Control, User Dashboard, Privacy

preserving aggregator and NoSQL datastore and Microservice Architecture. [6]

Figure 2.7 Main component of Open Architecture [6]

D. Roshandel and Tyler worked on “User-Centric Monitoring of sensitive information

Access in Android Application” to help Android users with their privacy and

accessibility to the sensitive data. For this purpose, they introduced a new class

‘ContentMonitor’ in Android OS that works on the same principle as

‘ContentObserver’. This class not only gives a notification message but also informs

the users about the operation type, i.e. insert, delete and update in the resource. They

also developed a Monitoring app ‘MobileDataMonitor’ which collect information for

data whenever they accessed. It normally stores type, frequency, time and

corresponding app processes. They also used ‘Hidden Markov Models’ (HMM) to

define transition and observation probabilities. [27]

E. Msahli, Chen, and Serhrouchni in 2014 proposed a profile base Access control model

called Profile-Centric Model (PCM). In PCM, a user must validate his profile (A profile

is the combination of Authorization, Condition, and Obligation) before access to store

data. Chen et al. proposed PCM as a profile graph-centric implementation that gives

support in user profile management, condition profile management, authorization

profile management, profile-profile relationship, and obligation profile management.

Profile graph implementation help in an exclusive membership among the profiles and

access control administration. [28]

Figure 2.8 Profile Graph [28]

F. To remove the security fear for using different services of a cloud service provider,

Diener et al. in [29] developed a user-centric tool which decides the criticalness of the

data for processing over the cloud. The tool is implemented by a machine-learning

algorithm, which assigns the sensitivity of the data. They believe that their machine-

learning algorithm involves the user in data analysis and as a result of it reduces the

fear of cloud adoption. A direct connection is established between the document and a

CSP. User (employees) requires to know only the type and class of the documents.

Consider the figure number the supplier contract belongs to contract class and

employee’s salary slip is related to invoice class etc. the security level is pre-established

by the enterprise, i.e. public, secret and top secret etc.

Figure 2.9 Security Policy: Relationship between document types and security levels [29]

G. Grace and Surridge studied user-centred privacy model in 2017 [30] and presented a

privacy model, Labelled Transition System (LTS). Labeled Transition System analyses

the action of online service carried out on user’s data to determine their conflict on a

user’s privacy preference. LTS is composed of two key elements. i.e. States and

Transition. The state represents the user’s privacy, e.g. agreeability or conflict with

privacy preference. While the transition is the action between two states. LTS studies

the potential behavior of the discrete complex system and allows the user to know how

discrete complex system used their sensitive data. To demonstrate the effectiveness of

the LTS Grace and Surridge applied the access control framework over medical

services.

Figure 2.10 LTS Model of User Privacy with system behavior [30]

H. A framework for user-centric access control policy management for cloud application

is proposed by Ghafoor et al. in [31]. The proposed framework facilitates the user to

protect their resources according to their security requirement. In the proposed

framework, a user first authenticates himself to the cloud then take a ticket from the

authentication server and send it to the authorization server for the access control

module. Authorization server evaluates the ticket of access request concerning

previously stored policy. If the user is permitted then access is allowed to access the

control module where they can write their own security rule to protect their resource.

Figure 2.11 User Centric Access control Policy management Framework for cloud application [31]

2.11 Summary of Related work

All the researchers have done a great job to protect their resource from unauthorized access.

Everyone proposed their ideas and somehow gave power to the data owner to protect their own

resource. All of them achieved good results, but no one focused on the PKI standard base

security. So, in this thesis, my focus is on the PKI standard base security in which a trusted

party issues an authorization certificate to client valid for a specific period.

3 Chapter 03: Framework

In this work, a framework has been developed for a client to protect their data according to

their security requirements and Access control. The design is based on analysis of different

systematic reviews of user-centric Access control policy. The components and the protocol

required for their communication are given below

Data owner (client owner): Data owner is the one, which provides new information that other

consumers are interested in, ‘or’ a person or entity that owns the data and create, edit and

manage access control on its resources.

Requestor (Client User): A user or application who tries to get access to another data user’s

protected resource in the cloud application.

Gateway: This component performs as a proxy module between users and the components

specified for security services. It not only manages the users’ communications and sessions but

also handles their requests to access data and receives the decisions regarding access control

from the authorization server. RSA cryptosystem is used to encrypt the communication

between Gateway and Users to keep it secure.

Authentication Server: this server verifies the identities of users. The process of

authentication includes the provision of digital certificates by the users to the authentication

server, which after verification provides tickets to the authenticated users to get access.

Certificate Authority (CA): CA is a trusted third party between cloud and clients, and is

responsible for issuing digital certificates for authentication, integrity, and non-repudiation

Authorization server: This server contains the policies related to access control, which is

defined by Cloud users (for their resources) and Cloud applications (for their registered users).

Based on these stored policies, it also generates decision regarding access control.

User AC Rule Component: it enables the user to create and implement their policies for

Access Control on their data.

3.1 Protocol

The proposed protocol involves three steps, i.e. Authentication and Authorization, Access

Control Policy Specification and Accessing Protected Resource. For the proposed protocol, the

following assumptions are taken into consideration.

• The authentication server has registered all cloud users.

• The authorization server has predefined stored policies for access control of the

registered cloud users, provided by the Cloud Service Providers.

• The cloud and authorization server have already established a trust relationship.

Proposed Access rule framework has the following steps:

Figure 3.1 User Centric Access control policy Mechanism

3.2 Authentication and Authorization of clients

Figure 3.2 Authentication and Authorization Process

In the proposed protocol, Double Authorization of the client will be done to allow access

to the Authorization server/Access rule component of the cloud. First, an Authentication

and Authorization is done by using an OAuth protocol then required PKI certificate is used

to access the data authorization component. Main Steps are summarized below are

1. First, client (data owner or data requester) sends an Authentication Request to the cloud

by using an OAuth Protocol,

2. Cloud will authenticate the clients (cloud user) and issue an Authorization token for the

clients (cloud user).

3. Now cloud user will request CA authority for a digital certificate through Gateway.

4. CA will issue a certificate for the cloud user using RSA encryption. The certificate

includes an Encryption key, EK (Validation period, Username, and User unique ID).

5. The client will send an authorization request to Authorization Server through Gateway

using their CA certificate plus Authorization Token.

6. Authorization Server will verify the certificate from the CA server and evaluate the

request according to the previously stored policy by the cloud service provider (CSP).

7. On the success authorization, the client can upload their resource or request another

client to access their resource.

3.3 Access protecting policy specification

1. In the user ‘AC Rule Component’ see Figure 3.1, the user can define access policy on

their data

2. Defined policies along with User ID will be saved to the User AC Rule Component

which will be used by authorization server as an access policy.

3. The authorization server also allows the user to edit previously created policies for their

data and update them as well.

3.4 Access protected resources

Figure 3.3 Client Request Access process

1. If requester (cloud user) wants to access another client’s protected resource, then he or

she needs to request Authorization server via the gateway for accessing the resource.

2. Authorization server will forward the request towards the data owner (resource owner)

through Gateway.

3. On the request, the owner will decide to give access to the resource. Access will be

allowed by a resource certificate with the help of CA for a specific period. In case if

requester has already got resource certificate than C.A will check the validation of

resource certificate. Resource certificate use an arguments EK (Valid from|| valid to||

User name|| User Unique ID|| and Resource ID). EK stands for Encryption key

4. On the request made by a new user, the owner will send a resource certificate to the

Authorization server for giving access to the resource.

5. On the request made by an old user, after following verification step, permission

granted to access the resource message will be sent to the Authorization server. All

communication happens through the gateway.

6. User (who made request) can access the resource as long as the certificate is valid

4 Chapter 04: Framework Implementation

4.1 Summary

This document summarizes the particulars for data access protocol implementation. The

implementation is a demonstration of a real-life working example of data access protocol. This

demonstration is implemented in the form of a framework, covering only the major steps which

are essential and are a minimal criterion to ensure the benefits of using this protocol.

Major actors of this framework are data owner and requester. The owner can upload his data

into the cloud or any third-party service, which allows saving data remotely and provides ways

for other users or third-party services to access it. Other users can not access any data uploaded

by data owner unless data owner himself has allowed it to do so. Though the requester will be

notified in real-time about the availability of information, they will be only able to access it

after approval has been passed through the framework. When a new requester approaches the

data, the owner will be notified. It is data owner’s sole discretion to allow or reject any

requester.

The safekeeping and ubiquitous availability of information are ensured via cloud services.

Cloud services provide not only data storage facilities, but they also provide application

deployment and infrastructure facilities, on which this implementation stands. Generally,

Firebase, a part of the Google Cloud platform, is used for this purpose. This implementation

utilizes Firebase’s Real-Time database service, data storage services, and messaging and

authentication abilities. The role of the requester as a third-party or a remote user is excellently

mapped by using Firebase’s authentication and authorization provider system. data owner’s

administrative privileges on data were available by Firebase’s cloud rule scripting and Firebase

Console.

A preliminary requirement of this protocol is the establishment of the end-2-end encryption

communication model. Establishment of End-2-end encryption communication model is a

preliminary requirement of this protocol. However, since it is already a well-known and

available feature, and outside of the scope of this implementation, it is not covered in the study,

rather a Firebase cloud service is relied upon for this functionality. However, this protocol

requires a second level of encryption, to restrict any party interested in information to directly

access it. To address it, this implementation includes a custom Gateway built to oversee, relay

and administer actors’ communication with the cloud.

Gateway’s responsibility is to provide secure client application to actors for information

handling as well as to modifying the actors’ authorizations based on available rules. These rules

are saved in a subcomponent of Gateway called access rules component. In this work,

Firebase Access Rules are used by Gateway, to determine appropriate authorization levels to

any user.

Seamless but secure Authentication and Authorization are important features of the designed

protocol. Authorization Server stores authorization levels for each user. Both Cloud and

Gateway are allowed to access Authorization Server to validate authorization tokens on any

request. Firebase’s authorization capabilities are used for the authorization server as well.

4.2 Tools Selection for implementation

While implementing the framework, software components are selected based on their

popularity, availability, and effectiveness in constructing the required building blocks for each

module. The selection is made on the basis of three factors given below:

Popularity: means whether the software component has a widespread use by the masses or

individuals. Here, the masses mean industry giants and tech corporations. “Individuals” refers

to individual developers, individual industry leaders or open source organizations.

Availability: means whether the chosen component or tool is available under an open source

license or if it is proprietary. Is it available free of charge for education or research purpose?

Effectiveness: means how a component is going to help, demonstrate the purpose of the

module and the role it plays as part of the whole framework.

4.3 Overview

Figure 4.1 implementation specific broader view of the implemented framework.

Entities forming the framework in Figure 4.1 helps to run the system while following Resource

Certificate base Access protocol. Each entity sits on a technology stack, or specifically a set of

software components. These set of software components help the system simulate or emulate

the behaviour in a similar way a modern real-life would do. Since each entity holds a set of

software components as well as its implementation details, entities of Figure 4.1 will be

referred to as “modules” in this work.

4.4 Actors

Implementation of the actors, data owner, and requester.

Actor modules include either source of data or consumers of data, effectively playing a role of

information Sink. Actors need to either share or receive information over the network. The

associated software components used in implementation enables the framework to register,

send, request and receive information in a secure and informed way.

4.4.1 Data owner

Data owner is the one which provides new data that other consumers are interested in. Data

owner must upload the data on a secure public repository like a cloud platform to make the

data accessible for other users as well as third-party entities.

Cloud platforms use their security mechanisms while transmitting data from one node to

another. These include Identity Verification, Role Verification, and Encryption.

Identity verification falls under Authentication, where a system user exchanges keys and

passcodes to validate the authenticity. Successful authentication is usually accompanied with

role verification, referred to as Authorization. After successful authentication and

authorization, a session is generated on the cloud. A session usually consists of encrypted

strings of text, containing the user’s identity, user’s device, allowed operations and timing

information.

4.4.2 Requester

A requester is a role interested in remotely consuming data. This framework does not restrict

remote, unattended data access, rather it ensures a secure and informed way requesters can

query, request, change or read information.

Authentication and Authorization mechanisms are the same for all requesters, except the

owner. For the requester, more restricted authorization rules are set to access cloud data.

 Data owner is authorized to manipulate requester authentications. This will be further

elaborated in the “Cloud” module.

4.5 How data owner or requester is authenticated

In the figure Figure 4.1, the orange line originating from data owner represents the

authentication request that the data owner makes to verify his identity to perform further

actions.

In this framework, Google Cloud Platform, aka GCP is used as a cloud entity, shown by the

dark blue cloud in Figure 4.1. For authentication, authorization and information storage, GCP’s

cloud service Firebase has been used for its simplicity, availability and low cost. A smaller

cloud represents firebase with a relatively lighter color and with two gear icons in Figure 4.1.

For a successful handshake and authentication, data owner are restricted to access through

either a valid third-party authentication provider or via GCP itself. Firebase only allows a

defined set of sign-in methods and each method should explicitly be enabled by data owner or

administrator.

In this framework, it is ensured that Owner and requester will use different authentication

providers.

Each authentication provider is required to talk over a protocol to successfully exchange

authorization information securely and efficiently. In this framework, OAuth 2.0 has been used

for authorization protocol. It will be further explained in the “Cloud” module.

4.5.1 Data owner client

Data owner will connect to GCP through a standard client. In this framework, the web platform

is chosen as it is easily accessible on desktop and handheld devices as well. The web client can

connect to Firebase through JavaScript SDK. This SDK has all the required pre-build APIs

required to implement a successful client for the framework.

4.5.2 Browser Emulation

To emulate a standard browser so that clients for both owner and requester can be run,

Chromium Embedded Framework (CEF) has been used. Since the implementation is made by

using Python 3.6, a python wrapper for chromium embedded framework cefpython3 has been

used to lunch two isolated clients. The isolation is made possible by launching new instances

of browsers with newly created empty user profiles.

4.5.3 Client Implementation

To simulate a client app, a simple and renowned UI framework, Bootstrap has been used to

create the user interface. Actors interact with the UI built on Bootstrap and HTML5, and their

actions are then communicated with servers using JavaScript.

When launched, clients first initialize by providing a list of available authentication providers

which data owner or requester can use to access for authentication and authorization.

Figure 4.2 running implementation

Figure 4.2 demonstrates a running implementation. The left window is emulating a browser

and running client for data owner whereas the rightmost window is running a client for

requester.

After successful authentication, another interface is provided to either produce or consume data

Figure 4.3 Interface to produce or consume Information

Figure 4.3 shows the interface that the data owner can use to produce information and requester

can use to consume information.

4.6 Cloud

4.6.1 Google Cloud Platform

Google Cloud Platform is a diverse cloud services provider, which offers several facilities

tailored to different consumers. Google Cloud Platform is chosen for its popularity and

available services that could help implement the framework. The framework implementation

is based on Firebase, a Google Cloud Platform’s Application development service provided as

SaaS (Software as a Service) and IaaS (Infrastructure as a Service) to consumers. This allowed

us to efficiently implement protocol steps while paying less attention to configuration and

hardware setup. Also, Firebase is a modern standard in cloud computing; thus its usage is

perfectly aligned with the novel approach the data access protocol advocates.

4.6.2 Firebase

Firebase provides many facilities for the implementation of professional web and mobile

application. Firebase provides Real-Time database which is a vital part for live updates and

messaging. The following is the summary of Firebase services used in this implementation and

the way this framework benefits from those services:

4.6.2.1 Real-time database

Resource certificate base data access protocol is based on two major functions, information

availability and controlled access. Firebase’s Real-Time database allows us to provide a

reactive interface to both data owner and data requester. As soon as data owner provides

new information, requester gets updates on his client.

4.6.2.2 Authentication and Authorization

Firebase provides a powerful admin dashboard to the data owner; the data owner can enable

other third-party authentication providers or monitor their activity. Data owner can directly

access Real-Time database by signing in as the admin user. Both data owner and requester

can authenticate themselves as a user of the system. The owner can use his client to upload

new information whereas requester by using his client, request and consume owner’s

information.

4.6.2.3 Storage

While Real-Time database provides facility to store lists of available records and logs of

events, Firebase Storage provides storage where sensitive media like documents, images

and videos can be stored after encryption. The framework allows the data owner to upload

images, which with the help of gateway stored in Firebase’s Storage Service.

4.6.2.4 Cloud Messaging

Each information related to activity is logged in the Firebase Real-Time database. To

update the data owner about these activities in a non-interrupting but effective way,

Firebase’s cloud messaging has been used. This ensures data owner will get the notification

in time irrespective to the device which has been used to access.

4.7 OAuth 2.0

OAuth 2.0 is the industry-standard protocol for authorization. OAuth 2.0 focuses on of

easification of client site development while providing specific authorization flows for web

applications, desktop applications, mobile phones, and living room devices.

4.7.1 Sign-In Methods

Firebase provides an easy interface to enable and configure Sign-In methods. data owner has

access to allow the requesters to enter into the system through Sign in.

Figure 4.4 Most populate OAuth Authentication providers that firebase supports

Figure 4.4 lists various sign-in methods that enable and make it possible to log into the system.

In this implementation, data owner will use Google Account for logging in as a user for the

application. For requester both Facebook and GitHub authentication providers will be used.

While Experimenting requester actions by logging him from such third-party providers is a

perfect analogy with a real word running online system. Any third-party service can register

himself as a valid authentication body provided that if it can transmit over OAuth 2.0 protocol.

4.7.2 Data owner’s Admin Authority

As stated, data owners reserve a superior role of authentication in cloud system and can view

and manipulate existing authentication. They can monitor each authenticated user’s activities,

their authentication provider’s details. They have also right to partially disallow someone to

use the system or block a user or the authentication provider itself.

Figure 4.5 Interface available to data owner to control requester authentications.

4.7.3 User Role Authorization

After successful authorization, each user must have proper authorization rules to interact with

cloud storage.

The following table describes a set of typical storage access rules that can be enabled or

disabled user.

Figure 4.6 Typical storage access rule

The following is a snippet that demonstrates how rules can be scripted using Firebase’s rule

definition language:

Figure 4.7 snippet that demonstrates how rules can be scripted using Firebase’s rule

4.8 Gateway

Gateway module is the one which administers the whole communication and ensures that the

proposed protocol is followed for each communication. Firebase, an already built cloud service

is used in this implementation, but Gateway module drive the whole flow in a manner which

facilitates the protocol. In principle, data owner and requester cannot communicate with

Firebase without first interacting with Gateway. Data owner can only bypass Gateway when

accessing Firebase console via admin authentication.

Basic responsibilities of Gateway includes providing encryption/description, launching clients

for actors, loading Firebase SDKs for each client, configuring URLs for clients, reading events

from Firebase logs and registering clients for Firebase messaging to ensure timely notifications.

4.8.1 Access Rules Component

Access Rule Component or Access Rules Server is a sub-component of the Gateway module.

It presents itself as a ledger where each actors’ access rules, privileges, and permissions are

stored. This component is not responsible for storing authentication information. In this

implementation, the Firebase Real-Time database is used to simulate the behaviour of Access

Rules Component. On each request, Access Rules Component first queries Real-Time database

to confirm is the requester is allowed to access a piece of particular information.

On the basis of the defined access rule, component gateway identifies the authenticated user

and then they are allowed to access the URLs

4.8.2 Authorization Server

Authorization Server is responsible for decoding security ticket to identify the sender’s role. It

also describes the accessibility of the users. Answers the question of when from where and how

a user can access and which resource. This implementation uses Firebase’s Rule Scripting

facility to meet the needs of the Authorization server. It is worth to mention that it is not

responsible for authentication mechanisms.

4.8.3 Operation

Gateway module is the heart of this implementation. Practically, the framework process starts

from here. The process can be a breakdown in the following steps

L
au

n
ch

in
g

1. Gateway provides a script which can be run from a software

interface or command line interface. This is called the launch

script.

2. The launch script initializes a web server component.

3. Web server component mainly deals with major endpoints. One is

for the owner while another one is for the requester. Note that,

instead of opening two different endpoints, Gateway initializes two

different instances of the server on different ports.

4. Launching of two different endpoints or ports establishes a server

infrastructure.

C
li

en
ts

5. After establishing a server, Gateway launches clients.

6. To launch clients, gateway invokes Chromium Embedded

Framework provider, cefpython3 which then launches web

browser’s two new sessions.

7. Client opened for data owner is served with application i.e. for

uploading media While client opened for requester is served with

information consumption code.

F
ir

eb
as

e

8. The server fetches Firebase JavaScript SDK from google cloud and

loads it onto clients.

9. Clients are loaded with the SDK and interfaces initialized for

authentication.

10. Gateway loads Firebase Python Admin SDK to read events and to

notify clients.

The following Figure 4.8 summarizes the position of Gateway in a framework and the

initialization of clients for each actor.

Figure 4.8 figure summarizes the position of Gateway in a framework and the initialization of clients for each

actor.

4.9 Actor Operations

With complete actor authentication, gateway pushes interfaces onto their clients. Data owner

gets an interface where documents or images can be uploaded. Whereas requester is presented

with a list of available documents or images that owner has uploaded. Here’s the summary of

steps that took place in a typical workflow:

1. After authentication, Gateway connects both owner and requester to Firebase,

according to their authorization roles.

2. Requester gets authenticated, and its clients get connected with Firebase to load

information with the help of Firebase JavaScript SDK.

3. Initially, Real-Time database and Firebase Storage is empty.

4. With the help of JavaScript SDK, owner gets authenticated, and its client gets connected

with Firebase to populate information

5. Owner finds UI controls to upload media.

6. Owner initiates the request to upload media.

7. Gateway, with the help of a web server, gets the information that the owner wants to

upload.

8. Gateway encrypts the media which is being used by owner’s authorization ticket.

9. Gateway logs the record for the media, in Firebase Real-Time database.

10. Access Rules Component registers the logged record against the owner by querying

authorization ticket from authorization server (from Firebase).

11. Access Rules Component applies default access rules on the newly created record. By

default, access rules component disables both read and write access permissions for

requesters.

12. On successful creation of the record, Firebase fire event of information gets updated.

13. The gateway receives notification of a successful information update.

14. Gateway locally logs the event.

15. The gateway connects the Firebase Storage Service.

16. The gateway sends the encrypted media to Firebase storage while associating the

logged record.

17. Firebase applies its cloud encryption and stores the media.

18. Firebase fires event for a successful media upload.

19. The gateway receives the notification and locally logs the event.

20. Gateway notifies owner’s client and UI controls to upload media which followed to

reset for another upload.

21. Gateway notifies requester client for information update.

22. Requester client with the help of Firebase JavaScript SDK listens for new information.

23. Information about new resources is fetched from Firebase and got listed on the requester

interface.

24. Requester tries to access the new information by passing a user certificate.

25. The gateway receives a request from a requester to access information.

26. Gateway confirms requester certificate by CA to verify if requester’s certificate is valid.

27. Gateway confirms by access rules component to identify whether this record is allowed

for read access.

28. Access rules component grants or rejects read access by passing requester’s certificate

along with a resource id (which uniquely identifies each resource) to CA.

29. CA verifies the presence and validates public keys and expiry of both requester and

resource certificates. Based on the validity of both certificate, CA responds access rules

component with a success or failure flag.

30. Access rules component uses the flag from CA to grant or reject the read access.

31. If Access rules component denies read access, the Gateway notifies the owner about

the failed read access incident and sends a negative notification response on requester’s

client prompting that read access is not allowed.

32. Owner issues resource certificate for a specific period either from admin console or

from owner client application interface.

33. Owner enables read access for the newly created record.

34. Firebase notifies Gateway.

35. Access rules components keep track of the permission update.

36. Requester tries to access the record again.

37. Gateway notifies Access rule component for a new request.

38. Access rule component confirms that read access is allowed.

39. Access rule component verifies resource certificate via CA.

40. Gateway confirms from Access Rules Component that read access is allowed.

41. Gateway fetches the media from Firebase. Firebase sends the media after applying its

cloud decryption.

42. Gateway decrypts the media and pushes it to requester client.

43. Gateway locally logs the event.

44. Requester gets access to the media.

45. Access rules component keeps track of this read access operation.

46. Gateway notifies the owner about a successful read access incident.

4.10 Project Details

4.10.1 Summary

To implement the idea of resource certificate base data access protocol, a project structure is

implemented which hosts all the software components and scripts that aid in launching the

project.

Python and JavaScript language are used. Both are high-level, user-friendly languages.

JavaScript is an industry leading language, ubiquitous on a myriad of devices and platforms,

whereas Python leads in data processing projects and is popular in the scientific community.

Though JavaScript is available on both server side and client side, Python’s main uses are on

the server side.

Interestingly, this project utilizes Python for both as Server-Side language as well as a Client-

Side Language. On the server side, Python is used to create a web server by using the Django

framework. On the client side, python is used for visual simulation with the help of Pyglet

python package.

Clients that actors use are controlled with the help of cefpython3 which is also a useful Python

package.

Cloud usage is purely based on Firebase. Firebase Console is used for infrastructure

configuration. Firebase Rule Scripts are used to implement framework specific workflow.

The goal of the project was to implement the minimum criterion details, only essential for

minimum required protocol definition. However, scalability is highly regarded while setting

the foundation of software components.

4.10.2 Directory Structure

Figure 4.9 top-level directory organization of the project

<figure> shows the top-level directory organization of the project.

Here’s are the details of the notable top-level directories and project files:

 Images directory contains images and artwork, mainly used in the simulation.

 Servers directory contains the implementation of the gateway module, web server,

Certificate Authority (CA) server, and client applications.

 UI directory contains graphics drawing routines and Pyglet simulation.

 clients.py is the Python script that launches Chromium web clients for actors.

 __main__.py is the Python script that initiates Pyglet GUI window and objects, for the

simulation.

 firebase-adminsdk.json is the JSON configuration containing API Keys, URLs, and secrets

to configure and connect web clients with Firebase cloud with the help of Firebase SDK.

 run.py is the Python script that consolidates all initialization into a single entry-point, by

opening separate threads for the gateway, web server, web clients and simulation. The

following diagram demonstrates the operation of the run.py script.

Figure 4.10 Operation of run.py

4.10.3 Python Language, Packages and Versions

Python is an object-oriented and high-level scripting programming which can be used for

software application development. It emphasizes on easily readable code. Programs written in

Python language require less maintenance time. There are several built-in standard libraries

that can be distribute without any charges. [32]

This project uses Python 3, specifically Python 3.6. There is two active version of Python

available, Python 2 and Python 3. Python 3 is chosen so as ensure a long life of the project and

to use modern features to aid the architecture. For instance, in Python 3, parameters to a method

can be typed, which Python 2 does not facilitate.

The following snippets demonstrate an example snippet for both versions.

Figure 4.11 Python versions

For Python package installation, pip3 is used which comes bundled with Python interpreter

installation. Pip3 in a python package manager, which is used to install Python package

dependencies (and packages’ own dependencies, if any) for the project.

Here’s an example command to install firebase-admin python package:

pip3 install firebase-admin

There are four main Python packages used in the project:

1. Django: To set up a web server to load clients with necessary scripts and to send and

receive messages and data.

2. pyglet: For drawing and animation to simulate each protocol related activity.

3. cefpython3: To launch Chromium Windows for data owner and requester.

4. firebase-admin: To connect gateway app to Firebase, for data communication and

messaging.

Figure 4.12 lists Python interpreter, packages installed with their dependencies and versions of

installed packages and their dependencies in the project.

Figure 4.12 python packages

4.10.3.1 “servers” Directory

 Figure 4.13 lists the top-level directories contained within “servers” directory:

Figure 4.13 Server directory

This directory contains packages and files that form a web server environment, which

effectively lays a foundation for our Gateway module. These are all the files that hold the

implementation for the Gateway and Server responsibilities.

The “servers” in a Django environment, state web server, and gateway functionality is carried

out with the help of the famous python web framework, Django.

Here’s the purpose of each directory and file under “server” directory.

 gateway this is the “site” directory of a usual Django framework project. Django

framework has an app-based architecture. For example, to implement a server part for the

owner’s client, a separate app is needed to serve the needs of owner client which in our case

sits in the owner directory. gateway is the folder to contain the default app that is created while

scaffolding a Django project and it is also the entry point for a web application while the project

runs. When a Django project is created and uses project’s name then by default, this directory

gets generated.

 gateway app directory is a Django app to act as a gateway and meet any gateway

responsibility to the protocol needs.

 owner holds implementation of a Django app, serving the needs that an owner client needs

from a server to execute the proper operation.

 requester directory contains the implementation of an app that wraps functions that a

requester client would require in order to perform its user activities while by following the

protocol.

 static directory contains JavaScript code files needed to provide an interactive user

interface and connective to Firebase.

 __inti__.py is the Python script file that makes servers directory as a valid Python Package.

It is generated by default when a Django project is created.

 db.sqlilte3 is the file generated by default with a Django project. It is not used in this

implementation.

 manage.py is the Python script generated by default with the Django project. This file

contains scripts that help the user to run administrative and management commands from the

command line, i.e. it is Django-CLI. One of the commands is runserver which starts main

Django “site” app (gateway in our case) as well as other apps.

django Site Structure

Django project creates a directory with the same name as a project (“gateway” in our case) to

keep project-wide web server configuration and settings. The following snippet lists children

files of gateway directory:

Figure 4.14 Files of Gateway

 __inti__.py is the Python script file that makes “’gateway” directory a valid importable

Python Package.

 settings.py is the Python script file containing all the settings and configuration of the

project needed to properly set up the server, register apps and register app URLs to provide an

opportunity for clients to connect with Django apps, thus establishing a client-server model.

 URLs.py is the Python script file registering all the URLs that this web server can be

approached externally and registers each app against an inbound URL that the app is supposed

to respond against.

 wsgi.py is the Python script that exports an instance of a runnable web application. It is this

file that makes the project able to start a runnable server for a provided host and on a specified

port.

4.10.3.2 django App Structure

The specific implementation flow needed in the project is implemented in individual sub-

modules, called Django apps. For instance, while inside “servers” directory, the following

command can be used to generate “owner” app:

python manage.py startapp owner

Figure 4.15 lists files and directories contained in owner Django app:

Figure 4.15 owner Django app

 migrations is the directory which contains app specific database migrations. Since this

implementation does not use a local database, this directory and its files are not used and are

only generated by default.

 templates directory has template files – HTML files which layout user interface. They

define everything that the owner should see when his client is launched.

 __inti__.py is the Python script file that makes servers directory a valid Python Package.

It is generated by default when a Django project is created.

 admin.py is the file generated by default with a Django app. It is not used in this

implementation.

 apps.py registers the app with the Django site.

 models.py contains database models. Not used in this implementation.

 tests.py Not used in this implementation.

 URLs.py registers URLs that this app should respond to and also defines the corresponding

views as according to the URL.

 views.py has methods which define app’s View Controllers. A View Controller is

responsible for receiving request on an URL, read passed information in URL or request body,

process information, prepare a response and send the response back to the client while

rendering the response in a defined template.

4.10.3.3 “static” Directory

Static files are those which are not executed at the server side. i.e. they are not executed by

python interpreter and considered as static resources on the server side. These files are aimed

to be pushed to web clients on demand.

 “static” directly contains all the JavaScript files that are part of any module.

Figure 4.16 lists JavaScript files under “static” directory:

Figure 4.16 static directory

 core.js provides functionality to owner and requester web clients. It allows communication

between the gateway and Firebase cloud. It also enables to send and receive messages,

information, and media. This file also defines what type of message each client is allowed to

send to cloud or gateway.

 firebase_init.js helps both clients to initialize a connection to Firebase for authentication

and communication. This file contains secret keys, cloud URLs and other configuration

essential. It enables successful connection with Firebase Real-Time database, Firebase Storage

and Firebase Authentication services.

 owner.js implements the behaviour which defines how an owner interacts with the user

interface, available on owner client and performs actions. For instance, it helps the user to

authenticate or to choose media from the machine for upload.

 requester.js implements the behaviour which defines how a requester will interact with his

client user interface and performs actions, on the request of the client user. For instance, it helps

the user to authenticate or request for viewing or modifying an item uploaded by the owner.

4.10.3.4 “UI” Directory

“ui” directory holds files which implement a simulation for the project. Simulation has

graphical objects, which is defined to represent actors and nodes for each module as well as

animations. It represents communication between modules and activities. Simulation window

also displays cloud events, that are recorded in the cloud to track protocol-specific actions.

Simulation is implemented with the help of pyglet a Python package. “ui” directory contains

scripts which heavily uses pyglet package.

The following figure lists files contained within “ui’ directory:

Figure 4.17ui directory

 __inti__.py is the Python script file that makes ui directory as a valid Python Package so

that it can be imported in other project modules. It enables package to be imported by the

project’s __main___.py script while during launch the simulation.

 node.py is the Python script file containing implementation and behavior of a node. In this

project nodes are as under:

a) Owner

b) Requester

c) Cloud

d) Gateway

e) Authorization Server

f) Access rules component

g) Certificate Authority (CA)

 packet.py is the Python script file, contains definition and behaviour of a transmittable

packet. The simulation shows packets with icons, depicting the type of information being

transmitted.

 packets.py is the Python script which instantiates all types of packets which required by

the simulation. Packets are transmitted from one Node to another. This transmission is

simulated by animating a packet from source Node to the target Node.

 window.py is the Python script which initializes a window with required properties to run

the simulation. This window is among the three windows launched when the project is run via

the run.py script.

4.10.4 Certificate Authority (CA) Implementation

CA module holds implementation for a Certificate Authority component of the system which

consists of the following directories and files:

 CA, this directory contains the python implementation of a system component Certificate

Authority (CA). It is responsible for generating, validate, create and remove RSA certificates

for own memory, requester and Resources in RSA_x509 format.

First CA creates a foundational certificate for its memory and then uses the public key of this

certificate to base requesters’ and resources’ certificates.

A requester’s certificate is generated to validate whether a requester has valid access rights to

all the resources whereas a resource’s certificate is generated to validate whether a requester

has a valid (available and non-expired) access to a specific resource.

Figure 4.18 Certificate Authority (CA)

 cert_store, this directory holds all the generated certificate files, and CA will always look

in this central Certificate Store for presence and validity checks of requester or resource

certificates.

 cert/cert.py is the Python script file that serves as a helping interface to create and validate

certificates.

 cert/certgen.py contain the library methods that directly access PyOpenSSL for certificate

generation and validation.

 cert/validate_cert.py is the file that too directly accesses PyOpenSSL methods to verify a

certificate chain. A certificate chain is a stack of the certificate with a CA certificate at the

bottom, then requester certificate followed by a resource certificate at the top.

Figure 4.19 cert directory

 cloud/cloud.py this file provides interface methods to CA to access the Firebase logging

mechanism. Whenever a certificate is generated, successfully validated or rejected, CA logs

events in Firebase log with the help of these interface methods.

5 Chapter 05: Conclusion

In this thesis, a literature review of different access control framework has been studied to

protect the cloud environment from cyber-attack and unauthorized access. These frameworks

include open’s personal cloudlet, information flow control from apps, the framework of

xAccess, Active bundle, and user-centric access control policy. These access control policy

frameworks have been investigated from different aspects including integrity, authentication,

and non-repudiation.

As a solution of unauthorized access to a resource at cloud environment, the proposed, designed

framework empowered the user and gave authority to issue a resource-based certificate to

control unauthorized access to the resource. Owner of the data is allowed to have full control

over their resource according to their security requirement and for a specific period. The

designed framework provides trust between users and protects the resource from unauthorized

access and other security threats. Moreover, a resource certificate is only assigned to a single

user with a unique ID and is always verified by a third trusted party CA, to minimize the chance

of leakage of data. Also, the data owner can directly access real-time database by signing in as

admin user where he can define, edit and manage all the access rule on their resource.

5.1 Future work

This report opens many different scenarios for access control Rule. As the proposed framework

is very general and is implemented in a real environment, so it can be fitted to any framework

especially to the new idea by Farhoud [5] called smart data. The designed framework can easily

be implemented as an access rule for smart data while assigning ‘gateway’ and ‘User AC Rule

component’ as one module in smart data. On a request to access the smart data, the smart data

will request the owner to issue or verify the certificate and then can access the smart data.

Additionally, the proposed framework can be fixed for the Active bundle by othmanie, and

different other protocols.

References

[1] Stanford University. and Center for the Study of Language and Information (U.S.),

“Privacy and Information Technology.” Stanford University, 2014.

[2] L. Ben Othmane and L. Lilien, “Protecting privacy in sensitive data dissemination with

active bundles,” Congr. 2009 - 2009 World Congr. Privacy, Secur. Trust Manag. E-bus.,

pp. 202–213, 2009.

[3] “VNI Global Fixed and Mobile Internet Traffic Forecasts - Cisco.” [Online]. Available:

https://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-

vni/index.html. [Accessed: 08-Jul-2018].

[4] “privacy Definition from PC Magazine Encyclopedia.” [Online]. Available:

https://www.pcmag.com/encyclopedia/term/49709/privacy. [Accessed: 08-Jul-2018].

[5] F. Hosseinpour, J. Plosila, and H. Tenhunen, “An approach for smart management of

big data in the fog computing context,” Proc. Int. Conf. Cloud Comput. Technol. Sci.

CloudCom, pp. 468–471, 2017.

[6] D. McCarthy et al., “Personal Cloudlets: Implementing a User-centric Datastore with

Privacy Aware Access Control for Cloud-Based Data Platforms,” Proc. - 1st Int. Work.

Tech. Leg. Asp. Data Priv. Secur. TELERISE 2015, pp. 38–43, 2015.

[7] T. Pasquier, J. Bacon, J. Singh, and D. Eyers, “Data-Centric Access Control for Cloud

Computing,” Proc. 21st ACM Symp. Access Control Model. Technol. - SACMAT ’16,

pp. 81–88, 2016.

[8] K. Singh, I. Erete, and W. Lee, “I Own , I Provide , I Decide : Generalized User-Centric

Access Control Framework for Web Applications,” 2010.

[9] A. Crowell, “A Survey of Access Control Policies,” 2011.

[10] V. Beal, “What is Mandatory Access Control? Webopedia Definition.” [Online].

Available: https://www.webopedia.com/TERM/M/Mandatory_Access_Control.html.

[Accessed: 09-Jul-2018].

[11] “Check Your Accounts: Timehop, Macy’s, Bloomingdale’s, Domain Factory Announce

Breach - Security News - Trend Micro USA.” [Online]. Available:

https://www.trendmicro.com/vinfo/us/security/news/cyber-attacks/check-your-

accounts-timehop-macy-s-bloomingdale-s-domain-factory-announce-breach.

[Accessed: 10-Jul-2018].

[12] V. Chellappan and K. M. Sivalingam, “Security and privacy in the Internet of Things,”

Internet Things Princ. Paradig., vol. 8871, pp. 183–200, 2016.

[13] “Information Security and Privacy | OpenText.” [Online]. Available:

https://www.opentext.com/products-and-solutions/business-needs/information-

governance/ensure-compliance/information-security-and-privacy. [Accessed: 13-Jul-

2018].

[14] Z. H., H. A., and M. M., “Internet of Things (IoT): Definitions, Challenges and Recent

Research Directions,” Int. J. Comput. Appl., vol. 128, no. 1, pp. 37–47, 2015.

[15] R. Minerva, A. Biru, and D. Rotondi, “Towards a definition of the Internet of Things

(IoT),” IEEE Internet Things, no. 1, p. 86, 2015.

[16] M. Shubhi, “What exactly is Internet of Things (IoT)? - Quora,” 2016. [Online].

Available: https://www.quora.com/What-exactly-is-Internet-of-Things-IoT. [Accessed:

16-Jul-2018].

[17] “Definition of Information Security.” [Online]. Available:

https://www.cmu.edu/iso/aware/presentation/tepperphd.pdf. [Accessed: 14-Jul-2018].

[18] “ch01.indd.” [Online]. Available: https://cryptome.org/2013/09/infosecurity-cert.pdf.

[Accessed: 14-Jul-2018].

[19] M. Rouse, “What is accountability? - Definition from WhatIs.com.” [Online]. Available:

https://whatis.techtarget.com/definition/accountability. [Accessed: 18-Jul-2018].

[20] R. S. Sandhu and P. Samarati, “Access Control: Principles and Practice,” IEEE

Commun. Mag., vol. 32, no. 9, pp. 40–48, 1994.

[21] K. Brauer and V. Torvinen, “AUTHENTICATION AND SECURITY ASPECTS in an

international multi-user network,” 2011.

[22] “Cryptography - What is Cryptography ? Cryptography meaning, Cryptography

definition - The Economic Times.” [Online]. Available:

https://economictimes.indiatimes.com/definition/cryptography. [Accessed: 19-Jul-

2018].

[23] S. T Sampathkumar, “Cryptography full report.” [Online]. Available:

https://www.slideshare.net/harpoo123143/cryptography-full-report. [Accessed: 20-

Aug-2018].

[24] “What is Public Key Infrastructure (PKI)? | Management and Authentication of Public

Key Infrastructure | Thales eSecurity.” [Online]. Available:

https://www.thalesesecurity.com/faq/public-key-infrastructure-pki/what-public-key-

infrastructure-pki. [Accessed: 10-Nov-2018].

[25] “What is SSL?” [Online]. Available: http://info.ssl.com/article.aspx?id=10241.

[Accessed: 10-Nov-2018].

[26] V. Beltran, J. A. Martinez, and A. F. Skarmeta, “User-centric access control for efficient

security in smart cities,” GIoTS 2017 - Glob. Internet Things Summit, Proc., pp. 0–5,

2017.

[27] R. Roshandel and R. Tyler, “User-centric Monitoring of Sensitive Information Access

in Android Applications,” Proc. - 2nd ACM Int. Conf. Mob. Softw. Eng. Syst.

MOBILESoft 2015, pp. 144–145, 2015.

[28] M. Msahli, X. Chen, and A. Serhrouchni, “Towards a fine-grained access control for

cloud,” Proc. - 11th IEEE Int. Conf. E-bus. Eng. ICEBE 2014 - Incl. 10th Work. Serv.

Appl. Integr. Collab. SOAIC 2014 1st Work. E-Commerce Eng. ECE 2014, pp. 286–291,

2014.

[29] M. Diener, L. Blessing, and N. Rappel, “Tackling the cloud adoption dilemma - A user

centric concept to control cloud migration processes by using machine learning

technologies,” Proc. - 2016 11th Int. Conf. Availability, Reliab. Secur. ARES 2016, pp.

776–785, 2016.

[30] P. Grace and M. Surridge, “Towards a Model of User-centered Privacy Preservation,”

Proc. 12th Int. Conf. Availability, Reliab. Secur. - ARES ’17, pp. 1–8, 2017.

[31] I. Iakovidis, “The silver economy,” no. July, pp. 135–140, 2015.

[32] “What is Python? Executive Summary | Python.org.” [Online]. Available:

https://www.python.org/doc/essays/blurb/. [Accessed: 17-Feb-2019].

