
The originality of this thesis has been checked in accordance with the University of Turku quality assurance

system using the Turnitin OriginalityCheck service.

Large Software Implementation Project:

A study of software development and

project management literature

UNIVERSITY OF TURKU

Department of Future Technologies

Computer Science

Maija Väisänen

September 2017

ii

TURUN YLIOPISTO

Tulevaisuuden teknologioiden laitos

MAIJA VÄISÄNEN Suuret kehitysprojektit: Kirjallisuuskatsaus

ohjelmistokehityksen ja projektinhallinnan

kirjallisuuteen

Pro gradu -tutkielma, s.56

Tietojenkäsittelytiede

Syyskuu 2017

Tämä tutkielma käsittelee isojen ohjelmistojen implementointiprojekteja, joissa

kehitystyö tehdään valmiin tuotteen päälle. Tällaiset projektit ovat varsin tavallisia

ohjelmistoteollisuudessa. Tutkielma pyrkii vastaamaan tutkimuskysymykseen:

Kuinka toimittaa suuria räätälöityjä ohjelmistoprojekteja?

Suuret ohjelmistohankkeet tehdään pitkän aikavälin investointeina ja yleensä

kehitystyö vie huomattavasti pidempää kuin pienissä hankkeissa. Suuret hankkeet

edellyttävät projektinhallinnan erityisosaamista, ylemmän johdon tukea,

investointeja, sekä IT:n ja liiketoiminnan yhdistämistä. Isot hankkeet ovat yleensä

myös monimutkaisia ja niissä on paljon riippuvuuksia. Tutkielma pyrkii myös

selittämään mitä ongelmia ja riippuvuuksia projekteissa yleensä ilmaantuu, sekä

kuinka vanhat järjestelmät ja datan migraatio vaikuttavat projektin kulkuun.

Tutkielmassa käydään läpi IT-järjestelmien eri aikakaudet ja miksi IT järjestelmiä

pitää kehittää. Tutkielma esittelee myös lyhyesti vesiputousmallin ja ketterän

kehityksen perusteet ja taustan. Scrum ja SAFe mallit esitellään lyhyesti

esimerkkinä ketterästä kehityksestä.

Avainsanat: Perinnejärjestelmät, datamigraatio, ohjelmistokehitys,

projektinhallinta, COTS, ketterä kehitys, vesiputosmalli

iii

UNIVERSITY OF TURKU

Department of Future Technologies

MAIJA VÄISÄNEN Large Software Implementation Project: A

study of software development and project

management literature

Master’s Thesis, 56 p.

Computer Science

September 2017

This study focuses on large scale software delivery, where development is done on

top of an exciting system or parallel to it. This thesis aims to answer to the question:

How to implement a large scale custom solution?

Large scale projects take longer than smaller projects to implement and usually

they are done in more than in one release. The application’s life-cycle is also

planned to last up to decades. Large projects also need special project management

skills, executive support, internal investments, strategical vision as well as

alignment between IT and business. Large projects are usually complex and have

several dependencies. This study also explains what issues projects usually have

and what are the constrains of legacy systems and data migration. Different eras

of IT systems are also presented as well as reasons why companies should invest

to IT solutions. Waterfall model and Agile methodology fundamentals and

background are presented shortly. From Agile methodology Scrum and SAFe

frameworks are presented as examples.

Keywords: Legacy system, Data Migration, Software implementation, project

management, COTS, Agile development, Waterfall

Table of Contents

1. Introduction ... 1

2. Complexity of IT ... 5

2.1. Motivation ... 5

2.2. Five eras of information systems .. 7

2.3. IT alignment and Outsourcing ... 9

2.4. Software reuse ... 12

2.5. Legacy system ... 15

2.6. Data migration ... 19

3. Project management .. 22

3.1. Project management constraints .. 22

3.2. Classic mistakes and how to avoid them ... 25

3.3. Role of project manager .. 29

3.4. Executive support .. 31

3.5. Managing delivery issues .. 33

3.6. Project escalation and terminating projects ... 34

4. How to choose a development method? .. 36

4.1. Software development ... 36

4.2. Project planning ... 39

4.3. Agile and Waterfall delivery ... 41

4.4. Scrum ... 43

4.5. Scaled Agile Framework SAFe ... 46

5. Conclusion ... 50

References ... 54

1

1. Introduction

Executive level managers are often frustrated by companies’ information systems

because they have difficulties getting information of how business is running. Due

to this, they cannot analyze bottlenecks and solve problems beforehand (Cummins

2002, pg. 3). According to Capers Jones, software costs are often heavily impacted

by poor quality, marginal security and other chronic issues. Therefore, software

projects are difficult to control. Software cost also forms major part of the

corporate overall cost structure (Jones 2010, pg. 1.)

When heavy cost structure and executive level frustration are put together, it is no

wonder that IT investments are often labelled as failures (c.f. Standish Group,

2013). Although business is becoming more and more dependent on IT-systems as

well as infrastructures, and the field is constantly re-inventing itself with new

innovations like Internet of Things (IoT), Cognitive systems and Big Data there is

still no common agreement how software development project should be managed.

Software projects vary a lot in complexity, size, time, value, scope, service level

agreements as well as contractual obligations among other issues. Development

and management methods that work for a small project might not scale up to big

projects – and vice versa. For example, a large project might require more detailed

documentation, because otherwise, after some time, it is impossible to track down

what has been agreed upon. However, at the same time a small project with limited

scope can be done with minimal documentation.

This study focuses on large scale software delivery, where development and new

features are done on top of an existing system or parallel to it. In large development

projects, there are several specific project attributes, which make the research of

the large development projects interesting. The most distinct feature is usually the

length of a project. Development of a large scale software applications, can take

2

up to five years. In addition, deployment and customization can add another year

to the project’s schedule.

After deployment, the application’s life cycle is remarkably long, up to 25 years

or even more. Over the long lifecycle, various enhancements and defect repairs

will occur, including restructuring of the application, changing file formats, and

perhaps even converting the source code to a newer language. (Jones 2010, pg.

39.) If work such as this is carried in iterations; five years of development would

require a minimum of 30 sprints, and each sprint would only last 2 weeks. If there

are parallel and longer sprints, the development effort is even larger. Waterfall

method is still used, but also Agile software development methods are raising

popularity among the practitioners (11th annual State of Agile survey pg. 2).

Scaled Agile Framework (SAFe) has recently emerged to answer the needs of

larger software projects and IT portfolio management, that wish to work in Agile

ways but must answer to corporate regulations.

Installation of a software to personal computer via CD or DVD, or using it through

Software as Service (SaaS) model, where applications are run in service providers’

server and no actual installation to user’s computer occurs, is remarkably different

compared to the deployment and installation of a large application. Deployment or

installation for large mainframe applications – like a telephone switching system,

large mainframe operating system or an enterprise resource planning packages –

can take even more than year. They usually require significant amount of

customization to match the local technical and business needs. In addition, training

user the use of large application might require classroom teaching, customized

documentation, maintenance personnel, customer support, and other ancillary

staff. Often, large applications have different kinds of users in various parts of the

organization; therefore, also a variety of user manuals and classroom training is

needed. More than a year might pass from the day when software is delivered to

3

the day when large scale usage by all users has actualized. (Jones 2010, pg. 12-

14.)

The demand for IT systems is increasing annually; IT has changed from a

supporting function to a strategic investment. This phenomenon is visible in

several industries. From engineering point of view IT systems consist of technical

structure from hardware to software components. More holistic view of IT systems

includes also socio-technical aspect, which means that IT systems are not only

technical components, but they involve interacting with human and organizational

elements as well. (Sommerville et al. 2012, pg. 73.) In this study IT systems are

considered from socio-technical aspect.

Use of Agile methods have become part of mainstream development toolkit.

According to the 11th annual State of Agile survey “enterprise agility is increasing

throughout organizations and across almost all industries at an accelerated rate.”

(11th annual State of Agile survey pg. 2). This has also changed the scenery not

only for IT vendors, but also for clients as well. Clients are demanding fast

response to business needs and fast development. Fast adaption and development

is easy to apply for example to mobile application development, where expected

life cycle of the product is shorter, which it is rarely possible for complex projects.

Enterprise software has different features than software behind electronic games,

mobile application and websites. Enterprise software needs to adapt to the

management pattern, business process and enterprise culture of the target

organization. Groups of users are specific and system is easily integrated with

other systems and platforms.

Following issues often emerge during software’s life cycle (Yang & Jiang 2011,

pg. 1):

4

1. Unclear and frequently changing requirements and objectives. This usually

happens when the project group is unable to capture clear, detailed and

specific requirements from users. The project’s scope and quality

measurements are set by the project group, which easily leads to the

situation where the complete enterprise application is unable to reflect the

business functions and workflow.

2. Cross-platform and multi-system structure. All applications must interact

with existing software and hardware. This is notably challenging if the

existing systems are heterogeneous.

3. High risk and uncertainty. There are multiple uncontrollable factors that

might lead to failures in software projects. High uncertainty comes from

unexpected risk, which, if realized during development, usually has an

impact on the ability to deliver in budget and deadline.

This thesis aims to answer the following research question: How to implement a

large scale custom solution? What are different methods used for developing large

scale software solutions.

The rest of this thesis is structured as follows. The next section takes a look why

software projects are so complex and on the reasons why a corporation should

invest into IT. Section 3 presents project management literature and the fourth

section different software development methods. The thesis is concluded in

Section 5.

5

2. Complexity of IT

This chapter presents why IT systems are so complex by nature and also why

companies should invest to them. To understand the current IT systems that are in

use or under development, one must understand that IT-systems have growth

exponentially an era after another. Huge growth has generated massive amount of

code, legacy systems and not to mentioned data. Regardless of the amount of code

and systems, not all components are reusable and can response current and future

business requirements. Aligning business and IT is the motivation that companies

have for renewing their IT systems.

2.1. Motivation

If renewing or creating a new IT system is so complex and risky, then why should

companies invest to them? Companies seek to streamline their processes and to

find growth potential. Many industries are moving towards more service-oriented

solutions, and IT systems are shifting from being a part of support functions to

being a part of service offerings. When companies are digitalizing their business,

they naturally have higher demand for IT functions, which usually means updating

current IT portfolio and investing into new IT systems, hardware or other

resources.

Studies from leading companies have shown that electronically based business

initiatives, like virtual doctor, integrated CRM (customer relationship

management) and ERP (enterprise resource planning) or real-time data analysis,

require high capability from the IT-infrastructure. Before a company can leverage

their IT and speed up the go-to market time, they must have balance between

business application development and infrastructure investments. Usually

infrastructure needs to be upgraded prior to application development, as parallel

development easily leads to fragmentation. (Weill et al. 2002, pg. 64.) Modern IT

6

has tremendous amount of calculating power compared to old hardware, but still

even more investment must be made for infrastructure and hardware, to maintain

a massive backend and data repositories.

Research by Weill and Aral (2006) found four different IT investments categories:

transactional, informational, strategic and infrastructure. Transactional

investments are made for cutting cost or increasing amount of data processed

through same workflow. Informational investments serve the purpose of providing

information to accounting, reporting, compliance, communication or analysis.

Strategic investments are made for gaining competitive advantage, by new

product, service or business development and entering new markets. IT

infrastructure investments are shared applications and services. (Weill & Aral

2006, pg. 40.)

Transactional, informational and infrastructure investments are the reasons why

companies traditionally invest on IT, they also present IT as support function. In

modern society, IT has enabled and forced some very traditional industries to

transform their way of making business and offering services. For example,

services like Airbnb has entered markets that big hotel chains used to dominate by

enabling people to rent their houses for a short term and to find a place for rent.

Airbnb has leveraged mobile platforms as well as websites for finding and

connecting customers, and their whole services model is not only supported by IT

but enabled by it. Another example would be services that are used for money

transaction. Not only banks and credit providers are offering money transaction or

are handling clients’ money. There is a completely new market for offerings like

PayPal, which focus solely on online transactions.

Traditional IT vendors like IBM and Microsoft are facing competition from

industries that were not originally in the IT business. For example, Amazon, which

started as an online store is now the largest cloud platform provider, leaving the

7

second largest far behind. This trend of new providers entering traditional business

by leveraging IT is showing that IT should always be considered as a strategic

investment, not only as a support function. Although transactional, informational

or infrastructure investments do not disappear either, as many industries also

require the support functions as well. As mentioned earlier, clients’ expectations

are very high. Personal devices such as smart phones and tablet computers have

widen the consumer markets and therefore also the business clients are also

expecting enterprise software to have easy access, fast response time, mobility and

visually appealing front-end. It is easy to forget that enterprise applications usually

have massive amounts of data and the infrastructure is layered over the years.

Although the building of a new system might start from scratch, required features

might still come from legacy systems.

2.2. Five eras of information systems

Majority of the code that larger applications use today is built on top of an old code

base. Leading software companies still have several products, which were

originally developed in the 1980 and 1990s that are still being developed. Building

on top of old hardware and software components can be challenging. Performance

of the systems has increased tremendously and therefore also the performance

requirements have changed, whereas size of the machines and physical

components has gone smaller. Expectations are, that hardware is small with high

performance. End users of the systems are accustomed for using computers and

other devices for personal usage, so demand for easy to use interface and fast

response time is increasing. Old components are not necessary originally designed

to support complex integration, modern data storage, user friendly interfaces and

high performance. Throughout different eras systems have been designed to fit the

purpose of each era. Requirements and capabilities in different eras have been

fundamentally different and therefore modifying them to match new requirements

can be challenging.

8

According to Petter, DeLane and McLean (2012, pg. 343) there are five eras of

information systems: 1) Data Processing Era, 2) The Management Reporting and

Decision Supporting Era, 3) The Strategic and Personal Computing Era, 4)

Enterprise System and Networking Era, and 5) The Customer-Focused Era. The

Data Processing era was between 1950s-1960s. During that period, computers

were used in military and financial sector by a small group of trained individuals.

The computers were more calculators and only used in a small segment of the

industry. The success of the system was measured just with speed and accuracy.

(Petter & DeLane & McLean, 2012.pg. 343-345).

The Management Reporting and Decision Support era was from 1960s to 1980s.

The calculation power of computer was harvested for monitoring and controlling

production and automating administrative work. The early systems could produce

structured information for routine decision-making tasks. The managers and

researchers noticed that they were unable to process all the new data that was

provided. Lack of understanding the data was a blocker for better decision-making.

More and more employees were also exposed to computers, but the regular users

were still limited and educated group of employees. The success of information

systems was also evaluated by other factors than speed and accuracy, like

profitability and improved decision making. (Petter & DeLane & McLean,

2012.pg. 343-345).

Strategic and Personal computing era started around 1980s and lasted until 1990s.

Organizations started to realize that information systems can be used for achieving

strategic goals and that information systems should be aligned with company’s

overall strategy. The use of information systems moved from back office usage to

front office and more focus was put in to user friendly interface. Computers were

used at home as well as at the office. (Petter & DeLane & McLean, 2012.pg. 345-

351).

9

Enterprise System and Networking era was approximately from 1990s to 2000.

During this era, it was possible to share data trough applications and access to data

was not limited to one user or a computer. The number of users increased even

more from previous era and information systems were used across the

organization. This was also the era when outsourcing the IT and operations was

introduced. (Petter & DeLane & McLean, 2012.pg. 345-351).

Customer- Focused era is the last one from five eras. Customer-Focused era starts

from 2000s and continues to the future. During this era it has been possible to

provide customized experience and tailored solutions based on customer’s interest.

The customer’s interaction is shifting from employees to information systems. The

governments are enabling citizen to access to decision making via information

systems. Individual users as well as organizations are generating and sharing

knowledge via information systems. (Petter & DeLane & McLean, 2012.pg. 345-

351).

2.3. IT alignment and Outsourcing

According to Shpilberg, Berez, Puryear and Shah (2007) IT alignment means “the

degree to which the IT group understands the priorities of the business and

expends its resources, pursues projects and provides information consistent with

them.” Inadequacy of alignment can make IT irrelevant. Each growth strategy

should be matched to IT spending. Underperforming IT is often rooted in the

organization, not just misalignment. Each business unit might have IT systems that

serve their individual needs, but do not serve the company’s business as whole.

Each business unit having their own, layered systems creates unnecessary

complexity to IT infrastructure and application management. (Shpilberg et al.

2007, pg. 51-52.)

10

IT can be a strategic investment, therefore it should not see only as a support

function for companies’ business units, although IT also usually serves the support

function role as well. Misalignment can be rooted also in this double role of IT:

supporting other business units and leading development in others might lead to a

conflict of interests. Direct profitability of IT department, resource allocation and

problems on agreeing which department is responsible of covering which cost can

cause friction between teams, departments and business units.

Alignment trap does not fix itself, not even when an IT organization learns to focus

on aligned projects rather than less aligned ones. Dedicated resources in a wrong

place might cause more harm than good. For example, if one business unit decides

to develop new features on top of the old system, ignores the standardization and

upgrades the legacy system, they will end up creating more complexity.

Forthcoming systems enhancements and improvements will be even more

problematic to implement, not to mention that benefits of scalability will be lost as

well. (Shpilberg et al. 2007, pg. 53.)

Replacing the IT department will not help the organization to navigate from

alignment trap. New staff will most likely run it to same issues as the old; only

difference is that the new staff will lack knowledge of the existing systems. The

right direction for the IT department is to start reducing complexity. Reduction

means creating company wide standards and replacing legacy systems when

possible, no more customization or layering on top of old. In the beginning, this

approach requires significant investments. The cost savings and scaling benefits

will occur in the long run. (Shpilberg et al. 2007, pg. 54.) Reducing complexity

and standardization cannot be only lead by IT department. Like all strategic and

companywide standards and investments, also IT investments and portfolio needs

to be managed from top to bottom. C-level management needs to take concreate

actions towards the alignment that business units will follow.

11

IT and business must both have accountability to deliver expected results on time

and budget; this requires organizational change. High performance comes from

centralization and simplifying IT functions, which might mean giving up

customized department specific applications. IT governance needs to cross the

organizational borders. Indication of being caught in the alignment trap is the ratio

between maintenance and new product development. If more money is spent on

maintaining the current system rather than creating new products, it can be a

warning signal for misalignment. (Shpilberg et al. 2007, pg. 56-58.)

When companies arrange their IT function they often ponder the options of

outsourcing. Outsourcing can be divided into two types: it can mean either sending

work to offshore vendors or buying pre-packaged solutions. Outsourcing is nearly

always cheaper than in-house development, but when applications are strategic or

critical to competitive differentiation, it makes sense to develop them inside the

company. Also, offshoring requires profound understanding of the project

requirements from the client, because otherwise it can be difficult to track progress

and hold the vendor accountable for performance and cost. Gathering enough

information for offshoring might take the same effort than building the knowledge

inside the companies own IT department. Routine tasks and less strategic parts of

IT, that will not require lot of management or customer interactions are easier to

outsource than complex systems development. Nevertheless, when a company

decides to outsource some or all of IT functions, it should revisit that decision

regularly, because business and house capabilities change over the time. (Shpilberg

et al. pg. 55-56.)

Outsourcing to lower cost countries such as India, China and Eastern Europe

usually significantly drops cost per-hour; however, overall project costs might be

higher if challenges in communication, coordination and delays are counted in

(Deemer, pg. 1). Outsourcing IT can be also done by buying consultant services.

This is a good choice when work is project-based and demand for specialists is not

12

consistent. Most consultant houses offer specialist with a wide range of services

and the specialist can be located to client facilities. It is also not uncommon that,

for example, IT infrastructure is bought from a vendor. Infrastructure services can

include leasing laptops and other devices as well as having dedicated servers from

server farm. The outsourcing can be also variety of combination of all previously

mentioned.

2.4. Software reuse

Software engineering is shifting from custom development of unique applications

towards to building generic applications from certified reusable components

(Jones 2010, pg.37). Custom solutions do not provide competitive advantages

anymore, so companies are seeking to exploit more commercial-off-the-shelf

(COTS) applications. Target is to reduce maintenance cost and have application

vendor to carry the burden of incorporating technological advantages.

Streamlining and continuously improving business process for gaining

competitive advantages causes companies to avoid long, expensive and risky

projects. Changes in IT infrastructure must be supported by adjustable integration

framework; in addition, framework must proceed incrementally and rapidly.

(Cummins 2002, pg. 3.) Core elements of COTS product are cost savings, ease of

integration and extension, reliability and capability. However, COTS products are

developed usually for general audience and therefore they are quite rigid for

adapting special business rules and logics as well as challenging to customize

without major development investments. (Ahmed & Kumar & Kumar 2017, pg.

2.)

Benefits of the COTS solutions makes them usually good candidate for large

software implementation project. Enterprise software and information systems

usually are not made from scratch, but build with existing solutions and

customization. Rarely other than IT companies have capabilities and maturity to

13

research and develop completely new IT products for enterprise scale, unless they

are trying to enter the new market and are ready to make huge investment to it. IT

investments are rather done to widen the range of existing products and services

and gain new markets by leveraging IT, not aiming to license new IT products. In

COTS products, the R&D has already done by vendor. In large software projects

the products are customized to match clients’ needs, when implementing COTS

products, the vendor carries the cost of developing the product and licensing and

the client the cost of customization and adaption.

Object-oriented technology has boosted the development of reusable components.

However there still are major blockers for building new applications or

enhancements for COTS products. Sharable components require a standard

environment where to operate and well-defined protocols to interact with other

components. In addition, it should not be forgotten that the outcome must meet the

business needs and must be adapted easily. (Cummins 2002, pg. 14.) Since IT

industry has been expanding to several other industries, new solutions are created

fast and market is changing rapidly. However, there also exist a risk of going live

with already outdated technology or solution that does not meet anymore the

business and market criteria.

Reuse of software may occur in the following way: 1) Purchasing a COTS product.

2) Use of the same system in different organizations. 3) Arrangement of shared

services. 4) Use of a shared component. 5) Use of shared specifications. An

assumption, however, usually is that it is more economical reuse software artefacts

than build from software from scratch. Nonetheless, cost and benefits should be

calculated carefully, because the cost of reuse might offset the benefits. (Cummins

2002, pg. 36.)

When purchasing a COTS solution, the enterprise shares development costs and

support with other customers. The solution is compatible with related systems and

14

it meets the enterprise’s business needs. Several business functions are supported

same way in most companies, e.g. accounting is consistent for most of enterprises

of a similar scale. Complications with COTS usually arises when an enterprise is

expected to maintain unique ways of performing its business functions, or when

an interface with other systems require peculiar adaptations. When an application

is customized for one enterprise, it will lose value as a shared application. Vendor

might also be unable or reluctant to resolve issues of nonstandard implementation.

With new version updates, the enterprise will need to implement same adaptations

once again and to realize this, it requires hiring and keeping the people who

understand the application and unique business needs. Also, each time updates or

enhancements are made, the quality, reliability and performance of the application

are at risk. Whenever something goes wrong or a business process changes, there

might not be anyone with sufficient knowledge to provide a timely solution.

(Cummins 2002, pg. 37.)

Shared systems permit enterprises to gain competitive advantages by

implementing its unique business process to all sites while sharing development

and maintenance effort. Use of the same system in different locations provides data

consistency, common interface, and common practice. However, implementation

at multiple locations requires that operating environments are consistent across all

sites. The implementation of common practices and computing environments

might turn out to be very challenging for decentralized organizations. Arrangement

of shared services is also one common service model; it can be applied to COTS

applications as well as to custom applications. Different users can invoke the

service at different locations, but execution happens in one system at one location.

User will access systems by remote connection. This model offers a good cost

reduction for development, maintenance and operation of systems in large

enterprises, but on the other hand it provides very little adjustability for needs of

different environments or related systems. (Cummins 2002, pg. 37.)

15

Shared components are exquisite parts of software, such as a function call or

remote procedure calls in which a caller waits for a response. Usually shared

components require compatible application architecture and supporting

infrastructure to communicate with other components of the same application.

Shared components have been an industry goal for many years. Compatibility

between different implementations of the same component allows service

providers to upgrade systems without replacing the whole system. Yet on the

enterprise level, sharing components is not as simple as picking a component from

an existing system and reusing it in another. It requires special analysis and

understanding of the overall design to make components function in different

contexts. In addition, how upgrades impact on hosting service must be taken into

account as well as how support is arranged around components and hosting

services. Inconsistency of components may become very expensive if

compatibility is not considered in the design phase. (Cummins 2002, pg. 38.)

Use of a shared specification mean capability to generate applications from

specifications done to metamodels and tools. Unified modelling language (UML)

is one of the industry de facto standards for describing specifications. Combining

standard component environments, common modelling language and standard

technology mappings, enables development of tools for creating application from

specifications. For enterprises that would enable code generation for a target

environment each time when technology changes or when business process needs

updates system changes can be implemented on specification level. (Cummins

2002, pg. 39.)

2.5. Legacy system

Adenakan Dedeke (2012) defines legacy systems as technologies that where

implemented in a prior generation or era of innovation. All solutions including

software, hardware, languages, standards, codes and technologies will all

16

eventually become a part of a legacy system. If a system has been used over 10 or

20 years, then it has spent more time in legacy phase than in development phase.

(Dedeke 2012, pg. 38.) The reason why legacy systems tend to live longer than

planned is that the costs and risks involved in changing the system are high enough

to cause bankruptcy if they realize (Matei 2012, pg. 92).

If a system has been used 10 to 20 years, it has also generated massive amount of

data, which is required to be migrate when systems are upgraded. Data migration

is not light process itself, when the amount of data is large and complex, or when

the legacy and new system are not directly compatible. Data in the systems is

usually a valuable asset to the company. Planning and executing data migration

should be done carefully, because the value of a new system cannot be realized

unless it has data to work with.

Poor data quality impacts the company on three levels: operational, tactical and

strategical. On operational level, poor data quality has in impact to customer

satisfaction, operational cost and employee job satisfaction. Customers get easily

dissatisfied if details associated to their data are not correct and for example their

order or invoice is sent to wrong address. Operational cost increase when

employees are detecting and correcting errors in customer data. Tracking errors

and dealing with dissatisfied customer easily leads to lower employee satisfaction.

On tactical level poor data quality compromises decision-making, the decision can

be only as good as the data which they are based. Same applies to decision making

on strategical level. Lack of relevant, complete, accurate and timely data– about

customers, competitors, technologies, and other relevant features of the strategic

landscape hinders developing successful strategical decisions. (Redman 1998,

pg.80-82.)

One option is to buy a COTS system with the ability to support required business

process and availability for customization. The risk in COTS products usually lies

17

with maintenance of the systems and with cost of customization. There is also no

guarantee that the new system works better than the legacy system. Benefits are

that the software is ready to use, if no customizations are needed, and the service

level agreement (SLA) can be established immediately. (Matei 2012, pg. 93.) If a

company has systems that are in legacy state, it is unlikely that the new systems

are immediately ready to use, even with COTS products. There needs to be a

planned sunset for the legacy systems, and before that all user must be already

engaged with the new systems. The enterprise infrastructure and architecture

should match the new system and the data must be migrated from the old system

to the new, before any end users can access the system.

Current information systems are the outcome of the evolutionary development of

business and technology. Information systems solve specified tasks and problems

to achieve productivity improvements. The goal is to avoid manual work and

improve response time. Several systems might exchange information with the

same database, but in many cases, databases are not sole repositories for the data

they contain, and similar data might be stored in other systems and databases as

well. (Cummins 2002, pg. 2.)

In a modern business environment, the requirement for an IT system is that data

can be combined from several systems. For being able to do better business and

investment decision, companies combine structured and unstructured data and

build predictive models from that data. The results, after they are deployed to

production, can be accessed with multiple devices, such as tablet computers, smart

phones and possibly even smart watches or medical devices.

When creating new systems, the latest technology is usually used. Old systems

cannot be continuously redeployed with newer technology; they require

considerable amount of rework and redevelopment to be compatible with latest

technology. If a current system provides adequate business functionality, there is

18

no clear reason to update that system. After period of time there are major changes

in technology and business operations and old systems become more difficult to

operate and outdated. (Cummins 2002, pg. 2.) Managers and executives should

consider several scenarios before legacy systems can be replaced. All decisions

carry uncertainty and unpredictability. Companies have already invested large

amounts of intellectual and financial capital to the existing systems. The

companies are not willing to prematurely abandon systems before its development

costs are recouped. (Dedeke 2012, pg. 39, 41, 42.)

In some cases, qualified employees are not willing to learn to work with a new

system. Therefore, an IT issue can quickly become a human resource issue. The

new system might degrade employees’ domain knowledge and cause them to lose

their work-related self-identity. Managers might have to make a decision for

reallocation of the staff working with the legacy system. This might potentially

cause a conflict between managers and employees. (Dedeke 2012, 39, 41, 42.)

The risk of employees not willing to adapt the new system can be mitigated by

involving end users in the design and testing process. Group of key users are

usually selected from group of end user. Key users can also include system matter

and domain experts. When users are involved with development, they are also

responsible for the business benefits and have opportunity to impact the outcome.

Involvement usually leads to better commitment. Although sometimes the client’s

end users raise defects, even when the system is working as designed. This happens

if the tester expects certain outcome and system delivers something else. Users

also might make very direct comparisons between the old and new systems, even

when the workflow is designed to be different.

Based on Dedeke’s (2012) theory, business value can be defined with six factors.

They are: 1) Competitive advantages, can an organization find new opportunities

with the new system? 2) Impact on profitability, can the new system be taken into

19

use within budget? 3) Growth potential, how scalable the new system is, can it

hold changes in business requirements and how a vendor support is arranged? 4)

Standardization and compliance, does the system meet all existing and appearing

standards and regulations for the system, data and platforms? How the licensing is

arranged, can components be reused? 5) System interdependency, how much

organization relies on legacy systems and how many applications are dependent to

legacy system data? 6) System security, does the legacy system exposes the

organization to security threats? (Dedeke 2012, pg. 40.)

All six factors should be taken into consideration when upgrading legacy systems.

However, the profitability might be impossible to measure beforehand, because

project cost may vary depending the complexity of the systems as well as how

actively system is in use. Growth potential and competitive advantages are part of

strategic IT investments, finding new opportunities and having systems that scale

up requires a strong vision, both in business and IT. As was mentioned earlier in

Section 2.3., standardization is needed for avoiding fragmented systems, without

standards companies cannot gain any benefit of centralized IT. It is high risk factor

if systems and its data are business critical, but system itself is already in legacy

state. Business critical legacy systems might be very dependent on specific

resources and skills as well as the technology used in them might be outdated.

System failures are difficult to patch and security threats are more difficult to

block. Nevertheless, upgrading a business-critical legacy system is not a trivial

task, as it might require extensive data migration with minimum data freeze

periods and system outages.

2.6. Data migration

Data migration is a process where data is transferred from an original system to a

target system. The legacy and new systems are both usually structured differently

on conceptual and technical level. (Matthes, Schulz & Haller 2011.) Data in the

20

legacy system is often from multiple sources and designed to use different data

modelling tools or to be interpreted under different semantics. Understanding the

legacy data requires understanding of all data sources, data constraints,

interrelationships across different data sources, and availability of the data. Legacy

systems might also suffer from inaccurate, incomplete, duplicate or inconsistent

data. Improving data quality for the target system is often very expensive and time

consuming. Furthermore, several data migration tasks such as data profiling,

validating and cleansing must be executed iteratively, but parallel to project

execution. (Thalheim & Wang 2012, pg. 260, 261.)

According to Razavian and Lago (2013), requirement for a new IT asset is that it

can be easily distributed across organizational boundaries, whereas the assets in a

legacy system are frequently a part of a large monolithic system. One owner also

often controls all assets in the legacy system. There are also functional overlaps,

data model, architectural and platform inconsistency between new and legacy

system. (Razavian & Lago 2013, pg. 141.) As we have so many systems built in

the 80’s and the 90’s still in use, data migration from legacy systems grows even

more relevant. Developing a new system or managing an organization’s IT

portfolio starts from understanding the systems already in use. Migrating data from

a legacy system to a new system is difficult mainly because it requires sufficient

understanding of both systems. If the new system is under development when

migration takes place, it might be challenging to align the development and

migration schedules.

Thalheim and Wang (2012) present three migration strategies for executing data

migration. 1) Big Bang: All data from the legacy system is taken in to use in the

target system at one time. There are two ways to go-live with Big Bang. First

option is to clean up the data in legacy system and map into the new system. Other

option is to do vice versa and start mapping data into the new system and clean it

up later. However, cleaning up data afterwards carries a bigger risk of system

21

failures, because of longer clean up processes. 2) Chicken Little: The legacy system

is dived into modules; the goal is to have as few dependencies as possible between

different modules. Migration takes place module by module. 3) Butterfly: Legacy

data is transformed to the new system step-by-step, while the legacy system is

under data freeze. The first thing to transform are read-only data sources, followed

by temporary data storages. The difference between Chicken Little and Butterfly

is separation of data sources in each step of the process. (Thalheim & Wang 2012,

pg. 272-273.)

Thalheim and Wang (2012) suggested in their article that the reason why data

migration often runs out of budget is because lack of a well-defined methodology

that could help to sort out the complexity of data migration projects. (Thalheim &

Wang 2012, pg. 260.) Razavian and Lago (2013) remind that reusing knowledge,

experience and processes from other similar data migration projects is a key for

achieving efficiency in future projects. The reuse can be achieved by recognizing

patterns and similarities between different data migration projects and creating

processes out of those patterns and similarities. Basic project elements that are

carried out in several projects should be extracted from project specific ones. When

elements are separated, it is easier to follow what drives the migration: business

goals or to-be architecture. (Razavian & Lago 2013, 142,165.)

The data migration itself might not be technically challenging, but it is usually the

data freeze periods that cause problems. When migration is in progress, the data

cannot be modified, meaning that the data is frozen. The client might want to

abandon the legacy system at a certain timeframe, therefore the new system must

be ready and data migrated by a certain date. New data records are only created to

the new system. A client cannot create new data to old systems as the migration is

in progress, but the new system has not gone live yet, because some features might

be under development. Depending on the project, the data freeze period might be

quite long, which is frustrating to end users.

22

3. Project management

This chapter describes what issues and constraints projects have from the project

management perspective. This chapter also discusses what skills and competences

are needed from project managers. Executive support is mentioned as one of the

biggest risks that leads to failing projects, by both project managers and executives

(Liu, Zhang, Keil & Chen 2009, pg. 345-347). Therefore Section 3.4. describes

role of project executive managers. Sections 3.5. and 3.6. describe issues and risks

that projects have during their life cycle and what is project escalation.

3.1. Project management constraints

Different software projects experience different failures and not all software

projects can be managed in same way. Although, according to studies many

software projects tend to do the same mistake repeatedly (Nelson 2007, pg. 70).

Projects might encounter their issues because contractor failures, poor requirement

determination, ineffective stakeholder management, research-oriented

development, poor estimation or insufficient risk management and in worst-case

scenario, with all of them.

In a case of failure, the management needs to assess carefully what went wrong

and what was done well to avoid the pitfalls in future projects. In addition, some

mistakes form patterns and appear more often than others appear. Recognized

patterns might help the management not to repeat same mistake again. (Nelson

2007, pg. 70, 72.) Underestimating the project management effort easily leads to

budget overruns. According to study by Ahonen et al. (2015), they noticed that if

customers are not willing to pay for the project management effort then no project

manager hours are sold or reported by supplier, however the effort does not

disappear.

23

The project management triangle is often used to describe what are the

measurements and constrain of a project. The triangle is illustrated in Figure 1.

Each side of the triangle (scope, cost, and schedule) should be balanced for a

successful project. When that balance is achieved, the quality of the delivery

follows. If any of the sections start deviating, it has an impact to other sides of

triangle as well. Each of the constrains are often also competing, for example tight

schedule usually increases cost and reduces scope. An increase in the scope usually

leads to increased time and cost as well. The discipline of project management is

to find tools for the project team and stakeholders to manage these constrains.

Figure 1. Adaption of Project Management triangle

As stated by Ahonen (2015), “Project management effort is one of the necessary

types of effort required for successful completion of software development

projects.” In smaller projects, management of activities is easier to arrange.

Furthermore, the communication structure can be simpler than in large projects. A

project manager can have meetings with the whole team and directly communicate

with all team members with easy. When the team size is bigger and project is more

complex, performing project management activities takes more time. Larger teams

24

require formal communication channels and reporting structures to follow project

status. (Ahonen et al. 2015, pg. 206.)

When issues emerge, the management tends to do same bad counteractions to

tackle the known issues. Most common issue is that project is behind schedule.

The attempt tackle impact of the delay is usually mitigated by either adding new

resources to project, which temporary adds workload to existing resources, or by

compromising project quality by reducing testing effort. Another common pitfall

is, decision to upgrade software immediately after the new version comes

available. Third common issue is that team dynamics are ignored by management.

One of the key resources might be irritating rest of the team and management waits

until end of the project before releasing him or her. (Nelson 2007, pg. 70.)

Project management training is required for students to understand projects’

complexity. There are comprehensive lists and readings on different management

approaches, competencies and skills, but very little guidance how to obtain,

develop and practice those skills. How to recognize which technique to apply and

when? The current approach for the project management education is linear:

students are taught to solve linear problems, while this does not prepare students

to face unexpected difficulties or unique situations and apply non-liner problem

solving. An outcome might be that students will try to apply linear thinking to

solve nonlinear problems; they are unable to adapt new and challenging situations

and rather prefer to stay in their comfort zone. Small changes can develop in to

huge and unexpected events. That is why project managers need to pay attention

to relationships at all levels and recognize that organizational actions are not

usually planned, but emergent. (Thomas & Mengel 2008, pg. 304-308.)

Focus of the project management training should be diagnosing different situations

and how to adopt proper tools and techniques to each situation. Training requires

learner to develop intense self-knowledge, emotional skills to coach and motivate

25

others and ability to adapt changes. Each problem solving instance should start by

reviewing the situation holistically and not linearly. People feel most comfortable

in a project environment where they feel that they are in control. When problems

occur, they will try to avoid outside exposure. Approaching problems analytically

will help us to understand what other team members think and how they perceive

the dynamic of where the project is going. Meaningful communication, listening

and aiming to mutual understanding will help the project team to create holistic

shared goals, where all project aspects are taken in consideration. (Thomas &

Mengel 2008, pg. 311.)

According to Thomas and Mengel (2008), three things are required from training

that helps project managers to prepare themselves to constantly changing and

complex environments: “Flexibility to fit into the work life of senior practitioners.

Develop a learning community that encourages questioning theory and practices.

Sufficient duration to give the students time to reflect on actions and then apply

that reflection in action to close the learning loop.” An IT project can succeed

only when employees have sufficient skills. Management skills are not developed

without practice and as much like developing any other skill project managers need

repetition. Each team performs as combination of their skills. A less experienced

project manager can have enough support from senior architect and the team can

perform in sufficient level. This of course works vice versa as well, e.g., junior

architect can find the needed support from experienced project manager.

3.2. Classic mistakes and how to avoid them

Nelson (2007) has divided classic project management mistakes into four

categories: People, Process, Product and Technology. His findings in human

capital show that frustration and dullness have larger impact on productivity and

quality than any other factor. Second to motivation is working relationships

between team members and skills within the team. Surprisingly one reason for

26

complaints is manager’s lack of dealing or taking actions with problematic team

members.

Nevertheless, the most classical mistake is to add resources when project is behind

schedule; adding resources might end up taking productivity from existing

resources without adding any to the new ones. Process related mistakes are found

in both in management processes and technical methodologies. First mistake is to

focus on the “fuzzy front end” before approval for budget and schedule. If a proper

governance and focus are not in place, the project might end up moving from no

schedule and scope toward very aggressive schedule where actual development is

compressed to a short period of time. Humans have habit of making overly

optimistic schedules and have poor estimates on delivering the scope. Poor

estimates on scope, schedule and insufficient planning also build pressure on team

performance, leading to issues in team’s morale and productivity. Risk

management is often overlooked area on project management, but losing the

understanding of the risks is sign of losing control over the things that might go

wrong. Common risks, for example, are changes in stakeholders, lack of

sponsorship, scope creep and contractor failure. (Nelson 2007, pg. 70-71.)

Basically, all software projects encounter challenges with product dimensions.

Product size has direct linkage to project schedule and therefore it has effects to

time and cost. Requirement gold-plating happens when the product size is not

correctly estimated and irrelevant features are planned into front end. Even when

the requirement gold-plating is avoided, there is still around 25% change in

requirements over the system’s lifecycle. Sometimes developers are so excited

with the product and technology that the project is using, that they end up trying

out new features rather than creating what project really requires. This is called

developer gold-plating. (Nelson 2007, pg. 71-72.)

27

The last one of product pitfalls is research-based development where engineering

limits are exceeded in several areas. In technology category, classic mistakes

involve usually misuse of modern technology, commonly known as silver-bullet

syndrome. New technologies or practices are expected to solve all problems and

eventually project team sets themselves for disappointment. Organizations can

very rarely implement major changes in way of working in fast schedule, no matter

how good new tools, methods and technologies are. For each new thing, there is

expected learning curve before its start having positive impact on productivity.

New practices also present new risk, which are discovered only by practice.

Therefore, it should be carefully evaluated if presenting new methods or tools will

bring any cost savings. In addition, benefits of switching tools during a project

should be estimated against learning curve and possible rework, mistake taken with

new tools usually cancel benefits. Although in some cases upgrades needs to be

done within a product line. (Nelson 2007, pg. 71-72.)

To avoid and overcome mistakes, project needs to understand what went right and

what went wrong. A foundation of a good project is in scheduling, scoping and in

rational estimations. A project needs to have a calendar schedule that takes

resource availability, business cycles and technology acquisitions in consideration.

If estimations are done accurately less mistakes are made, less overtime is needed

and there is less pressure on team to perform under tight schedule. A project

manager also has better control over non-development tasks, which all leads to

better budgeting. To plan well and maintain a plan, a project needs to establish a

project management office that keeps track of project data. The project must be

also divided to smaller parts, because smaller pieces are easier to estimate. Good

work breakdown structure will help to understand the scope and size. Also, all

project stages need to be measured against the original baseline to see where

estimates went wrong. This is done in order that bottlenecks can be recognize for

future estimates. (Nelson 2007, pg. 73.)

28

Managing stakeholder expectations and resistance plays important role on a

project’s success. If the key stakeholders are not satisfied, it does not matter how

technically sound the product is. That is why the key stakeholders should be

recognized as early stage as possible and make sure that they are included into

progress reviews throughout the project. Another thing that is often neglected is

identifying and keeping track of the projects risks. When the complexity of the

projects increases, so does the amount and severity of the risks. If the risks are not

identified, tracked down, mitigated and monitored the project has major

vulnerability. (Nelson 2007, pg. 75.)

When a project is behind the schedule often testing and training are cut short. This

might happen for two reasons. First, the team itself starts cutting corners by only

doing minimal testing without planning. Second, traceability or the

implementation phase is delayed and the management does not allow any

flexibility on scope or schedule. In retrospectives, teams recommend automated

testing and daily smoke test, which are well-known tools in agile methodologies.

Continuous testing improves progress visibility, quality and mitigates risk of

unsuccessful integration. (Nelson 2007, pg. 76.) Time and resource management

leads issues in testing as well. If the project does not have enough resources, the

developers are forced to test their own code, which is not considered as best

practice for software testing.

Resourcing and personal relationships have impact on delivery and wellbeing of a

team. Issues in the team i.e lack of commitment or underachieving should be dealt

immediately. It is very common that a team is distributed and from different

cultural background, which might cause time zone barriers, lack of face-to-face

interaction and language barriers. It is recommended that at least part of the project

team is co-located, even if it requires sending staff to foreign country for long

period of time. (Nelson 2007, pg. 76.)

29

Resourcing and personal relationships are easily overlooked in a professional work

environment. There are multiple reasons that might cause disturbances in the

project delivery that are handled in the operative level of management. Leave of

absence, sick leaves and employees leaving the company have impact on the

project delivery and usually the project manager is responsible for finding

replacements and on-boarding new team members. Regardless of the skill, there is

always some leap time that is required for a new project member to get familiar

with the project. Getting the new team members up to speed usually also takes

effort of the existing team members and therefore the performance of the team

usually drops. Drop in performance and effort required to train the new resources

generates more cost, which is especially bad for a project that has a tight schedule

and budget. Fear of cost overruns is the reason why project managers are also

reluctant to change underperforming team members, if they are still performing on

tolerable level and not burdening other team members too much. However, the

project manager must also keep in mind that underperforming team member might

cause other team members to lose their motivation, if so the performance of the

whole team will drop.

3.3. Role of project manager

It is often mentioned that a project manager needs sufficient background or

technical knowledge on the context of the delivery, but it is not specified what is

the measurement for sufficient knowledge. In matter of fact, several researches

emphasize other skills over the technical or context related knowledge. A project

manager’s technical and domain knowledge are important, but according to

Medina and Francis (2015) not as essential as other characteristics such as

efficiency. (Medina & Francis 2015, pg. 91.) Also Nelson’s (2007) findings show

that a project manager should be a people and process manger first; adding just

technical expertise is seldom sufficient action to bring a project back on-schedule.

Nelson also claims that if the project managers in his study had paid more attention

30

on scheduling, proper estimation, stakeholder and risk management they could

have enhanced their project’s success. (Nelson 2007, pg. 73)

Overall, a project manager should be sociable person who takes interest in the

project team members and respects them. They can balance work issues with social

talk. In stressful moments, a manager stays calm and engage the team to handle

crisis. The team is involved in decision-making and planning, but the project

manager carries responsibility of decision and outcome. (Medina & Francis 2015,

pg. 91.) Successful project managers know how to leverage both formal and

informal communication channels to solve problems, even when there are

processes in place. Being familiar with organizational politics should not be

underestimated; managers that are politically perceptive will not get that easily

stuck into hierarchical and organizational boundaries. Mostly project managers

need to help their team members to find and maintain a strong sense of purpose,

belief and values, which will enable better team and individual performance.

(Thomas & Mengel 2008, pg. 308-309.)

Acquiring the skills of an advanced project manager, one must have solid

foundation of best practices, but also ability to learn beyond them. The project

manager must be able to tolerate changes and recognize how situations emerge. In

order to have capabilities to handle complexity, project managers also need ability

to thrive on change and to be able to develop new methods on fly. Besides, being

aware and having competence on traditional as well as new management methods,

project managers need to apply them when correct circumstances present

themselves. This requires critical reflection. (Thomas & Mengel 2008, pg. 308-

310) According to Thomas and Mengel (2008) critical reflection entails:

“Questioning assumptions taken from granted notions embedded in theory and

practices. Recognize the process of power and ideology inherited in institutional

practices, procedure and institutions. Exploring the hidden agendas concealed by

31

claims of rationality and objectivity. Working towards realizing a more than just

working environment.”

3.4. Executive support

Whereas a smaller software project might be easily managed by just project

managers and team leads, large projects are often in interest of senior and executive

level managers. The executive level support has following roles (Jones 2010,

pg.74.):

• Approving project’s ROI (return of investment) calculations;

• Providing project funding;

• Assigning executive roles, governance and project director roles;

• Reviewing status reports, risks, costs and milestones; and

• Following if ROI is reduced under targets because of overruns and delays.

Nonetheless, problems and failures can still appear, even if executive managers

perform all their responsibilities. A fundamental base for good executive level

business decisions is accurate status reports. Executive managers cannot reach

good business decisions if they are provided with out-of-date or inaccurate project

information. If problems and issues are hidden from the upper management, it will

limit their possibilities to make decisions, prevent further delays and expenses or

even to terminate projects that are out of control. (Jones 2010, pg.74.) Getting the

executive management supports for a project is a critical success factor. Executive

level sponsorship should be established from the start of the project and followed

up so that the project sponsor is not departed midstream (Nelson 2007, pg. 76).

Both project managers and senior executives have raised that a lack of senior

executive support is one of the biggest risk that easily leads to failing projects.

Project managers tend to focus and identify lower-level risks, while senior

executives pay more attention on high-level risks. Therefore, project managers

32

should also follow higher level risks and escalate to the senior management risks

that are beyond of their normal concerns, like technology, user and requirement

related risks. The risk of ignoring the needs of user is usually highlighted in

literature, although risk of ignoring the needs of senior executives might have

bigger impact to the project than ignoring the users. Unhappy users, of course,

damage the project, which might lead to cancelling the project. However, only one

unhappy senior executive is enough to call off the whole project. Senior executives

should not underestimate the importance of user acceptance, but rather set up an

example and be the driving force of embracing new systems and organizational

changes. Both project managers and senior executives must understand their

unique role to avoid failing to either get support or to provide it. (Liu, Zhang, Keil

& Chen 2009, pg. 345-347.)

Managers also may find themselves in a situation where an executive management

feels that they are supporting the project, but the project manager considers

otherwise. In these situations, support might be different than the project manager

wanted or requested. Sometimes also senior executives highlight how strategically

important project delivery is, but deny all requests for additional resources or

extensions to budget. Project managers might conclude this as a lack of support.

Senior executives also sometimes like to avoid micromanagement and therefore

do not actively seek to discuss with project managers about the daily operations on

the project delivery. (Liu et al. 2009, pg. 347.)

Project managers and senior executives must have shared understanding what are

project’s high-level targets. Daily operation and strategic vision cannot be

performed properly if there is no shared understanding of project’s goals. Although

a senior executive manages the projects high-level delivery and the client

executives, the project manager oversees daily operations and gets delivery

operations up and running. There needs to be trust and solid communications

between both parties. If an upper senior executive does not involve the project

33

manager to high-level planning, how can the project manager handle the daily

operations and deliver according upper management visions? Furthermore, if the

project manager avoids informing and escalating problems to senior executives,

there is no opportunity for them to do any mitigation actions or offer help.

Ideally, trust between the project manager and the executive manager should be so

strong that the project manager can easily share issues with the senior executive,

but keep the autonomy of the daily operations. The project manager needs to

understand, that senior executives need to manage several stakeholders that might

not have any or very little visibility to daily operations or their visibility might

come from only one perspective. Pleasing several key stakeholders might

sometimes cause turbulence in daily operations as well, in these situations senior

executives need to communicate to their own project management why certain

actions were taken and project managers needs to adapt to the new situation and

support the decisions.

3.5. Managing delivery issues

The project performance is often evaluated by checking how the outcome meets

the project specifications (Lai 1997, pg. 174). Techniques and tools do not manage

projects; people do, but use of proper tools and techniques can speed up the job.

However, it is still the people, who either make the project successful or contribute

to its failure (Lai 1997, pg. 175). Proper tools also guarantee that there is audit trail

on the project events.

Shortening the projects calendar time will increase costs and vice versa, both have

negative impact on performance. If a project decides to go on a fire-fighting mode

to enhance performance, it will also increase hours spent and, therefore, also the

project’s costs. In some cases, a project can also lower their performance standards

to get the project back on schedule, although this action easily leads to extend

34

testing period and a higher number of bugs and extensive maintenance. Eventually,

allowing too much slack in performance will lead to delayed delivery, decreased

productivity and increased cost. Adding new resources usually does not scale down

the task duration or boost productivity. Often it is the opposite, new tools or people

might not be able to integrate to existing teams and therefore influencing the

project team’s overall performance. (Lai 1997, pg. 174.)

When there is slipping and delays in the project’s schedule, it will take extra effort

to get the schedule back on track. Team members should have autonomy and desire

to manage their own work and make decisions without waiting for the manager’s

approval. The team must move flexibly from one part of the project to another and

not concentrate only on line items. It must be shared responsibility to deliver on

time and save costs. Quality cannot be frosted on top of the project delivery; the

quality is a result of the commitment of the team members. To achieve better

quality, the team must be self-regulated, self-directed and be able to change their

way of working as soon as the tasks cannot reach the required level of quality.

Project managers’ job is to ensure that each element is executed adequately and

that the team is working towards common goal. (Lai 1997, pg. 175, 177.) Lai calls

her approach to “Synergistic”, and it has many similarities with Agile and Lean

methods. Already in 1997, she wrote about shared responsibility, self-managing

teams and quality as output for highly motivated team. Although Agile methods

have just recently increased in popularity throughout organizations, the practices

have been existing for a very long time, but they have not been labeled being Agile.

3.6. Project escalation and terminating projects

In some cases, IT projects might take life of its own, which might lead to

significant financial losses. ‘Project escalation’ means moving tasks that team is

not able to complete or solve in time and budget to a higher level of management

to be prioritized. Usually, the task has strategic impact on overall project delivery

35

and that impact must be evaluated and mitigated. After the team or the project

manager has escalated the task, the higher project authority has a responsibility to

found and implement an effective resolution. The purpose of the project escalation

is to ensure that a higher project authority should address issue that have or might

have significant impact to project delivery schedule, time and budget.

Meeting a very aggressive budget and schedule without specific targets

communicates a vague goal, which is more difficult to aim than a specific goal.

The difficulties of setting targets for budget and schedule are in the nature of work

carried out in software projects. It is extremely difficult to make accurate estimates

for software delivery, which suggest that it might be unwise to make irreversible

decisions based on initial budget and schedule. However, estimations should be

done and used as a reference point to see whether the project is on or off the track.

(Lee, Keil & Kasi 2012, pg. 53-55.)

A common contribution to project failures is project managers’ and the teams’

inability to escalate troubled tasks and issue. The managers’ and teams’

willingness to escalate issues also depends what type of a relationship they have

with the executive management. If there are no trust and respect between each

other’s, the escalation process might not serve either of the parties. When the

project manager escalates something, it is a request for assistance. The higher

project authority must offer support and include the project manager and team into

decision-making. If the higher project authority isolates the manager and the team

from decision-making, it implies that their input is not valued. The project manager

might choose not to escalate things to avoid disturbance and to maintain authority

over the delivery.

36

4. How to choose a development method?

This chapter presents the basics of software development and project planning

regardless of the methodology. It also gives introduction to basic and background

of Agile and Waterfall delivery. Due to raising popularity of Agile, Scrum and

SAFe are presented as examples of Agile methods.

4.1. Software development

Yang and Jiang (2011, pg. 1) define that methods are process and techniques for

completing tasks, whereas methodologies are patterns for solving problems with a

set of processes, sub-processes and strategical decisions. Software projects are a

set of processes that aim to accomplish a set of tasks that are in relation between

each other. A software project is considered successful when quality, time and cost

are accomplished at the same time.

There are many different development methods available. Just the number of

existing methods prove that software development is complex and there are no

straightforward answers what works and what not. Capers Jones (2010) suggests

that selecting a software development method should start from examining

benchmarks for applications that used various methods. A method or methods that

outputs the best outcome for specific size and type of software project should then

be selected. (Jones 2010, pg. 59).

In general and in granular level, all software projects consist of requirement

gathering, design, development and testing. However, the type of the software

project may vary a lot. The project can be a large ERP system implementation that

might not require lot of programming, but can still be very complex by its design.

An IT project can be data analytics that is done by using modelling tools like SPSS

or by programming language like Python or it can be business intelligence that

37

focuses on analyzing business data. Web-development and mobile application

development are also software development projects. Thus, there are multiple

different pre-settings for a project and there is no one solution that fits for all

methods.

According to Capers Jones (2010), an average requirement change is around 2

percentages per calendar month. Failure of understanding and managing the scope

creep leads to severe overruns and damages the management’s credibility and

morale. (Jones 2010, pg. 49.) Schedule and costs correlate directly with the

application size. Large applications are usually divided into multiple releases from

12 to 18 –month intervals. Understanding the overall size, and then the sizes of

individual features makes it easier to plan a release strategy for the three to four

consecutive releases. By knowing the size of each release, accurate scheduling and

cost estimating is easier to perform. (Jones 2010, pg. 49.)

In 2009, more than 80% of software projects were modifications to existing

products rather than completely new developments made from the scratch. The

work tasks performed during a large software development project will vary

depending, whether the application will be developed from the scratch, or will it

consists of modifications to a package or a legacy application. Following list

consists of process activities that effective large scale development process

requires. (Jones 2010, pg. 61-62.)

1. Requirement gathering

2. Requirement analysis

3. Requirement inspection

4. Data mining of existing similar application to extract business rules

5. Architecture

6. External design

7. Internal design

8. Design inspection

9. Security and vulnerability analysis

38

10. Formal risk analysis

11. Formal value analysis

12. Commercial off the shelf package analysis

13. Requirements/package mapping

14. Contacting package user association

15. Package licensing and acquisition

16. Training of development team in selected package

17. Design of package modification

18. Development of package modification

19. Development of unique features

20. Acquisition of certified reusable materials

21. Inspections of package modifications

22. Document of package modifications

23. Inspection of documentation

24. Statistical analysis of package modifications

25. General testing of package modifications

26. Specialized testing of package modification (performance and

security)

27. Quality assurance review of package modification

28. Training of user personnel in package and modification

29. Training of customer support and maintenance personnel

30. Deployment of package modification

Each above listed high-level activity usually contains from 150 to more than 1,000

tasks and lower level activities. A manual approach for managing each task is too

cumbersome, therefore leading companies use management tools such as Artemis

Views, Microsoft Project, and Primavera or similar. Because of the 2%

requirement change per calendar month, each project activity must be performed

in a manner that changes are easy to accommodate during development; this

usually requires iterative development approach. In fixed schedule cases, it is also

often contractually agreed and mandatory to develop in multiple releases. After

certain point, all features must be frozen and no new features or changes are

allowed. Changes after the freeze are to be scheduled to up-coming releases. (Jones

2010, pg. 61-62.)

39

No matter which development or project management method is chosen, the

successful outcome must include following fundamental goals: Project planning

and estimating must be excellent and accurate. Quality and change control must be

excellent. Progress and cost tracking must be excellent. Measurement of result

must be excellent and accurate. Navigating through major software project

resembles going through a maze. There are more paths that end up in delays,

disasters and dead ends than to successful outcomes. In addition, paths that lead to

successful outcome are not the same for small and large projects or neither to all

different software applications. (Jones 2010, pg. 10-11, 36.)

4.2. Project planning

As mentioned earlier, in 2009 more than 80 percent of software applications were

not new and developed from scratch. For some of the legacy systems, written

specifications might not exist anymore or they are out of date. Despite of missing

and outdated documentation, legacy systems still contain business rules and

algorithms that need to be transferred to new systems. Requirement analysis should

therefore include not only new requirements but also data mining of the legacy

code to extract hidden business rules and algorithms. (Jones 2010, pg. 70).

Modern business world is too dynamic for requirements to stay completely static

over the development of a large application. External changes, for example tax

laws, changes in corporate structure, business process re-engineering, or merges

and acquisitions may prompt changes in software requirements. It is not realistic

to think that corporations can freeze all its business rules while new software is

under development, after all large application can take several years to be

deployed. (Jones 2010, pg. 71). What applies to different development methods

applies to different design and architecture methods as well, there are large number

of techniques available and no the best practice has yet materialized.

40

In large software development projects, design and architecture has a major role to

play, because features are often complex and expensive to develop. The enterprise

architecture must match to corporate business needs including sales, marketing,

manufacturing and other possible needs from other business. Enterprise level

software may have more than 5,000 different applications. Software design

describes functions and features available to a user, and how a user can access

them. Internal design level documentation describes how different features and

functions are linked and how they share information. (Jones 2010, pg. 76.) When

project is large and complex, it is challenging to keep track of all activities and

documentation. Easily it is thought that project documentation will decrease the

productivity. This might be true in some cases but in most cases documentation

and activity tracking is a part of the quality assurance. It is also a part of sharing

knowledge and making sure that project activities are recorded somewhere else

than in employees’ head. It is also easier to on-board new resources when project

data and knowledge is easily accessible. Improving productivity start from

improving quality, because finding and fixing bugs is overall more expensive than

software development. As said, “quality leads and productivity follows” (Jones

2010, pg. 7).

Quality and performance are not only driven by the software supplier. According

to Capers Jones (2010), effort that is required from an expert of the client domain

is on average about 20 percent from the overall effort of the software technical

team. The percentage of the user involvement can vary from 5% to 50%, but if in

a large scale software project it is under 5%, it will raise a risk of poor user

satisfaction when the end product is finally delivered to the client (Jones 2010, pg.

7). Keeping the numbers in mind it can be concluded that software products are

not delivered as ready to implement packages, but they require active management

and ownership from the client side as well. According to Jansma (2004), a software

vendor must proactively reach out to the customer and not wait for the customer

41

to come to them. Focus should be serving the customer and deploying products,

not defining processes and generating assets (Jansma 2004, pg. 15).

4.3. Agile and Waterfall delivery

Software development methods are usually divided between Agile and Waterfall.

Traditional software delivery is often called as a Waterfall model, because the

workflow proceeds from top to bottom, just like the flow in waterfalls. Agile is

wider concept, because it is an umbrella term for several different software

development methods. Most distinctive difference between Agile and Waterfall

delivery is that in Agile methods work is carried out in iterations. Similar top down

model than Waterfall was introduced by Herbert D. Benington in 1956, the model

was cited 1970’s by Winston Royce, but as an example of non-working approach.

Neither Royce or Benington called their model Waterfall. In its most common

illustration, the model consists five stages and the workflow moves from top to

bottom, like a cascading waterfall (Figure 2). Once the stage is completed, the

model does not allow returning to previous stages.

42

Figure 2. Adaption of Waterfall model

There are also other methods used for software delivery than Agile and Waterfall.

One example is Lean software development, which is adopted from Lean

manufacturing and Toyota production system (Poppendieck 2003, pg.1). Lean

methods are widely accepted in Agile community and they partly overlap with

Agile principles, but they can be still seen as their own category. In addition to the

methods, there are tools that are used and accepted by Agile practitioners, but are

not limited to Agile methods or do not origin from Agile methods. For example,

Kanban is a very popular progress and task tracking practice, which can be used

in equally in both Agile and Waterfall delivery. Kanban originates also from

Toyota production system. There are also numerous variations to all methods and

very often some methods and tools are used as mixture.

Traditional software delivery where planning is done predicatively and workflow

is sequent from requirement gathering to testing, is not successful in today’s

complex project environments. In the so-called Waterfall approach, working

software is delivered in the very end of development cycle, which delays feedback,

43

learning and potential return on investment. Releasing a software on very late in a

project’s life cycle will cause lack of transparency; it will reduce flexibility and

ability to improve as well as increases technical and business risks. Alternative

approaches, such as Agile methods have been available for practitioners for

decades, but not been so widely adapted as the traditional approach. (Deemer,

Benefield, Larman & Vodde 2012, pg. 3.)

The increasing popularity of Agile methods has made it even more difficult to draw

distinct lines between methods, tools and best practices. There seems to be no

common agreements what can be sold under Agile umbrella. However, some Agile

evangelists have managed to bundle some methods, tools and best practices

together and provide certified training. For example, Scrum is one of the most

widely adapted delivery methods.

4.4. Scrum

There are several different Agile methods to choose from, but in this study, we

focus on Scrum due to its popularity amongst practitioners. 58 % of practitioners

use Scrum (VersionOne 11th annual State of Agile report). Against common belief,

Agile methods, particularly Scrum can be very disciplined. In Scrum, there are

roles and ceremonies just like in other methods. The overall development approach

is very structured. Most distinctive difference to Waterfall delivery is that work is

carried out in short iterations (see Figure 3).

In Scrum, each iteration or cycle of work is called as a Sprint. Sprints are time-

boxed meaning that they end at a specific date regardless whether the work is ready

or not. Sprints are usually 2-4 weeks long, and they should never exceed over four

weeks. The team set themselves a target for each sprint by choosing items (i.e.,

requirements) from a prioritized list. No items can be added into sprint after it

starts, because each sprint should hold the focus on a small, clear and stable target.

44

New items will be added to the future sprints. The team meets up daily to discuss

the progress and possible obstacles. At the end of the sprint, the team presents the

progress to stakeholders and collect feedbacks that can be exploited in upcoming

sprints. The goal of each sprint is to have a shippable product that is completely

tested, integrated and documented. (Deemer, Benefield, Larman & Vodde 2012,

pg. 3.)

Figure 3. Adaption of: Scrum overview Deemer, Benefield, Larman & Vodde

2012

The Scrum team consist of Product Owner, Development Team and Scrum Master.

In external development projects, the product owner (PO) role is recommended for

the client to fill. PO is responsible of return on investment (ROI), recognizing

product features and prioritizing requirements into a list. In organizations that

deliver products, the Product Manager role is like Product owners role in Scrum

teams. The difference is that Product Owners review the result of each Sprint, they

actively interact with development team and other stakeholders and constantly

prioritize the items in the backlog.

45

The Development Team is cross-functional team that has required skills to deliver

product, that Product Owner request. The team has high autonomy as well as

accountability over the delivery. The Team decides how many tasks they can

deliver in each Sprint. The size of the team is usually from 6 to 8 full time

employees. The productivity stays high when the whole time is fully allocated and

committed to one product and Sprint.

The Scrum Master can be described as a coach or a teacher. Their role is to remove

obstacles from other team members and guide the Product Owner. Scrum Masters

makes sure that team members and organizations follow Agile practices, but they

are not preventatives or managers of the team. Product Owner and Scrum Master

should not be performed by same person, because the roles are fundamentally

different. The outcome of combined roles leads easily to Product Owner that

micro-manages the team. (Deemer, Benefield, Larman & Vodde 2012, pg. 4, 5.)

Scrum focuses moving from project-oriented work towards to a product and

application. The teams are cross-functional and self-managing, therefore there is

no project manager role inside the Scrum team. As a method, Scrum leaves lots of

activities outside the actual scrum team, because it operates on team level. For

example, financial planning, resources allocation, sales, contracting, application

support and management after the releases are not addressed in Scrum framework.

It is not described how and from where Product Owner will create the product

backlog (i.e., a list of features that he wants to the product) and where the program

level guidance comes. It could be argued that a traditional requirement analysis is

done prior the development work to create the backlog, just like it is done in

Waterfall development. Many of the portfolio and program level activities that are

not described in Scrum are described in Scaled Agile framework (SAFe).

46

4.5. Scaled Agile Framework SAFe

Scaled Agile Framework is a method for scaling agile development across the

organizations portfolios, value streams and programs. According to VersionOne

11th annual State of Agile report, it is the most popular method for scaling Agile

and 28% of the practitioners who answered to questionnaire use SAFe. SAFe

combines Agile principles and methods with Lean product development and

system thinking as illustrated in Picture 4. The mindset of SAFe is captured in

Agile manifesto and House of Lean. The purpose of the SAFe is to offer

organizations structured way to manage their development pipeline and

synchronize it with business requirements. In Agile development, non-

development related tasks are often considered outside of scope, in SAFe they are

built in to the framework, but not executed in the team level. SAFe can be used by

smaller organizations as well, but the full framework is aimed for large companies

with large projects.

Figure 4. Adaption of: Aspect of Lean and Agile mindset, SAFe 4.0 Introduction

2016

47

The SAFe Lean- Agile principles are described in nine fundamental values (SAFe

4.0 Introduction 2016, pg. 6-8).

1) Take economic view. Supplier must have fundamental understanding of

the client’s mission for delivering best value and quality in the sustainably

shortest lead time. Each decision should be made in reasonable economic

context.

 2) Apply system thinking. Challenges that occur in the workplace are result

of a series of complex interactions between workers and systems that are

used to conduct the work. System thinking is applied to organizations,

system development as well as on how systems operates in its end user

environment.

3) Assume variability; preserve options. Several requirement and design

options are simultaneously kept in development pipeline. Focus is narrowed

by using empirical data.

4) Build incrementally with fast integrated learning cycles. Systems are

built incrementally in short iterations. Target of each iteration is to result in

integrated increment of a working system. 5) Base milestones on objective

evaluation of working system. It is suppliers as well as clients shared

responsibility to ensure that new solution will deliver economic benefit.

Frequent review in each integration point provides a milestone to evaluate

if the investment is meeting the expectations. (SAFe 4.0 Introduction 2016,

pg. 6-8.)

6) Visualize and limit the WIP, reduce batch sizes, and manage queue

lengths. “Visualize and limit the amount of work-in-process so as to limit

demand to actual capacity”, “Reduce the batch size of work items to

48

facilitate reliable flow though the system” and “Manage queue lengths so

as to reduce the wait times for new capabilities.”

7) Apply cadence, synchronize with cross-domain planning.

Synchronization helps for understanding and resolving cross-domain

issues, which are raised and identified in regular cadence.

8) Unlock intrinsic motivation of knowledge workers. The Lean-Agile team

consist of knowledge workers. Providing teams with common goal and

autonomy over their work, leads to higher employee engagements, which

results for better overall outcome for company.

9) Decentralize decision making. Both types, centralized and decentralized

decision making still occur in SAFe framework. However, decentralized

decision making reduces delays, offers channel for faster feedback loop and

improves product development flow. (SAFe 4.0 Introduction 2016, pg. 6-

8.)

SAFe operates on three levels: The Program and Team level, The Portfolio level

and The Value Stream level. The Program and Team level is brought together by

Agile Release Train (ART), which is formed from self-organizing and cross-

functional Agile teams. The size of each ART is from 50 to 125 team members.

The teams plan, commit, execute together and move ideas from concept to

deployment. Each team has shared goal from program backlog and the work

between teams is synchronized. The Portfolio level controls the process of funding

and governance for the product, services and solutions. The Portfolio level

connects the portfolios with enterprise business strategy, larger business has

multiple SAFe portfolios, whereas smaller business might just have one value

stream and one ART. The Value Stream level in SAFe is optional. The

organizations that have independent systems, which can be built with few hundred

49

employees, might not need additional process that Value Stream level operates.

The purpose of the Value Stream level is to help organizations to manage the

challenges that they face when building large scale multidisciplinary software,

which is cyber-physical as well as high-assurance. All the ARTs in the value

stream are synchronized in the The Value Stream cadence. (SAFe 4.0 Introduction

2016, pg. 8-20.)

50

5. Conclusion

The aim of this study was to answer the research question: How to implement a

large scale custom solution? As mentioned previously, the most distinct feature of

large scale implementation is time. The application development can take several

years and applications life cycle can be up to 25 years. Schedule and cost of the

project correlate directly with the size of application. Longer projects are also more

complex, because usually the team size changes and skill levels deviate during the

project life cycle. The scope is dived into several releases; project documentation

and tracking tools are layered for each release. A large scale development process

requires around 30 high level tasks that each has from 150 up to 1000 lower level

activity, therefore understanding the dependencies between each task and

managing the delivery is more complex than in smaller projects. When the team

size is grows, a project require more formal communication channels and reporting

structure, completing formal activities requires more project management effort.

This study is limited to reviewing existing literature, empirical research is not part

of this study. Open Source solutions, which means that software including source

code is free for studying, changing and distribution, are not presented in this study.

Therefore, reviewing Open Source literature and doing comparison between COTS

and Open Source in the development of large scale software solutions could be a

part of future studies. Conducting empirical research with organization that have

experience with large software projects would also offer more insight and

perspective to this study.

Taking new system in use does not only mean installing software packages to

dedicated hardware. Before that can happen there needs to be understanding what

are the software and hardware solutions being installed, development effort

concluded, system is tested and documented, users are trained and organization is

ready to convert to use the new system. (Kakkar 2006, pg. 1.) According to

51

literature reviewed for this study, for organizations to leverage better their IT, they

must aim to reduce complexity and have strategical and companywide standards.

IT should not be seen as support function, but more as strategical investment,

therefore like all strategical investments also major large scale development

project should start only when C-level is supporting the project.

According to Capers Jones (2010), 80% of software projects are modifications to

existing products. This implicates that one of the most used practices for large

implementations is to use COTS products. Reviewing the literature for open source

software was not part of this study. As mentioned earlier, in COTS the vendor

carries the cost of developing the product and licensing and the client the cost of

customization and adaption. Product support is arranged by the vendor and bugs

in the core product are solved by the vendor, also further product development is

carried by the vendor organization. This brings reliability that product features and

security are maintained as longs as product is supported and client takes care of

installing the fix backs and upgrades. Standard products with support and service

level agreements standardize IT functions and reduce complexity.

Upgrading the legacy system is risky, because failures might paralyze the business

or lead to loss of data, which will have major economic impact. However, the

bigger risk of losing business because outdated systems and misalignment in IT,

usually leads to decision to renew IT systems. Data migration is usually part of

renewal, because companies do not want to abandon the data. Data migration adds

complexity and work effort to a project, when old and new systems are structured

differently on conceptual and technical level. Data migration also often runs out of

budget due to well defined methodology. Reusing knowledge from similar projects

is mentioned by Razavian and Lago (2013) as the best practice to tackle migration

issues, this implies that project team needs to be well experienced with data

migration projects before starting the project.

52

As it is mentioned in this study there are several development methods and tools

available. Both Agile and Waterfall methods are presented in this study, but there

is no direct comparison which methodology is better for delivering large software

projects. Regardless of the development method the delivery should be well

planned and structured, team and stakeholders motivated. Project should be well

documented, risks and issues followed regularly and testing done continuously to

avoid late stage defects.

When issues occur, they are in nature similar for a large and small project, but in

large projects they tend to multiply. In small projects blocking issues can be caught

when they are only risks or small issues, mitigation actions can be put to motion

fast and most likely informally. In larger settings, it takes longer to have proper

audience aware of the issue and to mitigate it, therefore formal communication

channels and status reporting must exists throughout the project life cycle.

In literature, the distinctions between vendor and client organization was hardly

done. However, both of these organizations are part of performing the project and

both require set of individual but also overlapping skills. As no clear distinctions

was made it is concluded that both vendor and client share the responsibility of

making the project successful, by offering the needed resources and executive

support, following the best practices and understanding the high risk and

uncertainty. As mentioned earlier project have average of 2% requirement change

per calendar month, both organizations need to understand that changing

requirements are part of project uncertainty and tools to mitigate the impact is to

have effective change management process in place. Also, both client and vendor

need to have shared goal for project closing.

When it comes to comparing large projects with lot of implementation and

integration on top of an old system, to, e.g., a webpage made from scratch it is like

comparing apples and oranges. In a large project with exciting data, it is impossible

53

to estimate how much complexity exactly there is before actually starting the work.

Smaller projects without the chains from existing data and system can adapt to

changing requirements much faster than larger projects. Some large projects also

have components that have not been build or integrated earlier, this adds

complexity. Clients and vendor should equally understand that creating something,

that has not been done before does not usually happen without incidents. Most

common incidents are that project is not able to stay in the budget and deliver on

time. It might be wise for project from time to time re-visit their budget, scope and

delivery schedule. Especially clients should understand that even in fixed price

deliveries changes in scope, schedule budget does not only impact the supplier, but

the client itself. Most of complex deliveries require major input from the client

organization as well, including joint office space for project team, system matter

experts, testers, financial follow ups, steering group and other project committees.

It is nearly impossible to predict all the possible outcomes from all the decisions,

but rarely staying still is either an option. There is still much uncertainty in large

implementations and in software projects in general. Therefore, no method,

technical knowledge, experience or other assets that project might have, do not

fully prepare project for all obstacles that project will encounter during its life

cycle. This uncertainty is important for a client to understand, when they are

acquiring new information systems. It is also evident that large software delivery

projects are not just software deliveries; they are organizational transformation.

Organizations cannot change their IT systems, without having an impact on how

the work is executed.

54

References

Ahmed, Z. & Kumar, V. & Kumar, U. (2017). Managing critical success factors

for IS implementation: A Stakeholder engagement and control perspective.

Canadian Journal of Administrative Sciences. Wiley Online Library.

Ahonen, J. & Savolainen, P. & Merikoski, H. & Nevalainen, J. (2015). Reported

project management effort, project size and contract type. The Journal of System

and Software 109. pg: 206-213. Elsevier Inc.

Cummins, F. (2002). Enterprise Integration: An Architecture for Enterprise

Application and System Integration. John Wiley & Sons. United State of America.

Dedeke, A. (2012). Improving Legacy-System Sustainability: A Systematic

Approach. IT Pro January/February, pg: 38-43. IEEE.

Deemer, P. The Distributed Scrum Primer. Version 1.0.

http://www.goodagile.com/distributedscrumprimer/

Deemer, P. & Benefield, G. & Larman, C. & Vodde, B (2012). A Lightweight

Guide to the Theory and Practice of Scrum. The Scrum Primer.

http://www.scrumprimer.org/

Jansma, P. (2004). When Management Gets Serious About Managing Software.

December 10, pg: 1-15. IEEE.

Jones, C. (2010). Software Engineering Best Practices: Lesson from Successful

Projects in the Top Companies. McGraw Hill. United State of America.

Kakkar, S. (2006). Implementation Aspects of Software Development Projects.

India Conference, 2006 Annual IEEE.

Lai, S. (1997). A synergistic approach to project management in information

system development. International Journal of Project Management. Vol. 15, No.3,

pg. 173-179. Elsevier Ltd and IPMA.

55

Lee, J. & Keil, M. & Kasi, V. (2012). The Effect of an Initial Budget and Schedule

Goal on Software Project Escalation. Journal of Management Information Systems

vol. 29, no.1, pg: 53-77.

Liu, S. & Zhang, J. & Keil, Mark. & Chen, T. (2009). Comparing senior executives

and project managers perceptions of IT projects risk: a Chinese Delphi study.

Information Systems Journal 20, pg: 319-355. Blackwell Publishing.

Matei, C. (2012). Modernzation Solution for Legacy Banking System Using and

Open Architecture. Informatica Economicâ vol. 16, no.2, pg: 92-101.

Matthes, F. & Schulz, C. & Haller, K. (2011). Testing & Quality Assurance in

Data Migration Projects. 27th IEEE International Conference on Software

Maintenance, pg: 438-447. IEEE.

Medina, A. & Francis, A. (2015). What Are the Characteristics That Software

Development Project Team Members Associate With a Good Project Manager?

Project Manager Journal. October/November 2015, pg: 81- 93.

Nelson, R. (2007). IT Project Management: Infamous Failures, Classic Mistakes

and Best Practices. MIS Quarterly Executive. Vol. 6 no.2, pg:67-78.

Poppendieck, M. & Poppendieck, T. (2003). Lean Software Development – An

Agile Toolkit. Addison Wesley.

Redman, T. (1998). The impact of poor data quality on the typical enterprise.

Communications of the ACM, 41(2):79–82, 1998.

Petter, S. & DeLane, W. & McLean, E. (2012). The Past, Present, and Future of

“IS Success”. Journal of the Association for Information Systems vol.13, pg: 341-

362.

Razavian, M. & Lago, P. (2013). A lean and mean strategy: a data migration

industrial study. Journal of Software: Evolution and Process 26, pg: 141-171. John

Wiley & Sons Online Library.

SAFe 4.0 Introduction (2016). Overview of the Scaled Agile Framework for Lean

Software and System Engineering. A Scaled Agile Inc. White Paper.

http://www.scaledagileframework.com/introduction-to-safe/

56

Shpliberg, D. & Berez, S. & Puryear, R. & Shah, S. (2007). Avoiding the

Alignment Trap in Information Technology. MITSloan Management Review. Vol.

49, No.1. pg: 51-58.

Sommerville, I. & Cliff, D. & Calinescu, R. & Keen, J. & Kelly, T. &

Kwiatkowska, M. & McDermid, J. & Paige, R. (2012). Large-Scale Complex IT

Systems. Communication of the ACM. Vol. 55, No.7. pg: 71-77.

Standish Group (2013) The CHAOS Manifesto: Think Big and Act Small. The

Standish Group International.

Thalheim, B. & Wang, Q. (2012). Data Migration: A theoretical perspective. Data

& Knowledge Engineering 87, pg: 260-278. Elsevier.

Thomas, J. & Mengel, T. (2008). Preparing project managers to deal with

complexity – Advance project management education. International Journal of

Project Management 26, pg: 304-315. Elsevier Ltd and IPMA.

VersionOne The 11th annual State of Agile survey.

https://explore.versionone.com/state-of-agile/versionone-11th-annual-state-of-

agile-report-2

Weill, P. & Sinan, A. (2006). Generating Premium Returns on Your IT

Investments. MITSloan Management Review. Vol. 47, No.2. pg: 40.

Weill, P. & Subramani, M. & Broadbent, M. (2002). Building IT Infrastructure for

Strategic Agility. MITSloan Management Review. Vol. 44, No.1. pg: 57-65.

Yang, L. & Jiang, C. (2011). Research on Enterprise Application Software Project

Implementation Model. Management and Service Science (MASS), 2011

International Conference. IEEE

https://explore.versionone.com/state-of-agile/versionone-11th-annual-state-of-agile-report-2
https://explore.versionone.com/state-of-agile/versionone-11th-annual-state-of-agile-report-2

