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Abstract 
 
ABSTRACT 
Prince Dadson 

Effect of Bariatric Surgery on Adipose Tissue Energy Metabolism in Type 2 Diabetes 
University of Turku, Faculty of Medicine, Clinical Physiology and Nuclear Medicine, Doctoral 
Programme in Clinical Research, Turku PET Centre, Turku, Finland.  
Obesity-related metabolic disturbances typically occur when the available energy exceeds the storage 
capacity of white adipose tissue (WAT), which can lead to ectopic lipid deposition, insulin resistance 
and type 2 diabetes. The re-discovery of the existence of energy consuming brown adipose tissue (BAT) 
in adult humans has ignited interest in finding novel approaches for BAT activation to be used for the 
treatment of obesity and diabetes. Currently, bariatric surgery procedures provide marked and sustained 
weight loss, and remission of diabetes in some severely obese patients. Energy metabolism in adipose 
tissue in the presence of obesity and diabetes, and the changes that occur after weight loss induced by 
surgery are largely understudied. The present work hypothesized that the WAT and BAT energy metab-
olism are different between obese and non-obese subjects, and also between obese with and without 
diabetes subgroups. Bariatric surgery improves adipose energy metabolism in severely obese patients 
independent of diabetes status. 

Here, severely obese patients, with a mean BMI of 40 kg/m², roughly half with diabetes, and age-
matched lean metabolically healthy controls, were studied with PET-CT and MRI to measure adipose 
tissue energy (glucose and fatty acid) metabolism, and blood flow distribution. The regional distribution 
of WAT; and the browning of supraclavicular BAT were also studied. White adipocyte size and numbers 
in biopsies were measured. Obese patients were studied before and at 6 months after surgery, and normal 
weight healthy controls studied once.  

When the obese patients were treated as a combined group, their blood flow distribution, glucose and 
fatty acid metabolism rates in WAT were significantly impaired compared to nonobese healthy control 
subjects. Blood flow, fatty acid or glucose uptake rates when expressed per expanded depot mass were 
higher in the obese group compared to controls. Fatty acid uptake per adipocyte was higher only for 
diabetic patients of the obese group compared to the controls. Excessive accumulation of WAT was a 
limiting factor with regards BAT fatty acid metabolism, or then the browning of adipose tissue in the 
supraclavicular depot. After surgery, adipose glucose uptake rates increased independent of diabetes 
status. Fatty acid and blood flow rates decreased significantly when expressed per depot size, and per 
adipocyte. However, the postsurgery depot glucose uptake rates were similar to values in the presurgery 
state. BAT lipid metabolism increased significantly with weight loss, and values were associated with 
decreased adiposity along with improved whole body insulin sensitivity. 

The current study highlights the negative impact of severe obesity and diabetes on adipose tissue energy 
metabolism, which appears to be partly due to expanded fat mass mediated by adipocyte hypertrophy or 
hyperplasia. Weight reduction with bariatric surgery improves adipose energy metabolism, and conse-
quently the overall metabolic health in obese individuals regardless of the presence of diabetes.  
 
Keywords: obesity, type 2 diabetes, positron emission tomography, white and brown  adipose tissue, 
energy metabolism, glucose, fatty acid, blood flow, bariatric surgery  
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TIIVISTELMÄ 
Prince Dadson 
Lihavuusleikkausen vaikutus rasvakudoksen energia-aineenvaihduntaan tyypin 2 diabe-
teksessa 
Turun yliopisto, Lääketieteellinen tiedekunta, Kliininen fysiologia ja isotooppilääketiede, Tu-
run kliininen tohtoriohjelma, PET-keskus, Turku, Suomi. 
Annales Universitatis Turkuensis, Medica-Odontologica, Turku, Suomi, 2019 
 

Lihavuuteen liittyvät aineenvaihduntahäiriöt tapahtyvat tyypillisesti, kun saatavilla oleva energiamäärä 
ylittää valkoisen rasvakudoksen varastointikyvyn. Tätä seuraa rasvan kertyminen muualle elimistöön, 
insuliiniresistenssi ja tyypin 2 diabetes. Energiaa kuluttavan ruskean rasvakudoksen löytyminen aikui-
silta ihmisiltä on synnyttänyt kiinnostuksen löytää tapoja ruskean rasvan aktivointiin lihavuuden ja dia-
beteksen hoitamiseksi. Lihavuusleikkaus tarjoaa tehokkaan keinon painon pitkäaikaiseen alentamiseen 
ja diabeteksen lievittämiseen. Rasvakudoksen energia-aineenvaihduntaa lihavuudessa, diabeteksessa ja 
leikkauksen aikaansaaman painonpudotuksen jälkeen on tutkittu vähän. Tämän työn hypoteesi oli, että 
valkoisen ja ruskean rasvakudoksen energia-aineenvaihdunta ovat erilaisia lihavilla ja ei-lihavilla hen-
kilöillä ja lihavilla diabetesta sairastavilla ja ei-diabeetikoilla. Lisäksi oletettiin että lihavuusleikkaus 
parantaa rasvakudoksen energia-aineenvaihduntaa diabetes-statuksesta riippumatta. 

Tässä työssä tutkittiin rasvakudoksen energia-aineenvaihduntaa ja verenkiertoa vaikeasti lihavilla poti-
lailla, joiden BMI oli 40 kg/m² ja noin puolella oli diabetes, ja samanikäisillä aineenvaihdunnan osalta 
terveiltä verrokeilta PET-TT- ja magneettikuvantamisella. Lisäksi tutkittiin valkoisen rasvakudoksen 
jakautumista elimistössä ja solisluun yläpuolisen ruskean rasvan esiintymistä. Valkoistern rasvasolujen 
kokoa ja määriä mitattiin kudosnäytteistä. Tutkimus suoritettiin lihavilla kahdesti, ennen lihavuusleik-
kausta ja kuusi kuukautta leikkauksen jälkeen. Verrokkihenkilöt tutkittiin yhden kerran. 

Valkoisen rasvakudoksen verenkierto sekä glukoosi- ja rasva-aineenvaihdunta olivat merkitsevästi häi-
riintyneet lihavilla tutkittavilla verrattuna terveisiin kontrollihenkilöihin. Rasvakudoksen verenvirtaus 
sekä glukoosin- ja rasvahappojen otto oli lihavilla suurempi rasvakudosten kokonaismassoihin nähden. 
Rasvahappojen otto yksittäistä rasvasolua kohti oli suurempi lihavilla diabeetikoillta verrattuna tervei-
siin kontrollihenkilöihin. Rasvahappojen otto solisluun yläpuoliseen rasvakudokseen oli alhaisempi li-
havilla tutkittavilla terveisiin verrattuna, mikä viittaa alhaisempaan ruskean rasvan suhteelliseen osuu-
teen valkoiseen rasvaan nähden. Leikkauksen jälkeen rasvakudosten glukoosinotto rasvakiloa kohden 
kasvoi sekä diabeetikoilla että ei-diabeetikoilla. Rasvahappojen otto ja verenvirtaus, mutta ei glukoo-
sinotto koko kudoksia ja yksittäistä rasvasolua kohden aleni leikkauksen jälkeen. Ruskean rasvakudok-
sen rasva-aineenvaihdunta kasvoi merkitsevästi painonpudotuksen yhteydessä ja kudoksen rasva-ai-
neeinvaihdunta liittyi vähentyneeseen lihavuuteen ja parantuneeseen koko kehon insuliiniherkkyyteen. 

Työn tuloksissa korostuvat vaikean lihavuuden ja diabeteksen aiheuttamat haitat rasvakudoksen aineen-
vaihduntaan. Näiden haittojen taustalla on todennäköisesti sekä rasvakudosten kokonaismassojen että 
yksittäisten rasvasolujen koon kasvu. Lihavuusleikkauksella saavutettava painonlasku parantaa rasva-
kudoksen energia-aineenvaihduntaa ja siten aineenvaihdunnan toimintaa kokonaisuutena riippumatta 
siitä onko henkilöillä diabetes tai ei. 
 
Avainsanat: lihavuus, tyypin 2 diabetes, positroniemissiotomografia, valkoinen ja ruskea rasvakudos, 
energia-aineenvaihdunta, glukoosi, rasvahappo, verenvirtaus, lihavuusleikkaus 
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1 INTRODUCTION 

Excessive deposition of white adipose tissue (WAT) through an increase in cell size (adi-
pocyte hypertrophy), and cell numbers (adipocyte hyperplasia) characterizes the develop-
ment of obesity (Spalding et al., 2008). The study of WAT biology has therefore attracted 
considerable research attention due to its pathophysiological role in the development of 
obesity-related metabolic abnormalities including type 2 diabetes (T2D) (World Health 
Organization, 2016). Body Mass Index [(BMI, expressed as weight in kilograms divided 
by the square of the height in meters (kg/m2)] is used to classify underweight (less than 
18.5 kg/m2), normal weight (18.5 - 24.9 kg/m2), overweight (25.0 - 29.9 kg/m2), obese 
(30.0 - 34.9 kg/m2) and severe obesity (35.0 - 39.9 kg/m2). A BMI greater than or equal to 
40.0 kg/m² (or greater than 36.0 kg/m², with an additional comorbid condition) is classified 
under morbid obesity (World Health Organization, 2016).  

Generally, WAT is grouped on the basis of its anatomical location, cellular composition, 
molecular markers, physiological functions, and clinical or prognostic features. Anatomi-
cally, subcutaneous adipose tissue (SAT) WAT is located beneath the skin and is predom-
inantly distributed in the back and anterior abdominal wall, gluteofemoral regions, with 
deposits in the facial regions (Bjorndal et al, 2011). The distribution and the depot size of 
SAT varies in the population on the basis of genetics, age and sensitivity to hormones and 
glucocorticoids (Bjorntorp, 1991). Functionally, SAT acts as a metabolic sink for the stor-
age of excess free fatty acids (FFA) and glycerol as triglycerides in their adipocytes during 
periods of excess energy intake with limited energy expenditure (Seale & Lazar, 2009).   

When the physiological storage capacity of SAT is reached, it is often compounded by the 
impaired proliferation and differentiation of adipocytes, and the storage of excess fatty ac-
ids are shifted to ectopic sites (Slawik & Vidal-Puig, 2007). Ectopic adipose tissue is de-
fined according to their location and their potential systemic or localized metabolic effects 
(Britton & Fox, 2011). Deposition of fat in the mesenteric and omental regions, generally 
referred to as visceral adipose tissue (VAT), exert the most profound systemic effects (Brit-
ton & Fox, 2011). Increasing VAT volume is associated with the infiltration by macro-
phages and other immune cells that impair adipocyte function and this may contributing to 
the development of insulin resistance and diabetes (Amano et al., 2014). Ectopic deposition 
of fat in both intrahepatic (Fabbrini et al., 2009) and intramuscular (Muoio, 2012), adipose 
tissue are also profoundly associated with insulin resistance and systemic metabolic disor-
ders. In contrast, adipose tissue with localized effects include tissue surrounding the heart 
(pericardial and epicardial), blood vessels (perivascular), coronary arteries (periarterial), 
which are found to be associated with incidence of cardiovascular events (Ding et al., 
2009). Likewise, increased amounts of cardiomyocellular lipid accumulation have been 
observed in individuals with impaired glucose tolerance, and in those with overt diabetes 
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(McGavock et al., 2007). Ectopic adipose accumulation in the renal sinuses compress the 
renal vasculature, which subsequently leads to renal injury and hypertension (Irazabal & 
Eirin, 2016). Furthermore, large infrapatellar fat pads (IFP) are located at the anterior of 
the knee joints can be found adjacent to the quadriceps and prefemoral fat pad bodies (Gal-
lagher, Tierney, Murray, & O'Brien, 2005). Cells in the IFP serve a localized source of pro-
inflammatory adipokines and cytokines, fibroblast growth factors, vascular endothelial 
growth factor, and inflammatory mediators such fatty acids, nitric oxide and prostaglandins 
(Chuckpaiwong, Charles, Kraus, Guilak, & Nunley, 2010; Ushiyama, Chano, Inoue, & 
Matsusue, 2003). Apart from the presence of fat pads in the knee, fat pads are also located 
in the shoulder (Vahlensieck, 2000) and elbow (Awaya et al., 2001) joints of the body. 

Brown adipose tissue (BAT) has long been known to be the main thermogenic tissue in 
newborn humans. However, in 2009, three independent research groups demonstrated that 
adult humans also have functional BAT, which is located in the cervical-supraclavicular 
region and which express an uncoupling protein 1 (UCP1) required for non-shivering ther-
mogenesis (Cypess et al., 2009; van Marken Lichtenbelt et al., 2009; Virtanen et al., 2009). 
Research shows that in addition to WAT there are also beige/“brite” (brown-in-white) cells, 
which possess the potential for a reversible switch between energy storage and expenditure, 
a process called “browning”. Under basal conditions beige cells perform energy storage 
role, they are however transformed to UCP1-expressing BAT-like cells upon cold exposure 
or β3-adrenergic stimulation (J. Wu, Cohen, & Spiegelman, 2013).  

Imaging using Positron Emission Tomography (PET) provides a three-dimensional nonin-
vasive approach for the quantification of metabolic activities of adipose tissue glucose 
(Virtanen et al., 2001), fatty acids (Hannukainen et al., 2010) and blood flow distribution 
(Virtanen et al., 2002) in WAT. PET imaging has also been used for the measurement of 
BAT metabolic activities (Orava et al., 2013; Virtanen et al., 2009). As evidence accumu-
lates suggesting the link between morbid obesity and dysfunctional WAT (Hoffstedt et al., 
2017) and BAT (Vijgen et al., 2012), bariatric surgery provides an efficacious method to 
achieve marked sustained weight loss, and improvements in T2D (Adams et al., 2012; 
Courcoulas et al., 2013; Salminen et al., 2018; Sjostrom et al., 2007). However, BAT and 
WAT-specific metabolism among the morbidly obese (some of whom expressed diabetes 
phenotype) and the changes that may occur after bariatric surgery has scarcely been stud-
ied. In the present series of studies, the PET imaging modality has been utilized for the 
assessment of WAT metabolism. Adipose tissue lipid content has been quantified from CT 
imaging and, and adipocyte size from biopsies. The goal was to assess the effect of surgery 
induced weight loss on adipose tissue metabolism and the association with improvements 
in overall metabolic health in morbidly obese patients. 

Review of the literature 
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2 REVIEW OF THE LITERATURE 

2.1 Developmental origin of adipocytes 

The primary roles of white adipocytes are energy storage, and the regulation of glucose 
and lipid metabolism, in addition to performing endocrine and paracrine functions 
(Sanchez-Gurmaches, Hung, & Guertin, 2016). Brown adipocytes have become a topical 
issue in metabolic research owing to its role in health and disease, and especially in regard 
to the possibility of harnessing its thermogenic properties for the treatment of obesity and 
diabetes. Therefore, understanding the developmental origins of adipocytes will provide 
the basis for the distribution patterns observed in human populations, particularly in obese 
and T2D populations. Moreover, the adipocyte origin could explain the metabolic profiles 
in different adipose tissue depots, and also identify precursor cells and the mechanisms, 
which prevent or promotes its expansion in excess or negative caloric balance. Studying 
the developmental origins could assist in re-engineering and manipulation of certain spe-
cific type of adipocytes (e.g. brown adipocytes) for anti-obesity and anti-diabetes thera-
peutic interventions.   

2.1.1 White adipocytes 

White adipocytes originate from adipocyte progenitor cells that arise from the mesenchy-
mal stem cells located in the stromal vascular fraction (Schulz et al., 2011) (Figure 1). 
These progenitor cells are also derived from fat-tissue endothelial cells and subsequently 
from pericytes due of their close connections to blood vessels (Tang et al., 2008; Tran et 
al., 2012). The differentiation of adipocytes is regulated by transcription factors such as 
peroxisome proliferator-activated receptor gamma (PPARγ) and members of the 
CCAAT/enhancer binding protein (C/EBP) family (Rosen, Walkey, Puigserver, & Spie-
gelman, 2000). Specifically, the transcription factors peroxisome proliferator-activated re-
ceptor gamma-2 (PPARγ2) and C/EBPα play pivotal roles in adipocyte gene expression 
profiles (Rosen et al., 2000). Additional transcription factors such as forkhead box protein 
O1 (Foxo1), Sterol regulatory element-binding transcription factor 1c (SREBP-1c) known 
for their roles in adipogenesis have been reported (Nakae et al., 2003). A fully mature white 
adipocyte is spherical and contains and larger unilocular lipid droplet (Parlee, Lentz, Mori, 
& MacDougald, 2014) in shape best suited for its function of storing lipid in the form of 
triglycerides (Lin & Farmer, 2016).  Most of the knowledge on the developmental origins 
of white adipocytes is derived from mouse models and cell line studies.   
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Figure 1. The cellular lineage showing the differentiation into brown, beige and white adipocytes (modi-
fied from mesenchyme stem cells; diagram from (Park, Kim, & Bae, 2014). Brown adipocyte share a com-
mon myogenic factor 5 (Myf5+) precursor with skeletal muscle and not with white adipocytes. The Myf5+ 
transforms into fully mature brown adipocytes by such factors as bone morphogenic protein 7 (BMP7), pe-
roxisome proliferator-activated receptor-γ (PPAY-γ) and CCAAT/enhancer-binding proteins (C/EBPs) with 
transcriptional co-regulator PR domain-containing 16 (PRDM16) and peroxisome proliferator activated re-
ceptor gamma coactivator 1 alpha (PGC-1α). White adipocytes are transformed into beige adipocytes by 
cold exposure α β-adrenergic agonist or a PPAR-γ agonist, adrenergic receptor (AR), fibroblast growth fac-
tor 21 (FGF21). 

2.1.2 Brown adipocytes  

Brown adipocytes are derived from myogenic factor 5 (Myf5)-positive progenitor, which 
is a cellular lineage similar to that of skeletal muscle (Seale & Lazar, 2009) (Figure 1). In 
rodents, BAT is located in the interscapular, sub-scapular, cervical and along the trunk and 
neck regions (Walden et al., 2012). In mice, the distribution of BAT can also be found 
around aorta and kidneys (Fitzgibbons et al., 2011). The BAT found in human neonates 
protects against cold exposure through a thermogenic process, and as such its formation 
and differentiation take place before birth. Brown preadipocytes isolated from interscapular 
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uncouple fuel oxidation from the synthesis of adenosine triphosphate (ATP) synthesis 
(Cannon & Nedergaard, 2004). The combination of the activities of PGC-1α, PPAR-γ and 
PPAR-α has been shown to regulate oxidative metabolism and mitochondrial biogenesis 
(Townsend & Tseng, 2012). Brown adipocytes have smaller diameters to those of WAT 
adipocytes (Rosenwald & Wolfrum, 2014), and are characterized by multilocular architec-
ture, high mitochondrial density and increased expression UCP1. Brown adipocytes are 
usually located in depots that are highly innervated and vascularized (W. Wang & Seale, 
2016).  

2.1.3 Beige adipocytes  

It has been known for a long time that UCP1-expressing adipocytes can be induced in 
animals (Cousin et al., 1992). Beige, also referred to as brite (brown-in-white) (Lazar, 
2008; Petrovic et al., 2010; Schulz et al., 2011) are multilocular UCP1-expressing adipo-
cytes with characteristics similar to classical brown adipocytes (Rosenwald & Wolfrum, 
2014). The embryonic origin and formation of beige cells is still unclear. Two models have 
been proposed to explain the origins of beige cells: one model states that adipocytes arise 
from the trans-differentiation of matured preexisting white adipocytes, the second model 
states that beige adipocytes arise de novo from distinct precursor cells (W. Wang & Seale, 
2016; J. Wu et al., 2012). In rodent studies, beige adipocytes arise predominantly from 
myf5-deficient lineage and are mainly located in the perigonadal and inguinal WAT, 
whereas beige adipocytes originating from myf5 positive lineage are found within the an-
terior and retroperitoneal WAT depots (Sanchez-Gurmaches et al., 2012; Seale et al., 
2008). Ongoing discussions and debates have attempted to distinguish classical BAT from 
beige fat (Park et al., 2014; Sidossis & Kajimura, 2015) on the basis of their development 
origin, cell size features, and the expression of specific type of transcriptomes (Giralt & 
Villarroya, 2013). Moreover, the two cell types possess differential response to hormonal 
stimuli or genetic manipulation (Bostrom et al., 2012; Harms & Seale, 2013). Brown adi-
pocytes minimally react to browning agents (Kalinovich, de Jong, Cannon, & Nedergaard, 
2017). It has been speculated that classical brown and beige adipocytes are not independent 
cell types because both cell types express UCP1 and share similar β-adrenergic receptor or 
intracellular cyclic AMP-dependent pathway that regulate thermogenic gene expression 
(Mulya & Kirwan, 2016; W. Wang & Seale, 2016; J. Wu et al., 2013) 
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2.2 Adipose tissue distribution and metabolic complications of obesity 

The metabolic characteristics that are exhibited by adipose tissue are based on the distribu-
tion (Arner, 2005), which varies considerably in the subject with respect to the physiolog-
ical state, sex, family (first-degree relatives), age, hormonal changes or in response to cer-
tain therapeutic interventions (Tchkonia et al., 2010). Obesity is characterized by depot 
specific enlargement of adipose tissue through adipocyte hyperplasia, hypertrophy or a 
combination of both processes (Sun, Kusminski, & Scherer, 2011). In vitro and in vivo 
studies indicate that adipocyte hypertrophy is one of the primary events that underlie the 
decline in insulin sensitivity in obese and in lean subjects (Chandalia et al., 2007; Hoffstedt 
et al., 2010).  In obese subjects, the adipose tissue is inundated with proinflammatory mark-
ers in varying degrees and phenotype abundance. Infiltration of macrophages into adipose 
tissue is a marked characteristic of the systemic metabolic derangements that are observed 
during obesity (Caer et al., 2017). Previous studies have shown that macrophages are the 
principal sources of biomolecules known to induce inflammation, fibrosis and insulin re-
sistance (Permana, Menge, & Reaven, 2006). Macrophages and adipocytes within the adi-
pose tissue interact in a paracrine fashion that leads to the release of proinflammatory adi-
pokines such as tumor necrosis factor alpha (TNF-α), monocyte chemoattractant protein 1 
(MCP-1), and a decreased production of anti-inflammatory adiponectin (Suganami, 
Nishida, & Ogawa, 2005). Macrophages are categorized into M1 phenotype known for its 
role in insulin resistance through the secretion of proinflammatory cytokines, and M2 mac-
rophages known for their insulin sensitizing role through the release of interleukins (IL)-4 
or IL-10 (Tateya, Kim, & Tamori, 2013). Elevation in levels of the proinflammatory mac-
rophage-derived cytokines such as IL-6 and -8 have been observed in patients with ex-
panded adipocytes (Chandalia et al., 2007). Various acute-phase proteins are known to un-
derlie the development of low-grade inflammation, impaired glucose tolerance and diabe-
tes. Notably, expressions of fibrinogen, orosomucoid, haptoglobin, and alpha-1-antitrypsin 
have been found to be strongly associated with the early onset of T2D (Schmidt et al., 
1999). C-reactive protein (CRP), an acute phase protein of hepatic origin, is synthesized 
mainly in hepatocytes in response to adipocytes-derived proinflammatory cytokines (Pepys 
& Hirschfield, 2003). Elevated levels of CRP have been described in individuals with dia-
betes, it is however not clear if CRP is upregulated in individuals expressing both obesity 
and diabetes (Lu et al., 2010). 
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2.2.1 Subcutaneous adipose tissue  

The SAT is distributed under the skin and constitute approximately 80 percent of total body 
fat. It is broadly classified into lower body fat (gluteal fat, subcutaneous femoral fat, and 
femoral intra- intermuscular fat), and upper-body subcutaneous fat (Tchkonia et al., 2010). 
The growth of SAT is not uniform. Under chronic excess caloric exposure, femoral SAT 
undergoes adipocyte hyperplasia, whereas abdominal SAT undergoes hypertrophy 
(Tchoukalova et al., 2008). On the whole, SAT appears to be immunologically, metaboli-
cally and mechanically protective because of its potential to expand outward without ana-
tomic constraint (Goossens & Blaak, 2015). SAT is specialized to provide long-term en-
ergy storage, and also acts as a sink for potentially lipotoxic fatty acids (Tchkonia et al., 
2013). It has been shown that the removal or loss of SAT through lipodystrophies or aging 
is heavily linked to low-grade systemic inflammation, lipotoxicity, and insulin resistance 
(Armstrong et al., 2014; Monteiro & Azevedo, 2010).  

In the abdominal region, the Scapa’s fascia separates the SAT into two depots: the areolar 
layer or the superficial region and the deep or the lamellar layer with different cell mor-
phology and functional characteristics (Sbarbati et al., 2010). The superficial region is                
located below the skin with tightly packed small fat lobules between fibrous septae, ar-
ranged perpendicularly to the skin. The deep depot comprises large fat lobules that are 
loosely packed within widely spaced vertical and oblique fibrous septae. The superficial 
SAT is widespread in the general body surface, whereas the deep SAT is concentrated in 
the abdominal region, along the hips, and the internal surface of the upper third of the thigh, 
knees and the posterior surface of the arm (Wan et al., 2014). The quantity of deep subcu-
taneous fat correlates with the accumulation of visceral fat (Kelley, Thaete, Troost, Huwe, 
& Goodpaster, 2000).  

2.2.2 Intra-abdominal adipose tissue 

The anatomical locations of intra-abdominal adipose tissue VAT, are located within the 
omental and mesenteric depots. Functionally, the mesenteric depot fat is metabolically, and 
morphologically distinct from omental fat (Caserta et al., 2001). Based on the 'portal theo-
ry', increasing amounts of FFAs and pro-inflammatory cytokines released from omental 
VAT into the portal vein directly end up in the liver thus, the development of hepatic insulin 
resistance and liver steatosis (Bjorntorp, 1990a). The mesenteric fat is the first depot to 
encounter lipids as they travel within chylomicrons from the gut through lymphatics to join 
the circulation at the thoracic duct and vena cava, bypassing the liver (Tchkonia et al., 
2013). Cellular composition, lipid synthesis and lipolysis and gene expression profiles are 
different between omental and mesenteric adipose tissue depots (Fried, Leibel, Edens, & 
Kral, 1993). Recent evidence suggests that mesenteric fat is an independent determinant of 
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cardio-metabolic complications in humans (Liu, Chan, Chan, Chan, & Chu, 2006). In 
adults with severe obesity, large omental depot adipocytes are more predictive of metabolic 
abnormalities than a larger abdominal SAT (Hoffstedt et al., 2010b). In general, visceral 
obesity in normal weight or moderately overweight individuals is strongly associated with 
insulin resistance, but in severe overall obesity, visceral obesity is a weak independent pre-
dictor (Stefan et al., 2008). 

2.2.3 Ectopic lipid deposition 

Ectopic fat is the accumulation of triglyceride droplets into cells of non-adipose tissues 
which more often than not, already contain small amounts of triglyceride (Lettner & Roden, 
2008). The adverse metabolic effects of ectopic lipid deposition is not solely attributable 
to the excess of lipids per se, but also to the influx of toxic lipid metabolites into metabol-
ically relevant structures such as the heart, liver, skeletal muscle, and kidneys (Snel et al., 
2012). In addition, the tissue/organ-specific insulin resistance associated with lipid depo-
sition is partly due to the insufficient production and release of cytokines and the decrease 
production and release of adipokines that are known for the regulation of immune cells, 
increased energy expenditure and insulin sensitizing properties (Lettner & Roden, 2008). 

2.2.3.1 Mediastinal adipose tissue 

Mediastinal adipose tissue is situated within the mediastinum, but outside the pericardium 
that encloses the heart, and accounts for a significant proportion of intra-thoracic adipose 
tissue (Rosito et al., 2008). Mediastinal fat depot has variously been referred to as compris-
ing the intra-thoracic, extra-pericardial and pericardial adipose tissues (Sicari et al., 2011; 
Sironi et al., 2012). Epicardial adipose tissue is located between the outer wall of the my-
ocardium and the visceral layer of the pericardium, whereas pericardial adipose tissue is 
located between the visceral and parietal pericardium (Iacobellis, Corradi, & Sharma, 
2005). Ectopic triglyceride accumulation in the epicardium and pericardium is a risk factor 
for cardiovascular diseases (Rabkin, 2007). The epicardial perivascular adipocytes of obese 
individuals exhibit reduced adipocytic differentiation, decreased production of anti-inflam-
matory adiponectin, and increased secretion of proinflammatory IL-6, -8, and MCP-1 
(Chatterjee et al., 2009; Fitzgibbons et al., 2011). Results from previous studies showed 
that the steady accumulation of epicardial adipose tissue is closely associated with meta-
bolic syndrome, visceral adiposity, and insulin resistance and increased fasting glucose 
(Iacobellis, Barbaro, & Gerstein, 2008). Interestingly, other studies have suggested that it 
is the increased volume of mediastinal, and not epicardial adipose tissue that is associated 
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with plasma triglycerol and CRP levels (Sironi et al., 2012; Tadros et al., 2010). Both the 
historical (Heaton, 1972), and the current and emerging evidence (Cypess et al., 2009; 
Nedergaard, Bengtsson, & Cannon, 2007; Saito et al., 2009), suggest that mediastinal adi-
pose tissue could contain cells with BAT-like characteristics. The mediastinal fat depot has 
been found to contain smaller multilocular lipid droplets that are rich in mitochondria, and 
exhibit more mRNA UCP-1 expression signature when compared to abdominal SAT 
(Cheung et al., 2013). 

2.2.3.2 Skeletal muscle lipid storage  

Lipid storage in the cytoplasm of skeletal muscles cells constitute the intramyocellular li-
pids (IMCL) (Kuhlmann et al., 2003). The IMCL is functionally different from intramus-
cular triglyceride (IMTG). IMCL are metabolically inert lipids that are contained in lipid 
droplets, and provides a potential substrate for skeletal muscle metabolism (Li, Xu, Zhang, 
Yi, & Cichello, 2015). Research shows that increased amounts of IMCL are associated 
with higher systemic fasting insulin and glucose, and total cholesterol levels, which is in-
dicative its involvement in the development of insulin resistance and T2D (Goodpaster et 
al., 2003). Previous studies suggest a strong correlation between IMCL and insulin re-
sistance in metabolically healthy, prediabetics or in diabetic individuals with or in the ab-
sence of obesity (Forouhi et al., 1999; Phillips et al., 1996). Individuals with T2Ds, in-
creased amounts of IMCL along with VAT have been suggested as significant predisposi-
tion factors for the development of obesity-induced metabolic derangements (Bjorndal et 
al., 2011). Advances in imaging modalities such as CT-radiodensity (Aubrey et al., 2014), 
have made it possible for noninvasive quantification and separation of IMCL and IMTG 
(Perseghin, Petersen, & Shulman, 2003). 

2.3 Adipose tissue metabolism in obesity and diabetes  

2.3.1 Glucose metabolism in adipose tissue  

Glucose is the predominant substrate for cellular metabolism in mammalian cells. The in-
flux of glucose is facilitated by the glucose transporter protein (GLUT) as the GLUT mol-
ecules are evenly distributed along the plasma membrane. The over-expression of the glu-
cose transporter isoform 4 (GLUT4) upon the administration of insulin is responsible for 
the elevated glucose uptake (GU) into the insulin sensitive adipose and by the skeletal 
muscle, and the associated clearance of glucose from the blood (Saltiel & Kahn, 2001). 
Research has demonstrated that the contribution of WAT to whole body glucose uptake is 
lower when it is compared to the GU in the skeletal muscle of metabolically healthy insulin 
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with plasma triglycerol and CRP levels (Sironi et al., 2012; Tadros et al., 2010). Both the 
historical (Heaton, 1972), and the current and emerging evidence (Cypess et al., 2009; 
Nedergaard, Bengtsson, & Cannon, 2007; Saito et al., 2009), suggest that mediastinal adi-
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flux of glucose is facilitated by the glucose transporter protein (GLUT) as the GLUT mol-
ecules are evenly distributed along the plasma membrane. The over-expression of the glu-
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sensitive individuals (DeFronzo, Gunnarsson, Bjorkman, Olsson, & Wahren, 1985). Early 
in vivo imaging studies suggest that impaired skeletal muscle glucose uptake, rather than 
adipose tissue, is more representative of the whole-body insulin-resistant state (Virtanen et 
al., 2002). Experimental studies with skeletal muscle insulin receptor knockout mice ex-
pressed decreased skeletal muscle GU, but recorded substantially higher adipose GU 
(Bruning et al., 1998). Mice with defective adipose glucose transporter systems exhibited 
reduced whole-body glucose uptake, and increased endogenous glucose production (Abel 
et al., 2001). Human studies found that adipose tissue GU when expressed as per kilogram 
of fat tissue was lower in obese and T2D patients when compared with non-obese lean 
insulin sensitive individuals (Virtanen et al., 2001). BAT is regarded as potential target for 
the prevention of obesity and T2D due to its capacity to use blood glucose as substrate for 
non-shivering thermogenesis upon exposure to cold conditions (Harms & Seale, 2013; 
Schulz & Tseng, 2013). Several preclinical studies indicate that obese diabetic mice have 
impaired BAT activities and hence reduced capacity for non-shivering thermogenesis 
(Trayhurn, 1979; Yoshioka, Yoshida, Wakabayashi, Nishioka, & Kondo, 1989). In clinical 
settings, age (Yoneshiro et al., 2011), obesity (Saito et al., 2009), and the presence of dia-
betes (Ouellet et al., 2011) have been shown to be negatively correlated with thermogenic 
activities of BAT.  

2.3.2 Fatty acids release and uptake in adipose tissue  

Adipocytes form WAT, which are specialized cell types that are capable of accommodating 
massive amount of lipids in the form of triacylglycerol (TAG). During periods of positive 
energy balance WAT releases FFAs into plasma (lipolysis) for use by other tissue in times 
of nutritional stress (Thompson, Lobo, & Bernlohr, 2010). Plasma long chain fatty acids 
(LCFA), derived from the hydrolysis of triglycerides in chylomicrons or very low density 
lipoprotein, are transported by the cell membrane of adipocytes via transportation across 
the plasma membrane of adipocytes (Berk & Stump, 1999). Membrane receptors respon-
sible for the transportation of FFAs are fatty acid translocase (e.g. FAT/CD36), long-chain 
fatty acyl coenzyme A (acyl-CoA) synthetases, and fatty acid transport proteins (FATP) 
(Karpe, Dickmann, & Frayn, 2011). Upper body WAT depots have efficient dietary fatty 
acid storage capacity than do lower body SAT depot in normal weighted individuals (Ro-
manski, Nelson, & Jensen, 2000). Women store a substantial amount of their systemic FFA 
in the gluteal-femoral region compared to men (Geer & Shen, 2009; Koutsari, Ali, Mundi, 
& Jensen, 2011), potentially disposing of excess dietary fat (Votruba & Jensen, 2006). The 
major fatty acid constituent of the lipid deposition in femoral SAT has been shown to be 
palmitoleic acid (C16H30O2) (Pinnick et al., 2012), which is known to improve metabolic 
markers that are impaired in obesity and diabetes (Nunes & Rafacho, 2017). Adipocytes in 
the BAT, LCFA serve as substrate for mitochondrial β-oxidation used for non-shivering 
thermogenesis (Bernlohr, Coe, & LiCata, 1999). Under negative energy balance, the re-
lease of FFA is mainly triggered by the stimulation of adipocytes with catecholamines, 
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which leads to the translocation of phosphorylated hormone sensitive lipases from the cy-
tosol to the surface of lipid droplets (Holm, Osterlund, Laurell, & Contreras, 2000). Upper-
body SAT accounts for the majority of the systemic FFAs and to a greater extent than 
lower-body SAT in both men and women under basal conditions (Jensen, 1995). Under 
similar conditions of fasting, femoral SAT contributes approximately one-fifth of plasma 
FFA release in normal weight adults (Jensen, 1995). Enlarged adipocytes possess a greater 
potential for lipolysis than small adipocytes, even when harvested from the same depot 
(Hoffstedt et al., 2010a). Fatty acid release without a corresponding uptake rate leads to 
lipotoxity, insulin resistance, which are hallmarks of T2D (Kelley, 2005).  

2.3.3 Adipose tissue blood flow  

The metabolic processes of adipose tissue require the appropriate fuel substrates such as 
glucose and fatty acids in addition to optimal blood flow (ATBF) (Green et al., 2008). 
Blood flow (Minokoshi et al., 2002) and metabolic products (Lewis, Uffelman, Szeto, 
Weller, & Steiner, 1995) provide the medium for the physiological interaction of adipo-
cytes with other metabolically active tissues (Sotornik et al., 2012). Typically, adipose tis-
sue is supplied with arterial blood and venous blood drains into the venous pool (Frayn & 
Karpe, 2014). The ATBF can vary under different physiological conditions it is lower in 
basal conditions compared to post oral glucose load, or after the ingestion or a mixed meal 
(Evans, Clark, & Frayn, 1999). Under basal conditions, changes in ATBF are mainly de-
pendent on effect of insulin through its activation of vasoactive compounds - vasodilatory 
endothelial nitric oxide (NO) and α2-adrenergic and angiotensin II (ANG II) for their vas-
oconstrictive roles. In the fed state ATBF is predominantly dependent on β-adrenergic 
stimulation (Sotornik et al., 2012). The distribution of ATBF is severely disturbed in obe-
sity-induced insulin resistance and T2D (Summers et al., 1996; Thorand et al., 2006). Re-
search shows that the oxidative stress that underlie obesity and adipose tissue inflamma-
tion, and insulin resistance severely affect the function of NO thereby, interfering with 
insulin-mediated vasodilation (Scherrer & Sartori, 1997). In obesity, the rates of adipocyte 
hypertrophy and expansion of adipose tissue mass far outpace the corresponding increase 
in capillary density and longer diffusion distances (Goossens et al., 2011), leading to insuf-
ficient blood supply to the adipocytes (Digirolamo & Esposito, 1975). Fasting ATBF is 
lower in obese individuals than in lean metabolically healthy individuals (Summers, Samra, 
Humphreys, Morris, & Frayn, 1996). The postprandial increment in abdominal and femoral 
adipose tissue blood flow (Romanski et al., 2000) is impaired in obesity (Summers et al., 
1996). Both fasting and postprandial blood flow is negatively correlated with measures of 
adiposity such as BMI (Summers et al., 1996) and abdominal adipose tissue mass (J. An-
dersson et al., 2012). Individuals with prediabetes or overt diabetes or normal weighted 
first-degree relatives of individuals with T2D expressed impaired fasting or postprandial 
adipose tissue blood flow (Summers et al., 1996). Under cold induction, copious amounts 
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of glucose and lipids are used as substrates for non-shivering thermogenesis by the dissi-
pation of mitochondrial proton gradient through UCP1. During this process, optimal blood 
flow is required for the delivery of oxygen and essential macronutrients and for the removal 
of metabolic products such as carbon dioxide and it also mediates the distribution of the 
generated warm blood into the systemic circulation (Cannon & Nedergaard, 2004). In obe-
sity, blood flow in BAT is severely blunted (Orava et al., 2013).  

Accumulating evidence from human studies indicates that basal or cold-induced BAT me-
tabolism is severely hampered in obesity and diabetes (Orava et al., 2013).  Animal studies 
involving the transplantation of BAT from healthy to high-fat diet-induced obese mice can 
reverse the obesity phenotype through the secretion of IL-6, and adiponectin (Zhu et al., 
2014). These results highlight the role of BAT stimulated energy expenditure as a possible 
target for the treatment of obesity and metabolic derangement through the utilization of 
systemic lipid (Bartelt et al., 2011) and glucose as substrates for BAT thermogenesis 
through the activation of UCP1 (Chondronikola et al., 2014). Furthermore, obese mice ex-
posed to cold conditions recorded significant decrement in body weight. Cold exposure is 
a known activator of BAT and the formation of beige adipocytes through the activation of 
the sympathetic nervous system to release noradrenaline that binds to β3-adrenergic recep-
tor that in turn upregulates the expression of UCP1 in BAT (Murano, Barbatelli, Giordano, 
& Cinti, 2009).    

2.4 Molecular imaging of adipose tissue  

Molecular imaging is a noninvasive visualization, characterization, and the measurement 
of biological processes such as physiological and pathological process in a living organism. 
The measurements that are used are at the cellular and molecular parameters of the living 
organism (Z. Y. Chen et al., 2014). Currently, the principal molecular imaging modalities 
available for clinical studies include PET, CT, and MRI (James & Gambhir, 2012). High 
quality molecular images require instruments with high resolution and high sensitivity that 
are capable of linking the imaging signal with the molecular mechanisms (Luo, Zhang, Su, 
Cheng, & Shi, 2011). Typically, this requirement is achieved with PET-CT and EPT-MRI 
hybrid scanners. Through molecular imaging, therapeutic response and diagnoses of dis-
ease can be detected before changes are observed at the anatomical levels (Z. Y. Chen et 
al., 2014). 
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2.4.1 Functional metabolic studies with PET  

Positron emission tomography is a quantitative tool that provides noninvasive acquisition 
of three-dimensional reconstruction of the distribution of the positron emitting radiotracers 
within living tissue (Bergmann, Herrero, Markham, Weinheimer, & Walsh, 1989). The first 
human adipose tissue validation studies were done in the Turku PET Centre (Virtanen et 
al., 2002).  PET provides a platform to study the biochemical and physiological processes 
in the human body (Yamamoto, Thompson, Diksic, Meyer, & Feindel, 1984), and detect 
the presence of disease through observable changes in tissue metabolism (Gordon, Flana-
gan, & Dehdashti, 1997). The determination of the underlying biological process in tissue 
involves analyzing the inputs (delivery of materials from the blood), and measuring the 
tissue response (metabolic process) (Shoghi & Gropler, 2015).  
 

   
Figure 2. A schematic diagram of annihilation in positron emission tomography showing the principles of 
β+ and e-  (low energy antimatter-matter annihilation) and the detection of the two resulting gamma photons 
at 511 KeV (Modified from (Cherry & Gambhir, 2001). 

2.4.1.1 Glucose uptake studies with PET  

Fluorine labeled FDG [2-deoxy-2-(18F) fluoro-D-glucose] is a glucose analog that is most 
commonly used in PET imaging. The “deoxy” part denotes a break off of a hydroxyl group 
from the glucose molecule. The subsequent attachment of [18F] tracer replaces the hydroxyl 
group (Ahmad Sarji, 2006). The radioactive FDG is transported across the cell membrane 
into the cells and where it phosphorylated intracellularly by the enzyme hexokinase to 
FDG-6-phosphate (FDG-6-P). FDG-6-P does not undergo further metabolism in the gly-
colysis pathway and therefore gets trapped in cells (e.g. skeletal muscle, adipose tissue) 
(Reinhardt et al., 1999). In a normal physiological state, FDG accumulation in cells is based 
on glucose uptake and phosphorylation. In quantitation of tissue glucose uptake, a correc-
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FDG-6-phosphate (FDG-6-P). FDG-6-P does not undergo further metabolism in the gly-
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tion factor known as the lumped constant is used to account for the differences in the met-
abolic rates between the physiological glucose and FDG (Peltoniemi et al., 2000; Virtanen 
et al., 2001). The measurement of the GU rate in human subcutaneous fat was validated at 
the Turku PET Centre in 2001 against Fick’s principle (Virtanen et al., 2001). In 2009, 
three independent groups confirmed the existence of cold-induced metabolically active 
BAT in adult humans using FDG in combination with PET imaging, two of those expressed 
results using semi-quantitative units counts (van Marken Lichtenbelt et al., 2009); or stand-
ardized uptake value (Cypess et al., 2009; van Marken Lichtenbelt et al., 2009; Virtanen et 
al., 2009). 

2.4.1.1.1 Whole body glucose metabolism with the clamp technique  

The clamp technique is the gold-standard method to assess insulin action on glucose utili-
zation in human and animal studies. This procedure involves raising the plasma insulin 
levels and maintaining at a plateau level of approximately 100µU/ml by the continuous 
infusion of insulin into the peripheral vein. The plasma glucose concentration is maintained 
at a constant basal rate by means of variable glucose infusion (DeFronzo et al., 1979). 
Under conditions of euglycemic-hyperinsulinemia, the glucose infusion rate plus the re-
lease of residual endogenous glucose equals the amount of glucose taken up by all tissues 
into the body and thus a measure of tissue sensitivity (DeFronzo et al., 1979).  

2.4.1.2 Measurement of adipose tissue fatty acid uptake 

White adipose tissue fatty acid uptake have been previously measured with 14(R, S)-[18F] 
Fluoro-6-thia-heptadecanoic acid (18F-FTHA) (Bucci et al., 2015; Hannukainen et al., 
2010). 18F-FTHA have also been used to quantify BAT NEFA uptake during acute cold 
exposure (Ouellet et al., 2012). Fluorine [18F]-labeled FTHA is LCFA-palmitate analog 
designed to undergo metabolic trapping following incomplete mitochondrial β-oxidation 
pathway. FTHA is β-oxidized to 12-[18F] fluoro-4-thia-2-pentadecanoyl-CoA and 12-[18F] 
fluoro-4-thia-3-hydroxy-pentadecenoyl-CoA within the mitochondrion (DeGrado, Coe-
nen, & Stocklin, 1991). Further β-oxidization of FTHA from the terminal end is blocked 
by the presence of the [18F] fluorine atom at carbon-14 (Knust, Kupfernagel, & Stocklin, 
1979) and the sulfur substitution at the sixth carbon of FTHA delays tissue clearance of the 
tracer (DeGrado et al., 1991).  The net accumulation of radioactivity in tissue is the net 
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uptake rate of LCFA, which is the sum of the rates of esterification and oxidation (DeGrado 
et al., 1991). 

2.4.1.3 Quantitation of adipose tissue blood flow distribution 

Oxygen-15 labeled water ([15O]H2O) is a freely diffusible and metabolically inert tracer 
and hence a perfect candidate for the assessment of tissue specific blood flow expressed in 
ml (blood) ml-1 (tissue) min-1 (Hermansen et al., 1998). The positron emitting [15O]H2O has 
several advantages for the measurement of tissue blood flow compared with tracers such 
as Nitrogen-13, ammonia or Rubidium-82 (Hermansen et al., 1998). The short half-life of 
oxygen-15 (t1/2 = 2.1 mins) allows the rapid evaluation of tissue blood flow with a minimum 
of ionizing radiation exposure to the subjects regardless of the changes in tissue metabolism 
(Bergmann et al., 1989). The blood flow capacity in SAT and VAT of WAT depots have 
been previously studied with [15O] H2O (Virtanen et al., 2002). Blood flow in the BAT of 
obese and lean subjects have been previously assessed using [15O]H2O (Orava et al., 2013). 

2.5 Quantification of adipose tissue volume 

Measurement of the distribution of adipose tissue has previously been performed using 
many methods including the following: anthropometry, hydrodensitometry, air-displace-
ment plethysmography, bioelectric impedance, and dual energy X-ray absorptiometry (Hu, 
Li, Nagy, Goran, & Nayak, 2011). A significant number of these methods measure body 
density of resistance, the values are then converted into mass using generalized equations 
(Jackson & Pollock, 1982). Most of these indirect methods cannot differentiate between 
subcutaneous and visceral, or intermuscular adipose tissue depots (Hu et al., 2011). Ad-
vances in imaging techniques such as MRI and CT, however, have made it possible for the 
absolute quantification and differentiation of specific adipose tissue depots such as visceral, 
subcutaneous and ectopic fat depots (Samara, Ventura, Alfadda, & Goran, 2012). 

2.5.1 Computed tomography imaging  

Computed tomography (CT) scans combine a series of a specialized X-ray images taken 
from different angles and uses computer processing to create a cross sectional images or 
slices test that produces non-cross-sectional images using X-rays and a computer (Allisy-
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Roberts P, 2008). CT uses X-rays that are collimated to provide a fan-shaped beam that is 
passed through the body while an array of detectors is positioned on the opposite side of 
the subject to detect the transmitted radiation. The X-ray source and detectors assembly are 
rotated, as a single unit, around the subject thus covering a full 360º circle comprising a 
series of arcs. At each degree of rotation, the transmitted intensity is recorded for each 
detector, which provides information about the internal structures along the beam path. The 
basic anatomic image is similar to that obtained from using MRI, except it contains addi-
tional information about the tissue’s true density at each pixel. This information coupled 
with the anatomical location of the pixel within the image can be used to identify it as 
adipose tissue, muscle, skin, visceral, or bone tissue. Earlier research shows that CT images 
can be used to separate the total adipose tissue mass into subcutaneous and visceral com-
ponents, or the lean tissue into skeletal muscle and visceral fat or organ mass (Ellis, 2000). 

2.5.2 Magnetic resonance imaging  

Magnetic resonance imaging (MRI) involves subjecting the body to a strong magnetic field 
(orders of magnitude greater than the earth’s fields), hydrogen protons (1H) will attempt to 
align with or against the magnetic field (Bibb P, Eggbeer D, Paterson A., 2015). The fre-
quency with which each element flips (relative to the direction of the constant magnetic 
field) is called the Larmor frequency. When radiofrequency energy, at the Larmor fre-
quency, is applied perpendicular to the direction of the magnetic field, the nuclei will ab-
sorb this energy and change the alignment. When the radiofrequency is turned off, the nu-
clei will lose their alignment and release the stored energy (Ellis, 2000). MRI is a widely 
used as a validated method for the quantification of VAT and SAT without the potential 
for ionizing radiation as typical of CT imaging (Abate, Burns, Peshock, Garg, & Grundy, 
1994). There are conflicting reports, and no standardized protocol for the quantification of 
the abdominal fat, since abdominal fat measurement by MRI at the site selected has high 
within-individual variations (Greenfield, Samaras, Chisholm, & Campbell, 2002). How-
ever, in image analysis, a single image, between the 4th and 5th lumbar vertebra, L4-L5, 
and close to the umbilicus has previously been selected as a more suitable representation 
of total abdominal SAT (Abate, Garg, Coleman, Grundy, & Peshock, 1997), and VAT 
(Shen et al., 2003) volumes, and have been used in the prediction of obesity-related meta-
bolic complications. Yet, other studies adopted fat depots between the 12th thoracic and 
L1 vertebrae (T12-L1) (Kuk, Church, Blair, & Ross, 2006), or between the L1-L2 and L3-
L4 as a more suitable surrogate for total intra-abdominal adipose tissue (Han, Kelly, Walsh, 
Greene, & Lean, 1997). 
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2.5.3 Adipose tissue triglyceride content  

The intensity of CT image expressed as Hounsfield units is related to the efficiency with 
which X-rays are attenuated as they traverse the volume element (voxel) in the human 
body, and are represented by the picture element (pixels) in the CT image (Razi, Niknami, 
& Alavi Ghazani, 2014). CT-radiodensity serves a surrogate marker of triglyceride content 
in WAT (Shah et al., 2016) and BAT (Lubura et al., 2012). 

2.6 Treatment of obesity and diabetes 

The classification of obesity as a chronic medical condition (Allison et al., 2008) has 
prompted considerable action for weight management strategies that involve both non-sur-
gical and surgical approaches (Boza et al., 2010; Kushner, 2014). Non-surgical interven-
tions include dietary approaches, pharmaceutical therapy, and lifestyle changes (Boza et 
al., 2010). Should the conventional non-surgical approach of weight management fail, cli-
nicians resort to surgery (bariatric surgery) for the treatment of severe obesity or patients 
presented with an obesity-related comorbidities such as T2D (Kushner, 2014).  

2.6.1 The non-surgical approach  

The non-surgical intervention with lifestyle intervention is mainly focused on making 
healthier dietary choices and participating in or increasing physical activities, all of which 
contribute at promoting negative energy balance in the overweight and or obese individual. 
Results from the Finnish Diabetes Prevention (Lindstrom et al., 2003) study involving a 
nonpharmacological approach of very-low-calorie dietary and increased physical activity 
interventions of individuals at higher risk of developing diabetes (impaired glucose toler-
ance) coupled with general dietary advice prevented or delayed the onset of diabetes 
(Lindstrom et al., 2003). The principal aim of diet-induced weight loss program is to 
achieve moderate weight loss (5% to 10% of the initial body weight) (Chaput et al., 2011). 
The main component of weight loss through dietary intervention is the overall reduction in 
the total caloric intake and not just the reductions in the macronutrient composition (car-
bohydrates, fat, and protein) in the diet (Sacks et al., 2001). The patient’s metabolic profile 
and risk factors greatly influences the type of dietary prescription (Blumenthal et al., 2010; 
Elmer et al., 2006; Nordmann et al., 2011; Sacks et al., 2001). In a larger clinical trial 
involving moderately obese individuals who were randomly assigned into three groups of 
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low-fat and Mediterranean-diet with restricted calories, or low-carbohydrates with unre-
stricted calories, the degree of weight loss, improvement in lipids, inflammatory and gly-
cemic profiles at six months after the intervention were similar among the various arms 
(Wood, Stefanick, Williams, & Haskell, 1991). In another large study, subjects that were 
followed after being randomly assigned to caloric-restricted, carbohydrate-restricted, and 
fat-restricted or macronutrient balanced diet recorded improvement in cardio-metabolic 
parameters independent of the assigned dietary type (Dansinger, Gleason, Griffith, Selker, 
& Schaefer, 2005). Moreover, both low-carb and low-fat diets have been found to achieved 
similar amounts of body weight loss at 12 months of follow-up (Gardner et al., 2018).  

The optimal weight and the associated metabolic benefits can be achieved when, a reduc-
tion in caloric intake could be complemented by physical activities and exercise regiments. 
Physical activities can be defined as by everyday activities (light to moderate in intensity) 
such as walking, gardening, climbing of stairs, primarily involving bodily movement with 
the intention to increase energy expenditure. Exercise is a specific form of physical activi-
ties involving a well-planned, regimented, structured and repetitive bodily movement pur-
posefully executed to enhance an aspect of physical fitness (Caspersen, Powell, & Chris-
tenson, 1985). Studies show that physical activities and structured exercise in improving 
cardio-metabolic functions in addition to weight loss (Swift, Johannsen, Lavie, Earnest, & 
Church, 2014). Exercise training programs have been shown to reduce cardiovascular risk 
factors including hyperglycemia, hypertriglyceridemia and improve levels of HDL 
(Katzmarzyk et al., 2003; Kelley & Goodpaster, 2001).  

Pharmacotherapy is recommended either for individuals with a BMI greater than or equal 
to 30 kg/m2, or for individuals with a BMI greater than or equal to 27 kg/m2 and also have 
obesity-related comorbidities (Samaranayake, Ong, Leung, & Cheung, 2012). Medications 
for obesity fall under two broad categories, anorexants and gastrointestinal fat blockers. 
The anorexants or appetite suppressing medications target noradrenergic, dopaminergic, 
and serotonergic systems in the hypothalamus (Haddock, Poston, Dill, Foreyt, & Ericsson, 
2002). The fat blockers are synthetic hydrogenated derivatives that inhibits pancreatic, gas-
tric, and carboxylester lipase and phospholipase A2, required for the synthesis of gastroin-
testinal dietary fat into fatty acids and monoacylglycerols (K. H. Lucas & Kaplan-Machlis, 
2001). These drugs, therefore, block the digestion and absorption of roughly 30 percent of 
dietary fat (K. H. Lucas & Kaplan-Machlis, 2001).  

The pharmacologic approach to glycemic treatment include the use of metformin, which 
increases liver glucose uptake and inhibit gluconeogenesis by activating adenosine mono-
phosphate-activated protein kinase in the liver (Viollet et al., 2012). Metformin is also 
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known to increase indirectly peripheral insulin sensitivity, and whole-body insulin sensi-
tivity while decreasing hepatic gluconeogenesis, which thereby delay the progression of 
T2D and associated complications (Viollet et al., 2012). Incretin-based therapies such the 
injectable glucagon-like peptide (GLP-1) receptor agonist (exenatide and liraglutide) stim-
ulate the secretion of insulin and inhibit the production of glucagon output depending on 
the availability of glucose. The GLP-1 receptor agonist also slows down gastric emptying 
and decreases appetite, which causes weight loss. The usage of GLP-1 agonists has been 
associated with improved glycemic control, a reduction in levels of fasting glucose and 
HbA1C (Nauck & Meier, 2016). The use of dipeptidyl peptidase (DPP-4) inhibitors in the 
treatment of T2D is primarily to prolong the activities of the endogenously produced in-
cretin hormones by preventing the inactivation of GLP-1 (Holst & Deacon, 1998). Treat-
ment with DPP-4 inhibitors have been shown to decrease postprandial systemic triglyceride 
in T2D patients. Sodium-glucose co-transporter (SGLT)-2 inhibitors work by blocking the 
reabsorption of glucose thereby facilitating glucose excretion in urine (Riser Taylor & Har-
ris, 2013). With the increasing excretion of glucose, the plasma level decreases leading to 
an improvement in all glycemic parameters (Riser Taylor & Harris, 2013). Treatments with 
SGLT-2 inhibitor empagliflozin has been shown to significantly decrease overall body fat, 
and the amounts of abdominal SAT and VAT depots (Ridderstrale et al., 2014). A random-
ized trial of diabetic patients at higher risk of cardiovascular events treated with an em-
pagliflozin resulted in a significant reduction in cardiovascular mortality compared to in-
dividuals in a placebo group (Zinman et al., 2015). Another study found that a SGLT-2 
inhibitor neither increased nor reduced cardiovascular events but decreased the cardiovas-
cular mortality of risk of hospitalization due to heart failure (Wiviott et al., 2018). The 
SGLT-2 inhibitors are associated with modest weight loss and improved cardiovascular 
outcomes (Riser Taylor & Harris, 2013). The mechanism of action of sulfonylureas involve 
binding to sulfonylureas-specific receptors on the β-pancreatic cells, blocking the inflow 
of potassium through ATP-sensitive channel (Sola et al., 2015). The cell membrane depo-
larizes, which allows the in-flow of calcium into the cytosol, which leads to increased in-
sulin production. Meglitinide binds to different sulfonylurea-specific receptor in pancreatic 
β-cells and hence has a weaker binding affinity and faster dissociation than sulfonylurea, 
which makes it easily to administer (Chaudhury et al., 2017). The mechanism of action of 
thiazolidinediones (TZDs) or glitazones including rosiglitazone and pioglitazone are me-
diated through the modulation of PPARs. Glitozones promote fatty acid uptake (FAU) and 
storage in adipose tissue thereby preventing ectopic lipid deposition and the associated tis-
sue lipotoxicity. The use of TZD has been associated with reduced production of inflam-
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known to increase indirectly peripheral insulin sensitivity, and whole-body insulin sensi-
tivity while decreasing hepatic gluconeogenesis, which thereby delay the progression of 
T2D and associated complications (Viollet et al., 2012). Incretin-based therapies such the 
injectable glucagon-like peptide (GLP-1) receptor agonist (exenatide and liraglutide) stim-
ulate the secretion of insulin and inhibit the production of glucagon output depending on 
the availability of glucose. The GLP-1 receptor agonist also slows down gastric emptying 
and decreases appetite, which causes weight loss. The usage of GLP-1 agonists has been 
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reabsorption of glucose thereby facilitating glucose excretion in urine (Riser Taylor & Har-
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SGLT-2 inhibitor empagliflozin has been shown to significantly decrease overall body fat, 
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ized trial of diabetic patients at higher risk of cardiovascular events treated with an em-
pagliflozin resulted in a significant reduction in cardiovascular mortality compared to in-
dividuals in a placebo group (Zinman et al., 2015). Another study found that a SGLT-2 
inhibitor neither increased nor reduced cardiovascular events but decreased the cardiovas-
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outcomes (Riser Taylor & Harris, 2013). The mechanism of action of sulfonylureas involve 
binding to sulfonylureas-specific receptors on the β-pancreatic cells, blocking the inflow 
of potassium through ATP-sensitive channel (Sola et al., 2015). The cell membrane depo-
larizes, which allows the in-flow of calcium into the cytosol, which leads to increased in-
sulin production. Meglitinide binds to different sulfonylurea-specific receptor in pancreatic 
β-cells and hence has a weaker binding affinity and faster dissociation than sulfonylurea, 
which makes it easily to administer (Chaudhury et al., 2017). The mechanism of action of 
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diated through the modulation of PPARs. Glitozones promote fatty acid uptake (FAU) and 
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matory cytokines, increased adiponectin levels leading to the preservation of β-cell integ-
rity and function. The use of rosiglitazone has been associated with serious side effects 
such as myocardial infarction (Rizos, Elisaf, Mikhailidis, & Liberopoulos, 2009). 

2.6.2 Bariatric surgical approach   

Over the recent past decades bariatric surgery (Greek word baros, meaning weight) has 
been the most preferred method for achieving marked and sustained weight loss in severely 
obese patients (Rubino et al., 2014). Bariatric surgery procedures are performed laparo-
scopically and hence there is less pain, shorter hospitalization, fewer wound infections, 
lower incidence of incisional hernias and faster return to normal activities (Olbers, Lonroth, 
Fagevik-Olsen, & Lundell, 2003). To be considered as a surgical candidate, patients should 
have either a BMI greater than or equal to 40 kg/m2 or a BMI greater than 35 kg/m2 but 
associated with significant obesity-related comorbidities such as diabetes, dyslipidemia, 
hypertension and cardiopulmonary disease (Kushner, 2014). Previously considered as 
weight loss surgery, proceeding series of research indicated that the benefits of bariatric 
extend beyond weight loss per se and include drastic improvement in favorable glycemic 
and lipid parameters, and a reduction in overall mortality (Adams et al., 2007; Sjostrom et 
al., 2007). Bariatric surgery is also termed metabolic surgery which broadly describes sur-
gical approach aimed at the treatment of metabolic derangements in addition to a reduction 
in weight. Bariatric surgery procedures are broadly categorized into restrictive (e.g. gastric 
banding, vertical banded gastroplasty and sleeve gastrectomy) (Karra, Yousseif, & Batter-
ham, 2010), mal-absorption (e.g. jejuno-ileal bypass, duodenal-jejunal bypass and bili-
opancreatic diversion) (Organ, Kessler, & Lane, 1984), or a hybrid of both restrictive and 
malabsorption procedures, e.g. roux-en-Y (RYGB) gastric bypass (Buchwald et al., 2009; 
Pories et al., 1995). For purposes of this research, emphasis will be placed on the sleeve 
gastrectomy and gastric bypass, and most commonly performed surgical procedures (An-
grisani et al., 2015; Miras & le Roux, 2013). 
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Figure 3. Laparoscopic sleeve gastrectomy [A] involves the removal of a larger portion of the stomach 
along the greater curvature leaving a “sleeve-like” portion; Roux-en-Y gastric bypass [B] involves the crea-
tion of small gastric pouch, the first part of the small intestine (the duodenum), food enters directly into the 
jejunum thus limiting the amount of calories absorbed (Modified from (Levine JW, Feng Z, Feng DP, Mel-
vin WV., 2017).  

2.6.2.1 Sleeve gastrectomy  

Sleeve gastrectomy is a stand-alone laparoscopic procedure in which a significant portion 
of the stomach, along the greater curvature, is removed leaving a tabularized or “sleeve-
like” stomach (Karra et al., 2010). This procedure is simpler to perform, has less malab-
sorption and reduced risk of ulceration because the procedure does not involve rerouting 
the intestinal tract (Karra et al., 2010). Patients feel less hungry, possibly owing to the 
removal of a large portion of stomach and less secretion of appetite stimulating hormones 
such as ghrelin (Zizzari, Longchamps, Epelbaum, & Bluet-Pajot, 2007). Gastric emptying 
is greatly enhanced after sleeve gastrectomy procedure (Braghetto et al., 2009). L-cells in 
the hindgut are more quickly exposed to the nutrients, which results in an increased post-
operative secretion of incretin hormone including peptide YY (PYY) levels (Karra et al., 
2010).   

2.6.2.2 Gastric bypass surgery 

Roux-en-Y gastric bypass is a surgical procedure for the treatment of severe obesity and 
related comorbidities. It is a gastric bypass procedure whereby a small gastric pouch is 
created by dividing the stomach with a stapler (Cummings, Overduin, & Foster-Schubert, 
2004). The division of the stomach starts midway from the lesser curvature and runs par-
allel to it. Further division, rearrangement and anastomosis of both stomach pouches leads 
to a Y-configuration. Nutrients are directed from the small stomach pouch through the 
Roux limb (Cummings et al., 2004). Changes in the eating habits as reported by Post-
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RYGB patients as a reduced appetite, reduced intake of energy-concentrated foods and the 
consumption of fewer calories, which could explain the more marked weight loss outcome 
compared to other bariatric surgery procedures (Cummings et al., 2004). Researchers have 
attributed the resolution of diabetes associated with RYGB to the “hindgut hypothesis” 
which postulates that the control of diabetes results from the increased delivery of incom-
pletely digested nutrients through the altered or shorter gastrointestinal tract, which in turn 
leads to an overstimulation of enteroendocrine L-cells. The L-cells produce glucagon-like 
peptide-1 (GLP-1), Gastric inhibitory polypeptide (GIP) and PYY, which tend to enhance 
insulin secretion and insulin sensitivity (Melissas et al., 2013). In addition, both GLP-1 and 
PYY exert anorexigenic effect of and are implicated in the weight loss associated with 
bariatric surgery (Karra et al., 2010). Post-bariatric surgery resolution of diabetes may in-
volve multi-organ interaction involving the brain, liver, pancreas, muscle and adipose tis-
sue (Pok & Lee, 2014) 

2.6.3 Bariatric surgery and white adipose tissue  

The most noticeable effect of bariatric surgery is the substantial decrease in adipose tissue 
mass along with an improved systemic metabolism over the short term (Galanakis et al., 
2015). Results from a meta-analysis shows that weight loss achieved by bariatric surgery 
persist over the long term (Golzarand, Toolabi, & Farid, 2017). However, a significant 
proportion of surgical patients experience long-term weight regain after surgery, with the 
greatest effects observed in superobese patients (Magro et al., 2008). Results on the effect 
of bariatric surgery on adipocyte size indicate that the SAT cells decrease in size after sur-
gery eventually nearing values similar to normal weighted controls subjects (Cancello et 
al., 2013).  The total number of subcutaneous adipocytes, remains unchanged after weight 
loss induced by bariatric surgery (D. P. Andersson et al., 2014). Marked reductions in adi-
pocyte size has been shown to correlate with improvement in insulin sensitivity 2 years 
after gastric bypass surgery (Martinez, Tucker, Bailey, & LeCheminant, 2017). Improve-
ment in diabetes risks was observed in post-RYGB patients with significantly reduced ad-
ipocyte size compared to patients with minimal or no improvements in their diabetes status 
(Ferrannini & Mingrone, 2009). The observable post-bariatric surgery change in adipocyte 
size contribute favorably to the improved adipose tissue function (Frikke-Schmidt, 
O'Rourke, Lumeng, Sandoval, & Seeley, 2016). The post-bariatric surgery reductions in 
obesity related comorbidities such as T2D and overall reduction in mortality is attributed 
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to the reduction in inflammation (Sams et al., 2016). Assessment of adipocyte size in bar-
iatric surgery studies are primarily restricted to SAT since obtaining VAT sampling in hu-
mans is limited and considered unethical after surgery. 

2.6.4 Bariatric surgery and brown adipose tissue     

Plasticity of brown or beige fat is a dominant characteristic of brown or beige fat (Enerback, 
2013; Gerhart-Hines et al., 2013; Kozak, Koza, Anunciado-Koza, Mendoza, & Newman, 
2012). The underlying factors for the activation and reduction of brown fat activities occur 
bidirectionally throughout the life of an individual (Enerback, 2013; Kozak et al., 2012). 
Brown fat is involved in energy metabolism (Virtanen et al., 2009) and triglyceride clear-
ance (Bartelt et al., 2011). However, the amount and/or activity of BAT in relation to whole 
body mass (expressed as BMI or percentage body fat) is substantially lower in obese com-
pared to nonobese subjects (van Marken Lichtenbelt et al., 2009). Low brown fat activity 
could also be an adaptive trait of obesity (Vijgen et al., 2012), suggesting that as a result of 
the decrease insulation associated, brown fat recruitment will be increased after changes in 
body composition such as weight loss (Vijgen et al., 2012).  

It has been previously shown in rodent studies that both SG and RYGB increased the vol-

ume and metabolic activities of BAT (Chen, Yang, Nie, Song, & Gu, 2018). A contributing 

factor attributed to the metabolic activities of BAT is circulating bile acids which have been 

shown to increase after SG and RYGB surgical procedures in both human and animal mod-

els (Kohli et al., 2013; Pournaras & le Roux, 2013).  Bile acids increase overall energy 

expenditure (Pournaras & le Roux, 2013; Werling et al., 2013) possibly through the acti-

vation of BAT in humans (Broeders et al., 2015). Using 18F-FDG-PET scans, Vijgen and 

associates demonstrated an increased brown/beige adipose tissue recruitment in obese 

adults one year after gastric banding surgical intervention, which were accompanied by a 

marked reduction in overall body weight (Vijgen et al., 2012). Earlier research showed that 

there is increase in brown and beige fat volumes and increased expression of brown fat 

biopsy-derived signature genes in the supraclavicular fat depot after gastric bypass surgery 

(Rachid et al., 2015). The underlying mechanisms for weight reduction-associated with 

activation or recruitment of brown/beige are the improvement in insulin action (C. P. Lucas 

et al., 1987; Ross, Freeman, Hudson, & Janssen, 2002; Umeda et al., 2011), adrenergic 
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stimulus (Champigny et al., 1991; Sidossis & Kajimura, 2015), stimulation of thyroid hor-

mone (Doniach, 1975; Sidossis & Kajimura, 2015), and fibroblast growth factor 21 

(FGF21) (Lee, Greenfield, Ho, & Fulham, 2010).    

 

 
 

Figure 4. A summary schematic diagram of the metabolic dysregulation associated with the hypertrophied 
adipocytes (modified from (Harford, Reynolds, McGillicuddy, & Roche, 2011; McArdle, Finucane, Con-
naughton, McMorrow, & Roche, 2013). As individuals progress to obesity status, the adipocytes hypertrophy 
and continuous cell death occur potentiating the release of chemoattractants such as MCP-1. Pro-inflamma-
tory mediators including IL-1, TNF-α and IL-6 are secreted by pre- and matured adipocytes, and coupled 
with the infiltration of immune cells results in the transition of macrophage polarization from M2 to M1 
phenotype. Levels of adipocyte derived leptin increase while adiponectin decrease.  Insulin signaling path-
ways and energy metabolism are severely disrupted with the increasing rate of lipolysis leading to insulin 
resistance. In lean insulin sensitive adipose tissue, the M2 macrophage phenotype predominates, fewer FFAs 
are released, and levels of adiponectin are significantly increased. 
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2.7 Summary review of the literature  

White and brown adipose tissue have diametrically opposing morphological, physiological, 

metabolic and functional characteristics. Brown adipocytes originates from myogenic fac-

tor 5 (Myf5), and the white from non-My5f progenitor lineage. Functionally, white adipo-

cytes are known to esterify fatty acids and store the products in the form of triglycerides. 

The enlargement of white fat through the increase in cell size (hypertrophy), and the pro-

liferation of numbers (hyperplasia) at certain sites are the main characteristic features of 

obesity. An expansion of white fat in visceral and intrathoracic depots that is greater than 

subcutaneous fat depots is implicated in the development of deleterious metabolic outcome 

such as insulin resistance and T2D. Brown or brown-like adipocytes, are specialized for 

thermogenic energy expenditure, and therefore capable of regulating systemic metabolism, 

and preventing obesity and diabetes. Although BAT was initially considered to be absent 

in adults, recently published investigations have shown that adult humans possess func-

tional BAT depot, which are symmetrically distributed in the supraclavicular region, and 

are known to have a role in energy homeostasis.  

In obesity, the energy metabolic rates in regard to lipids and glucose of both brown and 

white fat are severely affected, thus contributing to the manifestation of the abysmal met-

abolic health observed in obese individuals. The PET imaging modality provides a nonin-

vasive tool to study adipose tissue metabolism. Accessing the metabolic changes using the 

PET modality in adipose tissue of morbidly obese individuals with or without diabetes has 

not been thoroughly studied. Bariatric surgery is the preferred treatment for severe obesity. 

It achieves long lasting weight loss, restores glucose homeostasis, and improves lipid pro-

files, and ameliorate metabolic disorders including diabetes more than the conservative 

non-surgical intervention of exercise or dietary interventions. It remains unclear how bari-

atric surgery affects adipose tissue/adipocyte energy metabolism in severely obese individ-

uals.
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and preventing obesity and diabetes. Although BAT was initially considered to be absent 
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vasive tool to study adipose tissue metabolism. Accessing the metabolic changes using the 

PET modality in adipose tissue of morbidly obese individuals with or without diabetes has 
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3 AIMS OF THE PRESENT STUDY 

The purpose of this doctoral studies is to understand the status of adipose tissue energy 
metabolism in severe obesity, and also the changes in adipose tissue metabolism, which 
occur after weight loss induced by bariatric surgery. The study aims are contingent on the 
hypotheses that morbid obesity severely affects adipose tissue energy metabolism. Weight 
loss induced by surgery improves adipose tissue metabolism, which in turn, improves sys-
temic metabolism and overall metabolic health in severely obese patients.  

The specific objectives of the thesis are as follows: 

1. To investigate the effect of severe obesity and diabetes on WAT glucose metabo-
lism. Change in adipose tissue glucose metabolism after weight loss induced by 
surgery was also be studied (Study 1). 

2. To determine the effect severe obesity and diabetes on WAT and adipocyte-specific 
fatty acid metabolism and blood flow distributions. Alterations in fatty acid uptake 
and blood flow distribution which occur after weight loss induced by surgery was 
also studied (Study II). 

3. To study whether bariatric surgery induced weight alters intrathoracic adipose tis-
sue FFA uptake in morbidly obese individuals (Study III). 

4. To investigate the effect of severe obesity on supraclavicular BAT lipid metabo-
lism. The effect of weight loss following bariatric surgery on brown adipose tissue 
lipid metabolism was also determined (Study IV). 

The studies are hereafter referred to by their Roman numerals in this dissertation. 
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4 SUBJECTS AND STUDY DESIGNS 

4.1 Study subjects (Studies I-IV) 

The study participants for all four studies were 52 morbidly obese patients (5 males, 47 
females; 20 with and 32 without diabetes (Expert Committee on the Diagnosis and Classi-
fication of Diabetes Mellitus, 2003) whom were eligible for bariatric surgery and whom 
had been recruited from two larger prospective randomized control clinical trial studies 
[SleevePass (https://clinicaltrials.gov/ct2/show/NCT00793143)], and SleevePET2 
https://clinicaltrials.gov/ct2/show/NCT01373892] comparing sleeve gastrectomy and 
Roux-en-Y gastric bypass  for the treatment of morbid obesity (Salminen et al., 2018). 
Twenty-five (2 men and 23 women) age-matched with non-obese healthy volunteers re-
cruited through local newspaper advertisement served as controls. The eligible criteria for 
the obese group included age between 18 to 60 years, a BMI greater or equal 40 kg/m² 
alternatively a BMI greater than 35 kg/m² but with an additional obesity‐related high risk 
comorbidities (such as T2D or cardiovascular risk factors) and individuals for whom pre-
vious conservative attempt to achieve weight loss had failed. Patients were excluded from 
the study when they had one or more of the following: a BMI greater than 60 kg/m², a 
weight greater than 170 kg, a waist circumference more than 150 cm, suffered from eating 
or mental disorder, were chronic heavy drinkers, had diabetes (fasting glucose greater than 
7 mmol/L) requiring insulin treatment, were experiencing severe ulcus disease, were preg-
nant, and had past exposed to a radiation dose in the past.  

Inclusion criteria for the healthy controls subjects comprised age between 18 to 60 years, 
a BMI between 18.5 to 24.9/ kg/m², normal glycemic indices (a normal fasting glucose of 
6.1 mmol/L and a 2-hour oral glucose tolerance test (OGTT) value less than 7.8 mmol/L). 
The control subjects were excluded from the study when blood pressure measurement ex-
ceeded 140/90 mmHg, when subjects experienced chronic ailments or diagnoses of psy-
chopathologies, when there experienced debilitating injuries, when they were chronic al-
cohol users and had eating disorders or when they were pregnant. At the screening, medical 
history was taken, and physical examination, anthropometric, blood and oral glucose tol-
erance tests were performed after an overnight fast (12 hours).  

The obese individuals underwent a preoperative four-week very low calorie diet (VLCD) 
(Optifast 800; Nestlé HealthCare Nutrition GmbH, Frankfurt, Germany) of 1906 kJ (800 
kcal/day, including 70g of protein, 15g of fat and 100g of carbohydrates) including the 
recommended daily intake of various important vitamins, minerals and trace elements (Van 
Nieuwenhove et al., 2011). Twenty-two of the obese patients underwent sleeve gastrec-
tomy and 27 Roux-en-Y gastric bypass surgery. Three participants did not proceed to sur-
gery. The PET and MRI studies were repeated in the obese patients 6 months after the 
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bariatric surgical procedures. Of the 49 operated participants, 3 withdrew from the post-
operational studies for personal reasons. 

 

 

Table 1. Characteristics of studies  
 

 A summary of subject characteristics under the different study types; Subject number, N°; Tracer type including 2-deoxy-2-(18F) 
fluoro-D-glucose, [18F] FDG; 14(R, S)-[18F] fluoro-6-thia-heptadecanoic acid (FTHA); oxygen- 15 radiolabeled water, [15O]H2O 
PET tracers; Study I (SleevePASS/NCT00793143); Study II, IV (NCT01373892/SleevePET); Study III (NCT00793143/Sleeve-
PASS, NCT01373892/SleevePET). 

  
 

4.1.1 The aims and designs of the different studies 

4.1.1.1 Study I  

Aims: To measure adipose tissue GU in morbidly obese patients with and without diabetes 
and compare it to the GU in nonobese healthy controls and also measure changes in GU 
that occur before after bariatric surgery. 

Design and Methods: Adipose tissue GU in the thoracic and upper arm, abdominal and 
femoral regions was studied under fasting conditions and during euglycemic-hyperinsu-
linemic clamp using [18F] FDG as the tracer. In addition, glucose uptake in skeletal muscle 
was also measured (Figure 4).   

 Study I    Study II, IV Study III 
 Obese Controls Obese  Controls Obese Controls 
Subject N° 23 10 23 15 46 25 
Age (years) 46.5 ± 9.0 47.3 ± 6.0 42.8 ± 9.6 44.9 ± 12.6 49.9 ± 9.5 45.8 ± 10.2 
BMI (kg/m²) 43.1 ± 3.6 23.7 ± 1.8 41.2 ± 4.2 22.6 ± 2.8 42.1 ± 4.0 23.0 ± 2.5 
Female/male 20/3 8/2 23/0 15/0 42/2 23/2 
Diabetes (%) 64% (9/14) 0/10 77% (10/13) 0/15 64% (18/28) 0/25 

PET tracer(s)    [18F]FDG    [18F]FDG [18F]FTHA, 
[15O]H2O 

[18F]FTHA, 
[15O]H2O 

[18F]FTHA, 
[18F] FDG 

[18F]FTHA, 
[18F] FDG 

Surgery type       
SG 10  - 15 - 28 - 
RYGB 13  - 8 - 18 - 
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Figure 5. FDG PET studies were performed during fasting and during insulin stimulation (Clamp technique) 
with two-week interval. Obese patients were studied before and 6 months after surgery, non-obese controls 
were studied once, during the baseline. 

4.1.1.2 Study II 

Aims: To study basal adipose tissue fatty acid uptake and blood flow distribution in mor-
bidly obese patients with and without diabetes, and compare the results to nonobese con-
trols. Alterations in adipose tissue fatty acid uptake and blood flow in response to surgery 
are also studied.  

Design and Methods: Fatty acid uptake and blood flow were respectively measured using 
[18F] FTHA and [15O] H2O tracers under fasting conditions (Figure 5).    

 
Figure 6. Quantification of adipose tissue blood flow distribution with [15O] H2O, fatty acid metabolism 
studies with [18F] FTHA PET performed during fasting in 23 obese subjects studied before and 6 months 
after surgery, and 15 non-obese lean controls studied once.  
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4.1.1.3 Study III 

Aims: Fasting free fatty acid in the intrathoracic, abdominal subcutaneous and visceral ad-
ipose tissues are studied in obese patients with and without diabetes, and the results com-
pared with nonobese controls. Changes in tissue fatty acid uptake as a consequence of sur-
gery-induced weight loss are measured. 

Design and Methods: Fatty acid uptake was studied using [18F] FTHA during fasting (Fig-
ure 5). Obese were studied before and after surgery and controls studied once during base-
line.  

4.1.1.4 Study IV 

Aims: To study by comparing basal supraclavicular brown adipose tissue lipid metabolism 
between obese and controls. Changes in brown adipose tissue in obese in response to sur-
gery was also measured. 

Design and Methods: Supraclavicular adipose tissue fatty acid uptake was measured with 
[18F] FTHA, and triglyceride content [assessed with CT-radiodensity in (Hounsfield’s 
unit)]. Both measurements were performed under fasting conditions (Figure 5). 

4.2 PET imaging (Studies I-IV) 

4.2.1 Production of PET tracers 

Oxygen-15 radiolabeled water [15O] H2O (t1/2 = 122 seconds) was produced using the low-
energy deuteron accelerator Cyclone 3 (IBA International) and the diffusion membrane 
technique as previously described (Powell & O'Neil, 2006) (Study II). The production of 
[18 F] FTHA (t1/2 = 110 minutes) was performed as described previously (DeGrado et al., 
1991) (Study II). The synthesis of [18F] FDG is by electrophilic fluorination involving the 
use of the use of 3, 4, 6-tri-O-acetyl-D-glucal as precursor (Fowler & Ido, 2002). 

4.3 Acquisition of PET (Studies I-IV) 

PET imaging was performed after an overnight fast. Consumption of alcohol or caffeinated 
products was withheld for 24 hours before the metabolic PET studies. Subjects were ad-
vised to abstain from strenuous exercises for 48 hours. All antidiabetic and antihyperten-
sive medication were withheld 72 hours before the onset of the PET studies.  
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4.3.1 Adipose tissue glucose uptake (Study I) 

Adipose tissue GU studies were performed under basal conditions and during hyperinsu-
linemic-euglycemic clamp (DeFronzo, Tobin, & Andres, 1979) on separate days 14 days 
apart using the advance GE PET camera (General Electric Medica Systems, Milwaukee, 
WI) (Figure 4). A transmission scan of 5 min was performed with a pair of pin sources 
containing Germanium-68 before the emission scan to correct for the tissue attenuation of 
the gamma photons (Study I). The study participants lay in the supine position during the 
scanning process. Two catheters, one for each arm, were inserted into antecubital vein of 
the arm. One catheter was for the infusion of glucose and insulin, and also for administra-
tion of radiopharmaceutical tracers. The contralateral catheter was for arterialized blood 
sampling. During the clamp study, insulin was infused at a prime dose of 40 mU/m2/min 
(Actrapid; Novo Nordisk, Copenhagen, Denmark). Simultaneously, plasma glucose was 
constantly collected and measured (every 5 minutes), and maintained at a basal level of 
(5.0 ± 0.5 mmol/L) with an infusion of 20% glucose during the study. After 90 ± 10 minutes 
when the study stage is achieved, a venous injection of a bolus (187 ± 9 MBq) of [18F] FDG 
over a period of 15 seconds. Sixty minutes after injection, dynamic PET scanning of the 
myocardial/thoracic region started (5×180s frames), followed by the abdominal region at 
80 mins (5×180s frames) and the femoral region at 100 mins (3×300s frames). Collection 
of blood samples occurred throughput the PET scanning process for analysis of plasma 
radioactivity with automatic γ counter (Wizard 1480; Wallac, Turku, Finland), glucose, 
insulin and FFA levels.  

4.3.2 Adipose tissue fatty acid uptake and blood flow distribution (Studies II, IV) 

 
Assessments of the uptake of LCFAs, and the blood flow distribution in adipose tissue 
were performed during fasting. The acquisition of PET images was performed using a hy-
brid PET/CT scanner Discovery and Discovery VCT (General Electric Medica Systems, 
Milwaukee, WI). Attenuation correction was carried out by means of transmission com-
puted tomography before the PET transmission scans commenced (C. Wu, Gratama van 
Andel, Laverman, Boerman, & Beekman, 2013) (Figure 5). After an overnight fast, ab-
dominal adipose tissue blood was assessed with an intravenous injection of 15O-labeled 
tracer (554 ± 124 MBq) followed by a dynamic PET scan (26 frames, 310 seconds) 
(Kudomi et al., 2009). After 10 mins, there was an intravenous bolus injection of 18F-FTHA 
(185 ± 46 MBq) after which the dynamic PET was resumed. The measurement of supra-
clavicular and myocardial (including the pericardial fat) fatty acid uptake started 68 ± 2.7 
mins after [18F] FTHA injection (185 ± 46 MBq) for 15 mins (5 frames × 180s). Dynamic 
PET acquisition continued in the abdominal region for 15 mins (5 frames × 180 secs), 
followed by a one-frame static scan of the femoral region (Honka et al., 2015). During the 
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PET acquisition continued in the abdominal region for 15 mins (5 frames × 180 secs), 
followed by a one-frame static scan of the femoral region (Honka et al., 2015). During the 

31001586_Thesis_Prince_Dadson_Faculty_of_Medicine_sisus_1701.indd   43 17.1.2019   10.14



Subjects and study designs 
 

44 
 

entire scanning process, blood samples were frequently obtained to measure plasma glu-
cose, insulin, and FFA concentrations, and serum radioactivity levels. Blood pressure 
measurements and the well-being of the subjects were constantly monitored.  

4.4 Measurement of adipose tissue volume (Studies I-IV) 

Body fat percentage was assessed by bioelectric impedance (Omron Model HBF400) as 
previously described (Immonen et al., 2014). MRI image acquisition was performed with 
1.5 Tesla system (Intera, Philips Medical Systems, Best, the, Netherlands). Whole body 
T1W FFE images of the thoracic, abdominal, and femoral regions were obtained under 
basal conditions for the analysis of adipose tissue volume (Abate et al., 1997), and as an 
anatomical reference for PET images (Studies I and III).  MRI was performed before the 
administration of the VLCD in obese patients, and the measurements were repeated 6 
months after the bariatric surgical intervention (Studies I-IV). MRI exclusion criteria one 
or more of the following: weight in excess of 200 kg, the presence of pacemaker, inner ear 
implants or ferromagnetic objects in the body. SliceOmatic software (Tomovision, Magog, 
Canada) version 4.3 (downloadable at http://www.tomovision.com/index.html) was used 
for the quantification of adipose tissue volume (mm3). The ‘Region Growing’ mode with 
the ‘Grow 2D’ and ‘Paint’ tools were used in adipose tissue volume (mm3) in the humeral, 
thoracic, abdominal and femoral adipose tissue depots (Studies I-II). Abdominal adipose 
tissue was further divided into deep and superficial SAT, intraperitoneal and extraperito-
neal VAT (Figure 7 A, B) (Study I). Volumes were converted to mass assuming a tissue 
density of 0.9196 kg/L (Abate et al., 1994) (Study I). 

 

 

Figure 7. MRI of the subdivision of abdominal adipose tissue depot. On the trans-axial planes, abdominal 
SAT depots were divided into anterior and posterior regions as previously described [A, B] (He, Engelson, 
& Kotler, 2005; Ross et al., 2002) and the visceral adipose region was further divided into the intraperitoneal 
(brown) and extraperitoneal (yellow) regions with specific anatomical reference (Abate et al., 1994; Abate et 
al., 1997) [B]; the white arrows [A] indicate the Scapa’s fascia separating the abdominal subcutaneous adi-
pose tissue into deep (red) and superficial (green), and anterior regions (purple) [B]. 

4.5 PET image preparation and analysis (Studies I-IV) 

PET images were reconstructed in a 256×256 matrix after correction for decay time, dead 
time, and photon attenuation.  
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4.5.1 Regions-of-interest for adipose tissue and skeletal muscle (I-IV) 

PET images analyses were performed using Carimas v.2.9 (easily and freely downloadable 
at http://turkupetcentre.fi/). PET-MRI (Study I), PET-CT images (Studies II-IV) were co-
registered using the normalized mutual information (Hill, Maurer, Studholme, Fitzpatrick, 
& Hawkes, 1998). To obtain the time activities curves (TAC) (expressed as average radio-
activity per tissue volume as function of time), ROIs were manually drawn in the thoracic, 
abdominal, and femoral adipose tissue compartments while avoiding bone, muscle, and 
skin and in the latissimus dorsi skeletal muscles without intermuscular adipose tissue (Stud-
ies I-II). ROIs were drawn on the supraclavicular BAT taking into cognizance the under-
lying CT-radiodensity between -250 and -50 HU (Figure 6) (Study IV). The input func-
tions, representing the delivery of tracer to tissue, were obtained by, i) analysis of blood 
samples obtained during the scanning process, and ii) from PET images by ROIs drawn in 
the mid-section of the abdominal aorta whilst avoiding the vascular wall (Bentourkia & 
Zaidi, 2007). 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. ROIs were symmetrically drawn in the supraclavicular fat depot taking into account the underly-
ing CT-radiodensity (U Din et al., 2016).  

4.5.2 Calculation of tissue-specific metabolism (Studies 1-IV) 

In calculating the adipose tissue glucose and FAU rates, the flux rate constant (Ki) and 
fractional uptake rate (FUR) from late imaging, were obtained from the Patlak linearization 
graphical analysis (Patlak & Blasberg, 1985). The Ki or fractional tracer uptake (FUR) val-
ues were corrected for adipose tissue density (adipose, 0.9196 kg/L; skeletal muscle 1.2 
kg/L) and multiplied by the systemic glucose level (GU, expressed as µmol/ L/min) and 
FFAs expressed as µmol/100g/min (FAU). In the measurement of GU, values were divided 
by the lumped constant of 1.14 for adipose tissue (Virtanen et al., 2001) and 1.2 for skeletal 
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entire scanning process, blood samples were frequently obtained to measure plasma glu-
cose, insulin, and FFA concentrations, and serum radioactivity levels. Blood pressure 
measurements and the well-being of the subjects were constantly monitored.  

4.4 Measurement of adipose tissue volume (Studies I-IV) 

Body fat percentage was assessed by bioelectric impedance (Omron Model HBF400) as 
previously described (Immonen et al., 2014). MRI image acquisition was performed with 
1.5 Tesla system (Intera, Philips Medical Systems, Best, the, Netherlands). Whole body 
T1W FFE images of the thoracic, abdominal, and femoral regions were obtained under 
basal conditions for the analysis of adipose tissue volume (Abate et al., 1997), and as an 
anatomical reference for PET images (Studies I and III).  MRI was performed before the 
administration of the VLCD in obese patients, and the measurements were repeated 6 
months after the bariatric surgical intervention (Studies I-IV). MRI exclusion criteria one 
or more of the following: weight in excess of 200 kg, the presence of pacemaker, inner ear 
implants or ferromagnetic objects in the body. SliceOmatic software (Tomovision, Magog, 
Canada) version 4.3 (downloadable at http://www.tomovision.com/index.html) was used 
for the quantification of adipose tissue volume (mm3). The ‘Region Growing’ mode with 
the ‘Grow 2D’ and ‘Paint’ tools were used in adipose tissue volume (mm3) in the humeral, 
thoracic, abdominal and femoral adipose tissue depots (Studies I-II). Abdominal adipose 
tissue was further divided into deep and superficial SAT, intraperitoneal and extraperito-
neal VAT (Figure 7 A, B) (Study I). Volumes were converted to mass assuming a tissue 
density of 0.9196 kg/L (Abate et al., 1994) (Study I). 

 

 

Figure 7. MRI of the subdivision of abdominal adipose tissue depot. On the trans-axial planes, abdominal 
SAT depots were divided into anterior and posterior regions as previously described [A, B] (He, Engelson, 
& Kotler, 2005; Ross et al., 2002) and the visceral adipose region was further divided into the intraperitoneal 
(brown) and extraperitoneal (yellow) regions with specific anatomical reference (Abate et al., 1994; Abate et 
al., 1997) [B]; the white arrows [A] indicate the Scapa’s fascia separating the abdominal subcutaneous adi-
pose tissue into deep (red) and superficial (green), and anterior regions (purple) [B]. 

4.5 PET image preparation and analysis (Studies I-IV) 

PET images were reconstructed in a 256×256 matrix after correction for decay time, dead 
time, and photon attenuation.  
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ing CT-radiodensity (U Din et al., 2016).  
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In calculating the adipose tissue glucose and FAU rates, the flux rate constant (Ki) and 
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kg/L) and multiplied by the systemic glucose level (GU, expressed as µmol/ L/min) and 
FFAs expressed as µmol/100g/min (FAU). In the measurement of GU, values were divided 
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muscle (Peltoniemi et al., 2000). For the calculation of FAU, metabolite correction was 
performed for the radioactivity curves on the assumption that any residual activity after 30 
min is attributable to metabolites. Depot-specific GU and FAU (µmol/ min) rates were 
calculated by multiplying tissue-specific values by the size of the fat depot (in kg). Re-
gional measurement of blood flow is expressed per unit mass of tissue [ml (blood)/min/g 
(tissue)], the concentration of [15O] H2O in a volume of interest measure at time t (CPET (t)) 
is related to tracer radioactivity of vascular blood within the measured volume VA, tissue 
CT and arterial concentrations CA as:  CPET (t) = CT(t) + VA × CA(t). Regional blood flow 
(mL/100g/min) expressed per whole depot gives depot specific uptake (mL/min). 

4.5.3 Indirect calorimetry (Study II)  

Indirect calorimetry was performed on the PET scanning days. The procedure was per-
formed once for the controls during the baseline measurements, and in the obese partici-
pants it was performed before the VLDL regimen, and at 6 months after the bariatric sur-
gery procedures. The procedure (Merilainen, 1987), including the measurement of the gas-
eous exchanges was performed as previously described (Sherman, 1994). Carbohydrates 
as glucose (GOX) and lipid (LOX) oxidation rates were calculated and expressed as abso-
lute amounts (g/min), and also normalized as resting energy expenditure (REE) which rep-
resent the mass of metabolically active tissue (Study II). An estimation of the whole body 
oxidative efficiency (or extraction ratio in percentage) was calculated by dividing GOX 
and LOX by substrate delivery, i.e., the product of cardiac output by the mean plasma glu-
cose and FFA concentrations, respectively (Study II).   

4.5.4 Biopsy procedure and histological analysis (Study II)  

Subcutaneous fat biopsies were obtained from the periumbilical area under local anaesthe-
sia (1% lidocaine) (Kolaczynski et al., 1994; Mutch et al., 2009). During surgery, visceral 
fat biopsies were obtained from the omentum (Petrus et al., 2015). The mean quantity of 
fat obtained was ~1-3 grams. All samples were washed in phosphate-buffered saline, im-
mediately frozen in liquid nitrogen and thereafter stored at 80ºC. Digital images of hema-
toxylin-eosin stained slides of visceral and subcutaneous adipose tissue were scanned using 
the Panoramic slide scanner system (v1.15.4; 3DHISTECH, Budapest, Hungary). Diameter 
of adipocytes (adipocytes size expressed in µm) of approximately 100 completely visible 
cells (Hoffstedt et al., 2017) within the scanned areas were manually outlined using the 
ImageJ® (https://imagej.nih.gov/ij/index.html) analysis software. Values for the means ad-
ipocyte size were computed from the measured adipocytes. Mean adipocyte sizes were 
converted to volumes (µm³) assuming that the cells are spherical (𝑉𝑉 = 4

3 𝜋𝜋𝑟𝑟3)  (Tchouka-
lova et al., 2008). The estimated adipose cellularity (expressed as 109 cells) was calculated 
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by dividing the depot size (expressed in kg) by mean volume (µm³) corrected with tissue 
density (0.9196 kg/L). Tissue blood flow per adipocyte (nL/min/cell) was expressed as 
ratio of blood flow per fat depot size (µmol/min) divided by the estimated depot cell num-
ber (×109).  

4.6 Ethical considerations (Studies I-IV) 

All study participants signed a written informed consent after they had been briefed about 
the nature, purpose and potential risks of participating in the studies. The study protocols 
were approved by the local ethics committee of the Hospital District of Southwest Finland 
and were performed in compliance with the Declaration of Helsinki (Studies I-IV). Ethical 
approval certificates: ETMK: 6/180/2008; ETMK: 99/180/2010 (Studies I-IV). 

4.7 Statistical analyses (Studies I-IV) 

Data analyses were performed using Statistical Package for the Social Sciences (SPSS) 
Version 22 (IBM Corp. Released 2013. IBM SPSS Statistics for Windows, Version 22.0. 
Armonk, NY: IBM Corp.), IL). Statistical significance was set at a p-value (P < 0.05). 
Continuous variables are expressed as mean ± SD. Normality of distribution was assessed 
using the Shapiro-Wilk test. Variables that were not normally distributed were log trans-
formed before analysis. Pearson correlation analyses were performed to investigate the 
univariate associations between adipose tissue distribution and tissue-specific metabolism 
with metabolic and lipid variables. A two-way repeated-measures analysis of variance 
(ANOVA) was used to assess the interaction of T2D status with surgery. 
  

31001586_Thesis_Prince_Dadson_Faculty_of_Medicine_sisus_1701.indd   46 17.1.2019   10.15



Subjects and study designs 
 

46 
 

muscle (Peltoniemi et al., 2000). For the calculation of FAU, metabolite correction was 
performed for the radioactivity curves on the assumption that any residual activity after 30 
min is attributable to metabolites. Depot-specific GU and FAU (µmol/ min) rates were 
calculated by multiplying tissue-specific values by the size of the fat depot (in kg). Re-
gional measurement of blood flow is expressed per unit mass of tissue [ml (blood)/min/g 
(tissue)], the concentration of [15O] H2O in a volume of interest measure at time t (CPET (t)) 
is related to tracer radioactivity of vascular blood within the measured volume VA, tissue 
CT and arterial concentrations CA as:  CPET (t) = CT(t) + VA × CA(t). Regional blood flow 
(mL/100g/min) expressed per whole depot gives depot specific uptake (mL/min). 

4.5.3 Indirect calorimetry (Study II)  

Indirect calorimetry was performed on the PET scanning days. The procedure was per-
formed once for the controls during the baseline measurements, and in the obese partici-
pants it was performed before the VLDL regimen, and at 6 months after the bariatric sur-
gery procedures. The procedure (Merilainen, 1987), including the measurement of the gas-
eous exchanges was performed as previously described (Sherman, 1994). Carbohydrates 
as glucose (GOX) and lipid (LOX) oxidation rates were calculated and expressed as abso-
lute amounts (g/min), and also normalized as resting energy expenditure (REE) which rep-
resent the mass of metabolically active tissue (Study II). An estimation of the whole body 
oxidative efficiency (or extraction ratio in percentage) was calculated by dividing GOX 
and LOX by substrate delivery, i.e., the product of cardiac output by the mean plasma glu-
cose and FFA concentrations, respectively (Study II).   

4.5.4 Biopsy procedure and histological analysis (Study II)  

Subcutaneous fat biopsies were obtained from the periumbilical area under local anaesthe-
sia (1% lidocaine) (Kolaczynski et al., 1994; Mutch et al., 2009). During surgery, visceral 
fat biopsies were obtained from the omentum (Petrus et al., 2015). The mean quantity of 
fat obtained was ~1-3 grams. All samples were washed in phosphate-buffered saline, im-
mediately frozen in liquid nitrogen and thereafter stored at 80ºC. Digital images of hema-
toxylin-eosin stained slides of visceral and subcutaneous adipose tissue were scanned using 
the Panoramic slide scanner system (v1.15.4; 3DHISTECH, Budapest, Hungary). Diameter 
of adipocytes (adipocytes size expressed in µm) of approximately 100 completely visible 
cells (Hoffstedt et al., 2017) within the scanned areas were manually outlined using the 
ImageJ® (https://imagej.nih.gov/ij/index.html) analysis software. Values for the means ad-
ipocyte size were computed from the measured adipocytes. Mean adipocyte sizes were 
converted to volumes (µm³) assuming that the cells are spherical (𝑉𝑉 = 4

3 𝜋𝜋𝑟𝑟3)  (Tchouka-
lova et al., 2008). The estimated adipose cellularity (expressed as 109 cells) was calculated 

Subjects and study designs 
 

47 
 

by dividing the depot size (expressed in kg) by mean volume (µm³) corrected with tissue 
density (0.9196 kg/L). Tissue blood flow per adipocyte (nL/min/cell) was expressed as 
ratio of blood flow per fat depot size (µmol/min) divided by the estimated depot cell num-
ber (×109).  

4.6 Ethical considerations (Studies I-IV) 

All study participants signed a written informed consent after they had been briefed about 
the nature, purpose and potential risks of participating in the studies. The study protocols 
were approved by the local ethics committee of the Hospital District of Southwest Finland 
and were performed in compliance with the Declaration of Helsinki (Studies I-IV). Ethical 
approval certificates: ETMK: 6/180/2008; ETMK: 99/180/2010 (Studies I-IV). 

4.7 Statistical analyses (Studies I-IV) 

Data analyses were performed using Statistical Package for the Social Sciences (SPSS) 
Version 22 (IBM Corp. Released 2013. IBM SPSS Statistics for Windows, Version 22.0. 
Armonk, NY: IBM Corp.), IL). Statistical significance was set at a p-value (P < 0.05). 
Continuous variables are expressed as mean ± SD. Normality of distribution was assessed 
using the Shapiro-Wilk test. Variables that were not normally distributed were log trans-
formed before analysis. Pearson correlation analyses were performed to investigate the 
univariate associations between adipose tissue distribution and tissue-specific metabolism 
with metabolic and lipid variables. A two-way repeated-measures analysis of variance 
(ANOVA) was used to assess the interaction of T2D status with surgery. 
  

31001586_Thesis_Prince_Dadson_Faculty_of_Medicine_sisus_1701.indd   47 17.1.2019   10.15



Results 
 

48 
 

5 RESULTS 

5.1 Bariatric surgery, adiposity and metabolic characteristic (Studies 1-IV) 

Baseline weight, body fat content was similar with respect to obese with and without dia-
betes (Table 1). Obese with T2D had significantly more deep (5.5 ± 2.0 vs. 3.9 ± 1.2 kg, P 
= 0.004, but not superficial (5.9 ± 2.2 vs. 4.7 ± 1.8 kg, P = 0.058) SAT depot size, intra-
peritoneal (2.6 ± 0.9 vs. 3.3 ± 1.5 kg, P = 0.046), and extraperitoneal (1.4 ± 0.7 vs. 2.0 ± 
1.1 kg, P = 0.043) (Studies I-II), constituting the abdominal VAT (Table 2) were signifi-
cantly higher in T2D compared to ND. Baseline upper arm SAT fat was not statistically 
different with respect to ND and T2D groups (1.0 ± 0.2 vs. 1.0 ± 0.3 kg, P = 0.87). There 
was no difference in the abdominal SAT (Table 1) and VAT (89.2 ± 13.8 vs. 94.2 ± 13.7µm, 
P = 0.26) cell sizes between obese ND and T2D groups. All depot specific adipose tissue 
mass, in addition to size were significantly higher in the obese group compared to normal 
weighted controls (Table 2). Deposition of fat in upper arms was significantly higher for 
all diabetes group compared to controls (0.5 ± 0.2 kg, all P < 0.001). Obese T2D expressed 
poorer glycemic and lipid indices compared to the obese ND group (Table 1) except for 
FFA and LDL cholesterol levels (Table 2). All lipid and glycemic parameters were higher 
in obese compared to lean controls (Table 2).   

Four of the obese patients with newly diagnosed T2D were treated with metformin, and 5 
patients with an average duration of T2D of 3 years were treated with combinations of oral 
glucose-lowering drugs (metformin in two patients and metformin/sulfonylurea/gliptin, 
metformin/pioglitazone/gliptin, and metformin/pioglitazone for each of the remaining 
three patients) (Study 1). In Study II, 9 of the 10 obese T2D patients were on either met-
formin or DPP-4 inhibitor or a combination of both and the remaining patient was on die-
tary regimen. All the anti-diabetes treatments were withheld 2472 hours prior to the onset 
of metabolic studies (Studies I-IV).  

Six months after surgery, the total body and vast majority of fat had decreased significantly 
from the scanned regions (Table 2). Upper arm fat decreased only in NDs (from 1.0 ± 0.2 
to 0.7 ± 0.1 kg, P < 0.001). Subcutaneous adipocyte size decreased after surgery (Study II) 
(Table 1). As VAT biopsies could not be obtained after surgery, SAT could only be used 
for the analysis of the biopsy studies. Bariatric surgery decreased all measured lipid and 
metabolic characteristics except for FFA and LDL levels (Table 1). 
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A dataset was obtained by pooling before- and after-surgery, which showed that insulin-
mediated glucose uptake in visceral fat depot was non-lineally related to plasma glucose 
after a 2-hour OGTT (r = - 0.52, P < 0.001) (Figure 8A) and clamp fatty acids levels 
(Figure 8B) recorded at study states (r = - 0.58, P = 0.001). 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Nonlinear, reciprocal relationship between visceral fat depot GU and 2-hour plasma glucose 
concentrations (A) and steady-state plasma FFA on the clamp (B) in the pooled presurgery and postsur-
gery dataset. Lines are best fit with 95% CIs. 

5.3 Fasting adipose tissue glucose uptake and the effect of surgery (Study 1) 

Before surgery, obese T2D group expressed reduced intraperitoneal visceral GU com-
pared to ND (Table 4). There were no statistically significant difference (NS) between 
the diabetes groups for the remainder of the studied fat depot and skeletal muscle (all NS). 
As a consequence of the fat mass expansion, fasting GU expressed per depot size were 
significantly higher in obese compared to lean subjects. Surgery did not significantly af-
fect fasting GU of skeletal muscle or in any of the studied fat regions in obese subjects. 
However, taking into account the post-surgery decreased depot fat size, GU decreased 
across the studied adipose tissue regions except for humeral fat depot (Table 4). 
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5 RESULTS 

5.1 Bariatric surgery, adiposity and metabolic characteristic (Studies 1-IV) 

Baseline weight, body fat content was similar with respect to obese with and without dia-
betes (Table 1). Obese with T2D had significantly more deep (5.5 ± 2.0 vs. 3.9 ± 1.2 kg, P 
= 0.004, but not superficial (5.9 ± 2.2 vs. 4.7 ± 1.8 kg, P = 0.058) SAT depot size, intra-
peritoneal (2.6 ± 0.9 vs. 3.3 ± 1.5 kg, P = 0.046), and extraperitoneal (1.4 ± 0.7 vs. 2.0 ± 
1.1 kg, P = 0.043) (Studies I-II), constituting the abdominal VAT (Table 2) were signifi-
cantly higher in T2D compared to ND. Baseline upper arm SAT fat was not statistically 
different with respect to ND and T2D groups (1.0 ± 0.2 vs. 1.0 ± 0.3 kg, P = 0.87). There 
was no difference in the abdominal SAT (Table 1) and VAT (89.2 ± 13.8 vs. 94.2 ± 13.7µm, 
P = 0.26) cell sizes between obese ND and T2D groups. All depot specific adipose tissue 
mass, in addition to size were significantly higher in the obese group compared to normal 
weighted controls (Table 2). Deposition of fat in upper arms was significantly higher for 
all diabetes group compared to controls (0.5 ± 0.2 kg, all P < 0.001). Obese T2D expressed 
poorer glycemic and lipid indices compared to the obese ND group (Table 1) except for 
FFA and LDL cholesterol levels (Table 2). All lipid and glycemic parameters were higher 
in obese compared to lean controls (Table 2).   

Four of the obese patients with newly diagnosed T2D were treated with metformin, and 5 
patients with an average duration of T2D of 3 years were treated with combinations of oral 
glucose-lowering drugs (metformin in two patients and metformin/sulfonylurea/gliptin, 
metformin/pioglitazone/gliptin, and metformin/pioglitazone for each of the remaining 
three patients) (Study 1). In Study II, 9 of the 10 obese T2D patients were on either met-
formin or DPP-4 inhibitor or a combination of both and the remaining patient was on die-
tary regimen. All the anti-diabetes treatments were withheld 2472 hours prior to the onset 
of metabolic studies (Studies I-IV).  

Six months after surgery, the total body and vast majority of fat had decreased significantly 
from the scanned regions (Table 2). Upper arm fat decreased only in NDs (from 1.0 ± 0.2 
to 0.7 ± 0.1 kg, P < 0.001). Subcutaneous adipocyte size decreased after surgery (Study II) 
(Table 1). As VAT biopsies could not be obtained after surgery, SAT could only be used 
for the analysis of the biopsy studies. Bariatric surgery decreased all measured lipid and 
metabolic characteristics except for FFA and LDL levels (Table 1). 
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A dataset was obtained by pooling before- and after-surgery, which showed that insulin-
mediated glucose uptake in visceral fat depot was non-lineally related to plasma glucose 
after a 2-hour OGTT (r = - 0.52, P < 0.001) (Figure 8A) and clamp fatty acids levels 
(Figure 8B) recorded at study states (r = - 0.58, P = 0.001). 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Nonlinear, reciprocal relationship between visceral fat depot GU and 2-hour plasma glucose 
concentrations (A) and steady-state plasma FFA on the clamp (B) in the pooled presurgery and postsur-
gery dataset. Lines are best fit with 95% CIs. 

5.3 Fasting adipose tissue glucose uptake and the effect of surgery (Study 1) 

Before surgery, obese T2D group expressed reduced intraperitoneal visceral GU com-
pared to ND (Table 4). There were no statistically significant difference (NS) between 
the diabetes groups for the remainder of the studied fat depot and skeletal muscle (all NS). 
As a consequence of the fat mass expansion, fasting GU expressed per depot size were 
significantly higher in obese compared to lean subjects. Surgery did not significantly af-
fect fasting GU of skeletal muscle or in any of the studied fat regions in obese subjects. 
However, taking into account the post-surgery decreased depot fat size, GU decreased 
across the studied adipose tissue regions except for humeral fat depot (Table 4). 
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5.2 Insulin-stimulated adipose tissue glucose uptake in obesity and type 2         
diabetes (Study 1) 

Obese individuals had lower insulin-mediated GU in the whole body (M-value) and in 
skeletal muscle and all measure adipose tissue depots compared to lean controls (Table 
2) but not different between the ND and T2D subjects at baseline (Table 2). Among the 
obese patients with T2D, GU by the intraperitoneal VAT, abdominal and femoral adipose 
tissue depot was higher compared to their ND counterparts/controls/ (Table 2).  The base-
line percentage contribution of total VAT GU to whole body insulin-mediated glucose 
disposal rates were significantly higher in both T2D and ND groups compared to controls 
(Figure 7A). The contribution of total subcutaneous fat to whole body GU in both T2D 
and ND alike were significantly higher compared to controls (Figure 7B). Values in the 
visceral fat depot were statistically significant between the diabetes group (T2D vs. ND, 
P = 0.010) but not for the subcutaneous fat depot. Taking into account the area (kg) of the 
fat depots, obese patients recorded significantly higher depot-specific GU because of the 
expanded depot mass except for the extraperitoneal VAT, and femoral SAT compart-
ments. Insulin-induced glucose uptake in all of the fat depots increased markedly after 
surgery and were comparable to lean controls except for humeral, superficial and thoracic 
SAT regions (Table 2). Glucose uptake in the extraperitoneal and skeletal muscle groups 
were lower compared to that of the lean controls. The substantial reduction in fat depot 
size as expressed as per fat depot volume, when coupled with increased glucose uptake, 
produced no significant difference compared with the presurgery values. However, the 
depot-specific GU in the metabolically active intraperitoneal region remained higher 
compared to controls for both the ND and T2D groups.  

 

Figure 9. Percentage contribution of VAT depots [A] and SAT depots [B] to whole-body insulin-mediated 
GU in lean control subjects and in obese  (ND) nondiabetic and with (T2D) type 2 diabetes patients before 
and 6 months after bariatric surgery. Data are mean ± SEM. *P < 0.050 compared with control subjects; 
§P < 0.050 for the presurgery to post surgery comparison. 
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A dataset was obtained by pooling before- and after-surgery, which showed that insulin-
mediated glucose uptake in visceral fat depot was non-lineally related to plasma glucose 
after a 2-hour OGTT (r = - 0.52, P < 0.001) (Figure 8A) and clamp fatty acids levels 
(Figure 8B) recorded at study states (r = - 0.58, P = 0.001). 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Nonlinear, reciprocal relationship between visceral fat depot GU and 2-hour plasma glucose 
concentrations (A) and steady-state plasma FFA on the clamp (B) in the pooled presurgery and postsur-
gery dataset. Lines are best fit with 95% CIs. 

5.3 Fasting adipose tissue glucose uptake and the effect of surgery (Study 1) 

Before surgery, obese T2D group expressed reduced intraperitoneal visceral GU com-
pared to ND (Table 4). There were no statistically significant difference (NS) between 
the diabetes groups for the remainder of the studied fat depot and skeletal muscle (all NS). 
As a consequence of the fat mass expansion, fasting GU expressed per depot size were 
significantly higher in obese compared to lean subjects. Surgery did not significantly af-
fect fasting GU of skeletal muscle or in any of the studied fat regions in obese subjects. 
However, taking into account the post-surgery decreased depot fat size, GU decreased 
across the studied adipose tissue regions except for humeral fat depot (Table 4). 
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5.2 Insulin-stimulated adipose tissue glucose uptake in obesity and type 2         
diabetes (Study 1) 

Obese individuals had lower insulin-mediated GU in the whole body (M-value) and in 
skeletal muscle and all measure adipose tissue depots compared to lean controls (Table 
2) but not different between the ND and T2D subjects at baseline (Table 2). Among the 
obese patients with T2D, GU by the intraperitoneal VAT, abdominal and femoral adipose 
tissue depot was higher compared to their ND counterparts/controls/ (Table 2).  The base-
line percentage contribution of total VAT GU to whole body insulin-mediated glucose 
disposal rates were significantly higher in both T2D and ND groups compared to controls 
(Figure 7A). The contribution of total subcutaneous fat to whole body GU in both T2D 
and ND alike were significantly higher compared to controls (Figure 7B). Values in the 
visceral fat depot were statistically significant between the diabetes group (T2D vs. ND, 
P = 0.010) but not for the subcutaneous fat depot. Taking into account the area (kg) of the 
fat depots, obese patients recorded significantly higher depot-specific GU because of the 
expanded depot mass except for the extraperitoneal VAT, and femoral SAT compart-
ments. Insulin-induced glucose uptake in all of the fat depots increased markedly after 
surgery and were comparable to lean controls except for humeral, superficial and thoracic 
SAT regions (Table 2). Glucose uptake in the extraperitoneal and skeletal muscle groups 
were lower compared to that of the lean controls. The substantial reduction in fat depot 
size as expressed as per fat depot volume, when coupled with increased glucose uptake, 
produced no significant difference compared with the presurgery values. However, the 
depot-specific GU in the metabolically active intraperitoneal region remained higher 
compared to controls for both the ND and T2D groups.  

 

Figure 9. Percentage contribution of VAT depots [A] and SAT depots [B] to whole-body insulin-mediated 
GU in lean control subjects and in obese  (ND) nondiabetic and with (T2D) type 2 diabetes patients before 
and 6 months after bariatric surgery. Data are mean ± SEM. *P < 0.050 compared with control subjects; 
§P < 0.050 for the presurgery to post surgery comparison. 
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A dataset was obtained by pooling before- and after-surgery, which showed that insulin-
mediated glucose uptake in visceral fat depot was non-lineally related to plasma glucose 
after a 2-hour OGTT (r = - 0.52, P < 0.001) (Figure 8A) and clamp fatty acids levels 
(Figure 8B) recorded at study states (r = - 0.58, P = 0.001). 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Nonlinear, reciprocal relationship between visceral fat depot GU and 2-hour plasma glucose 
concentrations (A) and steady-state plasma FFA on the clamp (B) in the pooled presurgery and postsur-
gery dataset. Lines are best fit with 95% CIs. 

5.3 Fasting adipose tissue glucose uptake and the effect of surgery (Study 1) 

Before surgery, obese T2D group expressed reduced intraperitoneal visceral GU com-
pared to ND (Table 4). There were no statistically significant difference (NS) between 
the diabetes groups for the remainder of the studied fat depot and skeletal muscle (all NS). 
As a consequence of the fat mass expansion, fasting GU expressed per depot size were 
significantly higher in obese compared to lean subjects. Surgery did not significantly af-
fect fasting GU of skeletal muscle or in any of the studied fat regions in obese subjects. 
However, taking into account the post-surgery decreased depot fat size, GU decreased 
across the studied adipose tissue regions except for humeral fat depot (Table 4). 
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Obese individuals had lower insulin-mediated GU in the whole body (M-value) and in 
skeletal muscle and all measure adipose tissue depots compared to lean controls (Table 
2) but not different between the ND and T2D subjects at baseline (Table 2). Among the 
obese patients with T2D, GU by the intraperitoneal VAT, abdominal and femoral adipose 
tissue depot was higher compared to their ND counterparts (Table 2).  The baseline per-
centage contribution of total VAT GU to whole body insulin-mediated glucose disposal 
rates were significantly higher in both T2D and ND groups compared to controls (Figure 
7A). The contribution of total subcutaneous fat to whole body GU in both T2D and ND 
alike were significantly higher compared to controls (Figure 7B). Values in the visceral 
fat depot were statistically significant between the diabetes group (T2D vs. ND, P = 
0.010) but not for the subcutaneous fat depot. Taking into account the area (kg) of the fat 
depots, obese patients recorded significantly higher depot-specific GU because of the ex-
panded depot mass except for the extraperitoneal VAT, and femoral SAT compartments. 
Insulin-induced glucose uptake in all of the fat depots increased markedly after surgery 
and were comparable to lean controls except for humeral, superficial and thoracic SAT 
regions (Table 2). Glucose uptake in the extraperitoneal and skeletal muscle groups were 
lower compared to that of the lean controls. The substantial reduction in fat depot size as 
expressed as per fat depot volume, when coupled with increased glucose uptake, produced 
no significant difference compared with the presurgery values. However, the depot-spe-
cific GU in the metabolically active intraperitoneal region remained higher compared to 
controls for both the ND and T2D groups.  
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pared to ND (Table 4). There were no statistically significant difference (NS) between 
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As a consequence of the fat mass expansion, fasting GU expressed per depot size were 
significantly higher in obese compared to lean subjects. Surgery did not significantly af-
fect fasting GU of skeletal muscle or in any of the studied fat regions in obese subjects. 
However, taking into account the post-surgery decreased depot fat size, GU decreased 
across the studied adipose tissue regions except for humeral fat depot (Table 4). 
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5.4 Adipose tissue cellularity in obesity and T2D (Study II) 

Abdominal SAT depot cellularity (i.e., number of cells per 100 g of fat tissue) was 30% 
reduced in the obese compared to the control group (Figure 9). Because SAT mass was 
expanded (Table 2), adipocyte number were similarly decreased in ND and T2D obese 
subjects as compared controls. In the obese, VAT adipocyte size did not differ between 
T2D and ND, and VAT adipocytes were smaller than SAT adipocytes (0.43 ± 0.27 vs. 
0.61 ± 0.24 mm3, P < 0.001, Table 5) for all the combined obese subjects. As a result, 
VAT depot cellularity was higher than SAT cellularity (254 ±164 vs. 195 ± 139 .106/100 
g, P < 0.001).   

 

Figure 11. Abdominal subcutaneous (SAT) cellularity (the number of cells per 100 g of tissue) in /lean 
subjects/normal weight subjects/ (controls) and obese nondiabetic subjects (ND) or diabetic patients (T2D) 
before (b) and 6 months after (a) surgery.  Data are median and 95% confidence intervals; * P < 0.050 
obese vs. controls. 
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A dataset was obtained by pooling before- and after-surgery, which showed that insulin-
mediated glucose uptake in visceral fat depot was non-lineally related to plasma glucose 
after a 2-hour OGTT (r = - 0.52, P < 0.001) (Figure 8A) and clamp fatty acids levels 
(Figure 8B) recorded at study states (r = - 0.58, P = 0.001). 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Nonlinear, reciprocal relationship between visceral fat depot GU and 2-hour plasma glucose 
concentrations (A) and steady-state plasma FFA on the clamp (B) in the pooled presurgery and postsur-
gery dataset. Lines are best fit with 95% CIs. 

5.3 Fasting adipose tissue glucose uptake and the effect of surgery (Study 1) 

Before surgery, obese T2D group expressed reduced intraperitoneal visceral GU com-
pared to ND (Table 4). There were no statistically significant difference (NS) between 
the diabetes groups for the remainder of the studied fat depot and skeletal muscle (all NS). 
As a consequence of the fat mass expansion, fasting GU expressed per depot size were 
significantly higher in obese compared to lean subjects. Surgery did not significantly af-
fect fasting GU of skeletal muscle or in any of the studied fat regions in obese subjects. 
However, taking into account the post-surgery decreased depot fat size, GU decreased 
across the studied adipose tissue regions except for humeral fat depot (Table 4). 
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5.4 Adipose tissue cellularity in obesity and T2D (Study II) 

Abdominal SAT depot cellularity (i.e., number of cells per 100 g of fat tissue) was 30% 
reduced in the obese compared to the control group (Figure 9). Because SAT mass was 
expanded (Table 2), adipocyte number were similarly decreased in ND and T2D obese 
subjects as compared controls. In the obese, VAT adipocyte size did not differ between 
T2D and ND, and VAT adipocytes were smaller than SAT adipocytes (0.43 ± 0.27 vs. 
0.61 ± 0.24 mm3, P < 0.001, Table 5) for all the combined obese subjects. As a result, 
VAT depot cellularity was higher than SAT cellularity (254 ±164 vs. 195 ± 139 .106/100 
g, P < 0.001).   

 

Figure 11. Abdominal subcutaneous (SAT) cellularity (the number of cells per 100 g of tissue) in /lean 
subjects/normal weight subjects/ (controls) and obese nondiabetic subjects (ND) or diabetic patients (T2D) 
before (b) and 6 months after (a) surgery.  Data are median and 95% confidence intervals; * P < 0.050 
obese vs. controls. 
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A dataset was obtained by pooling before- and after-surgery, which showed that insulin-
mediated glucose uptake in visceral fat depot was non-lineally related to plasma glucose 
after a 2-hour OGTT (r = - 0.52, P < 0.001) (Figure 8A) and clamp fatty acids levels 
(Figure 8B) recorded at study states (r = - 0.58, P = 0.001). 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Nonlinear, reciprocal relationship between visceral fat depot GU and 2-hour plasma glucose 
concentrations (A) and steady-state plasma FFA on the clamp (B) in the pooled presurgery and postsur-
gery dataset. Lines are best fit with 95% CIs. 

5.3 Fasting adipose tissue glucose uptake and the effect of surgery (Study 1) 

Before surgery, obese T2D group expressed reduced intraperitoneal visceral GU com-
pared to ND (Table 4). There were no statistically significant difference (NS) between 
the diabetes groups for the remainder of the studied fat depot and skeletal muscle (all NS). 
As a consequence of the fat mass expansion, fasting GU expressed per depot size were 
significantly higher in obese compared to lean subjects. Surgery did not significantly af-
fect fasting GU of skeletal muscle or in any of the studied fat regions in obese subjects. 
However, taking into account the post-surgery decreased depot fat size, GU decreased 
across the studied adipose tissue regions except for humeral fat depot (Table 4). 
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5.5 Adipose tissue blood flow (Study II) 

Adipose tissue blood flow distribution was significantly lower in the combined obese group than in healthy 
control subjects for abdominal deep (2.4 ± 1.1 vs. 4.2 ± 1.7 mL/min/100g, P < 0.001) and superficial (1.3 ± 
0.8 vs. 2.9 ± 1.8 mL/min/100g, P = 0.001), and in total SAT (Table 3). Intraperitoneal (4.3 ± 1.4 vs. 6.2 ± 
2.2 mL/min /100g, P = 0.003) and extraperitoneal (4.2 ± 1.4 vs. 5.6 ± 1.9 mL/min /100g, P = 0.012) VAT 
were also statistically different. There was no significant difference in blood flow in all studied adipose tissue 
depot between obese T2D and ND (all P < 0.050, Table 4). There were no differences in blood flow expressed 
by per cell between obese diabetes groups compared to lean healthy controls. Surgery did not significantly 
change adipose tissue blood flow expressed per tissue or per cell (Table 4). However, expressed per depot 
volume (kg) blood flow decreased significantly in all the scanned adipose tissue depots (Table 4). 

5.6 Adipose tissue fatty acids uptake (Study II, III, IV) 

Before surgery, adipose tissue fatty acid uptake rate expressed per tissue was similar in subcutaneous and 
visceral fat depots between the combined obese group and lean controls or for the obese group with and 
without diabetes (Table 5). Uptake rate in the pericardial fat was significantly higher in the obese compared 
to controls (0.018 ± 0.011 vs. 0.0068 ± 0.0031 ± 0.0031 1/min, P = 0.044). There was no difference in the 
uptake rates with respect to the ND (0.016 ± 0.010 1/min) and T2D (0.021 ± 0.013 1/min) groups, P = 0.092. 
FAU rates in skeletal muscle were lower in diabetes and nondiabetes groups compared to control subjects 
(Table 5). Expressed per adipocyte, FAU was higher in abdominal VAT than in the SAT cells of the obese 
subjects (Table 4). There were no significant differences neither among the obese diabetes groups nor for the 
combined obese group and lean subjects in SAT or VAT depots post bariatric surgery (Table 5). Fatty acid 
uptake in the pericardial fat decreased for the combined obese groups 6 months after surgery (from 0.018 ± 
0.011 to 0.011 ± 0.005 1/min, P = 0.005).  
 
 

 
Figure 12. Relationship between subcutaneous adipose tissue (SAT) blood flow (per unit tissue mass) and SAT cellularity at 
baseline [A], and relationship between skeletal muscle fractional FFA extraction and serum triglycerides [B].  Lines are best fit 
and 95% confidence intervals.
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5.2 Insulin-stimulated adipose tissue glucose uptake in obesity and type 2         
diabetes (Study 1) 

Obese individuals had lower insulin-mediated GU in the whole body (M-value) and in 
skeletal muscle and all measure adipose tissue depots compared to lean controls (Table 
2) but not different between the ND and T2D subjects at baseline (Table 2). Among the 
obese patients with T2D, GU by the intraperitoneal VAT, abdominal and femoral adipose 
tissue depot was higher compared to their ND counterparts/controls/ (Table 2).  The base-
line percentage contribution of total VAT GU to whole body insulin-mediated glucose 
disposal rates were significantly higher in both T2D and ND groups compared to controls 
(Figure 7A). The contribution of total subcutaneous fat to whole body GU in both T2D 
and ND alike were significantly higher compared to controls (Figure 7B). Values in the 
visceral fat depot were statistically significant between the diabetes group (T2D vs. ND, 
P = 0.010) but not for the subcutaneous fat depot. Taking into account the area (kg) of the 
fat depots, obese patients recorded significantly higher depot-specific GU because of the 
expanded depot mass except for the extraperitoneal VAT, and femoral SAT compart-
ments. Insulin-induced glucose uptake in all of the fat depots increased markedly after 
surgery and were comparable to lean controls except for humeral, superficial and thoracic 
SAT regions (Table 2). Glucose uptake in the extraperitoneal and skeletal muscle groups 
were lower compared to that of the lean controls. The substantial reduction in fat depot 
size as expressed as per fat depot volume, when coupled with increased glucose uptake, 
produced no significant difference compared with the presurgery values. However, the 
depot-specific GU in the metabolically active intraperitoneal region remained higher 
compared to controls for both the ND and T2D groups.  

 

Figure 9. Percentage contribution of VAT depots [A] and SAT depots [B] to whole-body insulin-mediated 
GU in lean control subjects and in obese  (ND) nondiabetic and with (T2D) type 2 diabetes patients before 
and 6 months after bariatric surgery. Data are mean ± SEM. *P < 0.050 compared with control subjects; 
§P < 0.050 for the presurgery to post surgery comparison. 
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A dataset was obtained by pooling before- and after-surgery, which showed that insulin-
mediated glucose uptake in visceral fat depot was non-lineally related to plasma glucose 
after a 2-hour OGTT (r = - 0.52, P < 0.001) (Figure 8A) and clamp fatty acids levels 
(Figure 8B) recorded at study states (r = - 0.58, P = 0.001). 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Nonlinear, reciprocal relationship between visceral fat depot GU and 2-hour plasma glucose 
concentrations (A) and steady-state plasma FFA on the clamp (B) in the pooled presurgery and postsur-
gery dataset. Lines are best fit with 95% CIs. 

5.3 Fasting adipose tissue glucose uptake and the effect of surgery (Study 1) 

Before surgery, obese T2D group expressed reduced intraperitoneal visceral GU com-
pared to ND (Table 4). There were no statistically significant difference (NS) between 
the diabetes groups for the remainder of the studied fat depot and skeletal muscle (all NS). 
As a consequence of the fat mass expansion, fasting GU expressed per depot size were 
significantly higher in obese compared to lean subjects. Surgery did not significantly af-
fect fasting GU of skeletal muscle or in any of the studied fat regions in obese subjects. 
However, taking into account the post-surgery decreased depot fat size, GU decreased 
across the studied adipose tissue regions except for humeral fat depot (Table 4). 
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Figure 13. Fractional fatty acids uptake in lean subjects (controls) and obese nondiabetic (ND) or diabetic patients (T2D) before 
(b) and 6 months after (a) surgery.  Data are median and 95% confidence intervals.  * P < 0.050 obese vs. controls; ° P < 0.050 
for the comparison of pre- and postsurgery values for the combined obese groups.  Error bars are standard deviations.  
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5.2 Insulin-stimulated adipose tissue glucose uptake in obesity and type 2         
diabetes (Study 1) 

Obese individuals had lower insulin-mediated GU in the whole body (M-value) and in 
skeletal muscle and all measure adipose tissue depots compared to lean controls (Table 
2) but not different between the ND and T2D subjects at baseline (Table 2). Among the 
obese patients with T2D, GU by the intraperitoneal VAT, abdominal and femoral adipose 
tissue depot was higher compared to their ND counterparts/controls/ (Table 2).  The base-
line percentage contribution of total VAT GU to whole body insulin-mediated glucose 
disposal rates were significantly higher in both T2D and ND groups compared to controls 
(Figure 7A). The contribution of total subcutaneous fat to whole body GU in both T2D 
and ND alike were significantly higher compared to controls (Figure 7B). Values in the 
visceral fat depot were statistically significant between the diabetes group (T2D vs. ND, 
P = 0.010) but not for the subcutaneous fat depot. Taking into account the area (kg) of the 
fat depots, obese patients recorded significantly higher depot-specific GU because of the 
expanded depot mass except for the extraperitoneal VAT, and femoral SAT compart-
ments. Insulin-induced glucose uptake in all of the fat depots increased markedly after 
surgery and were comparable to lean controls except for humeral, superficial and thoracic 
SAT regions (Table 2). Glucose uptake in the extraperitoneal and skeletal muscle groups 
were lower compared to that of the lean controls. The substantial reduction in fat depot 
size as expressed as per fat depot volume, when coupled with increased glucose uptake, 
produced no significant difference compared with the presurgery values. However, the 
depot-specific GU in the metabolically active intraperitoneal region remained higher 
compared to controls for both the ND and T2D groups.  

 

Figure 9. Percentage contribution of VAT depots [A] and SAT depots [B] to whole-body insulin-mediated 
GU in lean control subjects and in obese  (ND) nondiabetic and with (T2D) type 2 diabetes patients before 
and 6 months after bariatric surgery. Data are mean ± SEM. *P < 0.050 compared with control subjects; 
§P < 0.050 for the presurgery to post surgery comparison. 
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A dataset was obtained by pooling before- and after-surgery, which showed that insulin-
mediated glucose uptake in visceral fat depot was non-lineally related to plasma glucose 
after a 2-hour OGTT (r = - 0.52, P < 0.001) (Figure 8A) and clamp fatty acids levels 
(Figure 8B) recorded at study states (r = - 0.58, P = 0.001). 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Nonlinear, reciprocal relationship between visceral fat depot GU and 2-hour plasma glucose 
concentrations (A) and steady-state plasma FFA on the clamp (B) in the pooled presurgery and postsur-
gery dataset. Lines are best fit with 95% CIs. 

5.3 Fasting adipose tissue glucose uptake and the effect of surgery (Study 1) 

Before surgery, obese T2D group expressed reduced intraperitoneal visceral GU com-
pared to ND (Table 4). There were no statistically significant difference (NS) between 
the diabetes groups for the remainder of the studied fat depot and skeletal muscle (all NS). 
As a consequence of the fat mass expansion, fasting GU expressed per depot size were 
significantly higher in obese compared to lean subjects. Surgery did not significantly af-
fect fasting GU of skeletal muscle or in any of the studied fat regions in obese subjects. 
However, taking into account the post-surgery decreased depot fat size, GU decreased 
across the studied adipose tissue regions except for humeral fat depot (Table 4). 
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5.7 BAT lipid metabolism in obesity (Study IV) 

Supraclavicular BAT lipid metabolism sites were assessed on the basis of their triglyceride lipid content, 
fractional [18F] FTHA uptake and NEFA uptake after normalization with systemic free fatty acid levels. In 
order to ascertain the paracrine effect of supraclavicular BAT, lipid metabolism of skeletal muscles in close 
proximity to (sternocleidomastoid, lavitor scapulae, deep cervical muscles), and distant from (pectorialis 
major and trapezius) were studied (Table 6). 

5.7.1 BAT fatty acid metabolism and the effect of surgery (Study IV) 

Fractional 18F-FTHA tracer uptake from the supraclavicular fat depot was significantly decreased in the com-
bined obese group compared with the normal weight controls (Table 6). There was no significant difference 
between supraclavicular uptake and neck subcutaneous fat in obese patients (Table 6). Skeletal muscle 
groups proximal to and distal from supraclavicular fat depot had higher FUR values compared to BAT values 
(Table 6). Upon normalizing with systemic NEFA levels (Table 1), BAT NEFA uptake rates were similar 
among the obese and controls (Table 6). Surgery-induced weight loss increased supraclavicular fat FUR by 
46% and NEFA uptake by 40% (Table 6). Surgery did not significantly increase either supraclavicular BAT 
FUR nor NEFA uptake rates in the neck SAT nor in any of the skeletal muscle groups (Table 6). 
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5.2 Insulin-stimulated adipose tissue glucose uptake in obesity and type 2         
diabetes (Study 1) 

Obese individuals had lower insulin-mediated GU in the whole body (M-value) and in 
skeletal muscle and all measure adipose tissue depots compared to lean controls (Table 
2) but not different between the ND and T2D subjects at baseline (Table 2). Among the 
obese patients with T2D, GU by the intraperitoneal VAT, abdominal and femoral adipose 
tissue depot was higher compared to their ND counterparts/controls/ (Table 2).  The base-
line percentage contribution of total VAT GU to whole body insulin-mediated glucose 
disposal rates were significantly higher in both T2D and ND groups compared to controls 
(Figure 7A). The contribution of total subcutaneous fat to whole body GU in both T2D 
and ND alike were significantly higher compared to controls (Figure 7B). Values in the 
visceral fat depot were statistically significant between the diabetes group (T2D vs. ND, 
P = 0.010) but not for the subcutaneous fat depot. Taking into account the area (kg) of the 
fat depots, obese patients recorded significantly higher depot-specific GU because of the 
expanded depot mass except for the extraperitoneal VAT, and femoral SAT compart-
ments. Insulin-induced glucose uptake in all of the fat depots increased markedly after 
surgery and were comparable to lean controls except for humeral, superficial and thoracic 
SAT regions (Table 2). Glucose uptake in the extraperitoneal and skeletal muscle groups 
were lower compared to that of the lean controls. The substantial reduction in fat depot 
size as expressed as per fat depot volume, when coupled with increased glucose uptake, 
produced no significant difference compared with the presurgery values. However, the 
depot-specific GU in the metabolically active intraperitoneal region remained higher 
compared to controls for both the ND and T2D groups.  
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A dataset was obtained by pooling before- and after-surgery, which showed that insulin-
mediated glucose uptake in visceral fat depot was non-lineally related to plasma glucose 
after a 2-hour OGTT (r = - 0.52, P < 0.001) (Figure 8A) and clamp fatty acids levels 
(Figure 8B) recorded at study states (r = - 0.58, P = 0.001). 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Nonlinear, reciprocal relationship between visceral fat depot GU and 2-hour plasma glucose 
concentrations (A) and steady-state plasma FFA on the clamp (B) in the pooled presurgery and postsur-
gery dataset. Lines are best fit with 95% CIs. 

5.3 Fasting adipose tissue glucose uptake and the effect of surgery (Study 1) 

Before surgery, obese T2D group expressed reduced intraperitoneal visceral GU com-
pared to ND (Table 4). There were no statistically significant difference (NS) between 
the diabetes groups for the remainder of the studied fat depot and skeletal muscle (all NS). 
As a consequence of the fat mass expansion, fasting GU expressed per depot size were 
significantly higher in obese compared to lean subjects. Surgery did not significantly af-
fect fasting GU of skeletal muscle or in any of the studied fat regions in obese subjects. 
However, taking into account the post-surgery decreased depot fat size, GU decreased 
across the studied adipose tissue regions except for humeral fat depot (Table 4). 
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Table 6. Tissue NEFA uptake and CT-radiodensity in obese patients before and after bariatric surgery 

studies (Study IV) 
 

 
Fractional and NEFA uptake rates, and CT radiodensity in Hounsfield units (HU) of the supraclavicular fat depot including the 
subcutaneous brown (sBAT) and white (sWAT) adipose tissue component, neck (from posterior cervical region) subcutaneous 
adipose tissue (SAT), and skeletal muscle proximal to (sternocleidomastoid, lavitor scapulae, deep cervical muscles) and distal 
(pectorialis major and trapezius) from the supraclavicular fat depot; sBAT (%) and sWAT (%), the ratio of sBAT(g) and sWAT 
(g) to whole supraclavicular depot mass (g) × 100%; Data presented as mean ± SD;  P <0.050 vs. after surgery; *P < 0.050 vs. 
control; †P <0.050 vs. whole supraclavicular fat (with ANOVA).  
  

 Controls (n = 15)  Obese patients (n = 23)     P value      
 Before surgery After surgery  
Fractional 18F-FTHA  
uptake rate (1/min) 

    

Supraclavicular fat 0.0161 ± 0.0177 0.0055 ± 0.0035* 0.0074 ± 0.0035* 0.010 
Neck SAT  0.0091 ± 0.0148 0.0047 ± 0.0018 0.0054 ± 0.0017 0.241 
Skeletal muscles      
Close group 0.0115 ± 0.0022 0.0104 ± 0.0020† 0.0102 ± 0.0023* 0.755 
Distant group 0.0083 ± 0.0017 0.0083 ± 0.0018† 0.0081 ± 0.0018 0.727 
NEFA uptake rate 
(µmol/100g/min) 

    

Supraclavicular fat  0.57 ± 0.50 0.39 ± 0.27 0.50 ± 0.27 0.008 
Neck SAT 0.47 ± 0.79 0.34 ± 0.17 0.38 ± 0.16† 0.517 
Skeletal muscles      
Close group  0.62 ± 0.24 0.81 ± 0.24† 0.77 ± 0.27 0.538 
Distant/Distal group 0.45 ± 0.16 0.64 ± 0.21*† 0.61 ± 0.23* 0.597 
CT-based measures     
Radiodensity     
Supraclavicular fat (HU) -82.4 ± 5.8 -101.2 ± 10.1* -86.5±9.6 <0.001 
sBAT (HU) -67.9 ± 1.5 -68.9 ± 0.4* -68.3±1.1 0.010 
sWAT (HU) -113.2 ± 7.6 -127.7 ± 10.4* -115.5 ± 8.9 <0.001 
Neck SAT (HU) -73.2 ± 25.2 -91.6 ±16.5*† -80.9 ± 15.8 0.017 
Skeletal muscle     
Close/Proximal/ group 
(HU) 

61.2 ± 6.2 57.6 ± 7.8 62.2 ± 8.2 0.066 

Distant/Distal group (HU) 55.3 ± 8.6 45.2 ± 15.0* 53.3 ± 8.6* 0.045 
Adipose tissue mass     
Supraclavicular fat (g)  111.1 ± 67.4 439.1 ± 141.4* 252.1 ± 95.1 <0.001 
sBAT (g) 65.8 ± 31.3 183.9 ± 49.5* 138.9 ±39.3* <0.001 
sWAT (g) 39.1 ± 35.9 240.6 ± 108.1* 99.9 ± 64.5* <0.001 
sBAT (%) 64.5 ± 12.4 43.4 ± 8.4* 58.0 ±10.7 <0.001 
sWAT (%) 29.3 ± 12.1 53.2 ± 11.2* 36.5 ±11.9 <0.001 
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5.2 Insulin-stimulated adipose tissue glucose uptake in obesity and type 2         
diabetes (Study 1) 

Obese individuals had lower insulin-mediated GU in the whole body (M-value) and in 
skeletal muscle and all measure adipose tissue depots compared to lean controls (Table 
2) but not different between the ND and T2D subjects at baseline (Table 2). Among the 
obese patients with T2D, GU by the intraperitoneal VAT, abdominal and femoral adipose 
tissue depot was higher compared to their ND counterparts/controls/ (Table 2).  The base-
line percentage contribution of total VAT GU to whole body insulin-mediated glucose 
disposal rates were significantly higher in both T2D and ND groups compared to controls 
(Figure 7A). The contribution of total subcutaneous fat to whole body GU in both T2D 
and ND alike were significantly higher compared to controls (Figure 7B). Values in the 
visceral fat depot were statistically significant between the diabetes group (T2D vs. ND, 
P = 0.010) but not for the subcutaneous fat depot. Taking into account the area (kg) of the 
fat depots, obese patients recorded significantly higher depot-specific GU because of the 
expanded depot mass except for the extraperitoneal VAT, and femoral SAT compart-
ments. Insulin-induced glucose uptake in all of the fat depots increased markedly after 
surgery and were comparable to lean controls except for humeral, superficial and thoracic 
SAT regions (Table 2). Glucose uptake in the extraperitoneal and skeletal muscle groups 
were lower compared to that of the lean controls. The substantial reduction in fat depot 
size as expressed as per fat depot volume, when coupled with increased glucose uptake, 
produced no significant difference compared with the presurgery values. However, the 
depot-specific GU in the metabolically active intraperitoneal region remained higher 
compared to controls for both the ND and T2D groups.  

 

Figure 9. Percentage contribution of VAT depots [A] and SAT depots [B] to whole-body insulin-mediated 
GU in lean control subjects and in obese  (ND) nondiabetic and with (T2D) type 2 diabetes patients before 
and 6 months after bariatric surgery. Data are mean ± SEM. *P < 0.050 compared with control subjects; 
§P < 0.050 for the presurgery to post surgery comparison. 
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A dataset was obtained by pooling before- and after-surgery, which showed that insulin-
mediated glucose uptake in visceral fat depot was non-lineally related to plasma glucose 
after a 2-hour OGTT (r = - 0.52, P < 0.001) (Figure 8A) and clamp fatty acids levels 
(Figure 8B) recorded at study states (r = - 0.58, P = 0.001). 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Nonlinear, reciprocal relationship between visceral fat depot GU and 2-hour plasma glucose 
concentrations (A) and steady-state plasma FFA on the clamp (B) in the pooled presurgery and postsur-
gery dataset. Lines are best fit with 95% CIs. 

5.3 Fasting adipose tissue glucose uptake and the effect of surgery (Study 1) 

Before surgery, obese T2D group expressed reduced intraperitoneal visceral GU com-
pared to ND (Table 4). There were no statistically significant difference (NS) between 
the diabetes groups for the remainder of the studied fat depot and skeletal muscle (all NS). 
As a consequence of the fat mass expansion, fasting GU expressed per depot size were 
significantly higher in obese compared to lean subjects. Surgery did not significantly af-
fect fasting GU of skeletal muscle or in any of the studied fat regions in obese subjects. 
However, taking into account the post-surgery decreased depot fat size, GU decreased 
across the studied adipose tissue regions except for humeral fat depot (Table 4). 
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5.7.2 Triglyceride content in brown adipose tissue (Study IV) 

Baseline supraclavicular CT- radiodensity (-250 to -50 HU) was significantly lower (towards the negative 
HU direction) in the obese patients compared to lean healthy controls (Table 5). A lower CT-radiodensity 
value is indicative increased supraclavicular triglyceride accumulation and a thus decreased BAT activity. 
Supraclavicular BAT recorded higher triglyceride content compared to SAT (Table 2). To test the extent of 
browning of supraclavicular fat, the amount of BAT (sBAT %) and WAT (sWAT %) within the supracla-
vicular fat were calculated (Table 5). Morbidly obese patients had decreased rates of browning and increased 
triglyceride content compared to normal weight healthy controls (Table 4). Surgery-induced weight loss sig-
nificantly increased supraclavicular CT-radiodensity (toward the positive direction) (Table 5), suggesting a 
decreased supraclavicular triglyceride content. The amount of supraclavicular BAT increased after surgery. 
Correspondingly, sWAT decreased significantly after surgery (Table 6). 

5.7.3 Triglyceride content, adiposity and insulin sensitivity (Study IV) 

Post-surgery change (pre - post-surgery) were calculated to assess surgery-specific effects on BAT triglyc-
eride content. Decrease in triglyceride content was significantly associated with change in whole body adi-
posity measure (assessed with BMI kg/m²) (r = - 0.72, P < 0.001). In the same vein, decreases in triglyceride 
content were significantly associated with improvement in whole body insulin sensitivity measure (assessed 
by the insulin sensitivity index) (r = 0.66, P = 0.001). Improvement in percentage sBAT was significantly 
associated with decrease in BMI, and with increase whole body insulin sensitivity index (Figure 10).  
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A dataset was obtained by pooling before- and after-surgery, which showed that insulin-
mediated glucose uptake in visceral fat depot was non-lineally related to plasma glucose 
after a 2-hour OGTT (r = - 0.52, P < 0.001) (Figure 8A) and clamp fatty acids levels 
(Figure 8B) recorded at study states (r = - 0.58, P = 0.001). 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Nonlinear, reciprocal relationship between visceral fat depot GU and 2-hour plasma glucose 
concentrations (A) and steady-state plasma FFA on the clamp (B) in the pooled presurgery and postsur-
gery dataset. Lines are best fit with 95% CIs. 

5.3 Fasting adipose tissue glucose uptake and the effect of surgery (Study 1) 

Before surgery, obese T2D group expressed reduced intraperitoneal visceral GU com-
pared to ND (Table 4). There were no statistically significant difference (NS) between 
the diabetes groups for the remainder of the studied fat depot and skeletal muscle (all NS). 
As a consequence of the fat mass expansion, fasting GU expressed per depot size were 
significantly higher in obese compared to lean subjects. Surgery did not significantly af-
fect fasting GU of skeletal muscle or in any of the studied fat regions in obese subjects. 
However, taking into account the post-surgery decreased depot fat size, GU decreased 
across the studied adipose tissue regions except for humeral fat depot (Table 4). 
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Figure 14. Pearson’s correlation coefficient of the change (Δ = after -before surgery) in entire supraclavicular fat radiodensity 
(HU) with BMI (kg/m2), insulin sensitivity index (mmol/L) and the proportion of brown fat (sBAT [%] = sBAT[g]/ entire supra-
clavicular fat mass[g] × 100%) with BMI (kg/m2); and with insulin sensitivity index (mmol/L). 
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Before surgery, obese T2D group expressed reduced intraperitoneal visceral GU com-
pared to ND (Table 4). There were no statistically significant difference (NS) between 
the diabetes groups for the remainder of the studied fat depot and skeletal muscle (all NS). 
As a consequence of the fat mass expansion, fasting GU expressed per depot size were 
significantly higher in obese compared to lean subjects. Surgery did not significantly af-
fect fasting GU of skeletal muscle or in any of the studied fat regions in obese subjects. 
However, taking into account the post-surgery decreased depot fat size, GU decreased 
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6 DISCUSSION 

6.1 Hypertrophied adipocytes and uneven adipose tissue distribution underlie the development 
of morbid obesity  

The current study series extensively assessed adipose tissue distribution patterns in the major metabolically 
significant depots of the body, which are the: upper arms, thoracic, abdominal and femoral regions.  In addi-
tion, these studies addressed the controversy surrounding the acceptable measurement sites for abdominal 
SAT or VAT (i.e. T10-L1, L1-L2, or L4-L5) by taking the whole abdominal depot into account. A BMI-
based classification of obesity is fraught with countless challenges including inter-racial/ethnic variations 
(Deurenberg, Yap, & van Staveren, 1998). Therefore, the real contribution of adiposity should be based on 
body composition, cellular morphology, body fat content and regional fat distribution (Poirier, 2007). Fat 
biopsy-derived histological analysis indicates that the SAT adipocyte mean size, volume and number were 
significantly higher in obese individuals regardless of diabetes status compared to lean controls (Table 3, 
Study II). However, no significant differences were observed in diabetes group with regards to SAT or VAT 
adipocyte size. In periods of chronic caloric exposure, adipose tissue expands through adipocyte hypertrophy 
or hyperplasia. Previous studies have suggested that hypertrophied adipocytes are closely related to meta-
bolic derangements including insulin resistance (Fang, Guo, Zhou, Stahl, & Grams, 2015). Enlarged mean 
adipocyte size have been shown to be associated with insulin resistance and the occurrence of T2D inde-
pendent of percentage body fat and BMI (Lonn, Mehlig, Bengtsson, & Lissner, 2010; Lundgren et al., 2007; 
Weyer, Foley, Bogardus, Tataranni, & Pratley, 2000). Hypertrophied adipocytes also associate with in-
creased inflammation involving acute phase proteins, which include serum amyloid A, and which contributes 
to the cardiometabolic risk factors associated with obesity (Poitou et al., 2005; Poitou et al., 2006).  

Baseline results from these studies indicate that obese patients with diabetes had increased amounts of deep 
SAT compared with their ND counterparts but had no increase in superficial SAT. The deep SAT is known 
to expand disproportionally with increasing obesity compared to the superficial SAT, and it correlates with 
cardiometabolic risk factors (Marinou et al., 2014), and liver pathologies (Tordjman et al., 2012), independ-
ent of other measures of adiposity. Deep SAT also over-expresses proinflammatory, lipogenic, lipolytic 
genes, and hence is a potent predictor of global insulin resistance (Marinou et al., 2014). In contrast, favorable 
metabolic genes including adiponectin are preferentially expressed in the superficial SAT (Kelley et al., 
2000). In terms of the fatty acid composition, deep SAT expressed higher ratios of saturated to monounsatu-
rated fatty acid compared to superficial SAT (Lundbom, Hakkarainen, Lundbom, & Taskinen, 2013).  

To elucidate further the contribution of regional adipose tissue distribution in obesity induced metabolic 
complications, VAT was subdivided into intraperitoneal and extraperitoneal VAT depots as has been previ-
ously done in earlier studies (Abate et al., 1994; Bjorntorp, 1990b). The intraperitoneal VAT drains into the 
portal vein, whereas the extraperitoneal VAT empties into the inferior vena cava (Abate et al., 1994; 
Bjorntorp, 1990b). From the current results, obese T2D had increased amounts of intra- and extraperitoneal 
VAT compared to the ND subjects, which may be indicative of the known association between VAT accu-
mulation in the development of T2D (Bray et al., 2008).
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A dataset was obtained by pooling before- and after-surgery, which showed that insulin-
mediated glucose uptake in visceral fat depot was non-lineally related to plasma glucose 
after a 2-hour OGTT (r = - 0.52, P < 0.001) (Figure 8A) and clamp fatty acids levels 
(Figure 8B) recorded at study states (r = - 0.58, P = 0.001). 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Nonlinear, reciprocal relationship between visceral fat depot GU and 2-hour plasma glucose 
concentrations (A) and steady-state plasma FFA on the clamp (B) in the pooled presurgery and postsur-
gery dataset. Lines are best fit with 95% CIs. 

5.3 Fasting adipose tissue glucose uptake and the effect of surgery (Study 1) 

Before surgery, obese T2D group expressed reduced intraperitoneal visceral GU com-
pared to ND (Table 4). There were no statistically significant difference (NS) between 
the diabetes groups for the remainder of the studied fat depot and skeletal muscle (all NS). 
As a consequence of the fat mass expansion, fasting GU expressed per depot size were 
significantly higher in obese compared to lean subjects. Surgery did not significantly af-
fect fasting GU of skeletal muscle or in any of the studied fat regions in obese subjects. 
However, taking into account the post-surgery decreased depot fat size, GU decreased 
across the studied adipose tissue regions except for humeral fat depot (Table 4). 
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To examine further the significance of the major fat depots in relation to diabetes, the current series of studies 
found no statistically significant differences between upper arm and thoracic SAT with respect to T2D. 
Moreover, the severely obese individuals with diabetes at baseline had significantly lower femoral SAT 
compared to obese subjects without diabetes (Table 2). It has been shown that the increased deposition of 
gluteofemoral SAT in obese individuals may be associated with decreased prevalence of T2D (Aasen, Fager-
tun, & Halse, 2009). Contrary to findings pointing to the protective effect of gluteal-femoral adipose tissue 
in the etiology of T2Ds, in a cross-sectional study, no significant association was observed between increased 
femoral SAT size as assessed by CT and the incidence of T2D (Goodpaster et al., 2003). Previous studies 
have attributed the association between a measure of lower body adiposity such as WHR and glucose me-
tabolism of T2D to increased waist circumference and also to a smaller gluteal-femoral circumference 
(Seidell, Perusse, Despres, & Bouchard, 2001; Snijder et al., 2005). A cross-sectional and a population based 
study have both reported a reverse association between gluteal-femoral adipose tissue distribution and sys-
temic glycaemia, dyslipidemia and the prevalence of T2D (Snijder et al., 2005). From the anatomical stand-
point, SAT can be broadly categorized into the truncal (abdominal plus thoracic), and peripheral regions 
including upper and lower extremities and upper arm and the gluteofemoral regions (Garg, 2004). Although 
SAT in both central and peripheral depot drains into the systemic circulation, these depots may play different 
metabolic roles in the development of insulin resistance and diabetes (Patel & Abate, 2013). Women gener-
ally tend to distribute SAT in the upper arm due to their sex hormones (Yamauchi, Kurihara, Yoshikawa, 
Taguchi, & Hashimoto, 2015). 

6.1.1 Bariatric surgery decreases body fat and adipocyte size regardless of baseline diabetes status 

A predominant feature of fat mass loss is a reduction in adipocyte hypertrophy. The current data shows that 
bariatric surgery decreased SAT adipocyte size in the obese independent of the baseline diabetes status (Table 
2). Hypertrophied adipocytes are a known risk factor for T2D, and other metabolic abnormalities (Bays et 
al., 2008; Henninger, Eliasson, Jenndahl, & Hammarstedt, 2014; O'Connell et al., 2010). A previous study 
by (Cotillard et al., 2014) showed that obese individuals with fewer metabolic improvements or unresolved 
diabetes status after bariatric surgery expressed hypertrophied adipocytes.  

At 6 months after the surgical procedures, all the MRI-derived adipose tissue volumes had decreased signif-
icantly in the obese patients regardless of their initial diabetes status (Table 1). Specifically, bariatric surgery 
induced a greater loss of VAT mass than SAT, but the amounts of loss of VAT and SAT were similar among 
individuals with and without T2D (Table 2). An observable and a reported effect of bariatric surgery is the 
marked and sustained decrement in fat mass along with marked improvement in overall metabolic health 
(Galanakis et al., 2015; Weiss et al., 2009). An earlier report indicates that (Gray et al., 1991) obese subjects 
with comparatively increased intra-abdominal fat at baseline tended to lose more fat from this depot during 
weight loss. Studies by Kim and colleagues (Kim et al., 2011), suggested that weight loss after bariatric 
surgery preferentially targets the VAT in T2D patients. Furthermore, mild weight loss following dietary 
changes have been shown to preferentially target VAT, whereas rapid weight loss following bariatric surgery 
proportionally targets both SAT and VAT compartments (Chaston & Dixon, 2008; Weiss et al., 2009). The 
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mediated glucose uptake in visceral fat depot was non-lineally related to plasma glucose 
after a 2-hour OGTT (r = - 0.52, P < 0.001) (Figure 8A) and clamp fatty acids levels 
(Figure 8B) recorded at study states (r = - 0.58, P = 0.001). 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Nonlinear, reciprocal relationship between visceral fat depot GU and 2-hour plasma glucose 
concentrations (A) and steady-state plasma FFA on the clamp (B) in the pooled presurgery and postsur-
gery dataset. Lines are best fit with 95% CIs. 

5.3 Fasting adipose tissue glucose uptake and the effect of surgery (Study 1) 

Before surgery, obese T2D group expressed reduced intraperitoneal visceral GU com-
pared to ND (Table 4). There were no statistically significant difference (NS) between 
the diabetes groups for the remainder of the studied fat depot and skeletal muscle (all NS). 
As a consequence of the fat mass expansion, fasting GU expressed per depot size were 
significantly higher in obese compared to lean subjects. Surgery did not significantly af-
fect fasting GU of skeletal muscle or in any of the studied fat regions in obese subjects. 
However, taking into account the post-surgery decreased depot fat size, GU decreased 
across the studied adipose tissue regions except for humeral fat depot (Table 4). 
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upper arm fat decreased significantly in obese ND subject, although T2D patients still maintained a signifi-
cant amount of arm fat at 6 months after surgery. Upper arm fat accumulation is to some extent positively 
associated with the presence of diabetes independent of age, gender and percentage body fat (Miljkovic-
Gacic et al., 2008). A study found no association between the volumes of upper arm fat and the risk of 
developing diabetes (Hara, Saikawa, Kurokawa, Sakata, & Yoshimatsu, 2004). Caloric restriction within a 
half-year period has been shown to significantly decrease anthropometrically derived upper arm fat in obese 
women (J. Wang, Laferrere, Thornton, Pierson, & Pi-Sunyer, 2002).  

6.2 Obesity and/or diabetes impairs adipose tissue energy metabolism  

6.2.1 White adipose tissue (Studies I-III) 

Earlier human studies with [18F] FDG PET and clamp techniques demonstrated decreased whole body GU 
and a significant impairment in abdominal SAT and VAT GU in obese individuals compared to nonobese 
subjects (Virtanen et al., 2002). The current studies utilized PET-clamp techniques to quantify adipose glu-
cose metabolism in severely obese patients, and also examined alterations in adipose glucose uptake after 
bariatric surgery. A noticeable feature of obesity-induced diabetes is an impairment in insulin-stimulated GU 
in the abdominal and femoral adipose tissue compartments compared to nonobese controls (Table 3, Study 
I). In addition, whole body glucose utilization (M-value) measured during clamp in addition to skeletal mus-
cle GU were significantly reduced in the obese compared to controls (Table 3, Study I). Whereas baseline 
M-value did not differ with respect to diabetes status, the T2D group demonstrated impaired skeletal muscle 
GU compared to the ND group (Table 3, Study I). In a previous study, it was demonstrated that abdominal 
SAT and omental adipose tissue from obese and overweight subjects are irresponsive to the action of insulin 
(Stolic et al., 2002). Insulin resistance is the hallmark of diabetes, and it is characterized by the inability of 
adipose tissue and skeletal muscle to take up systemic glucose, and also suppress endogenous glucose pro-
duction with rising insulin levels (Walker et al., 2007). Indeed, reduced response of skeletal muscle to insulin 
is regarded as the primary defect in the development of diabetes (DeFronzo & Tripathy, 2009). Optimal 
glucose uptake in adipose tissue is driven by the action of the translocase GLUT4, for which the expression 
is down regulated in obese prediabetic and diabetic subjects (Ducluzeau et al., 2001). Ex vivo analysis of 
adipocyte from VAT of obese T2D indicates decreased capacity of GLUT4 for glucose transportation (Ma-
ianu, Keller, & Garvey, 2001).  

Under basal conditions, there was no difference in adipose GU values with respect to diabetes. The GU 
values in the metabolically active extraperitoneal VAT was significantly lower in the pooled T2D and ND 
obese individuals compared to controls. The GU values were similar between the obese and controls in the 
remainder of the fat depot and in skeletal muscle (Table 4, Study I). Previous ex vivo studies obtained similar 
findings that indicates that basal GU in the mesenteric adipose tissue depot was significantly higher in lean 
controls compared to obese subjects (Stolic et al., 2002). Basal adipose tissue FAU, and blood flow distribu-
tion in all of the studied adipose tissue depots compared to lean control subjects (Table 5, Studies II-IV). 
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Under conditions of fasting or limited caloric exposure, the body switches from glucose to fatty acids utili-
zation aided by increased adipocyte lipolysis. The current dataset demonstrated decreased adipose tissue 
FAU in the obese patients compared to lean controls (Table 5, Studies II, IV). There were no differences in 
FAU between obese T2D and ND (Table 5, Studies II, IV).  

Regardless of the presence of diabetes, the expansion of SAT was due to both adipocyte hyperplasia, and 
hypertrophy (Figure 9). Consequently, adipose tissue blood flow was reduced when expressed per SAT mass, 
but similar to control values when expressed per cell, in obese T2D and in ND patients (Table 5, Study II). 
The nonlinear relationship between blood flow and cellularity was evident in the abdominal SAT depot in 
all subjects (Figure 10A), the fatty acid extraction was selectively increased in T2D (Figure 10B), which 
paralleled a similar increase in skeletal muscle FAU (Table 5, Study II). This was not the case, however, in 
abdominal VAT depots: although VAT depots were populated with smaller adipocytes than subcutaneous 
depots and supplied by a larger blood flow. Visceral fat did not show increased FAU, either per unit tissue 
mass or as a fractional extraction (in nondiabetic or in T2D subjects).  

Both lipid and glucose oxidation rates (expressed as a fraction of systemic FFA delivery to tissues) were 
severely reduced in the obese compared to nonobese subjects (Figure 11). The decreased uptake and storage 
of fatty acids in obesity may also be attributed to the reduced adipocyte differentiation and expandability 
contributing to the increased systemic levels acids (Stinkens, Goossens, Jocken, & Blaak, 2015). Impairment 
in adipose tissue lipid uptake in the presence of obesity, insulin resistance and T2D may be partly attributed 
to the decreased activities of insulin-mediated lipoprotein lipases and decreased fatty acid translocase CD36 
in adipocytes (Stinkens et al., 2015). When expressed per unit of tissue or per adipocyte, FAU was similar 
between obese and nonobese control subjects (Table 5, Study II). However, after taking into account the 
blood flow and the concentration of FFA, fatty acid fractional uptake was higher in the obese group compared 
to controls (Figure 11). In the case of skeletal muscle, there was decrease in blood flow per unit mass but 
increased fatty acid extraction only in the obese T2D patients (Figure 9). Metabolic flexibility, which is 
defined as the body’s capacity to switch in-between fuel oxidation is based on the availability of the said 
fuel. The inability to respond to the changes in fuel availability is implicated in the ectopic accumulation of 
lipids in skeletal muscle, which leads to insulin resistance (Goodpaster & Sparks, 2017) a hallmark of T2D. 
On the basis the aforementioned evidence, it may imply that the higher skeletal muscle FAU obtained only 
in the obese with T2D compared to controls (Table 5, Study II) may underlie their current diseased state. 
Even under stimulated conditions, the ability to transition from fatty acid to glucose utilization is severely 
impaired in insulin resistant subjects and this is mainly attributed to the impaired of adipose and skeletal GU 
(Table 3, Study I). 

6.2.2 Supraclavicular brown adipose tissue (Study IV)  

Supraclavicular BAT uptake of systemic nonesterified fatty acid (NEFA) was reduced in the obese group 
compared to controls, similar to findings from an earlier study (Vijgen et al., 2011). The presence of diabetes, 
or lack thereof, did not produce statistically significant difference in the BAT NEFA uptake rate in the studied 
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obese women. Similar findings were reported in a previous study involving young men (Blondin et al., 2015). 
Supraclavicular BAT triglyceride content was higher in the obese compared to controls, and was inversely 
associated with the fractional [18F] FTHA tracer uptake (Table 6, Study IV). These data indicate that a dense 
triglyceride accumulation may be contributing to the reduced NEFA metabolism associated with the obesity 
(Din et al., 2017). Supraclavicular BAT radiodensity assessed by CT (Din et al., 2017), or by proton magnetic 
resonance spectroscopy (Raiko et al., 2015), has been shown to correlate with markers of adiposity and un-
favorable metabolic profiles (Koksharova et al., 2017). In adult humans, the supraclavicular fat depot is 
mixture of cells of brown (sBAT) and white (sWAT) (Study IV). The absolute quantity [sBAT (g)], and the 
proportion of brown fat [sBAT (%)] in the supraclavicular fat depot were lower in the obese group compared 
to the controls (Table 6, Study IV). The metabolic potential of brown fat is known to be negatively correlated 
with the presence of obesity and/or metabolic abnormalities (Cypess & Kahn, 2010). The increasing amounts 
and activity of BAT can potentially play a role in the treatment of obesity and obesity-related metabolic 
abnormalities through the utilization of glucose and fatty acid fuel for BAT substrate metabolism (Bartelt et 
al., 2011; Berbee et al., 2015). 

6.3 Bariatric surgery enhances adipose tissue metabolism regardless of the presence of diabetes 

The massive weight loss (~ 25 kg) at 6 months after bariatric surgery produced marked improvement in 
whole body glucose utilization in the T2D group, as well improved glucose tolerance (Table 2, Study I-IV). 
However, skeletal muscle insulin-mediated GU was impaired in the obese T2D group (Table 2, Study I). 
Intraperitoneal VAT GU remained subnormal, and femoral SAT insulin sensitivity was still impaired in the 
T2D group (Table 2, Study I). Impaired glucose metabolism in the VAT is a known risk factor for T2D 
(Abate et al., 1996). However, increased lipid accumulation and metabolism in femoral SAT is associated 
with favorable metabolic parameters known for their role in diabetes prevention (Azuma et al., 2007). It is 
important to reiterate that the postsurgery studies were conducted while patients were still losing weight. 
Therefore, whether insulin would have exerted further action in improved glucose utilization is still un-
known. A marked reduction in overall and SAT adipose tissue nonetheless, SAT depot continued to make 
significant contribution to the overall insulin-mediated glucose disposal resulting in more efficient glucose 
utilization compared to nonobese controls (Figure 7). In the postsurgical state, expanded adipose tissue con-
tinues to protect from further increases in glycemia.  

Subcutaneous adipose tissue cellularity increased, and total depot blood flow and FAU decreased in both 
SAT and VAT (Table 3). Weight loss induced by surgery had no effect of FAU expressed per tissue mass. 
However, pericardial fat FAU decreased after surgery and this was possibly attributable to the sensitivity of 
this depot to weight loss in addition to being an active depot for lipid metabolism. Both SAT blood flow and 
FAU when expressed per cell decreased (Table 5, Study II). In both SAT and skeletal muscle, fractional fatty 
acid extraction did not change but remained higher in the T2D patients compared to nonobese controls (Fig-
ure 3). The metabolic profiles of the diabetes group improved significantly after surgery to the same extent 
and similar to the nondiabetic obese, and none of the blood flow or FAU parameters changed differentially 
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between obese subjects with and without diabetes (Table 5, Study II). In periods of obesity and during weight 
loss induced by surgery, the strong connection between adipose tissue blood flow and adipocyte cellularity 
may have enhanced tissue FAU. The capacity of adipose tissue and skeletal muscle to extract FFA from the 
circulation was unchanged with weight loss induced by surgery at 6 months. The observed phenomenon may 
be due to systemic free fatty acid and triglyceride levels that remained elevated after surgery, as has been 
previously reported (Honka et al., 2015). Another possible explanation may be the fact that the release, rather 
than the uptake and storage of circulating FFAs is higher under basal conditions (Bucci et al., 2015). Fur-
thermore, the postsurgery studies were performed while the obese patients were still losing weight and were 
thus in a catabolic state. 

With the rapid weight loss at 6 month after surgery, adipose tissue blood flow expressed as mass within the 
scanned regions remained unchanged in the obese patients (Table 5, Study II). A previous study found slight 
but significant increase in the SAT blood flow in obese patients at 12 months after RYGB (Rossi et al., 2012). 
The current [15O] H2O-PET modality differs from the laser-doppler flowmetry methodology used in that 
study, however. Moreover, postsurgery patients in the current study had lost an average of 25 kg after 6 
months as compared (Table 2) with 40 kg after 12 months of sustained weight loss in the study conducted 
by Rossi and colleagues. It is therefore tempting to expect that an even longer follow up in future studies 
could produce significant improvement in adipose tissue blood flow rates. Blood flow rates in SAT and VAT 
depot decreased significantly through adipose tissue depot as was previously observed in obese subjects 
following a calorie restriction-induced weight loss (Viljanen et al., 2009). 

6.4 Bariatric surgery improves brown adipose tissue lipid metabolism  

Marked weight reduction achieved through bariatric surgery produced increments in NEFA uptake, the 
amounts and proportions of BAT also increased, whereas a decrement in triglyceride content in the supra-
clavicular fat depot was measured (Table 6, Study IV). Postsurgery, NEFA uptake, sBAT% and triglyceride 
content values were comparable to values obtained in control subjects (Table 6, Study IV). The increases in 
the relative amounts of supraclavicular BAT may be responsible for the increased NEFA uptake possibly 
used as substrate for BAT thermogenesis (Blondin et al., 2017). A previous study on the effect of surgery on 
BAT suggest that the postsurgery increment in BAT NEFA uptake may be the result of upregulation BAT 
thermogenesis related gene expression (Hankir et al., 2015). A previous study also proposed that post-bari-
atric surgery increase in NEFA metabolism may be attributed to the release of intestinal hormones GLP-2 
(le Roux et al., 2010), GLP-1 (Kooijman et al., 2015), or also an increase in FGF21 levels (Harris et al., 
2017), which are known potential activators of BAT. Furthermore, the reduced density and thickness of the 
skin around the supraclavicular region results in decreased thermal insulation and skin temperature (Bartelt 
et al., 2011), which may have played a contributory role in the increased BAT lipid metabolism. The increase 
in the relative amounts of supraclavicular BAT after surgery induced weight loss is supported by a finding 
from a previous report (Vijgen et al., 2012). The current study was conducted under basal and thermoneutral 
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conditions, whereas the aforementioned study Vijgen and colleagues utilized cold-stimulated FDG-PET up-
take. The relative increase in the browning in the supraclavicular depot may have resulted from the decreased 
triglyceride accumulation and the upregulation of genes involved in the browning of white fat (Seale & Lazar, 
2009). The potential role of BAT in the improvement in whole metabolism was evidenced in the current 
study in which a 14% reduction in supraclavicular triglyceride content was positively associated with im-
provement in whole-body insulin sensitivity 6 months after surgery. These findings are in agreement with 
previous reports from studies on obese subjects (Raiko et al., 2015), and in subjects with T2D (Koksharova 
et al., 2017). 

6.5 Strengths and limitations of the current study  

The novelty in the current series of studies is the use of a multi-modality approach in the evaluation of the 
effects of bariatric surgery. Subjects were studied with novel metabolic PET imaging modality for the non-
invasive measurements of tissue-specific energy metabolism (Studies I-IV). Hyperinsulinemic-euglycemic 
clamp, the gold standard technique for assessing whole body insulin sensitivity, was performed for the sub-
jects to assess whole body and tissue-specific glucose utilization (Study I). MRI was used for the absolute 
quantification of the regional distribution of adipose tissue (Studies I-IV). CT-radiodensity has been vali-
dated (Lubura et al., 2012), and was used for tissue triglyceride content including supraclavicular brown fat 
(Study IV). Fat biopsies were obtained for histological assessment of adipocyte sizes (Study II).  

The limitations of the present study must be recognized. VAT biopsies were taken during surgery but not as 
postoperative biopsies. The studied participants were predominantly women (Study I) or only women (Stud-
ies II, III, IV), and it would therefore be of interest to conduct similar studies in men. The postsurgery studies 
were performed when subjects were still losing weight. Longer follow-up is still needed to determine whether 
the observed adipose tissue-specific change in tissue metabolism remain stable over longer periods. The 
obese patients underwent one of two bariatric surgery procedures, i.e. sleeve and gastric bypass. In one study 
(Study IV) the participants were heterogeneous (i.e. obese participants with and without diabetes). The cur-
rent series of studies consisted of small samples sizes, thus, non-significant differences were obtained with 
respect to the surgical techniques used. These differences may have been significant had larger sizes been 
used. Bioelectric impedance analysis may not be an accurate measure of body fat content in morbidly obese 
subjects. Assessment of BAT lipid metabolism was performed under thermoneutral and fasting conditions 
without cold stimulation.
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6.6 Future prospects 

Giant strides have been made with regards to the use of molecular PET imaging to understand metabolic 
mechanisms that underlie abnormalities such as obesity-induced T2D. The current study highlights the role 
of adiposity and tissue-specific energy metabolism in the development of diabetes among obese individuals. 
Alterations in these measured variables as a result of weight loss induced by surgery have also been high-
lighted. In spite of the benefits associated with surgery, the metabolic status of certain groups of patients 
remains unchanged after surgery. One area of interest is to study the differences between the cohorts of 
respondents versus non-respondents to surgery, particularly with respect to the adipose tissue biology. That 
said, particular attention should be paid to an integrated biomarker profiling comprising genomics, proteo-
mic, and metabolomics (OMICS) to identify the mechanisms that underlie obesity-induced diabetes. It would 
also be interesting to apply OMICS techniques to research those obese individuals whose diabetes status 
remains unchanged and compare them with those free of diabetes after weight loss induced by bariatric 
surgery. Furthermore, the interpretation of OMICS data using systemic biology, advanced bioinformatics 
and advanced data processing techniques will provide clearer, and a more complete understanding of the root 
cause of obesity and diabetes.  
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7 SUMMARY AND CONCLUSIONS  

The pathological expansion of WAT through adipocyte hypertrophy, and/or hyperplasia, is a widely known 
predisposing factor for insulin resistance and T2D. The regional variations in adipose tissue distribution, and 
metabolic activities, play demonstrable roles in the development of obesity-related metabolic complications. 
The re-discovery of functional thermogenic BAT in human adults potentially offer a non-conservative and 
non-surgical approach to the treatment of obesity and diabetes. However, the metabolic functioning of both 
white and brown fat are greatly hampered in severely obese persons. Treatment strategies for severe obesity 
may involve a combination of lifestyle modifications, including nutritional and exercise regimen, and phar-
macotherapy evaluation. In the event that these conservative approaches are unsuccessful, bariatric surgery 
is known to achieve long-term weight reduction effect, and results in the remission of T2D in the majority 
of the obese individuals. Until recently, few studies had attempted to provide tangible explanation for role of 
adipose tissue metabolism in the pathophysiology of diabetes. Therefore, the present study was conducted to 
examine regional variation in adipose tissue energy metabolism with PET, MRI and CT imaging modalities, 
along with fat biopsy in morbidly obese patients (some of whom expressed the diabetes phenotype) and in 
metabolically healthy nonobese controls subjects. The obese patients were followed-up at 6 months after 
bariatric surgery to assess the impact of weight loss on adipose tissue metabolism. Initially, the obese were 
characterized by dysfunctional lipid and glycemic profiles, and they were insulin resistant compared to 
healthy normal weight controls. As a consequence of their increased total and regional adipose tissue mass, 
the morbidly obese patients had many more fat cells than individuals of normal weight. Obese patients with 
diabetes expressed fat depot-specific differences in the metabolically active abdominal adipose tissue depot. 
Obese patients with diabetes also expressed a blunted response to insulin in glucose uptake in a majority of 
the studied fat depots compared to the nondiabetic obese group. This particular finding affirms that tissue 
specific insulin resistance is a major pathophysiological underpinning of obesity-induced diabetes. Long 
chain fatty acid uptake and blood flow distribution in adipose tissue were lower in these obese patients com-
pared to nonobese healthy controls. The extent, and the rate of fatty acid metabolism of BAT were lower in 
the obese patients. This is partly attributed to the increased deposition of triglyceride in the supraclavicular 
fat depot as a consequence of the obesity. Bariatric surgery induced weight loss decreased adiposity 
measures, along with increased adipocyte cellularity. Bariatric surgery also enhanced the effects of insulin 
on adipose glucose metabolism regardless of the presence of diabetes. Adipose blood flow distribution, and 
fatty acid metabolism expressed per depot size, or per adipocyte decreased significantly with weight loss. 
Adipose blood flow coupled with adipocyte cellularity enhance fatty acid uptake. With respect to brown fat, 
weight loss decreased the triglyceride content, thus triglyceride was possibly utilized as substrate for en-
hanced brown fat fatty acid metabolism in the supraclavicular depot. Postsurgery change in that quantity of 
brown fat triglyceride content, coupled with the increased recruitment of brown adipocytes, may have con-
tributed to the overall favorable insulin sensitivity increase observed in those obese subjects. Taken together, 
molecular PET imaging offers a novel approach for studying the effects of obesity and also the effects of 
diabetes on adipose tissue metabolism. The effects of bariatric surgery transcend the loss of adipose tissue 
mass, but also improvements in tissue metabolic profiles in obese individuals without or with diabetes
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