
Detecting and Analyzing Text Reuse with

BLAST

Master’s Thesis
University of Turku
Department of Future Technologies
2018
Aleksi Vesanto

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system using the Turnitin
OriginalityCheck service.

UNIVERSITY OF TURKU
Department of Future Technologies

ALEKSI VESANTO: Detecting and Analyzing Text Reuse with BLAST

Master’s Thesis, 54 p., 13 app. p.
TurkuNLP Group
December 2018

Tässä tutkielmassa jatkan edellistä työtäni tekstin uudelleenkäytön tunnistuksessa.
Ehdotan uutta tekstintunnistus-menetelmä, joka käyttää apunaan BLAST:ia (Basic Local
Alignment Tool). BLAST on algoritmi, joka on alunperin suunniteltu biolääketieteellis-
ten sekvenssien, kuten DNA:n ja proteeiinisekvenssien vertailuun ja linjaukseen.

Käyn läpi alkuperäisen BLAST-algoritmin tarkasti askel askeleelta. Kuvailen myös
kaksi muuta suosittua sekvenssilinjaus-menetelmää. Osoitan BLAST-pohjaisen tekstin
uudelleenkäytön tunnistus -algoritmin tehokkuuden vertaamalla sitä viimeisimpään
vastaavaan menetelmään ja näytän miten ehdottamani menetelmä toimii huomattavasti
paremmin.

Käytän metelmää suomalaisten sanoma- ja aikakauslehtien korpuksen analysointiin,
joka koostuu yli kolmesta miljoonasta skannatusta sivusta, jotka on muunnettu tekstiksi
käyttäen OCR-ohjelmistoa (Optical Character Recognition). Luokittelen tulokset
kolmeen kategoriaan: päivittäinen ja pitkäaikainen tekstin uudelleenkäyttö sekä viraalit
uutiset. Kuvailen kategoriat ja annan niistä esimerkkejä sekä ehdotan samalla uutta
menetelmää viraaliteetin laskemiseen klustereille.

Keywords: Tekstin uudelleenkäyttö, luonnollisen kielen käsittely, bioinformatiikka,

OCR

UNIVERSITY OF TURKU
Department of Future Technologies

ALEKSI VESANTO: Detecting and Analyzing Text Reuse with BLAST

Master’s Thesis, 54 p., 13 app. p.
TurkuNLP Group
December 2018

In this thesis I expand upon my previous work on text reuse detection. I propose a
novel method of detecting text reuse by leveraging BLAST (Basic Local Alignment
Search Tool), an algorithm originally designed for aligning and comparing biomedical
sequences, such as DNA and protein sequences.

I explain the original BLAST algorithm in depth by going through it step-by-step.
I also describe two other popular sequence alignment methods. I demonstrate
the effectiveness of the BLAST text reuse detection method by comparing it against
the previous state-of-the-art and show that the proposed method beats it by a large margin.

I apply the method to a dataset of 3 million documents of scanned Finnish news-
papers and journals, which have been turned into text using OCR (Optical Character
Recognition) software. I categorize the results from the method into three categories:
every day text reuse, long term reuse and viral news. I describe them and provide
examples of them as well as propose a new, novel method of calculating a virality score
for the clusters.

Keywords: Text reuse, NLP, Bioinformatics, sequence alignment, OCR

TABLE OF CONTENTS

1 Introduction 1

2 Related work 4

3 Basic Local Alignment Search Tool (BLAST) 10

3.1 Substitution matrix . 11

3.2 Needleman–Wunsch algorithm . 13

3.3 Smith-Waterman algorithm . 15

3.4 BLAST algorithm . 17

4 Using BLAST to detect text reuse clusters 25

4.1 Detecting clusters . 26

4.1.1 Data pre-processing . 26

4.1.2 Clustering . 27

4.1.3 Sliding window effect . 28

4.2 Adjusting the algorithm . 30

5 Results 34

5.1 Newspapers and journals, 1771-1910 . 34

5.2 Comparison against Passim . 35

5.3 Custom substitution matrix . 38

6 Qualitative analysis 39

6.1 Advertisements and announcements . 39

6.2 Long term text reuse . 41

6.3 Viral news . 41

7 Conclusion 47

References 50

Appendices

A A System for Identifying and Exploring Text Repetition in Large Historical

Document Corpora A-1

B Applying BLAST to Text Reuse Detection in Finnish Newspapers and Jour-

nals, 1771–1910 B-1

1 Introduction

Text reuse detection is an often needed task in several different applications that vary from

pure research purposes to industrial cases. Seeing how news articles have circulated in the

past opens up new and interesting research questions. On the other hand, it can be used to

detect plagiarism, which is a very real issue, especially in academia. It can also be used

to detect where a particular rumor online first occurred, which can be helpful to discredit

so called ”fake news”. Text reuse detection is therefore not a new idea and several studies

have already explored the possibility of it with varying success.

In this thesis I expand upon my work from the articles ”A System for Identifying and

Exploring Text Repetition in Large Historical Document Corpora” (Vesanto et al., 2017b)

and ”Applying BLAST to Text Reuse Detection in Finnish Newspapers and Journals,

1771-1910” (Vesanto et al., 2017a). In these articles I detail a new, novel approach to

detecting text reuse, which achieves state-of-the-art results in both precision and recall.

Therefore in this thesis, I go through all the necessary steps to fully understand how the

system functions as well as new modifications made to the algorithm since the publication

of the two articles.

The software finds text reuse by leveraging an old, yet popular algorithm, Basic Local

Alignment Search Tool (BLAST). The algorithm is originally designed for comparing and

aligning biomedical sequences, such as DNA and protein sequences. I explain step-by-

CHAPTER 1. INTRODUCTION 2

step how the algorithm works when aligning protein sequences. As all implementations

of the algorithm assume that they are used for aligning biomedical sequences, they can

make assumptions about the alphabet being used. That is, it is limited by the number of

unique amino acids available.

As the implementations of BLAST make assumptions that do not hold when aligning

natural language, certain pre-processing steps are necessary to be able to align natural

language with it. I explain how I pre-process the texts by encoding them into protein se-

quences, which then can be processed by BLAST. The output from it is then clustered, so

that chains of similar sequences can subsequently be extracted. These chains thus contain

all occurrences of a particular text reuse passage. Using BLAST as the back-end does

come with certain caveats. I explain what these are and provide methods to overcome

these.

BLAST uses a substitution matrix for scoring when performing the alignment between

two sequences. I explain how these work in depth and also propose a way to calculate a

custom, data specific substitution matrix, which improves the precision and recall of the

reuse detection.

I demonstrate the viability of the reuse detection algorithm by applying it to the entire

dataset of Finnish newspapers and journals from 1771 to 1910. These are scanned doc-

uments which have been then OCR read (Optical Character Recognition) into text. The

image-to-text process contains several issues, such as bad scans, leaked ink, unoptimal

OCR system as well as the hard to read font, Fraktur, which was prevalent in the papers

at the time. These issues together cause the OCR quality to be, at times, extremely er-

roneous. I show how the BLAST algorithm, even through the massive OCR noise, can

detect large quantities of text reuse clusters from the data.

CHAPTER 1. INTRODUCTION 3

To see how the system performs compared to other readily available text reuse detec-

tion methods, I create a subset of documents from the corpus and compare the precision

and recall of both BLAST and Passim, the previous state-of-the-art system. I show that

BLAST outperforms Passim by a massive margin.

Lastly, I analyze the found text reuse clusters from the corpus. I categorize them into

three overlapping categories: every day reuse, long term reuse and viral news. I analyze

each of these and provide an explanation of what they are or what they can be used for. I

also propose a novel way of calculating a virality score to rank the clusters based on their

viralness, which is vital when attempting to observe what kind of articles went viral in the

past.

2 Related work

Text reuse detection can be thought of as segmented text document similarity calculation.

The process entails detecting similar documents and then clustering the similar documents

so that a single cluster contains all occurrences of a particular text reuse. It therefore needs

an accurate enough method to detect similarity and a robust clustering method. Many dif-

ferent measures for these purposes have been proposed and used in the natural language

processing field.

Document similarity calculations go all the way back to 1960s, where rudimentary doc-

ument similarity was used in information retrieval to automatically retrieve documents

relevant to a given query (Salton and Lesk, 1968). Text similarity measures have been

used in different tasks than just retrieving documents. (Hall and Dowling, 1980) lever-

aged text similarity to approximate string matching, where two strings are very similar,

but have spelling errors or other slight variations that separate them from each other. By

calculating text similarity between the strings, they could match strings that were nearly

identical.

Text similarity has been used as a feature for clustering. (Huang, 2008) used it to cluster

similar documents into clusters. He formed word frequency vectors for all of the docu-

ments and used the cosine distance of two document vectors to measure their similarity.

Two very similar documents would then be clustered into the same cluster by the cluster-

CHAPTER 2. RELATED WORK 5

ing algorithm. Computing similarities of just thousands of documents can be done easily,

but back in 2008, when the size of the corpus rises to millions, a single computer might

not have had enough computing power to handle the necessary computations. (Elsayed

et al., 2008) performed pairwise document similarity detection using a novel method,

where they could efficiently compute the similarities in a large corpus of over 900,000

documents, by reducing the document vectors into smaller sub vectors and then paral-

lelizing the computation over several computers. This allowed them to complete their

task in reasonable amount of time.

Text reuse detection is often used to see how certain texts change or spread over time.

For this purpose, it is necessary to chain, or cluster, together the similar documents. (Met-

zler et al., 2005) measured the information flow in TREC (Text Retrieval Conference)

corpus. They performed both sentence and document level similarity measurements to

cluster similar texts. Once they had all occurrences of a particular passage detected, they

used the included meta data from the documents to see how the information spreads within

the corpus. In similar fashion, (Bamman et al., 2017) tackled the problem of estimating

the first publication of a composition. They had to find the chain of publications for each

separate entity, similar to seeing how news may travel over time. They achieved this by

looking at the meta data as well as the text of the compositions themselves and trained a

classifier using manually annotated data to detect similar compositions for the clustering.

A lot of different rumors and ”facts” circulate all over the internet, yet often no one re-

ally knows where they originate. (Bendersky and Croft, 2009) attempted to detect these

chains online by first using normal information retrieval methods to find possible candi-

date documents and then using mixture of word overlap and query likelihood to measure

similarity. Once they have found all cases of a certain entity, a rumor for example, they

could sort them by their dates and inspect the first occurrence to see where it originated

CHAPTER 2. RELATED WORK 6

from.

Actual text reuse detection is in no way a recent idea, (Clough et al., 2002) attempted to

detect it by looking at three different criteria between documents: ngram overlap, greedy

string tiling and sentence alignment. In practice, for every document pair they looked at

the fraction of shared ngrams, the degree of substring similarity and aligned derivations of

the original text. To estimate their results, they manually annotated a corpus of newspa-

pers on multiple levels. In their corpus they annotated roughly 400 complete or partially

derived articles down to lexical level, where for each word or phrase they knew whether

it has appeared in the original verbatim or slightly rewritten (Gaizauskas et al., 2001).

Sometimes the used data can be extremely old. (Lee, 2007) described a method they

used to detect text reuse in Greek New Testament. Their goal was to extract a verse from

a target text and determine whether it is derived from a verse in a source text. To this end,

they used the cosine distance of the TF-IDF vectors created from the target and source

verses. The vectors thus contain the term frequency for all tokens, which are weighted

using the inverse document frequency of the respective token. Any token that appears

regularly throughout the whole corpus is thus deemed to be irrelevant. They also used

data specific heuristics to extract extra features. Due to the small corpus size, they wanted

to limit their feature space as much as possible. Therefore in total they only used one

feature, the cosine distance, in addition to the heuristic features.

Several competitions for text reuse detection have also been organized. At PAN 2014

conference, several teams competed against each other in a task focusing on plagiarism

detection, which can be thought of as text reuse detection. In the task they had to identify

all contiguous passages between two documents that contained text reuse. Several differ-

ent methods were employed by the teams, but the winning team achieved the highest score

CHAPTER 2. RELATED WORK 7

by applying several different methods together. They first pre-processed the texts using

heuristics, then used seeding to determine possible candidates for aligning, expanded the

alignment from the seed tokens to detect the contiguous passage and then filtered out in-

correct passages. These methods together were successful enough to beat other teams.

(Sánchez-Pérez et al., 2014)

Several other studies have explored the possibility of plagiarism detection, which is a

relevant task, as nowadays it is easy to get access to large amount of texts from large va-

riety of subjects. It is therefore easy to find content to plagiarize. A single person can not

be assumed to have the time to read and memorize all of them. Therefore any plagiarism

detection system needs to be automatic. Different software are used nowadays in classes,

such as Turnitin, which compares the document against its massive database of published

and authored content. A study using Turnitin showed that over 60% of students of Uni-

versity of Botswana had a low-scale plagiarism in their essays. Only 14% had legitimate

research, whereas as almost 9% had high-scale plagiarism, meaning that they plagiarized

at least one paragraph almost completely. (Batane, 2010). This shows that plagiarism is a

very real issue.

Most plagiarism software are used to check whether new to-be-published articles contain

plagiarism. (Citron and Ginsparg, 2015) conducted a thorough study to see how much

content was plagiarized in scientific articles by looking at all articles from arXiv.org from

2012 to all the way back to 1991. They used 7-grams to detect reuse, while filtering out

common phrases that appear a lot in most scientific articles. They show that plagiarism

has happened before and is still happening. They also show that submissions from less

developed countries tend to contain more plagiarism than submissions from more devel-

oped ones. Certain authors are also more prolific in plagiarism. In the articles examined,

certain authors had over a hundred submissions flagged as being plagiarized. (Gupta and

CHAPTER 2. RELATED WORK 8

Rosso, 2012) performed a similar study, but in it they only focused on a single, large,

conference, ACL (Association for Computational Linguistics). They used an open source

software WCopyFind to detect plagiarism, which does it by comparing hashed values of

the tokens in the text. They showed that reuse between articles is on the rise, particularly

between two long papers (8 or more pages). Plagiarism is increasing in short papers as

well, but not as extensively.

While there exists many different approaches to plagiarism detection, many of them can

be fairly easily fooled by merely changing the word order or using synonyms. (Potthast

et al., 2010) proposed a framework to evaluate plagiarism, which tries to overcome the

shortcomings of previous plagiarism detection methods. Many people plagiarize and try

to obfuscate it to fool both automatic and manual verification systems. Their framework

tries to combat this by automatically generating obfuscated versions of the text, which

they showed is a valid method to mimic manual obfuscation. The framework can then

evaluate whether a plagiarism detection method is robust enough or not.

Most of the previous studies either have a defined article segmentation or some other

similar assumption. This allows them to merely use simple document similarity mea-

sures. In many cases though, there is no segmentation available, and the text reuse is

embedded into otherwise different content. This causes issues when calculating the sim-

ilarity, as then the dissimilar segments of the documents heavily penalize the calculated

similarity. (Smith et al., 2014) developed a software to model text reuse from within a

document with several different subjects. They successfully applied this to a 20th century

American newspaper corpus and extracted clusters of text reuse, with the goal of detect-

ing which news became viral (Smith et al., 2015). Their software, Passim, can detect text

reuse well when the OCR quality is adequate, i.e. there are not too many errors. Using

their software, they attempted to model infectious texts and analyzed how they spread ge-

CHAPTER 2. RELATED WORK 9

ographically as well as see how different publications are linked together and what kind

of time dynamics were in play at the time (Smith et al., 2013).

3 Basic Local Alignment Search Tool

(BLAST)

Sequence alignment algorithms can be separated into two categories: global and local

alignment algorithms. The first are algorithms that optimize the complete alignment be-

tween two documents. These algorithms are akin to normal document similarity methods,

as they tell how similar the two documents are globally. The latter algorithms attempt to

find only the similar regions between the documents. That is, the alignment of two docu-

ments may yield several different regions that are highly similar between the documents.

This means that regions that are clearly different are not considered when determining the

similarity of a document pair.

BLAST (Basic Local Alignment Search Tool) is an old yet efficient algorithm used to

compare biomedical sequences, such as DNA and protein sequences. (Altschul et al.,

1990). It was first published in 1990, and at the writing of this thesis, it has been cited

over 70,000 times. While the algorithm is old, the implementation of it has been contin-

uously improved. In this thesis I use NCBI BLAST software as the implementation, and

more specifically the protein version, BLASTP. (McGinnis and Madden, 2004) Thus, I

explain how the original algorithm works in regard to dealing with protein sequences.

The core idea of BLAST is to compare and align query sequences against a massive

CHAPTER 3. BASIC LOCAL ALIGNMENT SEARCH TOOL (BLAST) 11

database of protein sequences. The algorithm is designed to be capable of aligning query

sequences against massive databases, such as different genomes, while still retaining a rel-

atively small processing time. The algorithm consists of multiple different steps it has to

go through when querying a sequence against the database. (Altschul et al., 1990) Other

approaches for the same task exist, but they are either less accurate or are not designed to

handle such massive databases. (Waterman et al., 1976)

In this chapter I explain how BLAST performs local alignment step-by-step and how

its scoring works using a substitution matrix. I also describe two alignment algorithms, a

local and a global one, which BLAST uses in the algorithm and I use later in the thesis,

respectively.

3.1 Substitution matrix

When comparing two sequences, or two amino acids in the sequences to be more specific,

the substitution matrix informs the algorithm how much to reward a matching amino acid

or penalize a mismatch. Using this matrix a value can be calculated that states how much

two regions of sequences look like one another. It is thus a matrix with a shape N ∗ N ,

where N is the amount of amino acids. In NCBI BLAST this is 25. 23 amino acids and

partials and then a couple BLAST specific extras. (McGinnis and Madden, 2004) The

idea behind such matrix is to be able to give different rewards and penalties depending on

the amino acids.

In bioinformatics there are multiple different pre-calculated substitution matrices that

have been proven to help the scoring, such as BLOSUM62. This is because certain amino

acids can be interchangeable or at least closer to each other, so a sequence does not have

to be exact match for it to be relevant. (Eddy, 2004) Example of BLOSUM62 can be

CHAPTER 3. BASIC LOCAL ALIGNMENT SEARCH TOOL (BLAST) 12

Figure 3.1: Example of the substitution matrix BLOSUM62.

seen in Figure 3.1. Of course using a such pre-compiled matrix does not make sense

when not dealing with amino acids in a protein sequence. The probabilistic assumptions

made in it do not hold with arbitrary alphabet. Thus when aligning natural language, a

identity matrix is often used, where all matches are rewarded equally and mismatches

penalized equally. The score for aligning two amino acids would then be evaluated using

the equation:

score = S(a1, a2) (3.1)

where S is the function that uses the substitution matrix and a1 and a2 are the two amino

acids being scored. For example, if the used substitution matrix is BLOSUM62 and a1

and a2 are amino acids A and W, respectively, the score would be -3.

CHAPTER 3. BASIC LOCAL ALIGNMENT SEARCH TOOL (BLAST) 13

Figure 3.2: Example of the matrix after the Needle-Wunsch algorithm has found the

optimal solution. (Commons, 2018a)

In section 5.1 I explain how I calculate a custom, data specific substitution matrix to

improve the results when the data is natural language rather than protein sequences.

3.2 Needleman–Wunsch algorithm

Needleman-Wunsch algorithm is another old yet famous algorithm from the 1970s. It can

be used to align any two sequences, though its primary purpose is to align biomedical

sequences. (Needleman and Wunsch, 1970)

When aligning sequences s1 and s2, the algorithm starts with an empty matrix of size

(n + 1) ∗ (m + 1), where n and m are the lengths of s1 and s2, respectively. The matrix

CHAPTER 3. BASIC LOCAL ALIGNMENT SEARCH TOOL (BLAST) 14

thus has a row and a column for every letter in the sequences plus one extra row and col-

umn. The core idea of the algorithm is to score matches and mismatches in the sequences.

This scoring can be done by using a substitution matrix like explained in the previous sec-

tion or just set values for match and mismatch. The next step is to fill the matrix. The first

value M0,0 is set to zero, as it naturally has no match or mismatch due to it being an extra

row/column. Next, all other cell values are calculated row by row, using the equation:

Mi,j = max

Mi−1,j−1 + s(ai, bj),

Mi,j−1 + s(ai, bj),

Mi−1,j + s(ai, bj)

(3.2)

where s(ai, bj) denotes the reward / penalty from the substitution matrix, when aligning

the ith character from s1 and jth character in s2. The value is thus the maximum value of

the scores of the cells that are to the left, on top or top-left diagonal of the current cell plus

the reward / penalty value. The values in the first row and first column have only the left

cell and top cell that they can use to calculate the score, so the values in those will just be

the cumulative mismatch value. The first cell in the matrix that has all three neighboring

values is at M1,1, so its value will be the maximum of the three neighboring values plus

the score value of s(a0, b0).

In addition to just filling the matrix, a second, trace matrix is formed. This means

that whenever picking one of the three neighboring values, the algorithm also remem-

bers which one of them it picked. After the whole matrix is filled and traces are set, the

algorithm finds the optimal alignment by tracing back to the origin from the bottom right

cell using the directions from the trace matrix. If in the trace the picked direction was

top-left, it denotes that there was either a match or a mismatch in the sequences. Left

or top directions denote that there has been either an insertion (new character) or a dele-

tion (missing character) in one of the sequences. This is a gap and is denoted by a ”-”

character in the output. Following all the way back to M0,0 in the top left will give the

CHAPTER 3. BASIC LOCAL ALIGNMENT SEARCH TOOL (BLAST) 15

Figure 3.3: Example of the finished Smith-Waterman scoring matrix with the trace matrix

overlayed on top. (Commons, 2018b)

best global alignment of the sequence. Example of this is shown in the Figure 3.2. In the

example, two protein sequences, GATTACA and GCATGCU are aligned. Both the value

matrix and the trace matrix are shown on top of each other, where the traces are denoted

by arrows.

3.3 Smith-Waterman algorithm

Smith-Waterman algorithm is another popular sequence alignment algorithm. It is a mod-

ification of Needleman-Wunsch algorithm, where the main difference of it is that it is a

local alignment algorithm instead of global. (Waterman et al., 1976)

In the same fashion as in the Needle-Wunsch algorithm, to align sequences s1 and s2,

the first step is to initialize a matrix of size (n + 1) ∗ (m + 1), where n and m are the

lengths of s1 and s2, respectively. The matrix is filled the same way as the Needle-

Wunsch algorithm, but with a few tweaks. Firstly, the first row / column values are set

to zero, rather than cumulative gap penalty values. No negative values are allowed in the

CHAPTER 3. BASIC LOCAL ALIGNMENT SEARCH TOOL (BLAST) 16

Figure 3.4: Example of the Smith-Waterman trace back process and the aligned results

for the two sequences. (Commons, 2018c)

matrix, therefore any value that would otherwise get a negative value is set to zero. This

is what allows the algorithm to find local alignments. Setting the cell value to zero means

that prior similarities do not influence the possibility of a new, local similarity. In the

filling process, the same trace matrix is also created and updated while filling the value

matrix.

The third difference between the two algorithms is after the matrices are formed and

the tracing back process begins. Rather than starting the alignment from the cell in the

bottom right corner and continuing until the cell in the top left corner, the starting point

is set to the cell with the highest value. There may be multiple cells that share the highest

value. A trace back is started from all of these cells and continued until a zero is found.

At any point in the trace back process a cell can be found with multiple equally possible

directions in the trace matrix. This again branches the alignment, which all then need

to be fully traced. Once all branches have been fully traced back to a zero, a score can

CHAPTER 3. BASIC LOCAL ALIGNMENT SEARCH TOOL (BLAST) 17

be calculated for all of them by summing their values in the trace. The one trace with

the highest score is thus considered the most optimal alignment. Multiple traces may

end up with the same score, which then causes them all to be considered equally optimal

solutions.

3.4 BLAST algorithm

Figure 3.5: A diagram showing the BLAST algorithm.

The first step is to preprocess the input sequences by filtering out low-complexity

regions from them. Low complexity regions consist of few different amino acids, e.g.

”AAAAAAAAAAAAAAG”. They can also be short sub-sequences that appear regularly,

e.g. a part of a amino acid sequence that is commonly shared by most sequences. In nor-

mal natural language sequences such regions could be common words or phrases, such as

function words or even data specific words, e.g. title of a newspaper. These are irrelevant

here and would only serve to confuse the algorithm in the later steps, where seed n-grams

are extracted to filter out improbable candidate documents from the database to reduce

unnecessary computations. (Mount, 2001) In NCBI BLAST, custom low-complexity re-

CHAPTER 3. BASIC LOCAL ALIGNMENT SEARCH TOOL (BLAST) 18

gions can be denoted to the algorithm by lowercasing letters in the desired region of the

input sequence. (McGinnis and Madden, 2004)

Figure 3.6: Example of how the seed words are extracted.

After the data has been pre-processed and filtered, the comparison phase begins. First

a seed list is formed, where each seed is k characters long. Seeds are extracted sequen-

tially from the input sequence, so two sequential seeds overlap by k − 1 characters. Ex-

ample of such extraction can be seen in Figure 3.6. These seeds are used in the later steps

to filter out sequences that do not share enough similarity between each other. Therefore

the idea is to first look for simple n-gram similarities between the sequences to drasti-

cally lower the possible similar candidates. Setting the k values correctly is important,

as having too high value might cause BLAST to miss matching similar sequences, e.g. if

there is a lot noise. On the other hand, a k value too small would drastically increase the

needed computing time, as almost all sequences share some parts, effectively disabling

the filtering. (Mount, 2001) In NCBI BLAST, k can be between 2 to 7 characters long.

(McGinnis and Madden, 2004)

BLAST achieves its relative fastness when querying a massive database by applying

CHAPTER 3. BASIC LOCAL ALIGNMENT SEARCH TOOL (BLAST) 19

clever filtering. In the next phase all possible k-character long seed combinations are

generated and they are compared against the seeds extracted in the previous phase. The

comparison between two seeds is done by weighting the comparison seed using a scoring

matrix or a substitution matrix, as explained in chapter 3.1. In practice, the matrix has a

match and mismatch values for each character in the seeds, so the seed pair gets a score

based on the matches and mismatches between the seeds. This score is then compared

against a set threshold T . Any seed pair with a score lower than T are ignored and the

rest are considered to be a match. This method improves the accuracy, as now the seeds

only have to be fuzzily similar rather than identical. Of course this method similarly to

having a too low k values causes more computational needs to gain the accuracy. The

threshold value is one of the hyperparameters that can be optimized to obtain better re-

sults and should be set according to the substitution matrix. It can also be set so high that

no combination exceeds it, effectively disabling fuzzy search in favor of less computation

power. (Mount, 2001)

The seed pairs with a score that exceeded the threshold are then organized into a effi-

cient tree format for further analysis. This tree format makes it quicker for the algorithm

to scan for documents with matching seeds. As all seeds get a score based on the substi-

tution matrix, the algorithm can go through the tree until the score is too low based on the

score threshold. Any child of that seed can automatically be discarded, as they have even

lower score values. Example of such tree can be seen in Figure 3.7.

The next step is to scan through the whole sequence database and find every sequence that

contains at least one of the high-scoring pairs evaluated in the previous step. If a match

is found, that sequence will be a candidate for a comparison against the given query se-

quence. (Mount, 2001) Starting to compare the sequences if there is just one high-scoring

pair would lead to massive amount of computations, especially if the k-value was low.

CHAPTER 3. BASIC LOCAL ALIGNMENT SEARCH TOOL (BLAST) 20

Figure 3.7: Example of the seed pairs in a tree format.

Therefore in NCBI BLAST, there is a window size parameter W , which specifies the size

of a window inside which two seeds must be found. Two matches within a window define

a region, which is a candidate for a similar subsequence. (McGinnis and Madden, 2004)

Once two pairs within a window have been found, the region is aligned, where the high-

scoring pairs are then used as starting points in the aligning process. Just aligning the

k-character long seeds is far from enough, therefore the high-scoring pairs are expanded.

The algorithm expands the alignment in the query sequence in both directions, left and

right. Each expanded character in the query sequence gets a score using the substitution

matrix to reward matches and penalize mismatches. The score also takes in account the

previous score, i.e. last left or right character score, depending on the expansion direction.

This expansion is continued until the score reaches an empirically decided cutoff value

C, such as 0. (Mount, 2001) Example of the expansion procedure can be seen in Figure

3.8.

The two seeds in the query sequence are not necessarily next to each other, especially

if the window size is set to a large value. Therefore expanding these does not necessarily

mean that they will be connected in the alignment, especially if the the region they are

in is not actually similar. Therefore all score sequences of non-negatives are extracted

from the alignment and a raw score SR is calculated for them, by summing their scores

CHAPTER 3. BASIC LOCAL ALIGNMENT SEARCH TOOL (BLAST) 21

together. Raw score thus takes in account matches, mismatches and gaps. Example of

the extraction is shown in Figure 3.8. If SR is smaller than a score threshold ST , that

sequence is then discarded. This filters out alignments that are too short, based on the

threshold value. Two seeds that overlap due to the expansion process are considered the

same, as the chain contains both of them.

After filtering out expanded regions with too low score SR, an expected value EC is

Figure 3.8: Example of the aligning process, where the cutoff value C is set to 0. The

extracted alignment is the longest chain and the calculated score for the pair is the sum of

the scores.

calculated for the remaining regions, and they are evaluated against a defined expected

value threshold ET . The expected value defines the expected amount of random matches

with a given score that can be found in a database of a given size. This threshold acts as a

filter, so that all found pairs must get high enough calculated expected value EC , or they

are discarded. For example, if a match gets a calculated expected value of 1, one can ex-

pect to find 1 random match from the database with the same score as that by pure chance.

CHAPTER 3. BASIC LOCAL ALIGNMENT SEARCH TOOL (BLAST) 22

It therefore describes the noise level of the database. The value is also correlated with the

score SR, as the expected value decreases exponentially when the score gets higher, i.e. it

is more unlikely for a longer match to be found from the background noise. The expected

value is calculated from three different factors: length of the query sequence, size of the

database and the bit score, which is a normalized version of the raw score obtained in the

previous step. Bit score is calculated using the formula:

S =
λ ∗R− ln(K)

ln(2)
(3.3)

where λ and K are statistical parameters that can be approximated from the data (Mount,

2001), though in NCBI BLAST they are predefined with the substitution matrix. In the

original article, λ was defined as 0.318 and K as 0.13. (McGinnis and Madden, 2004)

They are constants and can be thought of as natural scales for the equation. Using the

normalized score, the expected value is calculated using the formula:

E = mn2−S (3.4)

where m is the effective length of the query sequence and n is the effective size of the

database. Effective length and size are used rather than the actual length and size. This is

due to the fact that no alignments can start at the very end of a sequence, as alignments re-

quire some amount of length to not be culled by a threshold. Therefore the whole length

of the sequence is not applicable, so an adjusted length is used instead. The effective

length of the sequence is the actual length of the sequence minus the expected length of

an expanded region. This expected length can be predefined or estimated from the data

by calculating a region that would have EC score of 1 and noting its length. The effective

length of the database is then the sum of effective lengths of all sequences in the database.

(Mount, 2001)

The expected value threshold is set low, close to zero, as regions with high EC value

could just be background noise. Decreasing the threshold has a side effect, however. Very

CHAPTER 3. BASIC LOCAL ALIGNMENT SEARCH TOOL (BLAST) 23

short regions, even identical ones, get naturally higher EC values, as it is impossible for

a short region to attain a high score sum. This therefore leads to BLAST being unable

of finding shorter regions. Setting the threshold value correctly is thus a compromise be-

tween how short regions one wants to find and how many false positives there can be.

Often two or more regions can be combined to make a new, longer aligned region. That

is, there is a gap between the two regions. BLAST finds the optimal pair of regions by

calculating a new score for all combinations of nearby regions. If there are several op-

tions to combine, BLAST uses sum-of-scores method to define which regions should be

combined, where the combination with the highest sum of scores minus a calculated gap

penalty for the gap is the optimal solution. If no candidates for combinations are found or

the scores for combining them are too low, the regions are left as they were.

The final part of the algorithm is to output the gapped Smith-Waterman local alignments

of the similar regions between the query sequence and the matched sequences in the

database. As explained in the previous section, Smith-Waterman is a local alignment

algorithm and thus provides a local alignment between the pairs. The two whole se-

quences are not aligned against each other, just the regions that match. Example of the

output can be seen in Figure 3.9. The example shows how the matches, mismatches and

gaps are outputted in the process as well as two possible local alignments, both equally

optimal. This output is not always necessary, however. If the only goal is to find sequence

offset pairs, i.e. the starting and ending offsets that depict a similar region between two

documents, calculating the gapped local alignment is unnecessary and can be skipped.

Examples of the hyperparameters used can be seen in the Table 3.1. Setting these val-

ues correctly is vital, as they drastically affect the precision and recall of the algorithm, as

explained previously.

CHAPTER 3. BASIC LOCAL ALIGNMENT SEARCH TOOL (BLAST) 24

Figure 3.9: Example of the gapped Smith-Waterman local alignment between the se-

quences ”GAATTCCA” and ”GACTTAC”. The P and N denote whether the reward is

positive or negative, respectively. Two possible alignments are shown.

Parameter name Identifier Example value

Seed length k 4

Seed similarity threshold T 20

Window size W 20

Cutoff value C 0

Accumulated threshold ST 50

Expected value threshold E 0.0001

Substitution matrix MATRIX BLOSUM62

Gap open penalty GAPOPEN 3

Gap extend penalty GAPEXTEND 11

Table 3.1: A table showing the common hyperparameters and an example value for them.

4 Using BLAST to detect text reuse

clusters

Figure 4.1: Chart showing the full process of running the text version of BLAST.

In this chapter I go through the necessary steps to be able to use BLAST to detect

text reuse passages. As an implementation of the BLAST algorithm, I use NCBI BLAST,

which I refer to just BLAST in this chapter. I also refer to the aligned and expanded re-

gions as hits. As BLAST is designed for aligning biomedical sequences, it has certain as-

sumptions, such as there only being 23 amino acids. Such assumptions cause issues when

trying to extend the applications of the software, due to them being hardcoded into its

logic. The biggest issue being the alphabet difference, which is also replicated all around

the source code. Therefore rather than rewriting the whole program, I get around this

issue by tricking BLAST into thinking that it is dealing with protein sequences, whereas

CHAPTER 4. USING BLAST TO DETECT TEXT REUSE CLUSTERS 26

Th i s i s an example s e n t e n c e .

==

D S C H C H B E G B N Q F G H G E D G E G

Figure 4.2: Example of the text-to-protein conversion

in reality it is processing natural language.

4.1 Detecting clusters

4.1.1 Data pre-processing

To use BLAST, I must adhere to its assumptions about the data. That is, I can only use

amino acid sequences. Therefore I must encode the input data into amino acids. I low-

ercase the dataset in question, calculate the 23 most used letters and form a simple one-

to-one mapping between the letters and arbitrary amino acids. This step also works as a

pre-processing step, as it removes all special characters and numbers from the text. I do

not include the whitespace character, even though it is naturally the most used character.

The whitespace character always appears before and after a word, so it ends up working

as a padding, effectively lowering the used word size by two, and simultaneously increas-

ing the database size by 50%. In tests, I also saw that the found hits were more often split

into two independent hits if I encoded the whitespace, as well as increasing the needed

processing power. Using this mapping I can then encode the whole dataset into proteins,

which can then be processed by BLAST. Figure 4.2 shows an example of said conversion.

This method has clear disadvantages, namely the limited alphabet. Sometimes having

numerals in the data could be vital, or the data could be using a character system with

more letters, such as Chinese, Japanese or Korean, where having just 23 characters might

CHAPTER 4. USING BLAST TO DETECT TEXT REUSE CLUSTERS 27

not be sufficient. A possible fix for these issues would be to create a mapping that is

one-to-many instead of one-to-one. That is, map a single symbol into a combination of

one or more amino acids. This method would allow arbitrary many symbols to be used in

the alphabet. However, this method does come with a caveat. For example, combinations

”AAAAB” and ”AAAAC” are very similar to BLAST, but these could be two completely

different symbols in the original data.

Using compound amino acids as symbols would therefore cause two issues. First be-

ing doubling the size of the data for every extra character in the combinations. Given a

large corpus, this could very easily render the process unusable by today’s computational

standards. Second being the possible erroneous caused by the fact that two symbols could

share a high percentage of identical amino acids while in reality being completely differ-

ent.

4.1.2 Clustering

Figure 4.3: Example of the overlap. Two slightly different offset values, yet clearly the

same passage. Each color depicts a pair.

Using BLAST, I compare every document against the entire dataset, i.e all pairwise

comparisons between the documents. BLAST produces similar pairs, or in my case,

text reuse pairs between documents. The pairs contain the document’s ID as well as the

starting and ending offset of the sequence where the reuse occurs. BLAST does not au-

tomatically cluster the data. If the same text passage is reused in number of documents,

each of the identified document pairs may mark a slightly different beginning and ending

CHAPTER 4. USING BLAST TO DETECT TEXT REUSE CLUSTERS 28

offsets due to the matching being fuzzy and because of the massive noise the data may

contain.

For instance, if a passage from a document A is reused in documents B and C, the offsets

in A will be slightly different between the A − B and A − C pairs. To deal with this

problem, I calculate consensus offsets that combine all passages in one document from

individual document pairs that are close to each other. In this example, the two passages in

A from the A−B and A−C pairs. I define a threshold here, which denotes the minimum

similarity to include in the consensus process. By default, the offsets have to be at least

75% overlapping, or the overlapping offsets are left separated. This is another parameter

which can be tuned to better fit the data and the purpose of the process. Example of the

overlap can be seen in Figure 4.3. Each offset that was combined into a consensus offset

was linked to another offset in another document. While calculating the consensus, I map

the old offset into the new one. This allows me to then link these offsets together, so that

they form a graph. Each of these connected graphs equals a single cluster from the data.

The obtained clusters are still just offset values from encoded sequences. I still need

to reverse the encoding process to get the original text back. I do this by taking the orig-

inal full text and encoding that in reverse, so that I only encode the characters that were

previously discarded. As the text is lower cased, I can just encode the characters into an

arbitrary uppercase letter without the possibility of collision. I then go through the en-

coded full text and calculate a mapping from encoded offsets to the original. Using said

mapping I can then reverse the process and retrieve the actual text reuse passages.

4.1.3 Sliding window effect

Due to the consensus offsets, it is possible for a ”sliding window” effect to appear. If a

particular passage is repeated a lot as well as the neighboring passages in the documents,

CHAPTER 4. USING BLAST TO DETECT TEXT REUSE CLUSTERS 29

Figure 4.4: Example of the sliding window effect. Red color means the offsets have slided

to left, i.e smaller and blue vice versa.

it is possible for the offset values to slide a bit by bit. Example of this can be seen in Figure

4.4. The red color depicts offsets sliding to left, i.e starting and ending offsets are smaller

and blue the same but vice versa. Gray shows the actual original text. The overlapping

red or blue and gray show from which parts of the text the consensus is calculated. The

example is a very extreme case. In real applications such low percentage of total overlap

would not be combined.

The middle one with just gray box is the original article and the content that should be

separated into a cluster. Here can be seen that slowly previously unseen texts are being

added into the cluster. The top and bottom level texts have very little of the original article

left in them, and they have nothing in common with each other. In similar fashion, this

effect could continue indefinitely, given that the conditions are favorable. This renders

the clusters unusable for any statistical use, as they no longer properly reflect the data, as

well as make any manual examination very cumbersome.

To fix this issue, I find all clusters that have more than 100 hits and rerun the BLAST

process again using just the hits as the dataset. I then go through the pairs and use greedy

CHAPTER 4. USING BLAST TO DETECT TEXT REUSE CLUSTERS 30

search to find documents that have any similarity and add them to a cluster as long as they

are not already in a new cluster. This will form clusters that have separate hits in them.

Due to the way the sliding window happens, the resulting clusters will share similarities

and some hits could possibly fit into two different clusters. As such, this is not a perfect

solution, but in the absence of better solutions, it keeps the clusters clean, as none contain

multiple different passages.

4.2 Adjusting the algorithm

Figure 4.5: Example of similar characters in the Fraktur font. Letters in order: f,s,

k,i,i,n,m,w,e,c

The substitution matrix that BLAST uses out-of-the-box is either an identity matrix,

or a protein specific matrix, such as BLOSUM62. A protein specific matrix is naturally

not a good fit for textual data, as the arbitrarily chosen amino acids in the mapping do not

share the same similarities as they do in the real world when they are part of protein se-

quences. Identity matrix is thus the only choice. Yet due to the nature of the OCR process

and fonts themselves, there are several characters that are more likely to be wrongly con-

sidered each other. Due to this, using a identity matrix that penalizes all mistakes equally

is not the most optimal approach. A better choice is to calculate a new substitution matrix

that reflects the errors made by the OCR system, giving BLAST more leeway when it

comes to penalizing the OCR noise.

In Figure 4.5 you can see example of similar characters in the Fraktur font. The first

CHAPTER 4. USING BLAST TO DETECT TEXT REUSE CLUSTERS 31

9 -5

-5 9 -5 -5 -4 -5

-5 -5 9 -5 -4 -5 -4 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 9 -5 -5 -5 -5 -5 -5

-5 -5 -5 9 -4 -5 -5 -5 -5 -5 -5 -5 1 -3 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5

-5 -4 -4 -4 9 -5 -4 -5 -5 -5 -5 -4 -5 -4 -5 -5 -5 -4 -5 -5 -5 -5 -5 -5 -5

-5 -5 -5 -5 -5 9 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5

-5 -5 -4 -5 -4 -5 9 -5 -5 -5 -5 1 -5 -4 -5 -5 -5 -5 -5 -5 -4 -5 -5 -5 -5

-5 -5 -5 -5 -5 -5 -5 9 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5

-5 -5 -5 -5 -5 -5 -5 -5 9 -5 -5 -5 -5 -5 -5 -5 -5 -4 -5 -5 -5 -5 -5 -5 -5

-5 -5 -5 -5 -5 -5 -5 -5 -5 9 -5 -5 -5 -5 -5 -5 -5 -5 -4 -5 -4 -5 -5 -5 -5

-5 -5 -5 -5 -5 -5 -5 -5 -5 -5 9 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5

-5 -5 -5 -5 -4 -5 1 -5 -5 -5 -5 9 -5 -5 -5 -5 -5 -5 -5 -5 -4 -5 -5 -5 -5

-5 -5 -5 1 -5 -5 -5 -5 -5 -5 -5 -5 9 0 -5 -5 -5 -4 -5 -5 -5 -5 -5 -5 -5

-5 -5 -5 -3 -4 -5 -4 -5 -5 -5 -5 -5 0 9 -5 -5 -5 -5 -5 -5 -4 -5 -5 -5 -5

-5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 9 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5

-5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 9 -5 -5 -5 -5 -5 -5 -5 -5 -5

-5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 9 -5 -5 -5 -5 -5 -5 -5 -5

-5 -5 -5 -5 -4 -5 -5 -5 -4 -5 -5 -5 -4 -5 -5 -5 -5 9 -5 -5 -3 -5 -5 -5 -5

-5 -5 9 -5 -5 -5 -5 -5 -5 -4 -5 -5 -5 -5 -5 -5 -5 -5 9 9 -5 -5 -5 -5 -5

-5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 9 9 -5 -5 -5 -5 -5

-5 -5 -5 -5 -5 -5 -4 -5 -5 -4 -5 -4 -5 -4 -5 -5 -5 -3 -5 -5 9 -5 -5 -5 -5

-5 9 -5 -5 -5

-5 9 -5 -5

-5 9 -5

-5 9

Table 4.1: New substitution matrix. ”Non zero” values are bolded.

two letters, f and s, are nearly identical. The only difference is a small notch that could

easily have been faded away in old documents. Other similarities can be seen in m and w,

where the only differences are a small notch and one part of m is vertically reversed, or

with e and c a small line creating the closed loop in the character e. Characters n and m

are also constructed by attaching several times the base of character i and connecting them

via small line. Naturally the i character has the superscript dot on top of it, but due the

bad quality of the original scans, these parts could easily fade away partly or completely,

which causes the OCR system to very easily misrecognize these. As a font, Fraktur is

CHAPTER 4. USING BLAST TO DETECT TEXT REUSE CLUSTERS 32

therefore not the easiest choice for OCR systems.

Kansalliskirjasto has manually annotated and published a dataset of corrected OCR doc-

uments. The dataset consists of 470 pages, where they have both the OCR output as well

as the manually corrected version (Kettunen and Koistinen, 2018). I encode all word pairs

into proteins using the previously calculated protein mapping and align the gold-ocr pairs

using Needleman-Wunsch algorithm described in the chapter 3.2. The algorithm finds the

global alignment between a gold-ocr word pair. Using these alignments, I can see which

characters tend to be replaced by what and how often. Using these alignments I can cal-

culate an error distribution for each character.

I start with the identity matrix used by BLAST, where every value on the diagonal axis is

9 and all other values are -5. This is not the standard identity matrix, where the diagonal

values are 1 and the rest are 0. This is due to two things. Firstly BLAST uses this to

penalize, so the non-diagonal values have to be negative for the aligning algorithm to ever

decrease. Secondly the opening and extending gap values are also used, which would

unfairly penalize the system by penalizing a gap more than a mismatch.

Using the error distribution, I scale the values based on their logarithmic frequency. I

calculated the ratio of how much a certain letter was used instead of the correct one and

scaled the non-diagonal value from -5 all the way up to 9, depending on how high the ra-

tio was. In this configuration most values changed and many were over 0. This, however

caused BLAST to produce completely inaccurate results. The substitution matrix had too

much positive in it, so in the aligning process random correct characters that appear by

chance in two completely different sequences were enough to keep the algorithm running.

Instead of giving the values ability to go all the way to 9, I limited it to 0. This restriction

CHAPTER 4. USING BLAST TO DETECT TEXT REUSE CLUSTERS 33

caused only few values to change, as most values were scaled from -5 to somewhere be-

tween -5 and -4.5, which would then be rounded back to -5. I also changed the reward of

W − V and V −W to both be 9. This is due to the fact the two letters were interchange-

able in Finnish in the 1800s.

Table 4.1 shows the new substitution matrix. Here we can see that while most values

stayed at -5, a few got a boost. The small boosts are enough to help BLAST find more

results, as demonstrated in the chapter 5.3. An important note about this method is that

it is completely domain specific. Other OCR systems or fonts would have different error

distributions and interchangeable characters. This matrix thus needs to be recalculated for

all the different corpora.

5 Results

5.1 Newspapers and journals, 1771-1910

Figure 5.1: Bad quality hit pair. Both texts are identical in the original scans, but the

OCR-version of them are completely different.

In this thesis I focus on a single corpus, the National Library of Finland’s (NLF) pub-

licly available collection of newspapers and journals from years 1771 to 1910. The corpus

contains mostly Finnish and Swedish documents, but few German and Russian documents

are included (Pääkkönen et al., 2016). In total, there are approximately 3 million docu-

ments. These old documents have been scanned and using OCR software turned into text.

Due to many factors, such as the old age, bad scans, unoptimal OCR program as well as

the hard to read font, Fraktur, which used to be prevalent in early modern Finnish, the

texts are at times far from accurate. It has been estimated that the average error rate of

this corpus is 25-30%. (Kettunen et al., 2016). Example of the bad quality in this corpus

is shown in the Figure 5.1.

CHAPTER 5. RESULTS 35

Running the whole dataset through the previously explained pipeline, I found around

8 million clusters of repeated texts that together have a total of 49 million occurrences

longer than 300 characters. Note, however, that some clusters refer to the same, larger

repeated news passage, in different lengths. This happens due to the fact that at times

the OCR quality is too low, allowing the method to only find fragments of the actual ar-

ticle, thus forming two separate clusters, one with only the few long, intact versions that

could be detected and one with all the smaller fragments. Since the surrounding text of

a fragment is too dissimilar, it is difficult to establish whether the two clusters could be

combined without introducing errors in the data. Therefore the number of clusters or oc-

currences does not necessarily reflect the actual number of unique text reuse.

In chapter 6, I perform qualitative analysis on the found clusters, where I categorize the

clusters into three different overlapping categories.

5.2 Comparison against Passim

As with all such empirical methods, evaluating the actual performance of the system is

hard, as there is no gold-standard data against which to compare the results. As such, I

compare the accuracy and sensitivity of BLAST against Passim, a popular tool for text

reuse detection (Smith et al., 2014) used in many similar studies previously, to see how

BLAST works in a relative comparison against the state-of-the-art.

I form a dataset of 2,000 randomly selected documents from the NLF corpus and run

both Passim and BLAST with this dataset. For the whole dataset I calculate the coverage

using the equation:

coverage =
total amount of unique characters in the clusters

total amount of characters in the dataset
(5.1)

CHAPTER 5. RESULTS 36

System Coverage

BLAST 0.177

Passim (default) 0.057

Passim (optimized) 0.080

Table 5.1: Text reuse coverage comparison of the BLAST-based method relative to Passim

with its settings left at their default values, as well as optimized to maximize recall.

As a metric it signals how big of a fraction of the text in the whole dataset is found to

be text reuse. Increasing this number means the software finds more reuse, given that the

passages are not false positives. The results are shown in Table 5.1.

The results show that the BLAST based method vastly outperforms Passim in terms of

recall. In order to establish that this gain in recall is not at the expense of precision, I

sample clusters both randomly and at the very bottom of BLAST similarity scores still

acceptable for inclusion in the results and manually verify the proportion of those that are

true positives. The proportions are shown in Table 5.2. The results naturally depend on

the length of the texts in the cluster, with shorter texts less likely to be correct hits than

the longer ones, given a constant alignment score.

To understand to what extent the hits identified as text re-use are dissimilar, I randomly

selected 1000 clusters which contain only two hits of at least 300 characters in length. I

then calculate the pairwise character alignment between these two hits and measure the

proportion of matching characters, i.e. not gaps nor misalignments, using the Needleman-

Wunsch algorithm. As shown in Figure 5.2, the alignment values range from around 99%

down to as low as 40%, with the bulk of the data in the 70–90% range. For the most part,

the repeated texts thus differ in 10–30% of positions, but the difference can be as much as

60%. Partly, these are cases of e.g. advertisements which differ only in numerical values,

CHAPTER 5. RESULTS 37

BLAST Passim

Range
Precison

random

Precison

low
Coverage Coverage

300 - 350 1.00 1.00 0.108 0.076

250 - 299 1.00 0.94 0.120 0.078

200 - 249 0.94 0.94 0.133 0.079

150 -199 0.92 0.86 0.154 0.080

100 - 149 0.86 0.70 0.177 0.080

Table 5.2: The precision and coverage of the BLAST method on 50 clusters of varying

text hit lengths, sampled randomly and at the lowest alignment scores acceptable.

Figure 5.2: The distribution of alignment scores (horizontal axis) and the number of clus-

ters out of 1000 with the given alignment score (vertical axis). Minimum text reuse length

is 300.

CHAPTER 5. RESULTS 38

Substitution Matrix Coverage

Identity 0.079

Data specific 0.069

Table 5.3: Results of learning a better substitution matrix over the identity matrix.

but partly these are in fact fully identical texts with a massive OCR error rate. It is due to

these hits where the difference can be as vast as 60% that I cannot use software such as

Passim, but must use a more heavy solution.

The gain in recall comes at the expense of compute time, with BLAST being about three

orders of magnitude slower than Passim. Applying BLAST to the entire NLF dataset

required around 150,000 CPU-core hours. This is certainly out of reach for a single com-

puter, but well within modern cluster computing resources, especially since the historical

text collection is static and the run only needs to be carried out once.

5.3 Custom substitution matrix

To test the new substitution matrix, I created a small dataset of 1000 random documents

from the NLF dataset and ran it through the full pipeline twice, one with the normal

identity substitution matrix and one with the custom one. I evaluate the results using the

same coverage measure explained in the previous section. I manually read through the

results to confirm that the results are not erroneous and are in fact true positives. As seen

in table 5.3, using the new substitution matrix the coverage increases by 0.01 p.p, a 15%

relative increase in coverage. In a small dataset such as this test set, the increase is not

huge, but a 15% relative increase in a dataset of million documents is already substantial.

6 Qualitative analysis

Newspaper reprinting and reusing can be classified into three different, though sometimes

overlapping, categories: every day text reuse, long-term reuse and viral news. A large

majority of text reuse is merely reprints of advertisements or announcements that were

reused just a couple of times. Sometimes they were reprinted in a short period, some-

times after a year. Some, however, also contain long-term reuse. That is, there is a signif-

icant gap between the dates. Finally there are also reused passages that achieved viralness.

In this chapter I further analyze the clusters I got from applying the BLAST text reuse

detection algorithm to the entire NLF dataset. To this end, I categorize them into the three

different categories. I analyze the difference of these categories and provide examples of

what the categories are or what they can be used for.

6.1 Advertisements and announcements

The clusters from the first category are the ones that are not especially distinctive on their

own. These include advertisements and announcements, poems and stories as well as

normal, every day news that do not achieve viralness. These clusters make up the large

majority of the found clusters. A product being sold and its prices, or timetables for

the post office, for example. These clusters are independently less interesting than actual

news, but when analyzed en masse, they show how reuse occurred between different cities

and newspaper titles. They therefore show the bigger picture of text reuse in the 1800s.

CHAPTER 6. QUALITATIVE ANALYSIS 40

Figure 6.1: A map of Finland, where the amount of text reuse between two cities can be

seen.

This group overlaps with the other two groups, as sometimes certain advertisements or

announcements were viral or contained long term reuse.

Figure 6.1 shows a map of Finland, where I calculated from which cities reuses usu-

ally originated. In this example I focused on the clusters from the years 1880 to 1890.

Here I looked at the clusters one at a time, took the first occurrence of a reused passage

and used that as the origin location and used the rest as the destinations. The darker the

line is, the more text reuse took place between the cities in the given direction. From

the figure can be seen that the most relevant cities for communication are the main hubs,

Turku and Helsinki, but also some of the smaller ones, like Sortavala and Viipuri. Inter-

estingly some of the smaller cities shared reuses between each other as well, bypassing

the main communication hubs. These are most likely smaller scale advertisements that

had no need to appear in the southern cities.

CHAPTER 6. QUALITATIVE ANALYSIS 41

6.2 Long term text reuse

Due to the large time frame of the NLF dataset, clusters considered as long term reuse

can be found from the data. That is, they were either reprinted regularly for many years or

contained a long gap between two reprints. These clusters are the ones that are extremely

hard to find manually, as reading and remembering articles that have over a hundred years

between them is nearly impossible for a human. It therefore opens up new research ques-

tions and answers, e.g. what kind of news were reprinted after a century and why.

Example of this can be seen in Table 6.1, where the reprint dates of a patriotic song

can be seen. It was first published once in 1821 and then three times after a gap of 70

years. These kinds of clusters are not unheard of in the data, where a passage has been

reprinted after many years for different reasons, such as commemorating an event that

took place in the past, showing a slice of the past by reprinting what was printed several

decades before or even for political gain.

Cluster Date Title

639828 1821-03-03 Åbo Morgonblad

639828 1891-02-20 Nya Pressen

639828 1891-02-20 Folkwännen

639828 1891-02-21 Åbo Tidning

Table 6.1: Reprints of a patriotic song.

6.3 Viral news

The third group of text reuse are the viral news. According to a rough manual overview,

their amount increases rapidly after the Crimean War took place. (Vesanto et al., 2017a).

These clusters that achieved viralness are the ones that contained information that had to

CHAPTER 6. QUALITATIVE ANALYSIS 42

Place Date Title

Helsinki 1906-11-07 Uusmaalainen

Helsinki 1906-11-07 Helsingin Sanomat

Turku 1906-11-08 Uusi Aura

Helsinki 1906-11-08 Elämä

Tampere 1906-11-08 Tampereen Sanomat

Turku 1906-11-08 Sosialisti

Helsinki 1906-11-08 Uusi Suometar

Jyväskylä 1906-11-09 Suomalainen

Oulu 1906-11-09 Kaleva

Kuopio 1906-11-09 Pohjois-Savo

Tampere 1906-11-09 Kansan Lehti

Viipuri 1906-11-09 Karjala

Sortavala 1906-11-10 Laatokka

Heinola 1906-11-10 Heinolan Sanomat

Savonlinna 1906-11-10 Keski-Savo

Joensuu 1906-11-10 Karjalatar

Lahti 1906-11-11 Lahden Lehti

Kemi 1906-11-12 Pohjois-Suomi

Kristiina 1906-11-12 Etelä-Pohjanmaa

Lahti 1906-11-13 Lahti

Table 6.2: Reprints of a bank robbery news.

be quickly spread all along the country. They are therefore among the most interesting

clusters to observe from a scientific point of view.

Example of a viral news can be seen in Table 6.2. The article was printed 20 times,

all within a single week. The article was first published in Helsinki and the next day in

the two other main cities, Turku and Tampere. Then, in the span of 5 days, it circulated to

smaller and smaller cities.

The three categories of text reuse could also overlap. Long term reuse, for example,

might later on transform into viral texts. Commemorations for an event that took place

a century ago might be interesting to reprint in several papers, for example. Advertise-

CHAPTER 6. QUALITATIVE ANALYSIS 43

ments, while not actually spreading naturally like news due to their nature, can still seem

viral. High-end advertisements could be paid to be printed in many cities and titles within

a short time frame.

To further examine the most viral clusters, I need to automatically find them. Seeing

as many advertisements were quickly reprinted in many papers, mere reprint speed nor

the amount are sufficient enough to be able to tell whether an article is viral or not. To

that end, I calculate a virality measure for all of the clusters by focusing on three different

criteria from the cluster: the amount of different geographic locations, amount of differ-

ent newspaper titles as well as the time it took for the news to circulate. Therefore, the

equation used for the virality measure calculation is:

score =
unique locations

total unique locations
∗ unique titles

total unique titles
∗ 1

number of elapsed days
∗100 (6.1)

The equation thus ranks the cluster with a value between 0 and 100, where it penalizes

the score heavily if even one of the three components is too small. The motivator behind

this metric is that a viral piece of news should be spread all around the country, it should

appear in many different titles even inside the same city and it should circulate relatively

quickly. However, it is not unheard of for there to be an article that first went viral and was

reprinted in many locations to also be reprinted several days, even years, later in another

paper. The last reprint would then heavily penalize the score, thus skewing the results. To

remedy this, I look at all the reprints in the cluster and ignore in the scoring phase any

reprints that are clearly statistical outliers, using Tukey fences as the threshold.

The vast majority of the clusters, up to almost 97%, receive a below 1 viral score, i.e

CHAPTER 6. QUALITATIVE ANALYSIS 44

they are the opposite of a viral news. Naturally a lot of them are not even news, but

instead they can be advertisements, announcements, poems etc. However some of them

are actual news, but for a number of different reasons they did not gain the traction to

become viral. This could have been caused by many different factors, such as location,

importance, censorship at the time etc.

If the obviously non-viral clusters with score being smaller than one are ignored, there

is still a significant amount of real, viral clusters, even though the vast majority of the

clusters were not. This can be seen in the Figure 6.2. In total 470,896 clusters had viral

score bigger than 1.

Figure 6.2: The viralness score distribution of all clusters.

While a viral score of just over one is still relatively small and might still not be con-

CHAPTER 6. QUALITATIVE ANALYSIS 45

sidered as viral, clusters with significantly higher score can safely be considered as one.

For example, in the results, clusters with score just above 1 could achieve it by spreading

to 5 different unique locations and titles in a day, or to 8 different locations and to 10

different titles in 5 days. It can naturally be achieved with different combinations, but in

all of them the spreading is fairly tame. However, as one possible combination, a cluster

with viral score 50 already had to spread to 29 unique locations and 62 titles in 2 days.

This is clearly a sign of a viral news and not just an accident. From the whole dataset the

algorithm only found 81 clusters with a higher than 50 virality score. Setting a threshold

for viralness is thus a compromise between how many results one wants to find and how

viral the clusters have to be.

There exist clusters that receive a high virality score, where they appear everywhere simul-

taneously, having a time span of one day. One could argue that these might not actually

be viral clusters, but instead are coordinated messages that had to be shown everywhere

in the country, such as an important event or even a high-end advertisement. On the other

hand, these could be real, viral news, where other issues caused the low time span, such

as the algorithm missing the original passage that was printed earlier, or if the original

article did not even originate from newspapers.

As it stands, the viral score works well enough, though it is not a perfect calculation,

as it has some naive assumptions. For example, merely using the inverse of the elapsed

time forms a linear function. This means that a difference of 10 days means 10 times

worse viral score. This, however, does not accurately reflect the truth. In real life, espe-

cially in the 18th century, an article being reprinted again after a week could very well

be just as viral as one being reprinted in 4 days. Therefore using a linear function might

not properly reflect the reality. Using a different function, such as exponential decay in

the time span, could be more accurate. This would not penalize small differences in the

CHAPTER 6. QUALITATIVE ANALYSIS 46

beginning phase nearly as much.

7 Conclusion

In this thesis I propose a novel method of detecting text reuse from a noisy data, such as

OCR read (Optical Character Recognition) historical newspapers. The proposed method

achieves its new, state-of-the-art precision and recall by leveraging BLAST, an algorithm

designed for comparing and aligning biomedical sequences. I explain the BLAST al-

gorithm in depth by going through the algorithm step-by-step. I also explain two other

alignment methods that are used in this thesis. I propose a novel method of leveraging

BLAST to align natural language and show the different necessary steps for it to work. I

also demonstrate the caveats of this and provide a workaround for them.

I demonstrate the effectiveness of the text reuse detection algorithm by applying the

method to a dataset of over 3 million OCR read historical newspapers. I also compare

it to the previous state-of-the-art method and show that BLAST outperforms it by a mas-

sive margin. I verify the results of the tests by manually reading through them to make

sure they are not false positives.

I analyze the resulting clusters from applying the method to the dataset and categorize

them into three categories: every day reuse, long term reuse and viral news. I explain

the difference of these and provide examples of them. I also demonstrate a novel way of

calculating a virality measure for the clusters, which can then be used to rank the clusters

for observation.

CHAPTER 7. CONCLUSION 48

There are several issues that still require further work. The BLAST algorithm is a just

fit, but the readily available implementations of it make assumptions about the data. An

implementation of the algorithm that does not assume that the data consists of biomedical

sequences would be helpful, and for certain datasets, mandatory. As it stands, the method

is limited to 23 characters, which is not nearly enough for certain languages with a large

alphabet. Implementing a version that supports arbitrary alphabet would then allow the

whole text encoding process to be skipped.

The viral score measure works, but it could still be developed further. As it is, it does

not fully reflect the realistic viralness due to the linearity of the time span penalty. The

time span should be penalized in a non-linear fashion, by using a exponential decay, for

example.

In this thesis I categorize the clusters based on the cluster meta data, i.e. how fast they

spread and where. However, it would be helpful to classify the clusters based on the

content rather than the meta data. This would allow easier observation of just news, for

example. This, however, is not a straightforward task, as sometimes the content of the

cluster is short in length and may contain a lot of OCR noise. These together make it hard

for even a human to detect whether the content is advertisement, announcement, poem or

news.

In conclusion, bridging two different fields, in this thesis bioinformatics and natural lan-

guage processing, is clearly a viable solution to developing more robust software that can

beat the previous state-of-the-art. Having a method designed for another purpose does

not exclude it from being used for different purposes, as shown by the protein encoding

process of the BLAST text reuse algorithm. The fully open-sourced code for running the

CHAPTER 7. CONCLUSION 49

proposed method is documented and available at https://github.com/avjves/

textreuse-blast.

References

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local alignment

search tool. Journal of molecular biology, 215(3):403–410, 1990.

D. Bamman, M. Carney, J. Gillick, C. Hennesy, and V. Sridhar. Estimating the date of

first publication in a large-scale digital library. In 2017 ACM/IEEE Joint Conference

on Digital Libraries (JCDL), volume 00, pages 1–10, June 2017. doi: 10.1109/JCDL.

2017.7991569.

T. Batane. Turning to turnitin to fight plagiarism among university students. 13:1–12, 04

2010.

M. Bendersky and W. B. Croft. Finding text reuse on the web. In Proceedings of the

Second ACM International Conference on Web Search and Data Mining, WSDM ’09,

pages 262–271, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-390-7. doi:

10.1145/1498759.1498835.

D. T. Citron and P. Ginsparg. Patterns of text reuse in a scientific corpus. Proceedings

of the National Academy of Sciences, 112(1):25–30, 2015. ISSN 0027-8424. doi:

10.1073/pnas.1415135111.

P. Clough, R. Gaizauskas, S. S. L. Piao, and Y. Wilks. Meter: Measuring text reuse. In

Proceedings of the 40th Annual Meeting on Association for Computational Linguistics,

ACL ’02, pages 152–159, Stroudsburg, PA, USA, 2002. Association for Computational

Linguistics. doi: 10.3115/1073083.1073110.

REFERENCES 51

W. Commons. File:needleman-wunsch pairwise sequence alignment.png — wiki-

media commons, the free media repository, 2018a. URL https://commons.

wikimedia.org/w/index.php?title=File:Needleman-Wunsch_

pairwise_sequence_alignment.png&oldid=317728547. [Online;

accessed 15-December-2018].

W. Commons. File:smith-waterman-algorithm-example-step2.png —

wikimedia commons, the free media repository, 2018b. URL

https://upload.wikimedia.org/wikipedia/commons/2/28/

Smith-Waterman-Algorithm-Example-Step2.png. [Online; accessed

15-December-2018].

W. Commons. File:smith-waterman-algorithm-example-step3.png — wiki-

media commons, the free media repository, 2018c. URL https:

//upload.wikimedia.org/wikipedia/commons/e/e6/

Smith-Waterman-Algorithm-Example-Step3.png. [Online; accessed

15-December-2018].

S. R. Eddy. Where did the blosum62 alignment score matrix come from? Nature Biotech-

nology, 22:1035–1036, 2004.

T. Elsayed, J. Lin, and D. W. Oard. Pairwise document similarity in large collections with

mapreduce. In Proceedings of the 46th Annual Meeting of the Association for Compu-

tational Linguistics on Human Language Technologies: Short Papers, HLT-Short ’08,

pages 265–268, Stroudsburg, PA, USA, 2008. Association for Computational Linguis-

tics.

R. Gaizauskas, J. Foster, Y. Wilks, J. Arundel, P. Clough, and S. Piao. The meter corpus:

A corpus for analysing journalistic text reuse. In Proceedings of the Corpus Linguistics

2001 Conference, 01 2001.

REFERENCES 52

P. Gupta and P. Rosso. Text reuse with acl: (upward) trends. In Proceedings of the ACL-

2012 Special Workshop on Rediscovering 50 Years of Discoveries, ACL ’12, pages

76–82, Stroudsburg, PA, USA, 2012. Association for Computational Linguistics.

P. A. V. Hall and G. R. Dowling. Approximate string matching. ACM Comput. Surv., 12

(4):381–402, Dec. 1980. ISSN 0360-0300. doi: 10.1145/356827.356830.

A. Huang. Similarity measures for text document clustering. pages 49–56, 2008.

K. Kettunen and M. Koistinen. Re-ocr in action-using tesseract to re-ocr finnish fraktur

from 19 th and early 20 th century newspapers and journals. 04 2018.

K. Kettunen, T. Pääkkönen, and M. Koistinen. Between diachrony and synchrony: Evalu-

ation of lexical quality of a digitized historical finnish newspaper and journal collection

with morphological analyzers. In Baltic HLT, 2016.

J. Lee. A Computational Model of Text Reuse in Ancient Literary Texts. In Proceedings of

the 45th Annual Meeting of the Association of Computational Linguistics, pages 472–

479, Prague, Czech Republic, June 2007. Association for Computational Linguistics.

S. McGinnis and T. L. Madden. Blast: at the core of a powerful and diverse set of sequence

analysis tools. Nucleic Acids Res, 32:20–25, 2004.

D. Metzler, Y. Bernstein, W. B. Croft, A. Moffat, and J. Zobel. Similarity measures for

tracking information flow. In Proceedings of the 14th ACM International Conference

on Information and Knowledge Management, CIKM ’05, pages 517–524, New York,

NY, USA, 2005. ACM. ISBN 1-59593-140-6. doi: 10.1145/1099554.1099695.

D. W. Mount. Bioinformatics–sequence and genome analysis. CSHL, New York, pages

75–85, 2001.

S. B. Needleman and C. D. Wunsch. A general method applicable to the search for

REFERENCES 53

similarities in the amino acid sequence of two proteins. Journal of molecular biology,

48(3):443–453, 1970.

T. Pääkkönen, J. Kervinen, A. Nivala, K. Kettunen, and E. Mäkelä. Exporting Finnish

Digitized Historical Newspaper Contents for Offline Use. D-Lib Magazine, 22(7),

2016.

M. Potthast, B. Stein, A. Barrón-Cedeño, and P. Rosso. An evaluation framework for

plagiarism detection. 2:997–1005, 01 2010.

G. Salton and M. Lesk. Computer evaluation of indexing and text processing. Journal of

the ACM (JACM), 15(1):8–36, 1968. doi: 10.1145/321439.321441.

M. A. Sánchez-Pérez, G. Sidorov, and A. F. Gelbukh. A winning approach to text align-

ment for text reuse detection at pan 2014. In CLEF, 2014.

D. Smith, R. Cordell, and E. Maddock Dillon. Infectious texts: Modeling text reuse in

nineteenth-century newspapers. In 2013 IEEE International Conference on Big Data,

pages 86–94, Oct 2013. doi: 10.1109/BigData.2013.6691675.

D. A. Smith, R. Cordell, E. M. Dillon, N. Stramp, and J. Wilkerson. Detecting and

modeling local text reuse. In Proceedings of the 14th ACM/IEEE-CS Joint Conference

on Digital Libraries, pages 183–192. IEEE Press, 2014.

D. A. Smith, R. Cordell, and A. Mullen. Computational methods for uncovering reprinted

texts in antebellum newspapers. American Literary History, 27(3):E1–E15, 2015.

A. Vesanto, A. Nivala, H. Rantala, T. Salakoski, H. Salmi, and F. Ginter. Applying blast

to text reuse detection in finnish newspapers and journals, 1771-1910. In Proceedings

of the NoDaLiDa 2017 Workshop on Processing Historical Language, pages 54–58,

2017a.

REFERENCES 54

A. Vesanto, A. Nivala, T. Salakoski, H. Salmi, and F. Ginter. A system for identifying and

exploring text repetition in large historical document corpora. In Proceedings of the

21st Nordic Conference on Computational Linguistics, NoDaLiDa, 22-24 May 2017,

Gothenburg, Sweden, number 131, pages 330–333. Linköping University Electronic

Press, 2017b.

M. Waterman, T. Smith, and W. Beyer. Some biological sequence metrics. 1976.

Appendix A A System for Identifying

and Exploring Text Repetition in Large

Historical Document Corpora

Proceedings of the 21st Nordic Conference of Computational Linguistics, pages 330–333,
Gothenburg, Sweden, 23-24 May 2017. c©2017 Linköping University Electronic Press

A System for Identifying and Exploring Text Repetition
in Large Historical Document Corpora

Aleksi Vesanto,1 Asko Nivala,2,3 Tapio Salakoski,1 Hannu Salmi,2 and Filip Ginter1

1Turku NLP Group, Department of FT
2Cultural History

3Turku Institute for Advanced Studies
University of Turku, Finland

first.last@utu.fi

Abstract

We present a software for retrieving and
exploring duplicated text passages in low
quality OCR historical text corpora. The
system combines NCBI BLAST, a soft-
ware created for comparing and aligning
biological sequences, with the Solr search
and indexing engine, providing a web in-
terface to easily query and browse the
clusters of duplicated texts. We demon-
strate the system on a corpus of scanned
and OCR-recognized Finnish newspapers
and journals from years 1771 to 1910.

1 Introduction

The task of finding repeated passages from old
newspapers and magazines is relevant to the his-
torians who study the spread of news in time
and space. The underlying corpora – in our
case scanned and OCR-transcribed newspapers
and journals, some over 200 years old – pose a
number of technical challenges. Firstly, the size
of the corpora is large, in the millions of pages
range. And, more importantly, the text produced
using OCR is often of poor quality – sometimes
nearly unreadable as shown in Figures 1 and 2.
This makes the corpora inaccessible to commonly
used fast methods such as Passim (Smith et al.,
2014) which rely on identifying seed overlaps that
are several full words in length, a rare occurrence
in our data whose error rate has been estimated to
25-30% in terms of words, depending on period of
print (Kettunen et al., 2016).

In this demo, we present a system for identi-
fying text repetitions and forming their clusters
using BLAST (Altschul et al., 1990), a software
developed to compare and align biological se-
quences. To browse and search these clusters, we
index them using Solr, an open-source search en-
gine, and provide a web interface that is capable of

searching and visualizing these repeated text clus-
ters and their associated metadata.

We demonstrate the software and its web in-
terface on a corpus of OCR scanned old Finnish
newspapers and journals from years 1771 to 1910,
around 3 million pages in total.

2 Software Architecture

2.1 Data Preprocessing and Indexing

NCBI BLAST is built for fuzzy-aligning protein
and nucleotide sequences and querying massive
sequence databases. As such, it seems an ideal
tool for the task, but the assumption of working
with biological data is ubiquitous throughout the
BLAST codebase, and it cannot be easily used for
matching arbitrary alphabets. Therefore, to apply
BLAST in our setting, we need to first encode our
whole corpus into protein sequences composed of
an alphabet of 23 amino acids. As we are limited
by the number of distinct amino acids, we can only
map the 23 most common lowercase letters in our
corpus to distinct amino acids. We then lowercase
our corpus and replace all characters using this
mapping. Characters that do not have an equiv-
alent in our mapping are discarded – and naturally
restored later. This encoding also simultaneously
works as a preprocessing method, as the docu-
ments have a lot of noise in them in the form of ar-
bitrary characters and spaces. These characters are
not among the 23 most common letters, so they are
discarded in the encoding process. Interestingly,
although space is the most used character in the
corpus, we found that discarding spaces neverthe-
less makes the BLAST query process more than
twice as fast and the hits we find are also slightly
longer. Once encoded into protein sequences, the
documents are indexed using BLAST for a subse-
quent fast retrieval.

330

cru− i . _ , i , 1 i l and m a l f i l l y t o l i g i h t mndcr C ; , b a l n c r ; a s ; ! i i t ’ t f i n , t h e worHd , : , : i (t 1 i (t c \ ’ i ; ; i l a t i o c o n l t i i i i e
Cihr lC ’ t i i l i f ’ u l i f o l l i ’ t −’ a i n d f I r v a n t i i t c (/ . i i l i l c ’ s e n c l . An11e i l . T7 jeJZa / n l / t / h P / r i / ? / l J 9 ’ , iC J−e i n g now ,
d e a r l y h b e l ed bhrc− i . i h r c i , t h a t t h i s (Chi / i ! by Balp− ; 1 1 i r e . n e g n c i r a t e , ; l a n d g r a f t e d i n t o h i l e l : ; , dy o f C h r i t l t
’ s C h i l l r e h , l e t i i S i x e t h a n k l s u n to A l n i g h t y (, o d l : o r t h c l e b e l l n e i t s

c r u c i f i e d , and m l a n f u l l y t o f i g h t u n d l e r h i ; banne ! aigm~ n i t f i n , t h e v o r l d J , and t h e d e v i l ; an−d t o c o n t i n u o e C h r i f t ’ s f a ~
i t h f a l f o l d l i e r and f e r v i a n t un to h i s l i f e ’ s end . , Amlen . Theni j h ~ a l l t h e P r i e s 3 fay , S E EiIN~ G now . d e a r l y r b e l o v e d i

b r e i h r e n , t h t h i s h i i s by B a p t i f m r g n e a e a n r f t d i t t h e bod ly o f C h r i f i ~ s Chuirch , l e t us g i v e t h a ~ nks u n to A l m l i g h l t y God
f a t t h e i i e b e n e f i t s

Figure 1: A hit pair from a run with ECCO dataset. (OCR-scanned books from 18th century)

Multa t \ ä@tä f y N l k Ã Ď s i i i k c h t a l o s t u , c t , Äb o u i l Äs i , 3 wic ! l ä t i c i u n ’ t > t , mi t ä ä>« , » v a a l i i l u i f t t i i l o i s t a M,m< i ä
T s h i r a g a u i s s a , Âl’el ä f i : f ö f3 > i ’ ö i e t t ä u i U f a t f p ä im −u h k a i s i l o u i i H v i a r a t , m i i n t o fu ^ t i a a n i ’ f a t i f e f i − f u f f o t a i » lÃĎuja
THi r o i n i n , p u u t a r h a s s a j a , i p i c i ’ i l i t s i hwi ’ t t < i i ö i i fmmiamcrk ^ i U i j a anoo » » imi lyMla ,

Mutta t ä s t ä synk ä s t ä k o h t a l o s t a e i Äbbu l Äs i b » i e l ä t i e n n y t mi t ä än , vaan » i e t t i i l o i s t a e l ämä ä T s h i r a g a n i S s a . Sek ä s i s » S t ä « t t
ä u lk oa p ä i n u h k a s i v a t « a a r a t . mu t t a s u l t t a a n i k a t s e l i l u k k o t a i s t e l u j a T f h i i a a a n i n p u u t a r h a s s a j a p a l k i t s i v o i t t a j a n
l u n n i c n n e r l e i l l ä j a a rÂ ř v o n i m i t y k s i l l ä .

Figure 2: A hit pair from Finnish newspapers.

2.2 Clustering

Every document in the corpus, 3 million pages
in our case, is subsequently matched by BLAST
against the entire indexed collection – i.e. all pair-
wise comparisons are calculated. The matching
document pairs contain the starting and ending
offsets from each document, which we use to con-
nect and combine pairs that share a text passage
with a sufficient overlap. Because the matching
is fuzzy and the texts are very noisy, if the same
text passage is reused in a number of documents,
each of the identified document pairs will mark
a slightly different beginning and end of the pas-
sage. For instance, if a passage from a document
A is reused in documents B and C, the offsets in
A will be slightly different between the A-B and
A-C pairs. To deal with the problem, we calcu-
late consensus indexes that combine all passages
in one document from individual document pairs
that are close to each other – in our example the
two passages in A from the A-B and A-C pairs.
We do this by averaging the starting and ending
indexes of passages that overlap by at least 80%,
obtaining consensus passages.

After identifying all the distinct consensus pas-
sages for each document, we create a graph with
the consensus passages in individual documents as
nodes, and edges between corresponding passage
pairs. Subsequently, we extract all connected com-
ponents from the graph, providing us with an ini-
tial estimate of clusters of documents that share
a passage. The identification of passage clus-
ters through connected components in the graph
can be seen as a high recall method. A stray
edge – not uncommon in the noisy data – may

connect two otherwise disjoint clusters together.
To deal with this, we separate these clusters us-
ing community detection. To this end, we apply
the Louvain method (Blondel et al., 2008) which
identifies communities within the connected com-
ponents of the graph and we subdivide those
connected components that have several distinct,
highly-connected communities (subcomponents).
This removes the likely stray edges that were con-
necting them. After this subdivision, we obtain the
final clusters and the nodes within them are the re-
peated text passages we seek.

2.3 Finnish newspapers

We applied our system to old OCR-scanned
Finnish newspapers and journals from years 1771
to 1910, around 3 million pages in total. We
found nearly 8 million passage clusters containing
around 49 million repeating passages. We only
considered hits that are 300 characters or longer,
as the shorter hits would either be too fractioned
to be useful or they are just boilerplate text. The
most computationally intensive part of the pro-
cess is running the BLAST queries, which took
150,000 CPU-core hours. Clearly, a dataset of
this size requires an access to a cluster computer,
which is not surprising given the complexity in-
volved in fuzzy-matching 3 million pages of text
against each other. This computationally intensive
step however only needs to be performed once and
its results can be reused at a later point.

3 Web User Interface

For the user interface, we index our data with Solr.
More specifically, we index the data as nested doc-

331

References
Stephen F. Altschul, Warren Gish, Webb Miller, Eu-

gene W. Myers, and David J. Lipman. 1990. Basic
local alignment search tool. Journal of Molecular
Biology, 215(3):403–410, Oct.

Vincent D Blondel, Jean-Loup Guillaume, Renaud
Lambiotte, and Etienne Lefebvre. 2008. Fast un-
folding of communities in large networks. Journal
of Statistical Mechanics: Theory and Experiment,
2008(10):P10008.

Kimmo Kettunen, Tuula Pääkkönen, and Mika Koisti-
nen. 2016. Between diachrony and synchrony:
Evaluation of lexical quality of a digitized historical
finnish newspaper and journal collection with mor-
phological analyzers. In Baltic HLT.

David A. Smith, Ryan Cordell, Elizabeth Maddock
Dillon, Nick Stramp, and John Wilkerson. 2014.
Detecting and modeling local text reuse. In Pro-
ceedings of the 14th ACM/IEEE-CS Joint Confer-
ence on Digital Libraries, JCDL ’14, pages 183–
192, Piscataway, NJ, USA. IEEE Press.

333

Appendix B Applying BLAST to Text

Reuse Detection in Finnish Newspapers

and Journals, 1771–1910

Applying BLAST to Text Reuse Detection
in Finnish Newspapers and Journals, 1771–1910

Aleksi Vesanto
Turku NLP Group
Department of FT

University of Turku
aleksi.vesanto@utu.fi

Asko Nivala
Cultural History and

Turku Institute for Advanced Studies
University of Turku

asko.nivala@utu.fi

Heli Rantala
Cultural History

University of Turku
heli.rantala@utu.fi

Tapio Salakoski
Turku NLP Group
Department of FT

University of Turku
tapio.salakoski@utu.fi

Hannu Salmi
Cultural History

University of Turku
hannu.salmi@utu.fi

Filip Ginter
Turku NLP Group
Department of FT

University of Turku
filip.ginter@utu.fi

Abstract

We present the results of text reuse de-
tection, based on the corpus of scanned
and OCR-recognized Finnish newspapers
and journals from 1771 to 1910. Our
study draws on BLAST, a software cre-
ated for comparing and aligning biologi-
cal sequences. We show different types of
text reuse in this corpus, and also present
a comparison to the software Passim, de-
veloped at the Northeastern University in
Boston, for text reuse detection.

1 Introduction

The dataset of the National Library of Finland
(NLF) contains 1.95 million pages of digitized
historical newspapers and journals from 1771 to
1910. Approximately half of the content is in
Swedish, the other half in Finnish, although there
are also a few German and Russian papers in-
cluded (Pääkkönen et al., 2016). We aim to trace
the influential texts that were copied and recircu-
lated in Finnish newspapers and journals in this
time period. This is done by clustering the 1771–
1910 NLF corpus with a text reuse detection algo-
rithm. Our approach enables us to study the dis-
semination of news and other information and to
reconstruct the development of the newspaper net-
work as a part of Finnish public discourse: What
kinds of texts were widely shared? How fast did
they spread and what were the most important
nodes in the Finnish media network?

Our research project builds on a similar study

of nineteenth-century US newspapers by Ryan
Cordell, David A. Smith and their research group
(Cordell, 2015; Smith et al., 2015). However, in
contrast to the US press, the nineteenth- and early
twentieth-century Finnish newspapers were typi-
cally printed in the Fraktur typeface, which (to-
gether with other possible sources of noise) poses
unusual difficulties for Optical Character Recogni-
tion (Kettunen, 2016). To solve this problem, we
have developed a novel text reuse detection solu-
tion based on BLAST (Vesanto et al., 2017) that is
accurate and resistant to OCR mistakes and other
noise, making the text circulation and virality of
newspaper publicity in Finland a feasible research
question.

2 Detecting Text Reuse

In the nineteenth century, contemporaries saw
newspapers as reflections of modern culture.
Many phenomena were amplified by the increas-
ing power of the press, including urbanization,
consumerism, and business life. The changes in
transport technology led to more efficient distribu-
tion of information. Before 1880s, there was no
copyright agreement to regulate the free copying
of texts, which became a distinctive feature of the
press. To understand this process, it is essential to
analyze how texts were copied and reprinted.

In Finland, newspaper publishing started
slowly, the first paper being Tidningar Utgifne af
et Sällskap i Åbo in 1771. According to the NLF
metadata, in 1850 there were only ten papers and
six journals. A rapid upheaval occurred at the

Proceedings of the NoDaLiDa 2017 Workshop on Processing Historical Language 54

Multa t \ ä@tä f y N l k Ã Ď s i i i k c h t a l o s t u , c t , Äb o u i l Äs i , 3 wic ! l ä t i c i u n ’ t > t , mi t ä ä>« , » v a a l i i l u i f t t i i l o i s t a M,m< i ä
T s h i r a g a u i s s a , Âl’el ä f i : f ö f3 > i ’ ö i e t t ä u i U f a t f p ä im −u h k a i s i l o u i i H v i a r a t , m i i n t o fu ^ t i a a n i ’ f a t i f e f i − f u f f o t a i » lÃĎuja
THi r o i n i n , p u u t a r h a s s a j a , i p i c i ’ i l i t s i hwi ’ t t < i i ö i i fmmiamcrk ^ i U i j a anoo » » imi lyMla ,

Mutta t ä s t ä synk ä s t ä k o h t a l o s t a e i Äbbu l Äs i b » i e l ä t i e n n y t mi t ä än , vaan » i e t t i i l o i s t a e l ämä ä T s h i r a g a n i S s a . Sek ä s i s » S t ä « t t
ä u lk oa p ä i n u h k a s i v a t « a a r a t . mu t t a s u l t t a a n i k a t s e l i l u k k o t a i s t e l u j a T f h i i a a a n i n p u u t a r h a s s a j a p a l k i t s i v o i t t a j a n
l u n n i c n n e r l e i l l ä j a a rÂ ř v o n i m i t y k s i l l ä .

Figure 1: Example of how low the OCR quality can be. Both passages are identical in the original issues.

end of the century, resulting in 89 papers and 203
journals in 1900. The volume of the press was
thus very limited during the first half of the cen-
tury, which also means that text reuse was small-
scale. Towards the end of the period the situation
changed dramatically, offering more volume for
viral chains of reprints. These chains had different
origins: they were internal chains within the press,
translations from abroad, stories from books, tele-
grams, or official announcements. Therefore, text
reuse detection can shed essential light on how in-
formation flowed between centers within the coun-
try and how, in the end, Finnish press participated
in the global circulation of information.

The primary obstacle in detecting text reuse in
the NLF dataset is the poor OCR recognition rate,
as illustrated in Figure 1. This makes any ap-
proach which assumes exact seed overlaps of sev-
eral words in length infeasible, and calls for a
fuzzy matching method highly tolerant to noise.
To this end, we have applied BLAST (Altschul
et al., 1990), a sequence alignment software de-
veloped for fast matching of biological sequences
against very large sequence databases. The main
features of BLAST are speed and the ability to re-
trieve also distantly related sequences – which in
our case translates to the ability to withstand the
OCR noise present in the data. We index each
page of the NLF data as a sequence in BLAST,
translating the 23 most common lowercase letters
into the amino-acid sequences which BLAST is
hard-coded to handle, and subsequently matching
the pages in an all-against-all scenario, and post-
processing the results to recover the repeated text
segments. We choose not to describe the technical
details of the process in this paper, and rather focus
on the results obtained. The implementation will
be made available as open-source software and in
the following, we focus on presenting the main re-
sults in context of processing historical texts.

System % of text

BLAST 0.177

Passim (default) 0.057

Passim (optimized) 0.080

Table 1: Text reuse recall comparison of the
BLAST-based method relative to Passim with its
settings left at their default values, as well as opti-
mized to maximize recall.

3 Text Reuse Clusters – Quantitative
Analysis

In total, we found around 8 million clusters of re-
peated texts that have a total of 49 million occur-
rences (hits) longer than 300 characters. Note,
however, that some clusters refer to the same,
larger repeated news piece, in different lengths.
This is due to the fact that at times the OCR qual-
ity is too low, allowing only for a shorter hit to
be identified in some of the repetitions of an oth-
erwise larger text. Since the surrounding text of
a shorter hit is too dissimilar (which, after all, is
the very reason why only a shorter segment was
found), it is difficult to establish whether these
clusters can be safely merged. Therefore, the num-
ber of found hits does not necessarily fully corre-
spond to the number of unique text reuse.

3.1 BLAST evaluation

As there is not a feasible manner in which to di-
rectly estimate the recall of the system on this data,
we compare our system to Passim, a popular tool
for text reuse detection (Smith et al., 2014) used in
many similar studies previously, so as to establish
a relative comparison to the state-of-the-art. We
form a dataset of 2,000 randomly selected docu-
ments from the NLF corpus, apply both systems
to it, and for every document, we calculate the
fraction of its text that was identified as text reuse,
with a text length minimum set to 100. The results
are summarized in Table 1, and demonstrate a sub-
stantial recall gain of the BLAST-based method.

We can see that the BLAST-based method

Proceedings of the NoDaLiDa 2017 Workshop on Processing Historical Language 55

vastly outperforms Passim in terms of recall. In
order to establish that this gain in recall is not at
the expense of precision, we sample clusters both
randomly and at the very bottom of BLAST simi-
larity scores still acceptable for inclusion in the re-
sults and manually verify the proportion of those
that are true positives. The proportions are shown
in Table 2. The results naturally depend on the
length of the texts in the cluster, with shorter texts
less likely to be correct hits than the longer ones,
given a constant alignment score.

BLAST Passim

Range
Precision

random

Precision

low
Coverage Coverage

300 - 350 1.00 1.00 0.108 0.076

250 - 299 1.00 0.94 0.120 0.078

200 - 249 0.94 0.94 0.133 0.079

150 - 199 0.92 0.86 0.154 0.080

100 - 149 0.86 0.70 0.177 0.080

Table 2: The precision and coverage of the
BLAST method on 50 clusters of varying text hit
lengths, sampled randomly and at the lowest align-
ment scores acceptable.

To understand to what extent the hits identified
as text re-use are dissimilar, we randomly selected
1000 clusters which contain only two hits of at
least 300 characters in length. We then calculate
the pairwise character alignment between these
two hits and measure the proportion of matching
characters, i.e. not gaps nor misalignments. As
shown in Figure 2, the alignment values range
from around 99% down to as low as 40%, with
the bulk of the data in the 70–90% range. For the
most part, the repeated texts thus differ in 10–30%
of positions, but the difference can be as much as
60%. Partly, these are cases of e.g. advertisements
which differ only in numerical values, but partly
these are in fact fully identical texts with a mas-
sive OCR error rate.

The gain in recall comes at the expense of com-
pute time, with BLAST being about three orders of
magnitude slower than Passim. Applying BLAST
to the entire NLF dataset required around 150,000
CPU-core hours. This is certainly out of reach for
a single computer, but well within modern cluster
computing resources, especially since the histori-
cal text collection is static and the run only needs
to be carried out once.

Figure 2: The distribution of alignment scores
(horizontal axis) and the number of clusters out
of 1000 with the given alignment score (vertical
axis). Minimum text reuse length is 300.

4 Text Reuse Clusters – Qualitative
Analysis

Copying and reprinting texts from other newspa-
pers took three different forms, which is why we
need to differentiate between text reuse, long-term
reuse and virality. First, the majority of reprinted
clusters consists of advertisements and notices, of-
ficial announcements and ecclesiastical material.
Second, many clusters include old news items,
anecdotes, stories and poems that are suddenly
reprinted many decades – sometimes even a hun-
dred years – later. This second group is an ex-
ample of longitudinal text reuse. Finally, the third
group is viral news proper. The amount of viral
news increases towards the end of the nineteenth
century and these texts are often reprinted very
rapidly within a short time frame.

4.1 Advertisements and announcements

The first group of clusters, advertisements and an-
nouncements, might be interesting sources in their
own right for specific research questions. But
above all, the changes in their amount tell us a
lot about the scope of the public communication
network and its historical development year by
year even if we completely overlook the content
of shared texts. For instance, by importing all text
clusters as nodes and edges to a network analy-
sis software, one is able to produce visualizations
of the development of relationships between the
newspapers and show what were the most domi-
nating nodes in the network.

Proceedings of the NoDaLiDa 2017 Workshop on Processing Historical Language 56

4.2 Longitudinal text reuse

Because of the wide time frame of the NLF
dataset, long-term text reuse opens up an impor-
tant perspective on historical memory. For in-
stance, the Fennomans were an influential group
in the nineteenth-century publicity of the Grand
Duchy of Finland. The papers published around
the turn of the nineteenth century often reprinted
old articles and shorter quotations that supported
their cause. To give an example of this, the Ta-
ble 3 shows the reprints of a patriotic student song
“Ännu på tidens mörka vågor” that was probably
written by Gustaf Idestam (1802–1851) and first
printed in Åbo Morgonblad in 3 March 1821 –
a newspaper edited by the polemical Romanticist
author Adolf Ivar Ardwidsson (1791–1858). The
lyrics of the song were then reprinted three times
in 1891, crediting the Swedish humorous maga-
zine Söndags-Nisse as their source in addition to
Arwidsson’s paper. The song is also described in
Nya Pressen as the favourite anthem of the Turku
students before the introduction of “Vårt land”,
the later national anthem. We have found many
other similar examples that show the way in which
much earlier historical texts were reused for polit-
ical purposes, opening up an important research
question for the strategies of Finnish nationalism.

One example explicitly connected with the state
of the Finnish press is the closing down of Arwids-
son’s newspaper Åbo Morgonblad by the officials
in October 1821. The reasons for this act were
political since Arwidsson had been calling for the
wide freedom of the press in his paper. In the last
issue of Åbo Morgonblad Arwidsson published
the document on the official decision for the act.
In 1891, 70 years later, this text was reprinted by
five different newspapers. The first reprint was in
Åbo Tidningar (30 September 1891), which used
the censorship case of 1821 to discuss the state of
the press freedom in 1891 – the censorship law
was tightened in Autumn 1891. Other newspapers
continued this discussion by reprinting the docu-
ment from 1821 and also commenting the state of
the censorship in 1891. This way the reuse of old
news item offered a way to discuss and criticize
the situation of the press freedom in 1891.

4.3 Viral news

The third group of text reuse are the actual viral
news. According to our preliminary survey of the
clustered NLF newspaper corpus, their amount in-

Cluster Date Title
639828 1821-03-03 Åbo Morgonblad
639828 1891-02-20 Nya Pressen
639828 1891-02-20 Folkwännen
639828 1891-02-21 Åbo Tidning

Table 3: Reprints of a patriotic song.

creases rapidly after the The Crimean War (1853–
1856). For instance, a bank robbery in Helsinki
broke the news in 20 newspapers in 1906. This
item was disseminated very rapidly in the Finnish-
language press, as is shown in the Table 4. Only in
six days it traveled from the urban communication
hubs like Helsinki, Turku, Viipuri and Tampere to
smaller towns in Ostrobothnia, Savonia, Karelia
and Lapland. The viral chain served the need to
rapidly tell about a current incident, although this
happened without any particular plan, through the
existing network of newspapers.

The three categories of text reuse could also
overlap. Longitudinal chains, for example, might
later on transform into viral texts. Old sto-
ries or anecdotes could be reactivated after sev-
eral decades and reused in an infectious manner.
BLAST is effective in revealing these different
temporal rhythms of text reuse.

Place Date Title
Helsinki 1906-11-07 Uusmaalainen
Helsinki 1906-11-07 Helsingin Sanomat
Turku 1906-11-08 Uusi Aura
Helsinki 1906-11-08 Elämä
Tampere 1906-11-08 Tampereen Sanomat
Turku 1906-11-08 Sosialisti
Helsinki 1906-11-08 Uusi Suometar
Jyväskylä 1906-11-09 Suomalainen
Oulu 1906-11-09 Kaleva
Kuopio 1906-11-09 Pohjois-Savo
Tampere 1906-11-09 Kansan Lehti
Viipuri 1906-11-09 Karjala
Sortavala 1906-11-10 Laatokka
Heinola 1906-11-10 Heinolan Sanomat
Savonlinna 1906-11-10 Keski-Savo
Joensuu 1906-11-10 Karjalatar
Lahti 1906-11-11 Lahden Lehti
Kemi 1906-11-12 Pohjois-Suomi
Kristiina 1906-11-12 Etelä-Pohjanmaa
Lahti 1906-11-13 Lahti

Table 4: Reprints of a bank robbery news.

Proceedings of the NoDaLiDa 2017 Workshop on Processing Historical Language 57

5 Conclusion

We have presented the use of the BLAST method
to analyze text reuse in a massive corpus of his-
torical newpapers of poor OCR quality. We have
shown that, given sufficient computational power,
the method is capable of identifying reprinted text
passages that, due to OCR noise, may differ in
up to 60% characters when aligned. Analysis of
the clusters discovered by the method provides us
with new insights into the magnitude and differ-
ent types of text reuse, and reveals a number of
individual examples of historical interest. As a fu-
ture work, we will strive to develop a text classi-
fier of the different types and topics of text reuse to
be able to provide their quantitative analysis. The
software developed to carry out the study will be
made publicly available as open-source.

Acknowledgments

The work was supported by the research consor-
tium Computational History and the Transforma-
tion of Public Discourse in Finland, 1640-1910,
funded by the Academy of Finland. Computa-
tional resources were provided by CSC — IT Cen-
tre for Science, Espoo, Finland.

References
Stephen F. Altschul, Warren Gish, Webb Miller, Eu-

gene W. Myers, and David J. Lipman. 1990. Basic
local alignment search tool. Journal of Molecular
Biology, 215(3):403–410, Oct.

Ryan Cordell. 2015. Reprinting, Circulation, and the
Network Author in Antebellum Newspapers. Amer-
ican Literary History, 27(3):417–445.

Kimmo Kettunen. 2016. Keep, change or delete? set-
ting up a low resource ocr post-correction frame-
work for a digitized old finnish newspaper collec-
tion. In D. Calvanese, D. De Nart, and C. Tasso, ed-
itors, Digital Libraries on the Move. IRCDL 2015.
Communications in Computer and Information Sci-
ence, volume 612. Springer, Cham.

Tuula Pääkkönen, Jukka Kervinen, Asko Nivala,
Kimmo Kettunen, and Eetu Mäkelä. 2016. Export-
ing Finnish Digitized Historical Newspaper Con-
tents for Offline Use. D-Lib Magazine, 22(7).

David A. Smith, Ryan Cordell, Elizabeth Maddock
Dillon, Nick Stramp, and John Wilkerson. 2014.
Detecting and modeling local text reuse. In Pro-
ceedings of the 14th ACM/IEEE-CS Joint Confer-
ence on Digital Libraries, JCDL ’14, pages 183–
192, Piscataway, NJ, USA. IEEE Press.

David A. Smith, Ryan Cordell, and Abby Mullen.
2015. Computational Methods for Uncovering
Reprinted Texts in Antebellum Newspapers. Ameri-
can Literary History, 27(3):E1–E15.

Aleksi Vesanto, Asko Nivala, Tapio Salakoski, Hannu
Salmi, and Ginter Filip. 2017. A system for iden-
tifying and exploring text repetition in large histori-
cal document corpora. In Proceedings of NoDaLiDa
2017.

Proceedings of the NoDaLiDa 2017 Workshop on Processing Historical Language 58

