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Acute myeloid leukemia (AML) is a hematological cancer where myeloid stem cells aretransformed into malignant cells, filling and replacing the cells in a healthy bone marrow.Cytarabine is a nucleoside analog used in chemotherapy for hematological malignancies, suchas AML, where it is combined with an anthracycline as a standard treatment. Nevertheless thisnucleoside analog in itself is not an active cytotoxic compound. Cytarabine is a prodrug that needsmetabolism to become its active triphosphate form, which disturbs DNA synthesis and thereforeis effective against rapidly dividing cancer cells. However, despite treatment, this leukemia mightrelapse, when treatment responses are usually less effective. SAMHD1 (SAM and HD domaincontaining protein 1) has enzymatic activity that could explain why cytarabine treatment is noteffective in some patient populations. SAMHD1 displays enzymatic activity against the activecytarabine metabolite, converting this active triphosphate (Ara-CTP) back to its inactive form (Ara-C), similarly to deoxynucleoside triphosphates (dNTPs) that are converted to their correspondingnucleoside core along with inorganic triphosphates (Figure 1).

Figure 1: Both dNTPs and active cytarabine (Ara-CTP) are known substrates of SAMHD1. Ara-C is activatedthrough phosphorylation reactions into the active triphosphate compound, ara-CTP that can incorporate intothe genome, where it can cause DNA damage which leads to programmed cell death (e.g. apoptosis).
Recent studies indicate that inhibition of SAMHD1 could potentiate the efficacy of cytarabinetreatment. SAMHD1 protein abundance has connections to ara-C response in leukemia cells(figure 2): ara-C cytotoxicity is enhanced in THP-1 SAMHD1 knock out (KO) cells in comparisonto proficient cell line variant (THP-1 ctrl). In this thesis work, I optimized a cell-based drug-combination assay and used it to test and evaluate combination treatment of ara-C and candidateSAMHD1 inhibitor compounds in a panel of hematological cancer cell lines and indeeddemonstrated that creating a SAMHD1 deficient phenotype with chemical compounds canpotentiate cytarabine-inducedcytotoxicity in SAMHD1dependent manner.
Figure 2: Disruption of SAMHD1can sensitize cells to cytarabine(ara-C). Ara-C dose-responsecurves for THP-1 ctrl (SAMHD1+/+)and SAMHD1 KO (SAMHD1-/-)cells after 96 hours incubation withara-C. If SAMHD1 proficient cellsare exposed to a SAMHD1inhibitor, potentially we could seea better response (grey arrow)when SAMHD1 is not inactivatingthe cytotoxic ara-CTP.
Keywords: Acute myeloid leukemia (AML), cytarabine (Ara-C), SAMHD1, synergy, combinationtreatment, precision medicine



Table of contents
1. Introduction

1.1 Acute Myeloid Leukemia
1.1.1 Current treatment
1.1.2 Cytarabine

1.2 SAMHD1
1.2.1 Biological functions of SAMHD1
1.2.2 SAMHD1 and Cytarabine

1.3 Drug synergy
1.4 Research Question, Hypothesis and Goals

2. Results
2.1 Hypothesis
2.2 Hypothesis validation

2.2.1 SAMHD1 expression affects cytarabine response in leukemia cells
2.2.2 Cytotoxicity of cytarabine can be potentiated with putative SAMHD1 inhibitors

2.3 Developing a cell-based assay for synergy experiments
2.3.1 Individual dose-responses in a panel of cancer cell lines
2.3.2 Drug synergy matrix optimization with THP-1 cell line

2.4 Synergy between cytarabine and candidate SAMHD1 inhibitors is dependent uponSAMHD1 protein expression
2.4.1 SAMHD1 expression in a panel of hematological cell lines
2.4.2 Synergy between ara-C and inhibitors with optimized drug matrix
2.4.3 Correlation between SAMHD1 protein abundance and drug synergy in a panelof hematological cancer cell lines

2.4.3.1 Correlation based on synergy results from ZIP model
2.4.3.2 Correlation based on synergy results from HSA model
2.4.3.3 Correlation based on synergy results from Bliss model
2.4.3.4 A summary of correlation results

2.4.4 Examples from optimized drug matrix experiments
3. Discussion
3.1 Reviewing the methods
3.2 Potentiating the efficacy of current AML therapy  AML treatment now andtomorrow
3.3 Conclusions

4. Materials and Methods
4.1 Project timeline
4.2 Cell lines and cell culture



4.3 Compounds
4.4 Controls
4.5 Dose-response experiments
4.6 Drug synergy
4.7 Protein measurement (Western blot)
4.7 Statistical methods

5. Acknowledgements
6. Abbreviations
7. References
8. Appendices



1. Introduction
Globally, cancer is the second most common cause of disease related death.
Annually, the incidence is increasing and new cancer cases are diagnosed more
frequently. As an example, in the United States alone, approximately 20 000 new
malignant cases are diagnosed each year (WHO Cancer Statistics). Cancer is a
complex disease with a strong genetic background, as a series of mutations
together with genomic instability is enough to transform a normal cell to a
malignant one (Weinberg, 2014a). This tumor progression or tumorigenesis,
might be a time consuming process and often cancer develops over time before
diagnosis (Weinberg, 2014b). Nowadays, we can detect new cancer cases with
improved screening methods and because of early detection, treatment has
become more efficient (Weinberg, 2014c). However, relapses are nowadays the
biggest challenge in cancer therapy. For example, cases where treatment fails
because the tumor evolves and develops new mutations (Weinberg, 2014a). On
the one hand, we can exploit cancer cells limitless replicative potential by
manipulating nucleotide pools, the precursors of DNA and RNA, with nucleoside
analogs, thus reducing malignancy (Weinberg, 2014d). On the other hand, new
mutations can make the tumor even more resistant towards treatment (Weinberg,
2014e). It is crucial to consider genetic aspects before treatment, and for
example, the genetic profile of the tumor could be used as a biomarker to direct
treatment towards precision cancer medicine.
The malignancy related to my thesis is a hematological cancer, Acute Myeloid
Leukemia (AML). During my thesis work, I examined drug combinations, which
could be used to enhance the efficacy of current AML treatment. More precisely,
could we potentiate the cytotoxic effect of current medication with another drug
and hence reduce the amount of cytotoxic drug, simultaneously reducing its
possible adverse-events?
In AML treatment, the nucleoside analog cytarabine (ara-C) combined with an
anthracycline forms the backbone medication which is used to treat patients
(Ossenkoppele and Bob, 2015). This induction medication has remained
constant since 1973 but as stated previously the biggest challenge is a relapse,
where malignancy returns and responses to treatment are weak, eventually



leading to poor prognosis (Saultz and Garzon, 2016; Kouchkovsky and Abdul-
Hay, 2016).
Recently, SAM and HD domain containing protein 1 (SAMHD1) was identified as
a possible therapeutic target, and its inhibition could benefit AML patients by
enhancing current chemotherapy. SAMHD1 is an enzyme exhibiting
phosphohydrolase activity towards deoxynucleoside triphosphates (dNTPs)
(Goldstone et al., 2011). SAMHD1 converts nucleotides to their nucleoside core
and releases an inorganic triphosphate (PPPi) in the same process. Also, the
active metabolite of ara-C, ara-CTP, has been characterized as a substrate of
SAMHD1 and this enzyme also protects leukemia cells from the cytotoxicity of
ara-CTP in vitro (Herold et al., 2017a; Schneider et al., 2017). Additionally, in the
same study Herold and co-workers observed that AML patients with higher
SAMHD1 mRNA levels were not responding to ara-C treatment as well as
patients with lower SAMHD1 mRNA levels.
This introduction begins with cancer  AML, particularly focusing on its current
treatment. Then I will focus on the protein of interest SAMHD1 and especially,
how it is connected to the current treatment. The third main topic will be drug
synergy and finally, the research hypotheses and the objectives will be presented.

1.1 Acute Myeloid Leukemia
When myeloid stem cells in the bone marrow undergo malignant transformation
they become cancer cells, more specifically hematological cancer cells. AML is a
hematological cancer where immature cells begins to proliferate in an
uncontrolled manner and finally these malignant myeloid cells can be observed
in circulation (Saultz and Garzon, 2016). In normal, physiological conditions,
these same cells are developing into red blood cells, platelets or leukocytes.
When bone marrow is controlled by malignant cancer cells it cannot produce
these healthy blood cells and this leads to the symptoms of AML. Patients are
experiencing, for example: anemia, thrombocytopenia and additionally they have
a higher infection risk because of the reduced number of functional neutrophils.
(Kouchkovsky and Abdul-Hay, 2016).
AML is an acute disease, which means that it can progress rapidly to a severe
stage, and, without treatment, it will be fatal in a few months. This hematological



cancer is most common amongst elderly people and in fact, it is the most common
acute leukemia in adults (Kouchkovsky and Abdul-Hay, 2016). Even though we
can treat AML and new treatments are developing, the long term survival of AML
is quite poor. As an example, 5-year survival in elderly adults is less than 5%,
and despite the treatment, approximately 70% of over 65-year patients are dying
within one year after diagnosis (Meyers et al., 2013).

1.1.1 Current treatment
Even though 5-year survival is poor, there are still effective treatment options
against AML. Current chemotherapy can be divided into induction and
consolidation therapies, where induction therapy is aiming for remission of
leukemia cells (Saultz and Garzon, 2016; Kouchkovsky and Abdul-Hay, 2016).
However, AML has a high relapse rate and there is a need for more effective
medications (Yang and Wang, 2018).
Compared to primary AML, relapsed AML is often more severe and difficult to
treat (Saultz and Garzon, 2016; Yang and Wang, 2018). Treatment becomes
even more complicated when circulating tumor cell cannot be targeted directly
with surgical resection, which is usually used against solid primary tumors.
However, more advanced treatment strategies are available, for instance, stem
cell transplant (SCT) and antibody based treatments (Lamble et al., 2018). SCT
is used to restore the functional bone marrow, which is achieved through the
(autologous transplant) or cells from a donor (allogenic transplant) (Cornelissen
and Blaise, 2018). One example of the antibody treatment is Gemtutsumab
(Mylotarg®). Mylotarg is a specific drug-antibody conjugate, where an antibody
is combined with a cytotoxic antineoplastic agent. Gemtutsumab is an antibody
against myeloid cell surface antigen CD33 which is used to recognize
hematopoietic cells (Schürch, 2018). However, this treatment is not completely
specific towards malignant cells, leading to many side effects.
First line medication (the golden standard) in induction therapy is a combination
of ara-C and an anthracycline (e.g. doxorubicin), a class of a chemotherapeutics
which, for example, inhibits replication and promote cell death (Saultz and
Garzon, 2016). Other chemotherapeutic agents are used during consolidation



therapy and, if necessary, SCT is considered (Kouchkovsky and Abdul-Hay,
2016). When cytotoxic drugs are used, the role of adverse events becomes more
important, especially amongst elderly patients. As a part of cancer treatment, it is
essential to evaluate risks and benefits of the treatment and consider other
options, for example, whether we could potentiate current medication and hence
avoid excessive toxicity caused by chemotherapeutic agents (e.g. ara-C).

1.1.2 Cytarabine
Ara-C is a classical, antineoplastic, chemotherapeutic agent used in the
treatment of hematological malignancies. Itself, this nucleoside analog is not
active (Figure 1), as it is a prodrug that needs metabolic reactions to be in its
active triphosphate form (ara-CTP, Figure 2) (Shelton et al., 2016). The
phosphorylation cascade of ara-C begins with the monophosphate (ara-CMP),
continues to the diphosphate (ara-CDP) and finally ends with the active
triphosphate (ara-CTP).

Figure 1, Deoxycytidine and nucleoside analog cytarabine. These two moleculesare analogs and the only difference between is the additional hydroxyl group in (arrow). The hydroxyl group (OH), important inphosphorylation, is marked inside the red circle.



Figure 2, Different phosphorylation stages of ara-C. First phosphorylation productis monophosphate (CMP), second is diphosphate (CDP) and the last one istriphosphate (CTP). Enzymes involved in phosphorylation cascade are:Deoxycytidine kinase (DCK), deoxycytidylate kinase and nucleoside diphosphatekinase, respectively. The triphosphate, Ara-CTP, is biologically active form of ara-C.
Because ara-CTP mimics endogenous dCTP, it is a substrate of DNA
polymerases, and so targets cells undergoing DNA synthesis, therefore ara-C is
an effective drug against rapidly dividing cancer cells (Shelton et al., 2016). When
this ara-C metabolite integrates into DNA, cells cannot efficiently copy their DNA
and this leads to a stress response and eventually to programmed death (e.g.
apoptosis or necroptosis). Cytarabine has been used to target rapidly dividing

.
(Kouchkovsky and Abdul-Hay, 2016; Yang and Wang, 2018).
Unfortunately, some patient populations are not responding effectively to ara-C
treatment (Yang and Wang, 2018). Cancer treatment is becoming more
individualized and as a part of precision cancer medicine, new predictive markers
are needed to evaluate patient risks and benefits from cytarabine therapy (Putten
et al., 2011; Burnett et al., 2011).
1.2 SAMHD1
In 2009, SAMHD1 was first observed in human disease, in fact it was discovered
that inherited, autosomal  recessive, mutations of SAMHD1 were the cause of



Aicardi-Goutières syndrome (AGS) (Rice et al., 2009). SAMHD1 is a homologue
-induced gene Mg11 and has another role in Human

Immunodeficiency Virus type 1 (HIV-1) infection as an anti-retroviral protein (Li et
al., 2000). In 2011, it was discovered that this dNTP triphosphohydrolase acts as
a restriction factor against HIV-1 in myeloid cells. In addition, it was observed that
viral protein X (Vpx) can induce proteosomal degradation of SAMHD1 (Schwartz
and Benkirane, 2011). This mechanism allows some viruses to avoid SAMHD1
mediated dNTP turnover and hence ensures the infection.
SAMHD1 has been implicated in the development of different malignancies for
example in colon (Rentoft et al., 2016) and lung cancers (Wang et al., 2014).
Furthermore, a function as a tumor suppressor has been suggested (Herold et
al., 2017c; Clifford et al., 2014). The association to hematological malignancies
has been disclosed for example in a whole exome sequencing study carried out
in 2013 where they found that SAMHD1 mutations could drive the development
of chronic lymphocytic leukemia (CLL) and another study identified F545L
mutation in early stages of CLL (Schuh et al., 2012; Landau et al., 2012).

1.2.1 Biological functions of SAMHD1
SAMHD1 is a dNTP triphosphohydrolase and this enzymatic activity is unique (in
eukaryotes) and allosterically regulated, with substrates being all canonical
dNTPs (i.e. dGTP, dATP, dTTP, dCTP) (Goldstone et al., 2011). Each SAMHD1
monomer contains two allosteric binding sites for nucleotides, these binding sites
are regulating the formation of the catalytically active tetramer (Koharudin et al.,
2014; Li et al., 2015). Once activated, SAMHD1 converts dNTPs into
deoxynucleosides (dN) and inorganic triphosphates (PPPi).
SAMHD1 is a key enzyme in DNA precursor regulation. During different cell cycle
phases, its enzymatic activity has been suggested to change to maintain DNA
precursor pools (Franzolin et al., 2013). This cell cycle related regulation protects
the cell and allows proliferation. For instance, lower enzyme activity during S-
phase is necessary when dNTPs are needed for DNA replication, furthermore,
lowering dNTP pools can protect the cell in virus infection. (Franzolin et al., 2013).



1.2.2 SAMHD1 and Cytarabine
As previously stated, SAMHD1 is responsible for reducing cytotoxicity of ara-C
by converting  the active ara-C metabolite, ara-CTP, back to its inactive state
(Figure 3) (Herold et al., 2017a; Schneider et al., 2017). To clarify the interaction:
ara-C is a substrate, but not an allosteric activator, of SAMHD1 (Herold et al.,
2017a). Considering AML patient prognosis, this drug-enzyme interaction could
play an important role in ara-C therapy. For instance, low ara-CTP levels (partly
explained by SAMHD1 activity) might explain why responses to cytarabine
treatment are not effective in some patients. Interestingly, there is a correlation
between this enzyme expression and patient  treatment response: high
SAMHD1 mRNA expression correlated with poor treatment response and
additionally, SAMHD1 protein abundance can predict responses in cancer cell
lines (Herold et al., 2017a; Schneider et al., 2017). So SAMHD1 has been
identified as a risk factor for cytarabine therapy in AML and potentially the activity
of this hydrolase could predict the efficacy of the treatment in AML patients.

Figure 3, SAMHD1 converts biologically active ara-CTP back to inactive ara-C.Deoxycytidine kinase (DCK) is the rate-limiting enzyme in ara-C phosphorylation.Ara- -nucleotidase-II (NT5C2).Additional deactivation mechanisms also exist: ara-C and ara-CMP can bedeaminated to ara-U and ara-UMP, respectively (not showed in this figure).
Previously mentioned viral protein x (Vpx) can promote degradation of SAMHD1
and this information has been used to study the importance of SAMHD1 function
in ara-C therapy. As an example, when SAMHD1 expression was reduced by Vpx
treatment, patient-derived AML blasts were more sensitive to ara-C treatment
(Herold et al., 2017a). Additionally, disruption of the gene itself can potentiate
ara-C cytotoxicity. SAMHD1 knock out (KO) led to increased ara-CTP levels and,
as a result of SAMHD1 disruption, ara-C treatment induced more DNA damage



and apoptosis. In addition, SAMHD1 KO AML mouse models were responding
significantly better to ara-C treatment (Herold et al., 2017a).
In addition to effect on ara-C therapy, SAMHD1 has also been reported to reduce
the efficacy of other antimetabolite-based therapies (Herold et al., 2017b). Any

-substituted nucleotides have been suggested to fit into the catalytic site
of the enzyme and this includes several anticancer and antiviral nucleosides
(Hollenbaugh et al., 2017). Therefore, targeting this enzyme could improve other
antimetabolite-based therapies.
 1.3 Drug synergy
Synergy in this context means a positive relationship between two individual
agents, whose total effect is greater than the sum of individual drug effects. In my
thesis project, I want to show that, by combining two drugs (ara-C and SAMHD1
inhibitor), we can see a stronger effect than using a single agent and for this
purpose drug combination analyses are needed (Foucquier and Guedj, 2015).
As previously stated, SAMHD1 is limiting ara-C cytotoxicity, therefore we aimed
to display a positive relationship between drug combination of candidate
SAMHD1 inhibitor compounds and ara-C. To study these drug-drug interactions
three reference models were used: zero interaction potency (ZIP), highest single
agent (HSA) and bliss independence model. Data was generated using a dose-
response matrix format and the relative cell viability measurements were
analyzed with different synergy models.
Each synergy model is based upon a different assumption: HSA model compares
the effects of combination treatment and the highest monotherapy, Bliss model
assumes that two drugs are not interacting, instead they are acting independently
on the phenotype, and ZIP model is combining Bliss and Loewe models and
assumes that two drugs do not potentiate each other (Yadav et al., 2015).
ZIP was introduced in 2015 and this novel reference model combines the
advantages of Bliss and Loewe models. ZIP method is based on delta scores in
a response surface model and it compares the differences between individual
drugs and their combinations. This comparison is based on the changes between
the shapes of dose-response curves as well as the changes between potency in
order to describe the drug interaction relationship in 3D matrix (Yadav et al.,
2015).



1.4 Research Question, Hypothesis and Goals
As a result of several high throughput screens (HTS) conducted in the laboratory
of Professor Thomas Helleday, several candidate small molecule inhibitors of
SAMHD1 have been identified (unpublished). In this thesis work, my objectives
were to optimize a cell-based assay where drug combinations of ara-C and
candidate inhibitors could be tested and their possible therapeutic effects
evaluated.
I started with single dose-response studies with ara-C and candidate inhibitors
alone, using different cancer cell lines. Altogether 11 different hematological
cancer cell lines were used in both single drug and drug combination (synergy)
experiments. The hypotheses were that putative SAMHD1 inhibitors should
sensitize cells to ara-C and if this sensitization is SAMHD1 dependent, then drug
synergy of ara-C and candidate SAMHD1 inhibitors, should positively correlate
with SAMHD1 protein abundance.
2. Results
2.1 Hypothesis
Our first hypothesis was that putative SAMHD1 inhibitors should sensitize
leukemia cells to ara-C and this sensitization should be SAMHD1 dependent. We
further hypothesized that, if ara-C potentiation is SAMHD1 dependent, then
SAMHD1 protein expression should positively correlate with the synergy of a
combination treatment of ara-C and a putative SAMHD1 inhibitor.
2.2 Hypothesis validation
The first experiments aimed to validate the research hypotheses. To begin with,
we examined the role of SAMHD1 towards potentiation of ara-C cytotoxicity using
different hematological cancer cells, including SAMHD1 proficient (SAMHD1+/+)
and deficient (SAMHD1-/-) cell lines. Secondly, a drug-drug interactions between
ara-C and putative SAMHD1 inhibitors were evaluated using drug synergy
analysis.
2.2.1 SAMHD1 expression affects cytarabine response in leukemia cells
The relevance of SAMHD1 expression to ara-C cytotoxicity was examined in
dose-response experiments using three different hematological cancer cell lines:
THP-1, HuT-78 and HL-60, both SAMHD1 proficient (SAMHD1+/+) and deficient



(SAMHD1-/-) variants, generated by our collaborator using the CRISPR/Cas9
gene editing technique. Additionally, rescue cell lines made from THP-1
SAMHD1-/- cells were used, either with restored wild-type (WT) SAMHD1 or
expressing an inactive H233A SAMHD1 mutant. Western blot analysis of lysates
from these cell lines revealed differences in SAMHD1 protein expression: THP-1
cells showing the highest expression, HuT-78 intermediate and HL-60 cells low
SAMHD1 expression (Figure 6a). Additionally, as expected, no SAMHD1 was
detected in the knockout (KO) variant and THP-1 rescue cell lines were both
expressing SAMHD1 (Figure 6a).
The effect of ara-C upon cell proliferation after a 96 hour incubation was
compared using the half maximal inhibitory concentration (IC50) values, shown in
Figure 6b-d. In general THP-1 cells, with higher SAMHD1 expression, had a
weaker therapeutic response to ara-C than HuT-78 and HL-60 cell lines, which
have lower SAMHD1 expression. Following incubation with ara-C, THP-1 KO and
H233A (inactive SAMHD1) cells showed pronounced proliferation inhibition,
whereas ctrl and WT cell lines did not respond as much to ara-C toxicity: IC50 for
ctrl and WT was approximately 983 nM and for KO and H233A approximately 34
nM (Figure 6b). HuT-78 cells showed more cytotoxicity with KO cells (IC50 = 27.2
nM), in comparison to ctrl cells (IC50 = 362 nM) (Figure 6c). A slight difference in
ara-C response was observed when HL-60 SAMHD1 ctrl and KO cells were
incubated with ara-C, as IC50 values were respectively 30.9 nM and 8.5 nM
(Figure 6d).



Figure 6, Ablation of SAMHD1 sensitizes hematological cancer cells to ara-C. a, Western blot analysis of THP-1 (ctrl, SAMHD1 KO, WT and H233A), HuT-78 (ctrl, SAMHD1 KO) and HL-60 (ctrl, SAMHD1 KO) cells. Representative of 2independent experiments shown. b-d, Cell viability measured by resazurin assayafter 96 hours incubation with ara-C of: b, THP-1 ctrl, SAMHD1 KO, WT, H233A;c, HuT-78 ctrl and SAMHD1 KO; d, HL-60 ctrl and SAMHD1 KO cells. Halfmaximal inhibitory concentrations for ara-C (IC50) are indicated in nM. Mean
values ± SD of 2 independent experiments are shown, both performed in triplicate. KO, SAMHD1 Knock Out; WT restored SAMHD1 wild-type expression;H233A, restored SAMHD1 expression of an inactive mutant.
Taken together, these data show that cell lines with higher SAMHD1 expression
are more resistant to ara-C, whereas lower ara-C IC50 values were observed in
cell lines with low SAMHD1 expression. Indeed, SAMHD1 expression affects ara-
C response, more specifically it limits the cytotoxicity of ara-C in examined cell
lines. Results were similar than in already published studies (Herold et al., 2017;
Schneider et al., 2017), and so we continued investigating the potential role of
chemical inhibition of SAMHD1 in potentiating ara-C cytotoxicity in vitro.



2.2.2 Cytotoxicity of cytarabine can be potentiated with putative SAMHD1
inhibitors
SAMHD1 limits the cytotoxicity of ara-C (Figure 6). To further validate our
hypothesis, we wanted to examine whether the cytotoxicity of ara-C could be
potentiated by chemically inhibiting SAMHD1. We began to examine drug-drug
interactions, such as synergy, in drug combinations of ara-C and candidate
SAMHD1 inhibitors using THP-1 ctrl and SAMHD1 KO cells. As THP-1 cells
express the most SAMHD1 protein and KO of SAMHD1 resulted in the greatest
sensitization to ara-C (amongst the examined cell lines, Figure 6a), we expected
that this choice of cell line would be optimal as a model system for subsequent
studies. Relative cell viability values following 96 hours incubation with drug
combinations (ara-C + candidate inhibitor A or B) were used to evaluate the drug-
drug interaction with the online tool synergyfinder, developed at the Institute for
Molecular Medicine Finland (FIMM) (Yadav et al., 2015).
Incubation of cells with both drug combinations (ara-C + inhibitor A or B) led to a
potentiation of ara-C cytotoxicity (Figure 7). In dose-response curves, the more
inhibitor was used the less ara-C was needed to inhibit cell proliferation.
Importantly, specificity to SAMHD1 was demonstrated as the shift in ara-C IC50
was observed in the THP-1 ctrl cell line but not with SAMHD1 KO cells (Figure
7a). The effects of drug combinations upon cell viability were visualized as
heatmaps, where results were in line with the original dose-response curves. This
allowed us to visualize how THP- -C was enhanced
by the candidate SAMHD1 inhibitors, however, similar potentiation was not
observed with SAMHD1 KO cells (Figure 7b). The drug combination was
evaluated with 3 different synergy models (ZIP, HSA, and Bliss), and with all
models, drug combinations were beneficial in comparison to the effect of drugs
independently (either ara-C, inhibitor compound A or compound B alone). In THP-
1 ctrl cells, ara-C combined with inhibitor A produced an average of 7% enhanced
proliferation inhibition over the expected additive result in the synergy landscape
evaluated by the ZIP model (Figure 7c). Moreover, with optimal concentrations,
this combination produced almost 40% more proliferation inhibition in comparison
to the expected single drug responses (Figure 7c). KO cells were relatively less
resistant to ara-C as ctrl cells and produced a weaker synergistic effect (with an
average delta score of 4%) (Figure 7c).



Figure 7, A drug combination of potential SAMHD1 inhibitor (compound A)and ara-C is synergistic and enhances the ara-C cytotoxicity in THP-1 cellsin a SAMHD1 dependent manner. a, Proliferation inhibition analysis ofcombination treatment ara-C + compound A in THP-1 SAMHD1 proficient (ctrl)and deficient (KO) cells. Viability was measured using resazurin assay after 96hours drug incubation. b, Relative viability from dose-responses was analyzedyfinder, and results are presented with inhibitionheatmaps and synergy landscapes. Drug combination responses as heatmapsfor combination ara-C and compound A in THP-1 SAMHD1 proficient (ctrl) anddeficient (KO) cells. Grey triangles indicate concentration (µM) of ara-C (y-axis)and compound A (x-axis) in a coordinate system where the origin is equal to zero.c, Synergy landscapes (2D & 3D) for THP-1 SAMHD1 proficient (ctrl) anddeficient (KO) cells after 96 hours incubation with drug combination of ara-C (y-axis) and compound A (x-axis). An average synergy score (delta-score) of 0 wasconsidered as additive result, less than -5 as antagonistic and over 5 assynergistic (delta score for KO cells was 4% and for ctrl cells 7%). The mostsynergistic area is annotated with a pale square.
Combination of ara-C and inhibitor B was also synergistic in proliferation
inhibition, and with tested drug concentrations an average of 5% more inhibition
was observed in THP-1 ctrl cells, over the expected effects of an individual drugs
(Appendix 1). Similarly, with optimal concentrations, this drug combination
enhanced the inhibition almost 40% in comparison to additive drug responses.
Again, compound B and ara-C showed a weak synergistic effect with THP-1
SAMHD1 KO cells, additionally, inhibitor affected ara-C response with ctrl cells
but not with KO cells (Appendix 1).



Taken together, both drug combinations showed a positive, synergistic, effect in
THP-1 ctrl cells and a weaker synergistic response in SAMHD1 KO variant,
consistent with compound A and B inhibiting SAMHD1. In conclusion, the
cytotoxicity of ara-C can be potentiated by a small molecule inhibitor of SAMHD1,
thereby creating a phenotype mimicking SAMHD1 deficiency. The hypothesis
was validated and to further investigate the therapeutic potential of the drug
combinations, I began to develop a cell-based assay suitable for high throughput
screening. Aiming for testing candidate inhibitors and ara-C responses in a panel
of different hematological cell lines.
2.3 Developing a cell-based assay for synergy experiments
One aim of this thesis is to develop a cell-based assay that can be used to
evaluate SAMHD1 inhibitor candidates and to compare the effects of drug
combinations in different hematological cancer cell lines. Dose-response curves
have a crucial role in drug-drug interaction evaluation: prior to evaluating drug
synergy, the optimal concentrations of each drug were determined to ensure
complete dose-response data. In addition, drug matrix used in synergy
experiment was optimized aiming to increase a throughput of the assay, similarly
reducing required resources (e.g. reagents).
2.3.1 Individual dose-responses in a panel of cancer cell lines
Before testing drug combination effects in a panel of hematological cancer cell
lines, I investigated individual dose-responses with single compounds to
determine the optimal concentrations for subsequent synergy experiments. The
aim was to ascertain complete dose-response curves (viability range from 0% to
100%) with all cell lines for each compound (compounds A, B, and ara-C). Cell
lines used in this thesis are listed in Table 1.



Table 1, Hematological cell lines used in this thesis.

Whilst complete dose-response curves for compound B and ara-C could be
obtained, the chosen concentrations of compound A could not produce a
complete response, despite being relatively high (Figure 8). Since 0% viability
was not reached with compound A (Figure 8b), another maximal concentration
was decided and the experiment was repeated. All in all, the dose-response
experiment was performed three times and drug concentrations were obtained
for subsequent synergy experiments. The next step was to optimize the drug
synergy matrix experiment suitable for screening and evaluating drug
combination effects in hematological cancer cell lines.

Figure 8, An example of individual dose-response experiments withdifferent hematological cancer cell lines. Cell viability, measured by resazurinassay of different hematological cancer cell lines (cell line details in Table 1) after96 hours incubation with: a, ara-C; b, compound A or c, compound B. Mean



values ± SD in a representative of 3 independent experiments, performed induplicate.
2.3.2 Drug synergy matrix optimization with THP-1 cell line
According to previous results, THP-1 cells have the highest SAMHD1 expression
amongst the hematological cancer cell lines studied (Figure 6a). Additionally,
these cells provide a large difference in ara-C IC50 between SAMHD1-proficient
(THP-1 ctrl) and deficient (THP-1 KO) variants (Figure 6b). Thus, to ensure
maximal sensitivity of the assay we performed drug matrix optimization using
THP-1 cell lines.
Altogether 4 different drug matrices were tested (8x8, 6x6, 5x5 and 4x4) and both
candidate inhibitors (A and B) were independently combined with ara-C in these
drug concentration matrices. Prior to synergy analysis, proliferation inhibition
dose-response curves were analyzed (Figure 9). When inhibitor concentrations
were increasing, toxicity to ara-C, after 96 hours incubation, were enhanced. With
both inhibitors (A and B), the amount of ara-C needed to achieve the IC50 was
reduced in THP-1 ctrl cells but not in KO cells. In THP-1 ctrl cell line, enhanced
ara-C cytotoxicity was detected with all drug matrices: 8x8 and 6x6 (Figure 9a)
as well as 5x5 and 4x4 (Figure 9c). However, THP-1 KO cell response to ara-C
remained constant across tested drug matrices: 8x8 and 6x6 (Figure 9b) 5x5 and
4x4 (Figure 9d).



Figure 9, Combined ara-C dose-response curves from synergy optimizationstudy with candidate SAMHD1 inhibitor A. Ara-C dose-response curves forTHP-1 ctrl and SAMHD1 KO  cells. Cell viability was determined using a resazurinassay of THP-1 ctrl (a,c) and SAMHD1 KO (b,d) cells, following 96 hoursincubation with a combination of ara-C and compound A. Drug matrices (a,b) 8x8,6x6; (c,d)  5x5 and 4x4, were compared. Compound A concentrations are
indicated in µM. Mean values ± SD of 4 independent experiments, performed induplicate (plate layout in Appendix 2).
Dose-responses for compound A and ara-C (Figure 9) as well as for compound
B and ara-C (Appendix 3) showed a similar trend across all tested drug matrices
(matrices with 4, 5, 6 or 8 concentration pairs). Based upon these results, the
assay was working and even with smaller matrices (5x5 and 4x4), we observed
potentiation of ara-C cytotoxicity with both candidate compounds A and B.



Relative viability values were used to assess drug synergy with FIMM s online
tool synergyfinder. As we were optimizing this assay, increasing its throughput
without compromising the quality of the data, the focus was on the differences
between the drug matrices and synergy models. Comparison between used drug
matrices and synergy models was performed with average synergy scores (delta-
scores) obtained from synergy analysis with ZIP, HSA, and Bliss reference
models.
When an average synergy score, delta score, above 5 was considered as
synergistic, all used matrices produced a synergistic outcome with THP-1 ctrl
cells, and a weaker synergistic effect with THP-1 SAMHD1 KO cells, according
to ZIP synergy model (Figure 10).

Figure 10, Drug matrix optimization results from ZIP synergy model.Relative dose-response values from resazurin viability experiments (n = 4) ofTHP-1 ctrl and SAMHD1 KO cells after 96 hours incubation with drugcombinations (ara-C and compound A or B), were used to obtain an averagesynergy scores (delta scores  y-the top part of the figure: average synergy scores for drug combination ara-C +compound A and at the lower part of the figure: combination ara-C + compoundB. Individual data points indicate mean values from 4 independent experiments,each performed in duplicate, error bars indicate SD. THP-1 ctrl cells arerepresented in black and THP-1 SAMHD1 KO cells in red. Drug matrices were



compared with an average synergy scores (delta-scores) and delta equal to zerowas considered as an additive response, above 5 as synergistic and less than -5 as antagonistic interaction, the grey rectangle is indicating the area betweenantagonistic and weak synergistic interaction (delta from -5 to 5). Statisticalsignificances between drug matrices are presented in Table 2.
Consistent with the results obtained using the ZIP model (presented above in
Figure 10), analysis with the HSA model showed that within all tested matrices a
synergistic interaction was observed with both candidate inhibitors in THP-1 ctrl
cells while a weaker synergistic interaction was observed in KO cells (Figure 11).

Figure 11, Drug matrix optimization results from HSA synergy model.Relative dose-response values from resazurin viability experiments (n = 4) ofTHP-1 ctrl and SAMHD1 KO cells after 96 hours incubation with drugcombinations (ara-C and compound A or B), were used to obtain an averagesynergy scores (delta scores  y-the top part of the figure: average synergy scores for drug combination ara-C +compound A and at the lower part of the figure: combination ara-C + compoundB. Individual data points indicate mean values from 4 independent experiments,each performed in duplicate, error bars indicate SD. THP-1 ctrl cells arerepresented in black and THP-1 SAMHD1 KO cells in red. Drug matrices werecompared with an average synergy scores (delta-scores) and delta equal to zerowas considered as an additive response, above 5 as a synergistic and less than-5 as an antagonistic interaction, the grey rectangle is indicating the area between



antagonistic and weak synergistic interaction (delta from -5 to 5). Statisticalsignificances between drug matrices are presented in Table 2.
Differences between matrices were also assessed with the Bliss synergy model.
When different matrices were compared, all of them showed similar synergistic
interaction in THP-1 ctrl cells, whereas a weaker synergistic interaction was
detected in KO cells (Appendix 4).
In conclusion, all tested synergy models (ZIP, HSA, and Bliss) were in line with
each other and agreed upon synergistic or antagonistic interactions detected
even with the smaller drug matrices (5x5 and 4x4). The mean values between
drug matrices were compared with one-way analysis of variance (one-way
ANOVA) (Table 2). Altogether 72 comparisons were analyzed and only 3 drug
matrix pairs produced a statistically significant difference between their mean
values. When synergy was evaluated with Bliss model: THP-1 ctrl cells exposed
to drug combination of ara-C and compound B produced a statistically significant
difference between mean values of drug matrices 8x8 and 5x5 (P = 0.0210),
nevertheless the same comparison was not as significant when analyzed using
ZIP and HSA models. However, HSA model produced 2 significant comparisons,
both with THP-1 SAMHD1 KO cells: Drug combination of ara-C and compound
A, mean values between drug matrices 6x6 and 5x5 (P = 0.0455) and a
combination of ara-C and compound B between drug matrices 8x8 and 4x4 (P =
0.0306). Again, comparisons between these matrices were not showing
statistically significant differences in analysis with ZIP and Bliss models (Table
2).



Table 2, Statistical significance between examined drug matrices. In drugsynergy optimization results, there were 3 statistically significant drug matrixpairs, when differences between matrices were examined with one-way analysisof variance (one-way ANOVA), where P = <0.05 indicates statistical significance,bold values.

Taken together, all examined drug concentration matrices were valid to be used
to detect and evaluate drug-drug interactions in subsequent experiments.
However, smaller drug matrices would be more appropriate for high throughput
screening and therefore, we compared drug matrices 5x5 and 4x4. Both drug
matrices indicated similar synergistic interaction (Figures 10 and 11) but dose-
response curves, with only 4 drug concentrations, were not as accurate and
reliable as with 5 (Figure 12)  and for this reason, matrix 5x5, was decided to be
used as optimized drug matrix.



Figure 12, A dose-response curve with 5 data points is more accurate thanwith 4 data points. Proliferation inhibition analysis of drug combinations (above,ara-C and compound A; below, ara-C and compound B) in THP-1 ctrl cells. Left
drug matrix 5x5, right drug matrix 4x4. Mean values ± SD of 4 independent experiments, each performed in duplicate.
2.4 Synergy between cytarabine and candidate SAMHD1 inhibitors is
dependent upon SAMHD1 protein expression
To begin with, SAMHD1 protein expression levels in different hematological cell
lines were determined. The aim was to use protein expression data, in
subsequent correlation analysis, between drug synergy and SAMHD1 protein
abundance. The second experiment with optimized drug matrix 5x5, aimed to
evaluate the drug-drug interaction of ara-C and candidate SAMHD1 inhibitors
(compounds A and B), in a panel of different hematological cancer cell lines
(Table 1). Drug-drug interactions and possible synergy were examined with the
three different synergy models, previously described (ZIP, HSA, and Bliss) and
finally, the relationship between drug synergy and SAMHD1 protein abundance
was evaluated using correlation analysis.



2.4.1 SAMHD1 expression in a panel of hematological cell lines
The aim of this part of my project was, to potentially establish a correlation
between SAMHD1 expression and drug synergy. For this purpose, I determined
the SAMHD1 protein expression levels amongst the chosen cell lines. Samples
from different hematological cell lines were taken and protein levels were
analyzed in a Western blot experiment (Figure 13). Cancer cell lines were
categorized according to their SAMHD1 expression level: high expression (THP-
1, KBM-7, MV-4-11), intermediate (HuT-78, K562, NB-4, MOLT-16) and low (HL-
60, CCRF-CEM, Jurkat, MOLT-4).

Figure 13, SAMHD1 expression differs between hematological cell lines. a,Western blot analysis of SAMHD1 expression in different hematological cell lines(for cell line details see Table 1). Representative of 4 blots shown. b,Quantification of SAMHD1 protein abundance. Values normalized to loadingcontrol SOD-1. Error bars indicate SD of 4 independent experiments.
2.4.2 Synergy between ara-C and inhibitors with optimized drug matrix
In a study with the optimized drug matrix across the cell line panel, first ara-C
dose-responses from viability experiments were evaluated and then relative
synergyfinder. As a result, synergistic interactions were detected with both drug
combinations and greater synergistic interaction was observed in cell lines
expressing more SAMHD1, compared to cell lines with lower expression (Figures
17 and 18). Therefore, a correlation analysis was performed to determine the
relationship between drug synergy and SAMHD1 protein abundance. Examples
from optimized drug matrix experiment (Figures 17 and 18) are presented after
correlation results.



2.4.3 Correlation between SAMHD1 protein abundance and drug synergy in a
panel of hematological cancer cell lines
Spearman correlation tests were used to determine a possible correlation
between SAMHD1 protein abundance and drug synergy in a panel of cancer cell
lines (n = 11). The results obtained indicated a weak positive correlation between
SAMHD1 protein expression and drug synergy scores but a stronger correlation
between expression and the most synergistic area value. Correlation plots are
presented with 3 synergy models: ZIP, HSA, and Bliss respectively in Figures 14,
15 and 16, where correlation coefficient r is presented together with the P-value
(two-tailed unpaired t-test, where P = <0.05 indicates statistical significance) to
describe the linear relationship between SAMHD1 expression and synergy.
2.4.3.1 Correlation based on synergy results from ZIP model
In results obtained with the ZIP synergy model, both tested drug combinations
showed positive correlation when synergy was evaluated with the most
synergistic area method. With compound B the most synergistic area and
SAMHD1 expression correlation coefficient was 0.7909 with P = 0.0055 and with
compound A, r = 0.7818 with P = 0.0064 (Figure 14).



Figure 14, Spearman correlation of relative SAMHD1 protein abundance(SAMHD1/SOD1) and synergy values for combinations of ara-C andputative SAMHD1 inhibitors (A and B) based on ZIP synergy model.Correlation coefficient r is presented together with the p-value (two-tailedunpaired t-test, where p = <0.05 indicates statistical significance) to describe thelinear relationship between SAMHD1 expression and synergy in a panel of cancercell lines (n = 11). In ZIP results most synergistic area reflects stronger positivecorrelation than delta-score: with combination of ara-C + B, r = 0.7909 and P =0.0055; with combination ara-C + A, r = 0.7818 and P = 0.0064. Data points withhorizontal line and error bars are representing mean and SD from individualexperiments; Western blot analysis (n = 4) and synergy studies, each performedin triplicate: THP-1 ctrl, n = 4; THP-1 KO, n = 4; HuT-78, n = 3; HL-60, n = 1;KBM-7, compound A n = 7, compound B n = 8; K562, compound A n = 4,compound B n = 5; CCRF-CEM, compound A n = 4, compound B n = 5; MV-4-11, compound A n = 4, compound B n = 5; NB-4, compound A n = 1, compoundB n = 2; Jurkat, compound A n = 3, compound B n = 4; MOLT-4, compound A n= 3, compound B n = 4.

2.4.3.2 Correlation based on synergy results from HSA model
When synergy was evaluated with the HSA model, examined drug combinations
showed a positive correlation with average synergy scores and even stronger
correlation with the most synergistic area method. With compound B, the most
synergistic area and SAMHD1 expression correlation coefficient was 0.7636 with
P = 0.0086 and for compound A, r = 0.8455 with P = 0.0018 (Figure 15).



Figure 15, Spearman correlation of relative SAMHD1 protein abundance(SAMHD1/SOD1) and synergy values for combinations of ara-C andputative SAMHD1 inhibitors (A and B) based on the HSA synergy model.Correlation coefficient r is presented together with the p-value (two-tailedunpaired t-test, where p = <0.05 indicates statistical significance) to describe thelinear relationship between SAMHD1 expression and synergy in a panel of cancercell lines (n = 11). In HSA results most synergistic area reflects stronger positivecorrelation than delta-score: with combination of ara-C + B, r = 0.7636 and P =0.0086; with combination ara-C + A, r = 0.8455 and P = 0.0018. However, also aweaker positive correlation is detected with an average synergy score (deltascore) between both combinations; r = 0.6909 and P = 0.0226. Data points withhorizontal line and error bars are representing mean and SD from individualexperiments; Western blot analysis (n = 4) and synergy studies, each performedin triplicate: THP-1 ctrl, n = 4; THP-1 KO, n = 4; HuT-78, n = 3; HL-60, n = 1;KBM-7, compound A n = 7, compound B n = 8; K562, compound A n = 4,compound B n = 5; CCRF-CEM, compound A n = 4, compound B n = 5; MV-4-11, compound A n = 4, compound B n = 5; NB-4, compound A n = 1, compoundB n = 2; Jurkat, compound A n = 3, compound B n = 4; MOLT-4, compound A n= 3, compound B n = 4.



2.4.3.3 Correlation based on synergy results from Bliss model
A correlation was also examined for Bliss synergy results and SAMHD1
expression. Again, the most synergistic area showed a stronger correlation: the
most synergistic area score and SAMHD1 expression correlation coefficient for a
combination of candidate inhibitor B and ara-C was 0.8364 with P = 0.0022 and
for another combination (compound A + ara-C) r = 0.7727 with P = 0.0074 (Figure
16).

Figure 16, Spearman correlation of relative SAMHD1 protein abundance(SAMHD1/SOD1) and synergy values for combinations of ara-C andputative SAMHD1 inhibitors (A and B) based on Bliss synergy model.Correlation coefficient r is presented together with the p-value (two-tailedunpaired t-test, where p = <0.05 indicates statistical significance) to describe thelinear relationship between SAMHD1 expression and synergy in a panel of cancercell lines (n = 11). According to Bliss results, the most synergistic area reflectsstronger positive correlation than delta-score: with combination of ara-C + B, r =0.8364 and P = 0.0022; with combination ara-C + A, r = 0.7727 and P = 0.0074.Data points with horizontal line and error bars are representing mean and SDfrom individual experiments; Western blot analysis (n = 4) and synergy studies,each performed in triplicate: THP-1 ctrl, n = 4; THP-1 KO, n = 4; HuT-78, n = 3;HL-60, n = 1; KBM-7, compound A n = 7, compound B n = 8; K562, compound A



n = 4, compound B n = 5; CCRF-CEM, compound A n = 4, compound B n = 5;MV-4-11, compound A n = 4, compound B n = 5; NB-4, compound A n = 1,compound B n = 2; Jurkat, compound A n = 3, compound B n = 4; MOLT-4,compound A n = 3, compound B n = 4.

2.4.3.4 A summary of correlation results
In summary, relative SAMHD1 protein abundance was compared with drug
synergy scores evaluated with different synergy methods. Synergy was
evaluated with both delta-score and the most synergistic area value. Both
methods displayed a positive correlation but it was more obvious with the most
synergistic area method. Correlation between the most synergistic area and
SAMHD1 expression, was statistically significant for both drug combinations
(Table 3). To clarify the key results, correlation coefficient and p-values from ZIP,
HSA and Bliss models are presented in table 3 together with different synergy
evaluation methods.



Table 3, In a study with hematological malignancies (n = 11), SAMHD1protein expression correlates with a combination of ara-C and putativeSAMHD1 inhibitors measured with different synergy models. Correlationresults from SAMHD1 expression and synergy experiments, where synergy wasevaluated using average synergy, delta, scores and the most synergistic area-values. Spearman correlation of relative SAMHD1 protein abundance and drugsynergy was examined for synergy results from different synergy models (ZIP,HSA, and Bliss). Results are shown with the correlation coefficient (r) and p-value(two-tailed unpaired t-test, where p = <0.05 indicates statistical significance, boldvalues).

2.4.4 Examples from optimized drug matrix experiments
As an example from synergy experiments with optimized drug matrix, results with
2 cell lines are presented: MV-4-11 with intermediate SAMHD1 expression and
MOLT-4 with low SAMHD1 expression (Figure 13).
MV-4-11 cell line was previously categorized to intermediate SAMHD1
expression group (Figure 13), but its SAMHD1 expression is still relatively high
(less than THP-1 cells, but more than HuT-78 cells (Figure 17a). In the
experiment with drug matrix 5x5, a combination of ara-C and compound B,
enhanced ara-C cytotoxicity (Figure 17b) and produced a synergistic interaction
(Figure 17c) in MV-4-11 cells. With this drug combination, an average of 5% more
cell proliferation inhibition was observed over the expected additive response,



and with optimal drug concentrations, ara-C cytotoxicity was enhanced, even by
30%, compared to individual drug effects (Figure 17c).

Figure 17, Compound B and ara-C synergistically inhibit cell proliferationin MV-4-11 cells. a, Western blot analysis of SAMHD1 expression in THP-1 ctrl,THP-1 SAMHD1 KO and MV-4-11 cell lines. A representative of 4 experimentsshown. b, Viability by resazurin assay of MV-4-11 cells after 96 hours incubationwith a drug combination of ara-C and compound B. Mean values ± SD of 3 independent experiments, performed in duplicate, are shown. c, Synergylandscape analysis of MV-4-11 cell line after 96 hours incubation with drugcombination ara-online tool synergyfinder using relative cell viability values. An average synergyscore (delta-score) of 0 was considered as additive result, less than -5 asantagonistic and over 5 as synergistic (delta score for MV-4-11 cells was 5%).The most synergistic area is annotated with a pale square. Results are producedwith ZIP synergy model.
In contrast to MV-4-11 cells, the MOLT-4 cell line has relatively low SAMHD1
expression (Figure 18a). Accordingly with our hypothesis, increasing the dose of
inhibitor B did not potentiate ara-C cytotoxicity to the extent observed in MV-4-11
cells (Figures 17b and 18b). In line with lower SAMHD1 expression, a weak
synergistic interaction was detected: ara-C combined with compound B
enhanced ara-C cytotoxicity by 1,4% compared to the additive effect, and optimal
drug concentrations enhanced ara-C cytotoxicity by 10-15%, in comparison to a
corresponding, single drug concentrations (Figure 18c).



Figure 18, Compound B produces a weak synergistic effect in acombination with ara-C in MOLT-4 cell line. a, Western blot analysis ofSAMHD1 expression in THP-1 ctrl, THP-1 SAMHD1 KO and MOLT-4 cell lines.A representative of 4 experiments shown. b, Viability by resazurin assay ofMOLT-4 cells after 96 hours incubation with drug combination ara-C and
compound B. Mean values ± SD of 3 independent experiments, performed in duplicate, are shown. c, Synergy landscape analysis of MOLT-4 cell line after 96hours incubation with drug combination ara-C and compound B. Synergy results
values. An average synergy score (delta-score) of 0 was considered as additiveresult, less than -5 as antagonistic and over 5 as synergistic (delta score forMOLT-4 cells was 1,4%). The most synergistic area is annotated with a palesquare. Results are produced with ZIP synergy model

3. Discussion
SAMHD1 has been previously reported to limit the cytotoxicity of ara-C both in
vivo and in vitro (Herold et al., 2017; Schneider et al., 2017). Based on these
studies, I examined how SAMHD1 protein expression affects ara-C cytotoxicity
in THP-1, HuT-78 and HL-60 cell lines. Indeed, results were consistent with
previous studies: SAMHD1 deficient cell line variants displayed enhanced ara-C
cytotoxicity in comparison to SAMHD1 proficient, control cell lines. Now the
question was: could we improve ara-C cytotoxicity by creating a SAMHD1
deficient phenotype with chemical, small molecule, SAMHD1 inhibitors?



This question was tackled with drug-drug interaction (synergy) experiments,
using two different drug combinations; ara-C combined with either candidate
SAMHD1 inhibitor compound A or B.  The aim was to examine the possibility to
enhance ara-C cytotoxicity and we hypothesized that SAMHD1 limits the
cytotoxic effect, hence both SAMHD1 proficient and deficient cell lines were used.
From previous experiment, I chose THP-1 cell lines for the synergy experiments,
as it provides the largest sensitivity scale amongst examined cell lines (THP-1,
HuT-78 and HL-60). Drug-drug interactions were examined with three different
synergy models (ZIP, HSA, and Bliss) and results from all models indicated a
positive, synergistic, interaction for tested drug combinations in THP-1 control
cells. The total effect produced by a combination of ara-C and candidate
SAMHD1 inhibitors was greater than the additive drug effect and was therefore
considered as synergistic. Drug synergy was evaluated using two different
methods and both of them, average synergy across the drug matrix (delta score),
and the most synergistic area, indicated positive, synergistic, drug-drug
interaction in THP-1 control cells.
Obtained results validated our hypotheses: SAMHD1 proficient cells were
expected to give a stronger ara-C response, because of higher SAMHD1
expression, respectively similar result, enhanced ara-C cytotoxicity, was not
expected in THP-1 KO cells. Positive outcome with THP-1 cells resulted in
subsequent experiments, investigating these drug combinations with other
hematological malignancies. However, using a lot of resources in synergy
experiments was not economically reasonable, therefore assay development and
optimization was required.
The synergy assay was further developed and optimized, aiming to reduce the
amount of required reagents and increase the throughput, while conserving the
robustness of our data. Optimization began by investigating dose-responses for
ara-C, compound A and B in different hematological cancer cell lines. According
to the individual dose-response results, a suitable drug concentration ranges
were defined for subsequent synergy experiments. Additionally, SAMHD1 protein
expression for different cancer cell lines was determined by western blot
experiments, finally aiming to establish a correlation between SAMHD1
expression and synergistic drug-drug interactions.



Drug synergy matrix was optimized using THP-1 ctrl and THP-1 SAMHD1 KO
cells. THP-1 ctrl cells has the highest SAMHD1 expression amongst examined
cell lines, whereas SAMHD1 KO cells do not express SAMHD1. As before, using
these cells in synergy optimization we expected to observe larger sensitivity than
with HuT-78 or HL-60 cells. THP-1 proficient and deficient cells described drug-
drug interactions in both high and low SAMHD1 expression levels, therefore our
assay provided a large sensitivity scale and was optimal for screening purposes.
Synergy optimization experiment aimed to reduce the size of a drug concentration
matrix. Four different drug matrices were examined: 8x8, 6x6, 5x5, and 4x4.
Experiments were performed four times and results were compared using
average synergy scores (delta-scores). In addition to comparison between drug
matrices, we studied potential differences between used synergy models (ZIP,
HSA, and Bliss). Surprisingly, each tested drug matrix produced a similar total
result. Different synergy models displayed only small differences, as a matter of
fact, these models were in line with each other, indicating a similar total
interaction. To conclude, all examined drug matrices were suitable for synergy
evaluation, however, drug concentration matrix 5x5 was chosen to be used in
subsequent experiments. There were two main reasons affecting to this outcome.
First of all, small matrices would be better for high throughput screening and
therefore matrices 8x8 and 6x6 were excluded. Second reason was quality of a
dose-response data. As dose-response information is used to create response
surface models, which in turn are used to visualize more complex dose-response
landscapes to describe drug-drug interaction (Yadav et al., 2015), it was
necessary to evaluate the quality of dose-response results. If the dose-response
information is not accurate enough, it will affect synergy results: inaccurate dose-
response data does not necessarily give veritable synergy scores. The more data
points are used, the more reliable dose-response curve becomes and therefore
matrix 5x5 was more appropriate choice than matrix 4x4.
Optimized drug matrix, 5x5, was used to screen drug-drug interactions in a panel
of hematological cancer cell lines and results indicated that cytotoxicity of ara-C
was dependent on SAMHD1 protein abundancy. Combination treatment of ara-
C and candidate SAMHD1 inhibitor produced more cytotoxic effect in cell lines
expressing more SAMHD1 protein. Similar trend was observed with each
different synergy model (ZIP, HSA, and Bliss) and when synergy was evaluated



either with an average synergy (delta-score) or the most synergistic area method,
results were consistent. These findings suggested a potential positive correlation
between SAMHD1 protein abundance and drug synergy and finally, this
relationship was examined using Spearman correlation analysis.
As drug-drug interactions were demonstrated with average synergy and the most
synergistic area method, synergy scores from both methods were blotted against
SAMHD1 protein expression data. After analyzing the correlation, we compared
the linear correlation between used synergy methods, average synergy against
the most synergistic area, to determine possible differences between used
methods. In this comparison, the most synergistic area plotted with SAMHD1
expression indicated a stronger positive correlation than average synergy. In fact,
results from all used synergy models showed a positive correlation when the most
synergistic area scores for both drug combinations (ara-C+A / ara-C+B) were
compared against SAMHD1 protein abundance. Additionally, positive correlation
was detected with average synergy scores (delta scores), however, synergy
evaluated by this method did not show significant results with all synergy models.
There was a positive correlation between SAMHD1 protein abundance and
average synergy scores, for a combination of ara-C and compound A when drug-
drug interaction was evaluated with HSA model. Another drug combination (ara-
C and compound B) indicated a significant positive correlation when synergy was
evaluated with ZIP or HSA models.
As a conclusion, both drug combinations (ara-C and candidate SAMHD1
inhibitors A or B) showed positive, synergistic, drug-drug interaction in
experiment using drug matrix 5x5. Spearman correlation analysis suggested
significant correlation more often than insignificant, altogether correlation
analysis was performed for 12 cases and 9 of them showed significant result
(Table 3).  Additionally, the most synergistic area showed more significant
correlations (6/6) than average synergy method (3/3) (Table 3).
3.1 Reviewing the methods
Combination treatment in this work was evaluated with 3 different synergy models
(ZIP, HSA and Bliss), using an average synergy score and the most synergistic
area methods. However, additional methods for evaluating drug-drug interactions
are available and the most widely used method is the Chou-Talalay method,
which uses combination index value (CI) to describe synergistic interactions



between two or more drugs (T.C Chou, 1984; Roell et al., 2017). Although CI is
commonly used, it has limitations and for example nonlinear interaction often
leads to incorrect conclusions and evaluating interactions without toxic effect is
challenging (Roell et al., 2017). These factors are limiting the usefulness of CI
method and create errors in the interpretations of the results. An average synergy
and the most synergistic area methods, however, can be used to detect
interactions with toxic effect (Foucquier and Guedj, 2015; Yadav et al., 2015).
Because different synergy models are based on different assumptions, it is
necessary to compare results from different models to increase reliability of the
results. For this purpose, I used three different models and two different methods
to evaluate drug-drug interactions.
Another challenge was assay development. Optimization led to drug matrix 5x5
but what are the benefits and risks using this drug matrix in synergy experiments?
It is important to consider the reliability of the results obtained using the optimized
matrix, where 5 data points were used. Is the size of a drug matrix a limiting
factor? According to my results, drug-drug interaction was similar between tested
drug matrices and therefore suggests that small matrices, like 5x5, are usable to
determine drug-drug interactions. However, one can confirm already obtained
data with more precise drug concentration matrix e.g. 8x8, if needed. With 8
concentrations reliability is increased when dose-response curve is based on
several data points, and this reduces errors and makes average synergy score
more accurate. The most synergistic area is based on the highest observed effect
(Yadav et al., 2015), therefore it is not as sensitive to dose-response errors as
delta score.
Differences or errors in results might occur due to the assay used, in this case for
example size of a drug matrix, as discussed, or then differences in used cell lines.
As I used a cell-based assay, differences between cell lines should be considered
more carefully. Now optimization was based on THP-1 cell line, though SAMHD1
proficient and deficient lines were used, there might still be variation between
different cell lines. Although the used assay was sensitive and capable to detect
different drug-drug interactions, the problem might be in cell lines or how they
were prepared for the experiment. Can we trust the results or compare the
observed effects if we do not know cell lines normal behavior? One important
aspect is cell proliferation rate, how rapidly cells are dividing. When I tested drug



combinations in a panel of hematological malignancies I did not take into account
the natural variation between cell lines e.g. variation in proliferation rates.
If combination treatment is evaluated, then it would be important to ensure the
same drug exposure time, standardize the whole experiment. Cytotoxic drug
effect might be related to a specific cell cycle phase and if a cell line is exposed
to drug more often than another cell line, then the cytotoxic outcome is more
probable. For example, the active form of ara-C, ara-CTP, damages DNA in the
S-phase when DNA is synthesized. Comparing CCRF-CEM and NB-4 cell lines,
if rapidly proliferating CCRF-CEM cells and more slowly proliferating NB-4 cells
are incubated with ara-C for the same period of time, the total exposure to
cytotoxic agent would not be equal. However, the total exposure becomes
different also due to the presence of SAMHD1. As stated in the introduction, this
enzyme converts active compound back to its inactive form (Herold et al., 2017),
then a cell line with low protein levels is exposed to cytotoxic ara-CTP more
frequently, compared to a cell line with more abundant SAMHD1. If putative
SAMHD1 inhibitor is used, it equilibrates the exposure time to cytotoxic drug
between different cell lines. Also, a specific drug concentration with longer
incubation time stabilizes the potential differences in total drug exposure.
As a final result, a positive correlation between SAMHD1 protein abundance and
drug synergy was detected. As discussed earlier, this correlation was based on
SAMHD1 expression and drug synergy results, but the level of protein expression
does not necessarily guarantee or correlate with enzymatic activity. Though,
Herold et al., have showed that higher SAMHD1 mRNA levels are associated
with poor ara-C response in patients, in comparison to lower mRNA status
(Herold et al., 2017). Protein expression quantified with western blot does not
necessarily indicate significant enzyme, in this case, SAMHD1 activity. Rentoft et
al. studied colon cancer and disclosed that some SAMHD1 mutations reduced
the hydrolytic activity against dNTPs (Rentoft et al., 2016). Gene activity differs
amongst individuals and for example gene mutations or SAMHD1 splice variants,
might have an effect to SAMHD1 activity, and hence to ara-C response (Shi et
al., 2014; Rice et al., 2009).
Continuing with SAMHD1 status: if the gene is active it does not necessarily
guarantee an active gene product, e.g. enzyme, and that is why studying
transcriptomic activity, comparing gene expression with protein expression, is



important. Transcriptional activity of a specific gene loci could be examined with
measuring mRNA levels and in contrast to this thesis work, reliability of the in
vitro results could have been improved by comparing both mRNA and protein
levels with synergy results. On the other hand, if we already have in vivo
evidence, is it necessary to use additional resources to confirm it with new in vitro
studies? After all, SAMHD1 has already been identified as a risk factor and a
potential prognostic marker to determine ara-C responses in AML patients
(Herold et al., 2017a; Schneider et al., 2017).
3.2 Potentiating the efficacy of current AML therapy  AML treatment now and
tomorrow
AML treatment affects patient well-being: on one hand, we can improve the

e harmful to a patient.
Current treatment options are lacking efficacy, there are patients who are not
responding, and additionally, cancer treatment can be an exhausting experience
and may involve severe adverse events (e.g. drug side-effects). There are unmet
need for more effective and tolerable treatment options, especially amongst
elderly patients (Bell et al., 2018).
Cancer treatment and research have improved a lot during the last decades and
new therapeutic options have been discovered and developed continuously.
However, cancer is difficult to treat due to its heterogeneity and constant
evolution. Nowadays cancer treatment is developing towards more precise,
individualized, treatment and there are clinics where the treatment is completely
tailored to a patient, taking into account, for example, genetic profile of the
individual. This genomic-guided therapy has been linked to improved patient
outcomes (Senft et al., 2017) and is important due to inter- and intrapatient
genomic heterogeneity.
In this thesis, I examined an option where current AML treatment could be
potentiated. This is one approach, where the aim is to enhance the properties of
the original compound, making it more efficient, simultaneously reducing its
possible side-effects. When candidate inhibitors were used, less ara-C was
needed to achieve the therapeutic effect in comparison to incubation with ara-C
alone. Using potentiating drug combination, we can reduce the amount of needed
individual drugs and therefore, we hope to minimize their potential drug-related
adverse-events. Especially in cancer treatment: chemotherapeutic agents are



 and the less we can use them, the better it will be for
the wellbeing of the patient. In this case, we would add another drug and combine
it with ara-C. Now side-effects of ara-C (such as: headache, dizziness, severe
nausea and vomiting) are probably less common, because of the reduced amount
of the drug, but what about the new drug and its side-effects. What can inhibition
of SAMHD1 cause?
SAMHD1 gives protection against viral infections. When dNTP levels are low,
viral replication becomes more difficult (Baldauf et al., 2013), so if we inhibit
SAMHD1 does this make us more vulnerable to viral infections? This question
becomes important because AML is hematological cancer where malignant cells
arise from the bone marrow. This leads to a lack of functional neutrophils and as

he disease
itself. Then what is the combined effect of already weak immune system together
with other immunosuppressive medications, is this really a significant concern?
Probably not, of course with some individuals this might be an important question,
but there are also other defense mechanisms against viral infections (Alberts et
al., 2008). These mechanisms are including for example: immunization
responses of innate immunity and another intracellular defense mechanisms like:
intracellular pathogen receptors, genome destruction, removing genomic material
and destruction of nucleic acids, for example through interferon (IFN) mediated
pathway.
Another considerable aspect is polypharmacy. Is it really a good idea to increase
the number of drugs as we should try to reduce the drug overload? For instance,
elderly people are often exposed to many drugs, and when more drugs are used
simultaneously, that increases the probability of unwanted drug-drug interactions
p
expected.
Maybe the most important question deals with cytotoxic drug ara-C. Drug-drug
interaction between ara-C and putative inhibitors is pharmacokinetically
potentiative, where therapeutic activity, of ara-C is enhanced by inhibiting
detoxification of the biologically active agent, ara-CTP. If we use combination
treatment to enhance the effect of already cytotoxic drug, is this reasonable
approach? Again this is a question of risk assessment, what are the possible



benefits in comparison to potential risks. Because potentiation of ara-C
cytotoxicity is more efficient in cells where SAMHD1 protein is more abundant,
using a combination treatment is reasonable with patients that have higher
SAMHD1 protein abundance.
In the near future, new treatment options for AML should be available to patients
and new immunological and stem cell targeted therapies are currently under
research. Leukemic stem cells (LSCs) might explain why disease relapses, and
for instance, LSCs genetic background has been examined with in silico assay to
determine gene-expression signatures, then information can be combined with in
vitro screening, intending to identify new compounds (Laverdière et al., 2018). In
addition to drug-gene interactions, immunological treatments are also under
examination. Current role of tumor microenvironment in AML is not yet completely
understood but immunological treatments, like checkpoint modulator anti-PD-1
(programmed cell death protein 1) nivolumab, has been promising anti-cancer
strategy also in AML studies (Lamble et al., 2018).  However, immunological
treatments might be quite expensive, whereas small molecules are usually
cheaper and user-friendlier.

3.3 Conclusions
According to current knowledge, there are patients with high SAMHD1 mRNA
levels and this has been linked to weak ara-C treatment response (Herold et al.,
2017). In this work: I optimized a cell-based assay for evaluating drug-drug
interactions in a panel of hematological cancer cell lines. Additionally, I used the
assay to evaluate drug-drug interaction between SAMHD1 inhibitor candidates
(compounds A and B) and ara-C and finally accessed a positive correlation
between SAMHD1 protein abundance and drug synergy for combination of ara-
C and both candidate SAMHD1 inhibitors, examined in a panel of hematological
cancer cell lines.
Herold et al. demonstrated that lower ara-C sensitivity is positively correlating
with SAMHD1 mRNA expression in a panel of hematological cell lines and
additionally, they detected association between low SAMHD1 expression and
enhanced ara-C treatment response in AML patients (Herold et al., 2017). Taken
together, the positive correlation evidence from this thesis work supported the



rationale of individualized treatment option: combination of ara-C and SAMHD1
inhibitor should improve treatment outcome more efficiently in AML patients with
high SAMHD1 activity.
This topic is clinically important as current AML treatment is not effective enough
and especially in elderly people not tolerable enough, additionally, the lack of
efficacy increases possibility for a relapse. We believe that the efficacy of current
ara-C treatment could be potentiated by combining ara-C with a SAMHD1
deficient phenotype using small molecule inhibitors. This would then result in
enhanced cytotoxicity of ara-C, potentially leading to improved therapeutical
outcomes. As stated before, a need for combination treatment of ara-C and
inhibitor becomes even more important in patients with high SAMHD1 protein
expression. However, high expression does not guarantee significantly high
enzyme activity. Therefore, this approach should be a part of individualized
cancer treatment.
expression and activity, then a need for combination treatment could be

-benefit evaluation. Consequently,
biomarker-based patient identification should prevent unnecessary toxicity and
improve overall cost-effectiveness of the treatment.



4. Materials and Methods
4.1 Project timeline

Figure 19, Project timeline. Above description of different stages of this MScthesis project. Below more detailed timeline about the main experimental labparts. At the end of the work, a couple of additional western blot experimentswere performed where we examined DNA damage and cell death signals aftercombination treatment, results are not presented in this thesis (dark grey wb-boxes).

4.2 Cell lines and cell culture
Cell lines were purchased from ATCC and cultured in two different cell culture
media were. THP-1, HuT-78, HL-60 cells and their CRISPR/Cas9´-generated
(IMDM; GE Healthcare). All other cell lines (K562, CCRF-CEM, MV-4-11, KBM-
7, MOLT-4, MOLT-16, NB-4, Jurkat and LCL-534) were cultured in Roswell Park
Memorial Institute medium (RPMI 1640 GlutaMax; ThermoFisher Scientific).
Media were supplemented with antibiotics 1% (100 U/ml penicillin 100 µg/ml 

streptomycin; ThermoFisher Scientific) and 10% heat-inactivated fetal bovine



serum (FBS, ThermoFisher Scientific). In synergy experiments cells were
resuspended with media containing 5% FBS, instead of 10%. Cell lines were
regularly monitored and tested negative for the presence of mycoplasma using a
commercial biochemical test (MycoAlert, Lonza). Culturing densities were
between 2x10^5 - 1x10^6 cells/ml, additionally a humidified incubator was used
(37 °C with 5% CO2).
4.3 Compounds
Cytarabine was purchased from Sigma Aldrich, Sweden (cat no. C1768). Inhibitor
details are not available. Compounds were prepared as stock solutions in DMSO
and they were either stored at -20 °C or prepared fresh. Compounds were diluted 

in DMSO.
4.4 Controls
Both positive and negative controls were used in viability experiments. Wells
containing cells in culturing media were considered as positive control (100%
viability) and wells with media only were considered as negative control (0%
viability). Controls were used in normalization: fluorescence intensities from
viability measurement were normalized to the average of control plates on the
same plate. DMSO volume was normalized across the plate, not exceeding a
total volume of 500 nl/well.
4.5 Dose-response experiments
Dose-response experiments were performed to determine the concentration
ranges to be used in synergy experiments. Half-log diluted concentrations (total
8 concentrations), in 96-well plates (U-bottom 96-well plates, ThermoFisher
Scientific), were used to obtain a complete concentration response curve with
each individual compound. Each drug was performed in triplicate and for ara-C
concentrations from 30 µM to 0.014 µM were used. 2 cell lines were placed on 1 

plate and 5000 cells/well were incubated together with examined compounds
96h. Viability was measured with resazurin assay after 8h incubation with the
reagent (resazurin sodium salt (Sigma Aldrich, cat no. R7017) 0.06 mg/ml diluted
in PBS, measured with Hidex Sense plate reader (530-570/590-620 nm - ex/em)).
4.6 Drug synergy
384-well plates (Corning, REF 3764) were used in synergy experiments.
Compounds were first dispensed with Tecan D300e Digital Dispenser using the



Synergy wizard in the D300e Control Software. DMSO volume was normalized
across the plate, not exceeding a total volume of 500nl/well. Cells were seeded
to plates with MultiDrop (ThermoFisher Scientific), final density was 1000
cells/well/total V = 50 µl and incubated 96 h before starting cell viability 

measurement with resazurin assay (10 µl resazurin sodium salt (Sigma Aldrich, 

cat no. R7017) 0.06 mg/ml diluted in PBS, measured with Hidex Sense plate
reader (530-570/590-620 nm - ex/em) after 8h incubation). All experiments were
performed in duplicate and the average, relative viability, was used for dose-
response matrix analysis with online tool Synergyfinder (Yadav et al., 2015).
Dose-response landscapes from ZIP, HSA and Bliss models were generated and
average synergy scores (delta-scores) together with the most synergistic area
values were calculated. The average synergy score, delta, describes the total
inhibition in percentage over the expected effect, for example delta score 3,2
indicates that with used concentrations drug combination produces an average
of 3,2% more proliferation inhibition compared to additive, individual drug,
responses. Score of zero describes that there is no interaction and negative delta-
score means antagonistic interaction. Additionally a delta score >5 was
categorized as strong synergy and accordingly a delta score <5 as strong
antagonism (Yadav et al., 2015). Each synergy model is based upon a different
assumption: HSA model compares the effects of combination treatment and the
highest monotherapy, Bliss model assumes that two drugs are not interacting,
instead they are acting independently on the phenotype, and ZIP model is
combining Bliss and Loewe models and assumes that two drugs do not potentiate
each other.
4.7 Protein measurement (Western blot)
For western blot analysis 4ml samples were taken from cell cultures, cells were
counted with automatic cell counter (BioRad TC20) and 2x10^6 cells were
harvested for western. Cells were washed with 1ml PBS and centrifuged
500g/5min during the washes. Washed cells were centrifuged 1000g/5min and
pellet was stored on ice. Cell lysis buffer was prepared according to formula
presented in table 3 and 50µl/sample was used. 



Table 4, Lysis buffer for western blot. Protease inhibitor cocktail (Roche -04693159061), phosphatase inhibitor (ThermoFisher Scientific - 1861277).
1x Stock Dilution Volumes for 1ml

Tris HCl, pH 8 50 mM 2 M (pH 7.5) 1/40 25µl

NaCl 150 mM 5 M 1/33.3 30µl

EDTA 1 mM 0.5 M 1/500 2µl

TX100 1% 10 % 1/10 100µl

SDS 0.1% 20 % 1/200 5µl

Protease i 10x 1/10 100µl

Phos i 100x 1/100 10µl

H2O 728µl

Protein concentration of cell lysates was measured with Pierce BCA assay
(Protein Assay Kit, ThermoFisher Scientific), with standard curve from 2000 µg/ml 

to 0 and experiment was run in duplicate. Luminescence was measured with
Hidex Sense plate reader (570nm). According to BCA assay, equal amount of
protein was calculated to be used. Samples and buffers were prepared: Laemmli
Sample Buffer (BioRad), loading buffer (LB+1M DTT, final c=100nM) and running
buffer (BioRad TGS buffer (1610732), 10xTRIS/Glysine SDS buffer: 100ml buffer
+ 900 ml H2O). Prior to running, samples were denaturated at 80 °C 3 min. 4-5%
TGX gels were used (Bio-Rad Mini Protean TGX) and gels were ran with BioRad
running chamber, 120V 1-2h. Transfer to nitrocellulose membrane with Transblot
Turbo (BioRad) 1,3A, 25V, 7min. Blocking was done with odyssey blocking buffer
(LICOR 927-50000/TBS tween (0.1%)). Primary Ab O/N, 2ml in 50ml falcon tube
(SAMHD1 rabbit Ab 1:2000 (Abcam, ab177462) and loading controls SOD-1
(Mouse Ab 1:20000, Santa Cruz, sc-11407) and beta actin (Mouse Ab 1:4000
(Abcam, ab49900)). Washes after primary antibody with TBST (tris-buffered
saline with 0.1% Tween-20). Secondary detection antibodies: R800 for SAMHD1
and M680 for SOD-1 and beta-actin) 1:10000, incubation 1h dark RT. Images
were taken with LI-COR Odyssey image system (channels 700 and 800) and
band intensities were quantified with ImageStudio Lite software (LI-COR
Bioscience).



4.7 Statistical methods
Dose-response curves, One-way analysis of variance (ANOVA) and Spearman
correlations (nonparametric) were performed with Prism 7 (GraphPad Software).
Statistical significance was demonstrated with P-value and P = <0.05 indicated
statistical significance.
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6. Abbreviations
AGS Aicardi Goutières syndrome

AML Acute Myeloid Leukemia
Ara-C Arabinosylcytosine or Cytarabine
CI combination index
dC Deoxycytidine
dGTP Deoxyguanosine triphosphate
dN Deoxynucleoside
dNTP Deoxyribonucleoside triphosphate
FIMM Institute for Molecular Medicine Finland
HIV-1 Human Immunodeficiency Virus, type 1
HSA Highest Single Agent
HTS High throughput screening
IC50 Half maximal inhibitory concentration.
KO Knockout



LSC leukemic stem cell
mRNA Messenger RNA
PPPi Inorganic triphosphate
RNA Ribonucleic acid
RT-PCR Reverse Transcription Polymerase Chain Reaction
SAMHD1 Sterile alpha motif (SAM) and histidine/aspartic acid (HD) domain-

containing protein 1
SCT Stem Cell Transplant
SD Standard deviation
Vpx Viral protein x
ZIP Zero Interaction Potency



7. References

Burnett, A., M. Wetzler, and B. Löwenberg. 2011. Therapeutic Advances in 

Acute Myeloid Leukemia. J. Clin. Oncol. 29. 5:487-494.
Clifford R, Louis T, Robbe P , Ackroyd S, Burns A, Timbs A.T, Wright Colopy G,

Dreau H, Sigaux F, Judde J.G, Rotger M, Telenti A, Lin Y, Pasero P,
Maelfait J, Titsias M, Cohen D.R, Henderson S.J, Ross M.T, Bentley D,
Hillmen P, Pettitt A, Rehwinkel J, Kni, B.M. and S.A. 2014. SAMHD1 is
mutated recurrently in chronic lymphocytic leukemia and is involved in
response to DNA damage. Blood. 123:1021 1031.

Cornelissen, J.J., and D. Blaise. 2018. Hematopoietic stem cell transplantation
for patients with AML in fi rst complete remission. Blood. 127:62 71.

methodological landscape. Pharmacol. Res. Perspect. 3.
Franzolin, E., G. Pontarin, C. Rampazzo, C. Miazzi, P. Ferraro, E. Palumbo, P.

Reichard, and V. Bianchi. 2013. The deoxynucleotide triphosphohydrolase
SAMHD1 is a major regulator of DNA precursor pools in mammalian cells.
PNAS. 110:14272 14277.

Goldstone, D.C., V. Ennis-adeniran, J.J. Hedden, H.C.T. Groom, G.I. Rice, E.
Christodoulou, P.A. Walker, G. Kelly, L.F. Haire, M.W. Yap, L.P.S. De
Carvalho, J.P. Stoye, Y.J. Crow, I.A. Taylor, and M. Webb. 2011. HIV-1
restriction factor SAMHD1 is a deoxynucleoside triphosphate
triphosphohydrolase. Nature. 480:379 382.

Herold, N., S.G. Rudd, L. Ljungblad, K. Sanjiv, I.H. Myrberg, C.B.J. Paulin, Y.
Heshmati, A. Hagenkort, J. Kutzner, B.D.G. Page, J.M. Calderón-montaño, 

O. Loseva, A. Jemth, L. Bulli, H. Axelsson, B. Tesi, N.C.K. Valerie, A.
Höglund, J. Bladh, E. Wiita, M. Sundin, M. Uhlin, G. Rassidakis, M.
Heyman, K.P. Tamm, U. Warpman-berglund, J. Walfridsson, S. Lehmann,
D. Grandér, T. Lundbäck, P. Kogner, J. Henter, T. Helleday, and T. 

Schaller. 2017a. Targeting SAMHD1 with the Vpx protein to improve
cytarabine therapy for hematological malignancies. Nat. Med. 23:256 263.

Herold, N., S.G. Rudd, K. Sanjiv, J. Kutzner, J. Bladh, C.B.J. Paulin, T.



Helleday, J. Henter, T. Schaller, N. Herold, S.G. Rudd, K. Sanjiv, J.
Kutzner, J. Bladh, C.B.J. Paulin, T. Helleday, J. Henter, T.S. Samhd, F.N.
Herold, S.G. Rudd, K. Sanjiv, J. Kutzner, J. Bladh, and C.B.J. Paulin.
2017b. SAMHD1 protects cancer cells from various nucleoside-based
antimetabolites. Cell Cycle. 16:1029 1038.

Herold, N., S.G. Rudd, K. Sanjiv, J. Kutzner, I. Hed, C.B.J. Paulin, T. Kristin, T.
suppressor and drug resistance activities of SAMHD1. Exp. Hematol.
52:32 39.

Hollenbaugh, J.A., J. Shelton, S. Tao, S. Amiralaei, P. Liu, X. Lu, R.W. Goetze,
L. Zhou, J.H. Nettles, R.F. Schinazi, and B. Kim. 2017. Substrates and
Inhibitors of SAMHD1. PLoS One. 12:1 22.

Koharudin, L.M.I., Y. Wu, M. Delucia, J. Mehrens, A.M. Gronenborn, and J.
Ahn. 2014. Structural Basis of Allosteric Activation of Sterile  Motif and by
Nucleoside Triphosphates *. J. Biol. Chem. 289:32617 32627.

Kouchkovsky, I. De, and M. Abdul-
Blood Cancer J. 6.

Lamble, A.J., E.F. Lind, and E.F. Lind. 2018. Targeting the Immune
Immunity. 8:1 13.

Landau, D.A., S.L. Carter, P. Stojanov, A. Mckenna, K. Stevenson, M.S.
Lawrence, C. Sougnez, C. Stewart, A. Sivachenko, L. Wang, Y. Wan, W.
Zhang, S.A. Shukla, A. Vartanov, S.M. Fernandes, G. Saksena, K.
Cibulskis, B. Tesar, S. Gabriel, N. Hacohen, M. Meyerson, E.S. Lander,
and D. Neuberg. 2012. Evolution and Impact of Subclonal Mutations in
Chronic Lymphocytic Leukemia. Cell. 152:714 726.

Li, N., W. Zhang, and X. Cao. 2000. Identification of human homologue of
mouse IFN- g induced protein from human dendritic cells. Immunol. Lett.
74:221 224.

Li, Y., J. Kong, X. Peng, W. Hou, X. Qin, and X. Yu. 2015. Structural Insights
into the High-efficiency Catalytic Mechanism of the Sterile  -Motif &
Histidine-Aspartate Domain-containing Protein *. J. Biol. Chem.



290:29428 29437.
Meyers, J., Y. Yu, J.A. Kaye, and K.L. Davis. 2013. Medicare Fee-for-Service

Patterns , Survival , and Healthcare Resource Utilization and Costs. Appl
Heal. Econ Heal. Policy. 78:275 286.

Ossenkoppele, G., and L. Bob. 2015. How I Treat How I treat the older patient
with acute myeloid leukemia. Blood. 125:767 775.

Putten, W. Van, M. Sc, H.C. Schouten, C. Graux, A. Ferrant, P. Sonneveld, B.J.
Biemond, A. Gratwohl, G.E. De Greef, L.F. Verdonck, M.R. Schaafsma, M.
Gregor, M. Theobald, U. Schanz, J. Maertens, and G.J. Ossenkoppele.
2011. Cytarabine Dose for Acute Myeloid Leukemia. N. Engl. J. Med.
1027 1036.

Rentoft, M., K. Lindell, P. Tran, A. Lena, R.J. Buckland, and D.L. Watt. 2016.
Heterozygous colon cancer-associated mutations of SAMHD1 have
functional significance. PNAS.

Review. J. Clin. Med. 5:1 17.
Schneider, C., T. Oellerich, H. Baldauf, S. Schwarz, D. Thomas, R. Flick, H.

Bohnenberger, L. Kaderali, L. Stegmann, A. Cremer, M. Martin, J.
Lohmeyer, M. Michaelis, V. Hornung, C. Schliemann, W.E. Berdel, W.
Hartmann, E. Wardelmann, F. Comoglio, M. Hansmann, A.F. Yakunin, G.
Geisslinger, P. Ströbel, N. Ferreirós, H. Serve, O.T. Keppler, and J.C. Jr. 

2017. SAMHD1 is a biomarker for cytarabine response and a therapeutic
target in acute myeloid leukemia. Nat. Med. 23.

Schuh, A., J. Becq, S. Humphray, A. Alexa, A. Burns, R. Clifford, S.M. Feller, R.
Grocock, S. Henderson, I. Khrebtukova, Z. Kingsbury, S. Luo, D. Mcbride,
L. Murray, T. Menju, A. Timbs, M. Ross, J. Taylor, and D. Bentley. 2012.
Monitoring chronic lymphocytic leukemia progression by whole genome
sequencing reveals heterogeneous clonal evolution patterns. Blood.
120:4191 4197.

Schwartz, O., and M. Benkirane. 2011. SAMHD1 is the dendritic- and myeloid-
cell-specific HIV-1 restriction factor counteracted by Vpx ´. Nature. 474:1 5.



Schürch, C.M. 2018. Therapeutic Antibodies for Myeloid Neoplasms  Current
Developments and Future Directions. Front. Oncol. 8:152

Shelton, J., X. Lu, J.A. Hollenbaugh, J.H. Cho, F. Amblard, and R.F. Schinazi.
2016. Metabolism, Biochemical Actions, and Chemical Synthesis of
Anticancer Nucleosides, Nucleotides, and Base Analogs. Chem. Rev.
116:14379 14455.

Wang JL, Lu FZ, Shen XY, Wu Y, Z.L. 2014. SAMHD1 is down regulated, in
lung cancer by methylation and inhibits tumor cell Proliferation. Biochem
Biophys Res Commun. 455:229 233.

Weinberg, R.A. 2014a. The biology of CANCER. In The biology of CANCER.
Garland Science. 449 455 pp.

Weinberg, R.A. 2014b. The biology of CANCER. Garland Science. 439-453 pp.
Weinberg, R.A. 2014c. The biology of CANCER. Garland Science. 866-857 pp.
Weinberg, R.A. 2014d. The biology of CANCER. Garland Science. 806-815 pp.
Weinberg, R.A. 2014e. The biology of CANCER. Garland Science. 833-834 pp.
Yadav, B., K. Wennerberg, T. Aittokallio, and J. Tang. 2015. Searching for Drug

Synergy in Complex Dose  Response Landscapes Using an Interaction
Potency Model. CSBJ. 13:504 513.

Yang, X., and J. Wang. 2018. Precision therapy for acute myeloid leukemia. J.
Hematol. Oncol. 11:1 11.



8. Appendices

Appendix 1, A drug combination of potential SAMHD1 inhibitor (compoundB) and ara-C is synergistic and enhances the ara-C cytotoxicity in THP-1ctrl cells. a, Proliferation inhibition analysis of combination treatment ara-C +compound A in THP-1 SAMHD1 proficient (ctrl) and deficient (KO) cells. Viabilitywas measured with resazurin assay after 96 hours drug incubation. Relativeviability from dose-synergyfinder, and results are presented with inhibition heatmaps and synergylandscapes. b, Drug combination responses as heatmaps for combination ara-Cand compound B in THP-1 SAMHD1 proficient (ctrl) and deficient (KO) cells. Grey
triangles indicate concentration (µM) of ara-C (y-axis) and compound B (x-axis)in a coordinate system where the origin is equal to zero.c, Synergy landscapes(2D) for THP-1 SAMHD1 proficient (ctrl) and deficient (KO) cells after 96 hoursincubation with drug combination of ara-C (y-axis) and compound B (x-axis). Anaverage synergy score (delta-score) of 0 was considered as additive result, lessthan -5 as antagonistic and over 5 as synergistic (delta score for KO cells was4,4% and for ctrl cells 5%).



Appendix 2, Plate layout of drug matrix optimization experiments. 4 differentdrug matrices were used in duplicates: 8x8 (1-8), 6x6 (9-14), 5x5 (15-19) and 4x4(20-23), column 24 was used as negative control (0% viability) containing cellculture media.



Appendix 3, Combined ara-C dose-response curves from synergy
optimization study with candidate SAMHD1 inhibitor B (µM). Ara-C dose-response curves for THP-1 ctrl  and SAMHD1 KO  cells. Cell viability wasdetermined by resazurin assay of THP-1 ctrl (a,c) and SAMHD1 KO (b,d) cells,following 96 hours incubation with a combination of ara-C and compound B. Drugmatrices (a,b) 8x8, 6x6; (c,d)  5x5 and 4x4, were compared. Compound B
concentrations are indicated in µM. Mean values ± SD of 4 independent experiments, performed in duplicate (plate layout in Appendix 2).



Appendix 4, Drug matrix optimization results from the Bliss model. Relativedose-response values from resazurin viability experiments (n = 4) of THP-1 ctrland SAMHD1 KO cells after 96 hours incubation with drug combinations (ara-Cand either compound A or B), were used to obtain an average synergy scores(delta scores  y-the figure: average synergy scores for drug combination ara-C + compound Aand at the lower part of the figure: combination ara-C + compound B. Individualdata points indicate mean values from 4 independent experiments, eachperformed in duplicate, error bars indicate SD. THP-1 ctrl cells are representedin black and THP-1 SAMHD1 KO cells in red. Drug matrices were compared withan average synergy scores (delta-scores) and delta equal to zero was consideredas an additive response, above 5 as a synergistic and less than -5 as anantagonistic interaction, the grey rectangle is indicating the area betweenantagonistic and weak synergistic interaction (delta from -5 to 5). Statisticalsignificances between drug matrices are presented in Table 2.


